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Abstract

Let G be a graph with n vertices and L(G) its Laplacian matrix. Define pg =
%L(G) to be the density matriz of G, where dg denotes the sum of degrees of all
vertices of G. Let A1, Ao, ..., A\, be the eigenvalues of pg. The von Neumann entropy
of G is defined as S(G) = — >, \;log, A;. In this paper, we establish a lower bound

and an upper bound to the von Neumann entropy for random multipartite graphs.
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1 Introduction

Let G be a simple undirected graph with vertex set Vi = {v1,v2,...,v,} and edge set
E¢q. The adjacency matriz A(G) of G is the symmetric matrix [A;;], where A;; = Aj; =1
if vertices v; and v; are adjacent, otherwise A;; = Aj; = 0. Let dg(v;) denote the degree
of the vertex v;, that is, the number of edges incident to v;. The Laplacian matriz of G
is the matrix L(G) = D(G) — A(G), where D(G), called the degree matriz, is a diagonal
matrix with the diagonal entries the degrees of the vertices of G.

The von Neumann entropy was originally introduced by von Neumann around 1927 for
proving the irreversibility of quantum measurement processes in quantum mechanics [18].

It is defined to be
S == pilogy i,
i=1
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where u; are the eigenvalues of the density matrix describing the quantum-mechanical
system (Normally, a density matrix is a positive semidefinite matrix whose trace is equal
to 1). Up until now, there are lots of studies on the von Neumann entropy, and we refer
the reader to [1-3,9-12,15, 16,18, 20].

In [4], Braunstein et al. defined the density matriz of a graph G as

1

1
pG = —L(G) = TH(D(G))

. L(@)
where dg = 3, ey, da(vi) = Tr(D(G)) is the degree sum of G, and Tr(D(G)) means the

trace of D(G). Suppose that A\; > A9 > -+ > X\, = 0 are the eigenvalues of pg. Then
S(G) = — Z Ailogg Aj,
i=1

is called the von Neumann entropy of a graph G. By convention, define 0logy, 0 = 0. It is
known that this quantity can be interpreted as a measure of regularity of graphs [?] and
also that it can be used as a measure of graph complexity [8].

Up until now, lots of results on the von Neumann entropy of a graph have been
given. For examples, Braunstein et al. [4] proved that, for a graph G on n vertices,
0 < S(G) < logy(n — 1), with the left equality holding if and only if G is a graph with
only one edge, and the right equality holding if and only if G is the complete graph K.
In [14], Passerini and Severini showed that the von Neumann entropy of regular graphs
with n vertices tends to logy(n — 1) as n tends to oco. More interesting, in [6], Du et
al. considered the von Neumann entropy of the Erdés-Rényi model G, (p), named after
Erdds and Rényi [7]. They proved that, for almost all G,(p) € G,(p), almost surely
S(Gn(p)) = (1 4+ 0o(1)) logy n, independently of p, where an event in a probability space is
said to be held asymptotically almost surely (a.s. for short) if its probability goes to one
as n tends to infinity.

The purpose of this paper is to study the von Neumann entropy of random multipartite
graphs. We use K., .3, to denote the complete k-partite graph with vertex set V
(|IV| = n), whose parts are Vi,..., Vi (2 < k = k(n) < n) satisfying |V;| = n8; = nB;(n),
i =1,2,...,k. The random k-partite graph model G,,.3, . 3, (p) consist of all random k-
partite graphs in which the edges are chosen independently with probability p from the set
of edges of K.5,,.3.. We denote by A, 1 := A(Gns,...8.(p)) = (Tij)nxn the adjacency
matrix of random k-partite graphs G5, 38,(P) € Gngy,...3.(p), where z;; is a random
indicator variable for {v;,v;} being an edge with probability p, for i € V; and j € V\V},
i # 7,1 <1 <k. Then A, satisfies the following properties:



o z;;’s, 1<i<j<n,areindependent random variables with z;; = xj;;

e Pr(z;j=1)=1—-Pr(z;; =0)=pifi eV, and j € V\V,, while Pr(z;; =0) =1 if
1e€Viand j eV, 1 <<k

Note that when k = n, G5, 5. = Gn(p), that is, the random multipartite graph
model can be viewed as a generalization to the Erdos-Rényi model.

In this paper, we establish a lower bound and an upper bound to S(Gy.pg,...,) for
almost all G.3,,..8,(P) € Gn:a,,....5, (p) by the limiting behavior of the spectra of random

symmetric matrices. Our main result is stated as follows:

Theorem 1. Let Gy.5,... 5, (D) € Gnipy,... 5. () . Then almost surely

k
LZ(D log (" (1 - 253» < S(Guipy,...5.(P))
i=1

-3
i=1

1- 112?;(k{5i} +o(1) - gggk{ﬁi}
< - logy | ———r

k k ’
1- 3 82 n<1—2ﬁ?>
=1 i=1

independently of 0 < p < 1, where o(1) means a quantity goes to 0 as n goes to infinity.

