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Abstract

A graph is said to be total-colored if all the edges and the vertices of the

graph are colored. A path P in a total-colored graph G is called a total-proper

path if (i) any two adjacent edges of P are assigned distinct colors; (ii) any

two adjacent internal vertices of P are assigned distinct colors; (iii) any inter-

nal vertex of P is assigned a distinct color from its incident edges of P . The

total-colored graph G is total-proper connected if any two distinct vertices of

G are connected by a total-proper path. The total-proper connection number

of a connected graph G, denoted by tpc(G), is the minimum number of colors

that are required to make G total-proper connected. In this paper, we first

characterize the graphs G on n vertices with tpc(G) = n−1. Based on this, we

obtain a Nordhaus-Gaddum-type result for total-proper connection number.

We prove that if G and G are connected complementary graphs on n vertices,

then 6 ≤ tpc(G) + tpc(G) ≤ n+ 2. Examples are given to show that the lower

bound is sharp for n ≥ 4. The upper bound is reached for n ≥ 4 if and only if

G or G is the tree with maximum degree n− 2.
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1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow

the terminology and notation of Bondy and Murty in [1] for those not defined here.

For a connected graph G, let V (G), E(G) and ∆(G) denote the vertex set, the edge

set and the maximum degree of G, respectively. If G is a graph and A ⊆ V (G), then

G[A] denotes the subgraph of G induced by the vertex set A, and G − A denotes

the graph G[V (G) \ A]. If A = {v}, then we write G − v for short. An edge xy is

called a pendent edge if one of its end vertices, say x, has degree one, and x is called

a pendent vertex. For a vertex v ∈ V (G), we use NG(v) to denote the neighborhood

of v in G and use dG(v) to denote the degree of v in G, sometimes we simply write

N(v) and d(v) if G is clear. For graphs X and G, we write X ∼= G if X is isomorphic

to G. Throughout this paper, N denotes the set of all positive integers.

LetG be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , t},
t ∈ N, where adjacent edges may be colored with the same color. If adjacent edges of

G receive different colors by c, then c is a proper coloring. The minimum number of

colors needed in a proper coloring of G is referred as the chromatic index of G and

denoted by χ′(G). Meanwhile, a path in G is called a rainbow path if no two edges of

the path are colored with the same color. The graph G is called rainbow connected

if for any two distinct vertices of G, there is a rainbow path connecting them. For

a connected graph G, the rainbow connection number of G, denoted by rc(G), is

defined as the minimum number of colors that are needed to make G rainbow con-

nected. These concepts were first introduced by Chartrand et al. in [3] and have

been well-studied since then. For further details, we refer the reader to a book [9].

Motivated by rainbow connection coloring and proper coloring in graphs, Borozan

et al. [2] introduced the concept of proper-path coloring. Let G be a nontrivial

connected graph with an edge-coloring. A path in G is called a proper path if no two

adjacent edges of the path are colored with the same color. The proper connection

number of a connected graph G, denoted by pc(G), is defined as the minimum number

of colors that are needed in an edge-coloring of G such that any two distinct vertices of

G are connected by a proper path. For more details, we refer to a dynamic survey [8].

Jiang et al. [7] introduced the analogous concept of total-proper connection of
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graphs. Let G be a nontrivial connected graph with a total-coloring c : E(G) ∪
V (G) → {1, 2, . . . , t}, t ∈ N. We use c(u), c(uv) to denote the colors assigned to

the vertex u ∈ V (G) and the edge uv ∈ E(G), respectively. A path P is called a

total-proper path if (i) any two adjacent edges of P are assigned distinct colors; (ii)

any two adjacent internal vertices of P are assigned distinct colors; (iii) any internal

vertex of P is assigned a distinct color from its incident edges of P . A total-coloring

c is a total-proper coloring of G if every pair of distinct vertices u, v of G is connected

by a total-proper path in G. A graph with a total-proper coloring is said to be total-

proper connected. If k colors are used, then c is referred as a total-proper k-coloring.

