Non-jumping Numbers for 5-Uniform Hypergraphs*

Ran Gu, Xueliang Li, Zhongmei Qin, Yongtang Shi, Kang Yang

Center for Combinatorics and LPMC-TJKLC Nankai University, Tianjin 300071, P.R. China

Email: guran323@163.com, lxl@nankai.edu.cn, qinzhongmei90@163.com,

shi@nankai.edu.cn, yangkang89@163.com

Abstract

Let ℓ and r be integers. A real number $\alpha \in [0, 1)$ is a jump for r if for any $\varepsilon > 0$ and any integer $m, m \ge r$, any r-uniform graph with $n > n_0(\varepsilon, m)$ vertices and at least $(\alpha + \varepsilon) \binom{n}{r}$ edges contains a subgraph with m vertices and at least $(\alpha + c) \binom{m}{r}$ edges, where $c = c(\alpha)$ does not depend on ε and m. It follows from a theorem of Erdős, Stone and Simonovits that every $\alpha \in [0, 1)$ is a jump for r = 2. Erdős asked whether the same is true for $r \ge 3$. However, Frankl and Rödl gave a negative answer by showing that $1 - \frac{1}{\ell^{r-1}}$ is not a jump for r if $r \ge 3$ and $\ell > 2r$. Peng gave more sequences of non-jumping numbers for r = 4 and $r \ge 3$. However, there are also a lot of unknowns on determining whether a number is a jump for $r \ge 3$. Following a similar approach as that of Frankl and Rödl, we give several sequences of non-jumping numbers for r = 5, and extend one of the results to every $r \ge 5$, which generalize the above results.

Keywords: extremal problems in hypergraphs; Erdős jumping constant conjecture; Lagrangians of uniform graphs; non-jumping numbers

1 Introduction

For a given finite set V and a positive integer r, denote by $\binom{V}{r}$ the family of all r-subsets of V. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). We call G an r-uniform graph if $E(G) \subseteq \binom{V(G)}{r}$. An r-uniform graph H

^{*}Supported by NSFC.

is called a *subgraph* of an *r*-uniform graph G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Furthermore, H is called an *induced subgraph* of G if $E(H) = E(G) \cap {V(H) \choose r}$.

Let G be an r-uniform graph, we define the *density* of G as $\frac{|E(G)|}{|\binom{V(G)}{r}|}$, which is denoted by d(G). Note that the density of a complete $(\ell + 1)$ -partite graph with partition classes of size m is greater than $1 - \frac{1}{\ell+1}$ (approaches $1 - \frac{1}{\ell+1}$ when $m \to \infty$). The density of a complete r-partite r-uniform graph with partition classes of size m is greater than $\frac{r!}{r^r}$ (approaches $\frac{r!}{r^r}$ when $m \to \infty$).

In [7], Katona, Nemetz and Simonovits showed that, for any *r*-uniform graph G, the average of densities of all induced subgraphs of G with $m \ge r$ vertices is d(G). From this result we know that there exists a subgraph of G with m vertices, whose density is at least d(G). A natural question is: for a constant c > 0, whether there exists a subgraph of G with m vertices and density at least d(G) + c? To be precise, the concept of "jump" was introduced.

Definition 1.1. A real number $\alpha \in [0, 1)$ is a jump for r if there exists a constant c > 0 such that for any $\varepsilon > 0$ and any integer $m, m \ge r$, there exists $n_0(\varepsilon, m)$ such that any r-uniform graph with $n > n_0(\varepsilon, m)$ vertices and density $\ge \alpha + \varepsilon$ contains a subgraph with m vertices and density $\ge \alpha + c$.

Erdős, Stone and Simonovits [2, 3] proved that every $\alpha \in [0, 1)$ is a jump for r = 2. This result can be easily obtained from the following theorem.