2 Proof of Theorem 1

Before proceeding, we give some definitions and lemmas.

Lemma 1 (Bryc et al. [5]). Let X be a symmetric random matriz satisfying that the
entries X;;, 1 < i < j < n, are a collection of independent identically distributed
(i.i.d.) random variables with E(X12) = 0,Var(X12) = 1 and E(X{,) < oo. Define
S := diag (Z#j Xl-j> Lcien
Denote by || M || the spectral radius of M. Then

and let M = S — X, where diag{-} denotes a diagonal matriz.

M|
lim ————=1
ns00 v2nlogn

a.s.,

| M ||
J2nlogn

Lemma 2 (Weyl [19]). Let X, Y and Z be nxn Hermitian matrices such that X =Y +Z.

i.e., with probability 1, converges weakly to 1 as n tends to infinity.

Suppose that X,Y,Z have eigenvalues, respectively, A\1(X) > -+ > A\p(X), (V) >--- >
M(Y), M(Z) > > M(Z). Then, fori=1,2,...,n, the following inequalities hold:

Ai(Y) + An(Z) < M(X) S N(Y) + Mi(2).



Lemma 3 (Shiryaev [17]). Let X1, Xs,... be an infinite sequence of i.i.d. random variables

with expected value E(X1) = E(X2) = -+ = p, and E|X;| < co. Then

— 1
X, = E(X1+X2+"'+Xn)_>,u a.s.

Proof of Theorem 1. Note that the parts Vi,..., Vi of the random k-partite graph
Gnpi,..p.(p) satisfy |Vi| = nB;, @ = 1,2,...,k. Then the adjacency matrix A, of
Gnipi,... 8, (p) satisfies

77777

An,k + A;@’k = Ap,
where
A”Bl
Anﬁz
Al k —

A
Bk nxn,

Ay = A(Gy(p)), and A,p, := A(Gpg,(p)) for i =1,2,... k.
The degree matrix Dy, := D(Gp.3,,...8,(P)) of Gn.p,... g, (p) satisfies

Dn,k + D;L,k = Dp,

where
D nB1

D nf2

/
n,k —

Dan nxn
5

Dy, := D(Gn(p)), and Dyg, := D(Gpp,(p)) fori =1,2,... k.
The Laplacian matrix Ly, := L(Gn.p,,...5,(P)) of Gn.,... 5, (p) satisfies

Lo + Ly = Ln,

where
L”Bl
/ L”BQ
nk —
Lnﬁk nxn
Ly, := L(Gy(p)), and Lyp, := L(Gpg,(p)) fori =1,2,... k.
Let
1
S = [Dy, — p(n — 1)1,]
p(1—p)



and

1
X = mmn —p(Jn — In)],

where J,, is the n x n all-ones matrix, and I, is the n x n identity matrix. Define an
auxiliary matrix

L, =L, —pn—1)1,+ p(J, — I,)
:(Dn —p(n - I)In) - (An - p(Jn - In))

=Vp(l —p)(§ - X).

Note that E(X12) = 0, Var(Xj2) = 1, and

E(X1y) = 57— (p — 4p* + 6p* — 3p*) < o0.
( 12) p2(1 _p)g (p P /4 P )
By Lemma 1, we have .
L
lim | Lo | =1 as
n—o0 \ /2p(1 — p)nlogn
Then .
L
lim | Lo | =0 a.s.,
n—oo n
i.e.,

| Ly ||=o(1)n  a.s.
Let R, :=p(n —1)I,, — p(Jp — I,). Then
Ly + Ry = Ly.

Suppose that L,, f;l, R,, have eigenvalues, respectively, p1(Lyp) > -+ > pn(Ly), /\1(5;) >

o> (L), AM(Rp) > -+ > M(Ry). Tt follows from Lemma 2 that
Ni(Rn) + An(Ln) < pi(Ly) < Mi(Ry) + A1 (Ly), fori=1,2,... n.
Note that \;(R,) =pn for i =1,2,...,n — 1 and \,(R,) = 0. We have
wi(Lp) = (p+o(1))n as.forl<i<n-—1, (2.1)

and

tn(Lyp) =o(1)n a.s. (2.2)

In the following, we evaluate the eigenvalues of L, j according to the spectral distribution
of L, and L;z,k'

