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Abstract

A graph is said to be total-colored if all the edges and the vertices of the
graph are colored. A path P in a total-colored graph G is called a total-proper
path if (i) any two adjacent edges of P are assigned distinct colors; (i7) any
two adjacent internal vertices of P are assigned distinct colors; (iii) any inter-
nal vertex of P is assigned a distinct color from its incident edges of P. The
total-colored graph G is total-proper connected if any two distinct vertices of
G are connected by a total-proper path. The total-proper connection number
of a connected graph G, denoted by tpc(G), is the minimum number of colors
that are required to make G total-proper connected. In this paper, we first
characterize the graphs G on n vertices with tpc(G) = n— 1. Based on this, we
obtain a Nordhaus-Gaddum-type result for total-proper connection number.
We prove that if G and G are connected complementary graphs on n vertices,
then 6 < tpc(G) + tpe(G) < n + 2. Examples are given to show that the lower
bound is sharp for n > 4. The upper bound is reached for n > 4 if and only if

G or G is the tree with maximum degree n — 2.
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1 Introduction

All graphs considered in this paper are simple, finite, and undirected. We follow
the terminology and notation of Bondy and Murty in [1] for those not defined here.
For a connected graph G, let V(G), E(G) and A(G) denote the vertex set, the edge
set and the maximum degree of G, respectively. If G is a graph and A C V(G), then
G[A] denotes the subgraph of G induced by the vertex set A, and G — A denotes
the graph G[V(G) \ A]. If A = {v}, then we write G — v for short. An edge zy is
called a pendent edge if one of its end vertices, say x, has degree one, and x is called
a pendent vertex. For a vertex v € V(G), we use Ng(v) to denote the neighborhood
of v in G and use dg(v) to denote the degree of v in GG, sometimes we simply write
N(v) and d(v) if G is clear. For graphs X and G, we write X = G if X is isomorphic
to GG. Throughout this paper, N denotes the set of all positive integers.

Let G be a nontrivial connected graph with an edge-coloring ¢ : E(G) — {1,2,...,t},
t € N, where adjacent edges may be colored with the same color. If adjacent edges of
G receive different colors by ¢, then c is a proper coloring. The minimum number of
colors needed in a proper coloring of G is referred as the chromatic index of G and
denoted by x'(G). Meanwhile, a path in G is called a rainbow path if no two edges of
the path are colored with the same color. The graph G is called rainbow connected
if for any two distinct vertices of GG, there is a rainbow path connecting them. For
a connected graph G, the rainbow connection number of G, denoted by rc(G), is
defined as the minimum number of colors that are needed to make G rainbow con-
nected. These concepts were first introduced by Chartrand et al. in [3] and have

been well-studied since then. For further details, we refer the reader to a book [9].

Motivated by rainbow connection coloring and proper coloring in graphs, Borozan
et al. [2] introduced the concept of proper-path coloring. Let G be a nontrivial
connected graph with an edge-coloring. A path in G is called a proper path if no two
adjacent edges of the path are colored with the same color. The proper connection
number of a connected graph G, denoted by pc(G), is defined as the minimum number
of colors that are needed in an edge-coloring of GG such that any two distinct vertices of

G are connected by a proper path. For more details, we refer to a dynamic survey [8].

Jiang et al. [7] introduced the analogous concept of total-proper connection of



graphs. Let G be a nontrivial connected graph with a total-coloring ¢ : E(G) U
V(G) — {1,2,...,t}, t € N. We use c(u),c(uv) to denote the colors assigned to
the vertex u € V(G) and the edge uv € E(G), respectively. A path P is called a
total-proper path if (i) any two adjacent edges of P are assigned distinct colors; (i7)
any two adjacent internal vertices of P are assigned distinct colors; (7i7) any internal
vertex of P is assigned a distinct color from its incident edges of P. A total-coloring
c is a total-proper coloring of G if every pair of distinct vertices u, v of GG is connected
by a total-proper path in G. A graph with a total-proper coloring is said to be total-
proper connected. If k colors are used, then c is referred as a total-proper k-coloring.
The total-proper connection number of a connected graph G, denoted by tpc(G), is
the minimum number of colors that are required to make G total-proper connected.
For the total-proper connection number of graphs, the following observations are

immediate.