The total-proper connection number of a connected graph G, denoted by tpc(G), is

the minimum number of colors that are required to make G total-proper connected.

For the total-proper connection number of graphs, the following observations are

immediate.

Proposition 1 Let G be a nontrivial connected graph with n vertices. Then

(i) tpc(G) = 1 if and only if G = Kn;

(ii) tpc(G) ≥ 3 if and only if G is noncomplete.

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum

or product of the values of a parameter for a graph and its complement. The name

“Nordhaus-Gaddum-type” is given because Nordhaus and Gaddum [10] first estab-

lished the following type of inequalities for chromatic number of graphs in 1956. They

proved that if G andG are complementary graphs on n vertices whose chromatic num-

ber are χ(G) and χ(G), respectively, then 2
√
n ≤ χ(G) + χ(G) ≤ n+ 1. Since then,

many analogous inequalities of other graph parameters have been considered, such

as diameter [5], domination number [4], proper connection number [6], and so on.

In this paper, we consider analogous inequalities concerning total-proper connection

number of graphs. We prove that if both G and G are connected graphs on n ≥ 4

vertices, then

6 ≤ tpc(G) + tpc(G) ≤ n + 2.

The rest of this paper is organized as follows: In Section 2, we list some useful

known results on total-proper connection number. In Section 3, we first characterize

the graphs G on n vertices with tpc(G) = n − 1. Based on this result, we give the
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upper bound and show that this bound is reached for n ≥ 4 if and only if G or G is

the tree with maximum degree n− 2. Then we give the lower bound and show that

it is sharp for n ≥ 4.

2 Preliminaries

In this section, we list some preliminary results and definitions on the total-proper

coloring which can be found in [7].

Proposition 2 [7] If G is a nontrivial connected graph and H is a connected span-

ning subgraph of G, then tpc(G) ≤ tpc(H). In particular, tpc(G) ≤ tpc(T ) for every

spanning tree T of G.

Proposition 3 [7] Let G be a connected graph of order n ≥ 3 that contains a

bridge. If b is the maximum number of bridges incident with a single vertex in G,

then tpc(G) ≥ b+ 1.

In [7], the authors determined the total-proper connection numbers of trees and

complete bipartite graphs.

Theorem 1 [7] If T is a tree of order n ≥ 3, then tpc(T ) = ∆(T ) + 1.

A Hamiltonian path in a graph G is a path containing every vertex of G and a

graph having a Hamiltonian path is a traceable graph.

Corollary 1 [7] If G is a traceable graph that is not complete, then tpc(G) = 3.

Theorem 2 [7] Let G = Ks,t denote a complete bipartite graph with s ≥ t ≥ 2.

Then tpc(G) = 3.

Given a total-coloring c of a path P = v1v2 . . . vs−1vs between any two vertices v1

and vs, we denote by starte(P ) the color of the first edge in the path, i.e., c(v1v2), and

by ende(P ) the last color, i.e., c(vs−1vs). Moreover, let startv(P ) be the color of the

first internal vertex in the path, i.e., c(v2), and endv(P ) the last color, i.e., c(vs−1). If

P is just the edge v1vs, then starte(P ) = ende(P ) = c(v1vs), startv(P ) = c(vs) and

endv(P ) = c(v1).
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Definition 1 Let c be a total-coloring of a graph G that makes G total-proper con-

nected. We say that G has the strong property if for any pair of vertices u, v ∈
V (G), there exist two total-proper paths P1, P2 between them (not necessarily disjoin-

t) such that (1) c(u) 6= startv(Pi) and c(v) 6= endv(Pi) for i = 1, 2, and (2) both

{c(u), starte(P1), starte(P2)} and {c(v), ende(P1), ende(P2)} are 3-sets.

The authors in [7] studied the total-proper connection number of 2-connected

graphs and gave an upper bound.