Since Ly = L, — L

ok Lemma 2 implies that for 1 <i < n,

pi(Ln) + pin(=Loy i) < pti( L) < pi(Ln) + (=L ), (2.3)
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where p,(—L7, ;) and p1(—Lj, ;) are the minimum and maximum eigenvalues of —L] ,

respectively. By (2.1), (2.2) and (2.3), we have

np(1 — 1121&33{@}) +o()n < pi(Lpg) <np+o(l)n as., for1<i<n-—1, (2.4)
<i<

and
—np 1rga<xk{ﬂi} +o(1)n < pp(Lp k) <o(l)n  a.s. (2.5)

Consider the trace Tr(Dyy) of Dy k. Note that Tr(Dypy) = 23,5 :(Ank)ij- Since
(Ap)ij (¢ > j) are d.i.d. with mean p and variance p(1 — p), according to Lemma 3, we

obtain that with probability 1,

lim Zi>j(An)ij .
n—00 ”(”2—1) = b

i.€.,

Z(An)ij = (p/2+ 0(1))n2 a.s.

i>]
Then
Tr(Dy) = (p+ o(1))n? a.s.

Similarly, for i =1,2,...k,
Te(Dag,) = (p+ 0(1))n28? a.5.
Thus,

Tr(Dy i) = 2 Z(An,k)z'j =2 Z(An — Ay k)i

i>j i>]

=2 (An)i; —2> (A7 1)i
i>j (]

=2 Y (An)y -2 Yoo At Y (Angis
n>i>j>1 nBi>i>j>1 nBi>i>j>1

= (p+o(1)n” ((p + o(1))(nf1)? + - - + (p + o(1))(nBr)?)

k
=p (1 - Zﬂf) n? + o(l)n2 a.s. (2.6)

i=1

L
By (2.4), (2.5) and (2.6), the eigenvalues of pg, , = ﬁk) satisfy that, for 1 <i <n-—1,
' {Un,k

p <1 — 121%{&}) +o(1) p+o(1)

p (1 - il ﬁ?) n+o(l)n

a.s., (2.7)

S )\i(pGn,k) S

p (1 - il ﬁ?) n+o(l)n



and

—p lrg%c{ﬁi} +o(1)

p <1 - é‘l ﬁf) n+o(l)n

< Mlpa,) < o) as. (28)

P <1 - gjl 53) n+o(1)n

Then (2.7) and (2.8) imply that

S(Gn;ﬁl,m,ﬁk (p) = -

and

ot [#(1- w059 ) + o)

1<i<k

p (1 ~ max {/3@-}) +o(1)

1<i<k

S(Gmﬁh“.,ﬁk (]3))

IN

log,

i1 p<1_§:lﬁi2> n+ o(1)n p(l —ﬁ:lﬁl-2> n+o(1)n

—p gggk{ﬁi} +0(1) —p 112%{&} +o(1)

N k logy k
p<1—2ﬁi2>n+o(l)n p(l—Zﬁ?)n—i—o(l)n
i=1 i=1

1= max {fi} + o(1) 1= max {fi}
=— : log, — (2.10)
1=y 8 o(1-£ )
i=1 i=1
This completes the proof. O

At last, we present some results implied by Theorem 1.
Corollary 1. Let Gp.8,...8.(p) € Gn:a,....8.(p). Then
S(Gnip,...5.(p)) = (1 +o(1))logyn a.s.
if and only if max{npf,...,nBx} = o(1)n.

Note that if k = n, then Gnp,, 5, (p) = Gn(p), that is, i = L, 1 < i < k. By

Corollary 1, we have the following result immediately.



Corollary 2. ( [6]) Let G,(p) € Gn(p) be a random graph. Then almost surely S(Gr(p)) =
(14 0(1))logyn.

Corollary 3. Let G5, 5.(P) € Gnp,...5.(p) satisfying lgn maxi<;i<k{8i} > 0 and
n—,oo -
lim 2t =1. Then

n—o0 PJ

1+o(1 1 kE—1

1_(1)10g2 (n <1 - k:)) < S(Gnpy,...:(P) < (1 + 2 0(1)> logy n.
k

Let f(n),g(n) be two functions of n. Then f(n) = o(g(n)) means that f(n)/g(n) — 0,
as n — o00; and f(n) = O(g(n)) means that there exists a constant C' such that |f(n)| <

Cg(n), as n — oo.

Corollary 4. Let Gp.p,..8.(p) € Gnp...8.(p) satisfying nlLr{:omaxlgigk{Bi} > 0, and

there exist 3; and B; such that li_>m g—; < 1, that is, there exists an integer r > 1 such that
n o

\Vil, ..., |Va| are of order O(n) and |Vy41l,...,|Vi| are of order o(n). Then almost surely
1+o(1 -
# log, (n (1 - ZB?)) < S(Gnpy,...5,(P))
1-> 52 i=1
=1

1 — max {fi} + o(1) 1 — max {5}

S — logy | ——————

-3 7 o(1-5 )

i=1 i=1
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