Proposition 1 Let G be a nontrivial connected graph with n vertices. Then
(i) tpc(G) = 1 if and only if G = K,;
(1) tpe(G) > 3 if and only if G is noncomplete.

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum
or product of the values of a parameter for a graph and its complement. The name
“Nordhaus-Gaddum-type” is given because Nordhaus and Gaddum [10] first estab-
lished the following type of inequalities for chromatic number of graphs in 1956. They
proved that if G and G are complementary graphs on n vertices whose chromatic num-
ber are x(G) and x(G), respectively, then 2/n < x(G) + x(G) < n + 1. Since then,
many analogous inequalities of other graph parameters have been considered, such
as diameter [5], domination number [4], proper connection number [6], and so on.
In this paper, we consider analogous inequalities concerning total-proper connection
number of graphs. We prove that if both G and G are connected graphs on n > 4
vertices, then

6 < tpc(G) + tpc(G) < n+2.

The rest of this paper is organized as follows: In Section 2, we list some useful
known results on total-proper connection number. In Section 3, we first characterize

the graphs G on n vertices with tpc(G) = n — 1. Based on this result, we give the



upper bound and show that this bound is reached for n > 4 if and only if G or G is
the tree with maximum degree n — 2. Then we give the lower bound and show that

it is sharp for n > 4.

2 Preliminaries

In this section, we list some preliminary results and definitions on the total-proper

coloring which can be found in [7].

Proposition 2 [7] If G is a nontrivial connected graph and H is a connected span-
ning subgraph of G, then tpc(G) < tpc(H). In particular, tpe(G) < tpe(T') for every
spanning tree T of G.

Proposition 3 [7] Let G be a connected graph of order n > 3 that contains a
bridge. If b is the maximum number of bridges incident with a single vertex in G,
then tpe(G) > b+ 1.

In [7], the authors determined the total-proper connection numbers of trees and

complete bipartite graphs.

Theorem 1 [7] If T is a tree of order n > 3, then tpe(T) = A(T) + 1.

A Hamiltonian path in a graph G is a path containing every vertex of G and a

graph having a Hamiltonian path is a traceable graph.
Corollary 1 [7] If G is a traceable graph that is not complete, then tpc(G) = 3.

Theorem 2 [7] Let G = K, denote a complete bipartite graph with s > t > 2.
Then tpc(G) = 3.

Given a total-coloring ¢ of a path P = vjv, ... v,_1v5 between any two vertices v;
and v, we denote by start.(P) the color of the first edge in the path, i.e., ¢(vv7), and
by end.(P) the last color, i.e., ¢(vs_1vs). Moreover, let start,(P) be the color of the
first internal vertex in the path, i.e., ¢(vq), and end,(P) the last color, i.e., ¢(vs_1). If
P is just the edge vjvg, then start.(P) = end.(P) = c(vvy), start,(P) = c(vs) and
end,(P) = c(vq).



Definition 1 Let ¢ be a total-coloring of a graph G that makes G total-proper con-
nected. We say that G has the strong property if for any pair of vertices u,v €
V(Q), there exist two total-proper paths Py, Py between them (not necessarily disjoin-
t) such that (1) c(u) # start,(P;) and c(v) # end,(P;) for i = 1,2, and (2) both
{c(u), start.(Py), start.(Py)} and {c(v), end.(Py),end.(P,)} are 3-sets.

The authors in [7] studied the total-proper connection number of 2-connected

graphs and gave an upper bound.

Theorem 3 [7] Let G be a 2-connected graph. Then tpc(G) < 4 and there exists a
total-coloring of G with 4 colors such that G has the strong property.

From Definition 1 and Theorem 3, we get the following.

Corollary 2 Let G and H be connected graphs such that G = H —v. If there is a
total-proper k-coloring ¢ of G such that G has the strong property, then tpc(H) < k.

In particular, we study the total-proper connection number of H when G is a

complete bipartite graph, and get the exact value of tpc(H).

Lemma 1 Let H be a connected graph such that H — v = K, where s > t > 2.
Then tpc(H) = 3. Moreover, tpc(H') = 3, where H' is the graph shown in Fig. 1.