Theorem 3 [7] Let G be a 2-connected graph. Then tpc(G) ≤ 4 and there exists a

total-coloring of G with 4 colors such that G has the strong property.

From Definition 1 and Theorem 3, we get the following.

Corollary 2 Let G and H be connected graphs such that G = H − v. If there is a

total-proper k-coloring c of G such that G has the strong property, then tpc(H) ≤ k.

In particular, we study the total-proper connection number of H when G is a

complete bipartite graph, and get the exact value of tpc(H).

Lemma 1 Let H be a connected graph such that H − v = Ks,t, where s ≥ t ≥ 2.

Then tpc(H) = 3. Moreover, tpc(H ′) = 3, where H ′ is the graph shown in Fig. 1.
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Figure 1: The graph H ′

Proof. Let U and W be the two partite sets of Ks,t, where U = {u1, . . . , us} and

W = {w1, . . . , wt}. Since H and H ′ are both noncomplete, we only need to prove

tpc(H) ≤ 3 and tpc(H ′) ≤ 3, i.e., demonstrating a total-proper 3-coloring of H or

H ′. We divide our discussion according to the value of t.

Case 1. t = 2
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If v is adjacent to W , say vw1 ∈ E(H), then set c(w1) = c(u1w2) = 1, and

c(w2) = c(u1w1) = 2. Assign all the remaining vertices and edges with color 3. Thus,

there is a total-proper path uiw1u1w2uj connecting ui and uj, where 2 ≤ i, j ≤ s. As

for the rest of vertex pairs, we can always find a path contained in the path vw1u1w2ui

for some 2 ≤ i ≤ s. If there is another vertex v′ adjacent to w2, based on the above

coloring, set c(v′) = c(v′w2) = 3, then we obtain a total-proper 3-coloring of H ′, see

Fig.1.

If v is adjacent to U , say vu1 ∈ E(H), then set c(w1) = c(u2) = c(u1w2) = 1, and

c(w2) = c(u1w1) = c(u2w1) = c(vu1) = 2. Assign all the remaining vertices and edges

with color 3. Thus, there is a total-proper path, contained in the path vu1w2u2w1 or

vu1w2ui for some 3 ≤ i ≤ s, connecting v or u1 and any other vertex in H . For the

remaining vertex pairs in U ∪W , there is a total-proper path contained in the path

uiw2u1w1uj for some 2 ≤ i < j ≤ s.

Case 2. t ≥ 3

If s = t = 3, then H is traceable so that tpc(H) = 3. If s ≥ 4, we consider two

subcases.

1) Assume there is a 6-cycle C6 in Ks,t such that H − C6 is still connected.

Without loss of generality, we suppose C6 = u1w1u2w2u3w3. We color C6 with the

colors 1, 2, 3 by the sequence of vertices and edges on the cycle. That is, set c(u1) =

c(w2) = c(w1u2) = c(u3w3) = 1, c(u2) = c(w3) = c(u1w1) = c(w2u3) = 2, and

c(w1) = c(u3) = c(u2w2) = c(w3u1) = 3. Let i, j ≥ 4 be two integers. Assign ui

and u3wj (if any) with color 1, and assign wj and w1ui with color 2. The remaining

vertices and edges are all colored 3. Then we claim that this total-coloring makes

H total-proper connected. Any pair (ui, wj) ∈ U × W is connected by the edge

uiwj. The total-proper path for the pairs from U × U is contained in the path

P = uiw1u2w2u3w3uj for some 1 ≤ i, j ≤ s. The total-proper path for the pairs from

W ×W is contained in the path P = wiu1w1u2w2u3wj for some 1 ≤ i, j ≤ t. Now

consider the pairs of {v} × (U ∪W ). By the assumption, we know that vuℓ ∈ E(H)

or vwℓ ∈ E(H) for ℓ ≥ 4. Without loss of generality, suppose ℓ = 4. If vu4 ∈ E(H),

then for pairs (v, ui) (1 ≤ i ≤ s) there is a total-proper path contained in the path

P = vu4w1u2w2u3w3uj for some 1 ≤ j ≤ s, and for pairs (v, wi) (1 ≤ i ≤ t) there is

a total-proper path contained in the path P = vu4w1u2w2u3wj for some 1 ≤ j ≤ t.
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The case when vw4 ∈ E(H) is similar.

2) Assume there is no such a 6-cycle in subcase 1). As s ≥ 4 we can deduce that

t = 3 and v is only adjacent to W , say vw2 ∈ E(H). We color H as above. Then

it is sufficient to check the pairs in {v} × (U ∪W ). For pairs in {v} × U , there is a

total-proper path P = vw2u3w3ui for some 1 ≤ i ≤ s, and for pairs in {v} ×W , we

can find a total-proper path contained in the path P = vw2u3w3u1w1.

The proof is complete. �

3 Bounds on tpc(G) + tpc(G)

To begin this section, we give total-proper connection numbers of four unicyclic

graphs, which are useful to characterize the graphs on n vertices that have total-

proper connection number n− 1.

Lemma 2 Let H1, H2, H3 and H4 be the graphs on n ≥ 5 vertices shown in the Fig. 2,

respectively. Then tpc(H1) = n − 2; tpc(H2) = n − 2 if n = 5, tpc(H2) = n − 3 if

n ≥ 6; and for i = 3, 4, tpc(Hi) = n− 2 if n = 5 or 6, tpc(Hi) = n− 3 if n ≥ 7.

.

.

.

H1 H2

u

H3 H4

.

.

.u

.

.

.u

.

.

.u

e

e

x

}n− 3
v} } }n− 5 n− 4 n− 4

Figure 2: The graphs H1, H2, H3 and H4.

Proof. By Proposition 3, we get tpc(H1) ≥ n−2 and tpc(Hi) ≥ n−3 for i ∈ {2, 3, 4}.

For i = 1, 2, 3, let uvw be the triangle in Hi and let e1, e2,. . . , and en−3 denote

the bridges in Hi. Assume that e = en−3 in the graphs H2 and H3, and the edge e is

incident with the vertex x and adjacent to the bridge e1 in H2, and e is incident with

the vertex v in H3. We first consider the graph H1 and demonstrate a total-coloring

of it with n − 2 colors. Let c(u) = c(vw) = 1, c(ej) = j + 1 for 1 ≤ j ≤ n − 3,

c(uv) = c(w) = 2 and c(v) = c(wu) = 3. The remaining vertices are all colored 1. It

is easy to check this total-coloring makes H1 total-proper connected. Hence, we have

tpc(H1) = n− 2 when n ≥ 5.
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We should point out that for i = 2, 3, 4, the graph Hi is traceable when n = 5,

hence tpc(Hi) = 3 by Corollary 1. So we assume n ≥ 6. Consider the graph H2.

Color H2 as H1 only with the exception that c(en−3) = 1 and c(x) = 3. It is easy to

check that under this total-coloring, H2 is total-proper connected. Hence, we have

tpc(H2) = n− 2 when n = 5 and tpc(H2) = n− 3 when n ≥ 6.

Consider the graph H3. When n = 6, we claim that tpc(H3) = 4. From Propo-

sition 2, we get that tpc(H3) ≤ 4. If we use 3 colors to total-color H3, no matter

how we color it, there always exist two pendent vertices not being connected by a

total-proper path. When n ≥ 7, it can be easily checked that the total-coloring of

H2, only with the exception that c(e) = 4, makes H3 total-proper connected. Hence,

we have tpc(H3) = n− 2 when n = 5, 6 and tpc(H3) = n− 3 when n ≥ 7.

Now we consider the graph H4. We use e1, e2,. . . , and en−4 to denote the bridges

incident with u, respectively, and use uvwx to denote the quadrangle in H4. First,

we consider the case n ≥ 7. We demonstrate a total-coloring of H4 with n− 3 colors.