Figure 1: The graph H’

Proof. Let U and W be the two partite sets of K, where U = {uy,...,us} and
W = {wy,...,w;}. Since H and H' are both noncomplete, we only need to prove
tpc(H) < 3 and tpc(H') < 3, i.e., demonstrating a total-proper 3-coloring of H or

H’. We divide our discussion according to the value of t.

Case l. t =2



If v is adjacent to W, say vw; € E(H), then set c¢(w;) = c(ujwy) = 1, and
c(ws) = c(ujwy) = 2. Assign all the remaining vertices and edges with color 3. Thus,
there is a total-proper path w;w;u;wyu; connecting u; and u;, where 2 <4, j <s. As
for the rest of vertex pairs, we can always find a path contained in the path vwiuiwsu;
for some 2 < i < s. If there is another vertex v" adjacent to ws, based on the above
coloring, set ¢(v') = c(v'wsy) = 3, then we obtain a total-proper 3-coloring of H’, see

Fig.1.

If v is adjacent to U, say vu; € E(H), then set c(w;) = ¢(uz) = c¢(ujwy) =1, and
c(wy) = c(ujwy) = c(ugwy) = c(vuy) = 2. Assign all the remaining vertices and edges
with color 3. Thus, there is a total-proper path, contained in the path vuywsusw; or
vujwou; for some 3 < 4 < s, connecting v or u; and any other vertex in H. For the
remaining vertex pairs in U U W there is a total-proper path contained in the path
wwouwiu; for some 2 <4 < j <s.

Case 2. t > 3

If s =t =3, then H is traceable so that tpc(H) = 3. If s > 4, we consider two

subcases.

1) Assume there is a 6-cycle Cg in K, such that H — Cy is still connected.
Without loss of generality, we suppose Cg = ujwiuswouzws. We color Cg with the
colors 1,2, 3 by the sequence of vertices and edges on the cycle. That is, set c¢(u;) =
c(wsy) = clwiug) = clusws) = 1, c(uy) = c(ws) = c(uywy) = c(wouz) = 2, and
c(wy) = c(uz) = c(ugws) = c(wsuy) = 3. Let i,7 > 4 be two integers. Assign u;
and usw; (if any) with color 1, and assign w; and wyu; with color 2. The remaining
vertices and edges are all colored 3. Then we claim that this total-coloring makes
H total-proper connected. Any pair (u;, w;) € U x W is connected by the edge
u;w;. The total-proper path for the pairs from U x U is contained in the path
P = wwiuswouswsu; for some 1 < 4,5 < s. The total-proper path for the pairs from
W x W is contained in the path P = w;ujwiuswousw; for some 1 < 4,5 < t. Now
consider the pairs of {v} x (U U W). By the assumption, we know that vu, € E(H)
or vwy, € E(H) for £ > 4. Without loss of generality, suppose ¢ = 4. If vuy € E(H),
then for pairs (v,u;) (1 < i < s) there is a total-proper path contained in the path
P = vuywiuswougwsu; for some 1 < j <'s, and for pairs (v, w;) (1 < ¢ < t) there is

a total-proper path contained in the path P = vuswiuswousw; for some 1 < 5 < t.



The case when vw, € E(H) is similar.

2) Assume there is no such a 6-cycle in subcase 1). As s > 4 we can deduce that
t = 3 and v is only adjacent to W, say vws € E(H). We color H as above. Then
it is sufficient to check the pairs in {v} x (U U W). For pairs in {v} x U, there is a
total-proper path P = vwyugwsu; for some 1 < i < s, and for pairs in {v} x W, we
can find a total-proper path contained in the path P = vwyuswsuqw;.

The proof is complete. l

3 Bounds on tpc(G) + tpe(G)

To begin this section, we give total-proper connection numbers of four unicyclic
graphs, which are useful to characterize the graphs on n vertices that have total-

proper connection number n — 1.

Lemma 2 Let Hy, Hy, H3 and H, be the graphs on n > 5 vertices shown in the Fig. 2,
respectively. Then tpc(Hy) = n — 2; tpc(Hy) = n —2 if n =5, tpe(Hy) = n — 3 if
n > 6; and for i = 3,4, tpc(H;) =n—2 ifn=>5 or6, tpc(H;) =n—3 if n > 1.

Hy

Figure 2: The graphs Hy, Hy, H3 and Hy.

Proof. By Proposition 3, we get tpc(Hy) > n—2 and tpc(H;) > n—3 fori € {2,3,4}.

For ¢« = 1,2,3, let uvw be the triangle in H; and let ey, es,..., and e,_3 denote
the bridges in H;. Assume that e = e,,_3 in the graphs H, and Hj, and the edge e is
incident with the vertex x and adjacent to the bridge e; in Hs, and e is incident with
the vertex v in Hs. We first consider the graph H; and demonstrate a total-coloring
of it with n — 2 colors. Let c(u) = c(vw) = 1, ¢(ej) = j+1for 1 < j <n—3,
c(uv) = c(w) = 2 and ¢(v) = ¢(wu) = 3. The remaining vertices are all colored 1. It
is easy to check this total-coloring makes H; total-proper connected. Hence, we have

tpc(Hy) =n — 2 when n > 5.



We should point out that for ¢ = 2,3, 4, the graph H; is traceable when n = 5,
hence tpc(H;) = 3 by Corollary 1. So we assume n > 6. Consider the graph Hs.
Color Hy as Hy only with the exception that c(e,_3) =1 and ¢(z) = 3. It is easy to
check that under this total-coloring, Hs is total-proper connected. Hence, we have
tpc(Hs) = n — 2 when n =5 and tpc(Hy) =n — 3 when n > 6.

Consider the graph Hs. When n = 6, we claim that ¢pc(Hs) = 4. From Propo-
sition 2, we get that tpc(Hs) < 4. If we use 3 colors to total-color Hz, no matter
how we color it, there always exist two pendent vertices not being connected by a
total-proper path. When n > 7, it can be easily checked that the total-coloring of
H,, only with the exception that c(e) = 4, makes Hj total-proper connected. Hence,
we have tpc(Hs) = n — 2 when n = 5,6 and tpc(Hs) =n — 3 when n > 7.

Now we consider the graph Hy. We use €1, es,..., and e,_4 to denote the bridges
incident with wu, respectively, and use wvwzx to denote the quadrangle in Hy. First,
we consider the case n > 7. We demonstrate a total-coloring of H, with n — 3 colors.
Let c(ej) =jfor 1 <j<n—4, c(u) =n—-3, c(v) =c(z) =2, c(vw) = c(zu) =3
and c¢(w) = 4. The remaining edges and vertices are all colored 1. It is easy to check
that under this total-coloring, Hy is total-proper connected. When n = 6, we claim
that tpc(H,) = 4. From Proposition 2, we get that tpc(H,) < 4. If we use 3 colors to
total-color H,, no matter how we color it, there always exists a vertex pair not being
connected by a total-proper path. Hence, we have tpc(Hy) = n — 2 when n = 5,6
and tpc(Hy) =n — 3 when n > 7. O

We use C,, and 5, to denote the cycle and the star on n vertices, respectively, and
use T'(a, b) to denote the double star that is obtained by adding an edge between the
center vertices of S, and S,. Given a cycle C, = vivy...v,, let C.(11,Ts,...,T,) be
the graph obtained from C,. and rooted trees T; by identifying the root, say r;, of T;
with v; on C,, i = 1,2,...,r. We assume that |T;| = n;,n; > 1,i =1,2,...,r. Then
C (T, Ts, ..., T,)| = >_._, |Ti|. In particular, if |T;| = 1 for each i € {1,2,...,r},
the graph C,.(T1,T5,...,T,) is just the cycle C,. For a nontrivial graph G such that
G + uv = G + xy for every two pairs (u,v), (z,y) of nonadjacent vertices of G, we
use GG + e to denote the graph obtained from G by joining two nonadjacent vertices

of GG.



Theorem 4 Let G be a connected graph of order n > 4. Then tpc(G) = n—1 if and
only if G € {T(2,n —2),Cy,Cy+ e, S, + e}.