Let c(ej) = j for 1 ≤ j ≤ n − 4, c(u) = n − 3, c(v) = c(x) = 2, c(vw) = c(xu) = 3

and c(w) = 4. The remaining edges and vertices are all colored 1. It is easy to check

that under this total-coloring, H4 is total-proper connected. When n = 6, we claim

that tpc(H4) = 4. From Proposition 2, we get that tpc(H4) ≤ 4. If we use 3 colors to

total-color H4, no matter how we color it, there always exists a vertex pair not being

connected by a total-proper path. Hence, we have tpc(H4) = n − 2 when n = 5, 6

and tpc(H4) = n− 3 when n ≥ 7. �

We use Cn and Sn to denote the cycle and the star on n vertices, respectively, and

use T (a, b) to denote the double star that is obtained by adding an edge between the

center vertices of Sa and Sb. Given a cycle Cr = v1v2 . . . vr, let Cr(T1, T2, . . . , Tr) be

the graph obtained from Cr and rooted trees Ti by identifying the root, say ri, of Ti

with vi on Cr, i = 1, 2, . . . , r. We assume that |Ti| = ni, ni ≥ 1, i = 1, 2, . . . , r. Then

|Cr(T1, T2, . . . , Tr)| =
∑r

i=1
|Ti|. In particular, if |Ti| = 1 for each i ∈ {1, 2, . . . , r},

the graph Cr(T1, T2, . . . , Tr) is just the cycle Cr. For a nontrivial graph G such that

G + uv ∼= G + xy for every two pairs (u, v), (x, y) of nonadjacent vertices of G, we

use G + e to denote the graph obtained from G by joining two nonadjacent vertices

of G.
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Theorem 4 Let G be a connected graph of order n ≥ 4. Then tpc(G) = n− 1 if and

only if G ∈ {T (2, n− 2), C4, C4 + e, S4 + e}.

Proof.By Theorem 1 and Corollary 1, we can easily check that tpc(G) = n − 1 if

G is one of the above four graphs. So we concentrate on the verification of the

converse of the theorem. Suppose that tpc(G) = n− 1. Then G cannot be complete,

so tpc(G) ≥ 3. If G is a tree, then by Theorem 1, we have ∆(G) = n − 2, thus

G ∼= T (2, n − 2). Now, we consider the case that G contains cycles. Pick a longest

cycle Ck = v1v2...vk of G, where k ≥ 3. If k = n, then 3 = tpc(Ck) = tpc(G) = n− 1.

So n = 4. Thus G ∼= C4 or C4 + e. If k < n, consider a unicyclic spanning subgraph

H of G containing the cycle Ck. Then H can be written as Ck(T1, T2, ..., Tk). Set

r = max{∆(Ti) : 1 ≤ i ≤ k} and let Tℓ be a tree with ∆(Tℓ) = r. Notice that

∆(Tℓ) ≤ |Tℓ|−1 ≤ n−k, so r ≤ n−k. Then delete an edge e of H , which is incident

with vℓ in Ck, and denote the obtained graph as H ′, so H ′ is a spanning tree of G and

∆(H ′) ≤ n− k + 1, and the equality holds if and only if there is only one non-trivial

subtree Tℓ = Sn−k+1 in H whose center is vℓ or there are exactly two pendent edges

attached to Ck. Thus n− 1 = tpc(G) ≤ tpc(H ′) = ∆(H ′) + 1 ≤ n− k + 2, therefore

we have k ≤ 3. So k = 3 and all the equalities must hold. Hence, there is only one

non-trivial subtree in H and ∆(H) = n− 1 or H is traceable on 5 vertices, the latter

contradicting the condition tpc(G) = n−1. So we can identify H as Sn+e, and when

n ≥ 5, the graph H is just the graph H1 in Fig. 2. By Lemma 3 and Proposition 2,

we have tpc(G) ≤ tpc(H1) = n− 2, a contradiction. So n = 4 and G ∼= S4 + e since

C3 is a longest cycle of G. �

We know that if G and G are connected complementary graphs on n vertices,

then n is at least 4, and ∆(G) ≤ n − 2. Therefore, we get that tpc(G) ≤ n − 1.