Proof.By Theorem 1 and Corollary 1, we can easily check that tpc(G) = n — 1 if
G is one of the above four graphs. So we concentrate on the verification of the
converse of the theorem. Suppose that tpc(G) = n — 1. Then G cannot be complete,
so tpe(G) > 3. If G is a tree, then by Theorem 1, we have A(G) = n — 2, thus
G = T(2,n—2). Now, we consider the case that G contains cycles. Pick a longest
cycle Cy = v1vs...05 of G, where k > 3. If k = n, then 3 = tpc(Cy) = tpc(G) = n — 1.
Son =4. Thus G = Cy or Cy +e. If kK < n, consider a unicyclic spanning subgraph
H of G containing the cycle Cy. Then H can be written as Cy (11,75, ...,T}). Set
r = max{A(T;) : 1 < i < k} and let T, be a tree with A(7;) = r. Notice that
A(Ty) < |Ty| —1 <n—k,sor <n—k. Then delete an edge e of H, which is incident
with v, in C%, and denote the obtained graph as H', so H' is a spanning tree of G and
A(H') <n—k+1, and the equality holds if and only if there is only one non-trivial
subtree T, = S,,_r4+1 in H whose center is v, or there are exactly two pendent edges
attached to Cj. Thus n — 1 = tpe(G) < tpe(H') = A(H') + 1 < n — k + 2, therefore
we have k£ < 3. So k = 3 and all the equalities must hold. Hence, there is only one
non-trivial subtree in H and A(H) =n—1 or H is traceable on 5 vertices, the latter
contradicting the condition tpc(G) = n—1. So we can identify H as S, + e, and when
n > 5, the graph H is just the graph H; in Fig. 2. By Lemma 3 and Proposition 2,
we have tpc(G) < tpc(Hy) = n — 2, a contradiction. So n =4 and G = S, + e since
(5 is a longest cycle of G. O

We know that if G and G are connected complementary graphs on n vertices,

then n is at least 4, and A(G) < n — 2. Therefore, we get that tpc(G) < n — 1.

Similarly, we have tpc(G) < n—1. Hence, we obtain that tpc(G) +tpe(G) < 2(n—1).
For n = 4, it is obvious that tpc(G) + tpe(G) = 6 if both G and G are connected.
In the rest of this section, we always assume that all graphs have at least 5 vertices,

and both G and G are connected.

Lemma 3 Let G be a graph on 5 vertices. If both G and G are connected, then we

have -
7T ifG=T(2,3) or G=T(2,3);

6 otherwise.

tpe(G) + tpe(G) = {



Proof. If G 2 T(2,3) or G = T(2,3), then from Theorem 4, we can easily get that
tpe(GQ) +tpe(G) = 7. Otherwise, we have tpce(G) < n—2 =3 and tpe(G) < n—2 = 3.

Combining with Proposition 1, we get tpc(G) + tpe(G) =3 +3 =6 if G 2 T(2,3)
and G 2 T(2,3). O

Now we are ready to give the upper bound on tpc(G) + tpe(G).

Theorem 5 Let G be a graph of order n > 5. If both G and G are connected, then

we have tpc(G) +tpe(G) < n+2, and the equality holds if and only if G = T(2,n—2)
or G=T(2,n—2).

Proof. Tt follows from Lemma 3 that the result holds for n = 5. So we assume that
n>6. If G =2 T(2,n—2), then G contains a spanning subgraph H that is obtained
by attaching a pendent edge to the complete bipartite graph Ks,_3. So we have
tpc(G) = 3 by Lemma 1. Combining with Theorem 4, the result is clear. Similarly,
we get that tpe(G) + tpe(G) = n + 2 if G = T(2,n — 2). In the following, we prove
that tpc(G) + tpe(G) < n+2 when G 2 T(2,n—2) and G 2 T(2,n — 2). Under this
assumption, we have 3 < tpc(G) < n — 2 and 3 < tpce(G) < n — 2 by Proposition 1
and Theorem 4.

We first consider the case that both G and G are 2-connected. When n = 6, we
claim that tpe(G) = 3. Suppose that the circumference of G is k. If k& = 6, then
tpc(G) < tpe(Cs) = 3. If k = 4, then G contains a spanning K> 4, contradicting the
fact that G is connected. Next, we assume that G contains a 5-cycle C' = v10203040s.
Then G is traceable, so tpc(G) = 3 by Corollary 1. Thus, we have tpc(G) + tpe(G) <
3+n—2<n+2 Forn>7, wehave tpc(G) < 4 and tpc(G) < 4 by Theorem 3.

Hence, we get tpc(G) +tpe(G) <4+4 <n+ 2.