Similarly, we have tpc(G) ≤ n−1. Hence, we obtain that tpc(G)+ tpc(G) ≤ 2(n−1).

For n = 4, it is obvious that tpc(G) + tpc(G) = 6 if both G and G are connected.

In the rest of this section, we always assume that all graphs have at least 5 vertices,

and both G and G are connected.

Lemma 3 Let G be a graph on 5 vertices. If both G and G are connected, then we

have

tpc(G) + tpc(G) =

{

7 if G ∼= T (2, 3) or G ∼= T (2, 3);

6 otherwise.
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Proof. If G ∼= T (2, 3) or G ∼= T (2, 3), then from Theorem 4, we can easily get that

tpc(G)+ tpc(G) = 7. Otherwise, we have tpc(G) ≤ n−2 = 3 and tpc(G) ≤ n−2 = 3.

Combining with Proposition 1, we get tpc(G) + tpc(G) = 3 + 3 = 6 if G ≇ T (2, 3)

and G ≇ T (2, 3). �

Now we are ready to give the upper bound on tpc(G) + tpc(G).

Theorem 5 Let G be a graph of order n ≥ 5. If both G and G are connected, then

we have tpc(G)+ tpc(G) ≤ n+2, and the equality holds if and only if G ∼= T (2, n−2)

or G ∼= T (2, n− 2).

Proof. It follows from Lemma 3 that the result holds for n = 5. So we assume that

n ≥ 6. If G ∼= T (2, n− 2), then G contains a spanning subgraph H that is obtained

by attaching a pendent edge to the complete bipartite graph K2,n−3. So we have

tpc(G) = 3 by Lemma 1. Combining with Theorem 4, the result is clear. Similarly,

we get that tpc(G) + tpc(G) = n + 2 if G ∼= T (2, n− 2). In the following, we prove

that tpc(G) + tpc(G) < n+2 when G ≇ T (2, n− 2) and G ≇ T (2, n− 2). Under this

assumption, we have 3 ≤ tpc(G) ≤ n − 2 and 3 ≤ tpc(G) ≤ n − 2 by Proposition 1

and Theorem 4.

We first consider the case that both G and G are 2-connected. When n = 6, we

claim that tpc(G) = 3. Suppose that the circumference of G is k. If k = 6, then

tpc(G) ≤ tpc(C6) = 3. If k = 4, then G contains a spanning K2,4, contradicting the

fact that G is connected. Next, we assume that G contains a 5-cycle C = v1v2v3v4v5.

Then G is traceable, so tpc(G) = 3 by Corollary 1. Thus, we have tpc(G) + tpc(G) ≤
3 + n − 2 < n + 2. For n ≥ 7, we have tpc(G) ≤ 4 and tpc(G) ≤ 4 by Theorem 3.

Hence, we get tpc(G) + tpc(G) ≤ 4 + 4 < n+ 2.

Now, we consider the case that at least one of G and G has cut vertices. Without

loss of generality, we suppose that G has cut vertices. Let u be a cut vertex of G, let

G1, G2, . . . , Gk be the components of G− u, and let ni be the number of vertices in

Gi for 1 ≤ i ≤ k with n1 ≤ · · · ≤ nk. We consider the following two cases.

Case 1. There exists a cut vertex u of G such that n−1−nk ≥ 2. Since ∆(G) ≤
n− 2, we have nk ≥ 2. We know that G− u contains a spanning complete bipartite

graph Kn−1−nk,nk
. Hence, it follows from Lemma 1 that tpc(G) = 3. Combining with

the fact that tpc(G) ≤ n− 2, we get that tpc(G) + tpc(G) < n+ 2.
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Case 2. Every cut vertex u of G satisfies that n− 1− nk = 1.

First, we suppose that G has at least two cut vertices, say u1 and u2. Let u1v1

and u2v2 be two pendent edges of G. Obviously, the edges u1v1 and u2v2 are disjoint.

So u1v2, u2v1 ∈ E(G), and G−{u1, u2} contains a spanning complete bipartite graph

K2,n−4 with partition classes U = {v1, v2} and W = V (G)\{u1, v1, u2, v2}. By Lem-

ma 1, we have that tpc(G) = 3. Together with the fact that tpc(G) ≤ n − 2, we get

that tpc(G) + tpc(G) < n+ 2.

Now, we consider the subcase that G has only one cut vertex u and let uv be the

pendent edge of G. Then G− v is 2-connected. By Theorem 3 and Corollary 2, we

have tpc(G) ≤ 4, thus tpc(G) + tpc(G) ≤ n + 2. Now, we prove that the equality

cannot hold. Note that dG(v) = n − 2. Let NG(v) = {w1, w2, . . . , wn−2}. Since

∆(G) ≤ n − 2, there exists a vertex wi (1 ≤ i ≤ n − 2) not adjacent to u in G, say

uw1 /∈ E(G). Then uw1 ∈ E(G). If there is a vertex wj (2 ≤ j ≤ n− 2) adjacent to

w1 in G, then G contains an H3 in Fig. 2 as its spanning subgraph, so tpc(G) ≤ n−3.

If there is a vertex wj (2 ≤ j ≤ n− 2) adjacent to u in G, then G contains an H4 in

Fig. 2 as its spanning subgraph, so tpc(G) ≤ max{4, n− 3}. If there are two vertices

wj, wk(2 ≤ j 6= k ≤ n− 2) are adjacent in G, then G contains an H2 in Fig. 2 as its

spanning subgraph, so tpc(G) ≤ n− 3. We conclude that tpc(G) ≤ max{4, n− 3} if

G−v is 2-connected. For n ≥ 7, we get the result tpc(G)+tpc(G) ≤ n+1 < n+2. For

n = 6, since G− v is a 2-connected graph on 5 vertices, G− v contains a spanning 5-

cycle or a spanning K2,3, implying that tpc(G) = 3 by Corollary 1 and Lemma 1.

Thus, we have tpc(G) + tpc(G) ≤ 3 + 4 = 7 < 8. �

For the lower bound on tpc(G)+ tpc(G), we note that tpc(G) = 1 if and only if G

is a complete graph, in which case the graph G is not connected. So, if G and G are

both connected, then tpc(G) ≥ 3. Similarly, we have tpc(G) ≥ 3. Hence, we obtain

that tpc(G) + tpc(G) ≥ 6.

Theorem 6 Let G be a graph of order n ≥ 5. If both G and G are connected, then

we have tpc(G) + tpc(G) ≥ 6, and the lower bound is sharp.

Proof. We only need to prove that there are graphs G and G on n ≥ 5 vertices such

that tpc(G) = tpc(G) = 3.
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Let G be the graph with vertex set {v} ∪ U ∪ W , where U = {u1, . . . , u⌊n−1

2
⌋}

and W = {w1, . . . , w⌈n−1

2
⌉}, such that N(v) = U and U is an independent set and

G[W ] is a clique, and for each vertex ui, ui is adjacent to wi, wi+1, . . . , wi+⌊n−3

4
⌋ where

the subscripts are taken modulo ⌈n−1

2
⌉. Obviously, the graphs G and G are both

traceable. It follows from Corollary 1 that tpc(G) = tpc(G) = 3. �

Remark: Clearly, both Theorems 5 and 6 are valid for n = 4. So if both G and G

are connected graphs on n ≥ 4 vertices, then 6 ≤ tpc(G)+ tpc(G) ≤ n+2; moreover,

both bounds are sharp.
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