Now, we consider the case that at least one of G and G has cut vertices. Without
loss of generality, we suppose that G has cut vertices. Let u be a cut vertex of G, let
G1,Go, ..., Gy be the components of G — u, and let n; be the number of vertices in

G; for 1 <i <k with ny < -+ < ny. We consider the following two cases.

Case 1. There exists a cut vertex u of G such that n—1—mn; > 2. Since A(G) <

n — 2, we have nj > 2. We know that G — u contains a spanning complete bipartite

graph K,,_1_,, n,. Hence, it follows from Lemma 1 that tpc(G) = 3. Combining with

the fact that tpc(G) < n — 2, we get that tpc(G) + tpe(G) < n + 2.

10



Case 2. Every cut vertex u of GG satisfies that n — 1 — ny = 1.

First, we suppose that G has at least two cut vertices, say u; and us. Let ujvg
and usvy be two pendent edges of G. Obviously, the edges uiv; and usvs are disjoint.
So u vy, usvy € E(G), and G — {uy, us} contains a spanning complete bipartite graph

K5 ,,—4 with partition classes U = {v,v2} and W = V(G)\{u1, v1, ug, v2}. By Lem-
ma 1, we have that tpc(G) = 3. Together with the fact that tpe(G) < n — 2, we get

that tpc(G) + tpe(G) < n + 2.
Now, we consider the subcase that GG has only one cut vertex u and let uv be the

pendent edge of G. Then G — v is 2-connected. By Theorem 3 and Corollary 2, we

have tpc(G) < 4, thus tpe(G) + tpe(G) < n + 2. Now, we prove that the equality
cannot hold. Note that dz(v) = n — 2. Let Ng(v) = {wy,ws, ..., w,_o}. Since
A(G) < n — 2, there exists a vertex w; (1 <i < n — 2) not adjacent to v in G, say

uwy ¢ E(G). Then uw, € E(G). If there is a vertex w; (2 < j < n — 2) adjacent to
wy in G, then G contains an Hs in Fig. 2 as its spanning subgraph, so tpc(G) < n—3.

If there is a vertex w; (2 < j <n — 2) adjacent to u in G, then G contains an Hy in

Fig. 2 as its spanning subgraph, so tpc(G) < max{4,n — 3}. If there are two vertices
wj, wp(2 < j # k < n—2) are adjacent in G, then G contains an H, in Fig. 2 as its

spanning subgraph, so tpc(G) < n — 3. We conclude that tpc(G) < max{4,n — 3} if

G —wv is 2-connected. Forn > 7, we get the result tpc(G)+tpc(G) < n+1 < n+2. For
n = 6, since G — v is a 2-connected graph on 5 vertices, G — v contains a spanning 5-

cycle or a spanning K 3, implying that tpc(G) = 3 by Corollary 1 and Lemma 1.

Thus, we have tpc(G) +tpc(G) <3+4=7<8. O

For the lower bound on tpc(G) + tpe(G), we note that tpc(G) = 1 if and only if G

is a complete graph, in which case the graph G is not connected. So, if G and G are

both connected, then tpc(G) > 3. Similarly, we have tpc(G) > 3. Hence, we obtain

that tpc(G) + tpe(G) > 6.

Theorem 6 Let G be a graph of order n > 5. If both G and G are connected, then

we have tpc(G) + tpe(G) > 6, and the lower bound is sharp.

Proof. We only need to prove that there are graphs G' and G on n > 5 vertices such

that tpc(G) = tpe(G) = 3.

11



Let G be the graph with vertex set {v} UU U W, where U = {uy,... ,UL%J}
and W = {wy,... ,w[%ﬁ, such that N(v) = U and U is an independent set and
G[W] is a clique, and for each vertex u;, u; is adjacent to w;, w1, ..., w; MESY where
the subscripts are taken modulo [”T_W Obviously, the graphs G and G are both

traceable. It follows from Corollary 1 that tpc(G) = tpe(G) = 3. O

Remark: Clearly, both Theorems 5 and 6 are valid for n = 4. So if both G and G

are connected graphs on n > 4 vertices, then 6 < tpc(G) + tpc(G) < n+ 2; moreover,
both bounds are sharp.

Acknowledgement: The authors would like to thank the reviewers for their helpful

comments and suggestions, which helped to improve the presentation of the paper.
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