Theorem 1.1 ([3]). Suppose ℓ is a positive integer. For any $\varepsilon > 0$ and any positive integer m, there exists $n_0(m, \varepsilon)$ such that any graph G on $n > n_0(m, \varepsilon)$ vertices with density $d(G) \ge 1 - \frac{1}{\ell} + \varepsilon$ contains a copy of the complete $(\ell + 1)$ -partite graph with partition classes of size m (i.e., there exists $\ell + 1$ pairwise disjoint sets $V_1, \ldots, V_{\ell+1}$, each of them with size m such that $\{x, y\}$ is an edge whenever $x \in V_i$ and $y \in V_j$ for some $1 \le i < j \le \ell + 1$).

Moreover, from the following theorem, Erdős showed that for $r \ge 3$, every $\alpha \in [0, \frac{r!}{r^r})$ is a jump.

Theorem 1.2 ([1]). For any $\varepsilon > 0$ and any positive integer m, there exists $n_0(\varepsilon, m)$ such that any r-uniform graph G on $n > n_0(\varepsilon, m)$ vertices with density $d(G) \ge \varepsilon$ contains a copy of the complete r-partite r-uniform graph with partition classes of size m (i.e., there exist r pairwise disjoint subsets V_1, \ldots, V_r , each of cardinality msuch that $\{x_1, x_2, \ldots, x_r\}$ is an edge whenever $x_i \in V_i, 1 \le i \le r$).

Furthermore, Erdős proposed the following jumping constant conjecture.

Conjecture 1.1. Every $\alpha \in [0, 1)$ is a jump for every integer $r \geq 2$.

Unfortunately, Frankl and Rödl [6] disproved this conjecture by showing the following result.

Theorem 1.3 ([6]). Suppose $r \geq 3$ and $\ell > 2r$, then $1 - \frac{1}{\ell^{r-1}}$ is not a jump for r.

Using the approach developed by Frankl and Rödl in [6], some other non-jump numbers were given. However, for $r \ge 3$, there are still a lot of unknowns on determining whether a given number is a jump. A well-known open question of Erdős is

whether $\frac{r!}{r^r}$ is a jump for $r \geq 3$ and what is the smallest non-jump?

In [5], another question was raised:

whether there is an interval of non-jumps for some $r \geq 3$?

Both questions seem to be very challenging. Regarding the first question, in [5], it was shown that $\frac{5r!}{2r^r}$ is a non-jump for $r \ge 3$ and it is the smallest known non-jump until now. Some efforts were made in finding more non-jumps for some $r \ge 3$. For r = 3, one more infinite sequence of non-jumps (converging to 1) was given in [5]. And for r = 4, several infinite sequences of non-jumps (converging to 1) were found in [9, 10, 12, 13]. Every non-jump in the above papers was extended to many sequences of non-jumps (still converging to 1) in [11, 15, 16]. Besides, in [14], Peng found an infinite sequence of non-jumps for r = 3 converging to $\frac{7}{12}$.

If a number α is a jump, then there exists a constant c > 0 such that every number in $[\alpha, \alpha + c)$ is a jump. As a direct result, we have that if there is a set of non-jumping numbers whose limits form an interval (a number a is a limit of a set A if there is a sequence $\{a_n\}_{n=1}^{\infty}, a_n \in A$ such that $\lim_{n\to\infty} a_n = a$), then every number in this interval is not a jump. It is still an open problem whether such a "dense enough" set of non-jumping numbers exists or not.

In this paper, we intend to find more non-jumping numbers in addition to the known non-jumping numbers given in [5, 9, 10, 11, 12, 13, 15, 14, 16, 17]. Our approach is still based on the approach developed by Frankl and Rödl in [6]. We first consider the case r = 5 and find a sequence of non-jumping numbers. In Section 3, we prove the following result.

Theorem 1.4. Let $\ell \geq 2$ be an integer. Then $1 - \frac{5}{\ell^3} + \frac{4}{\ell^4}$ is not a jump for r = 5.

Then we extend Theorem 1.4 to Theorem 1.5 for the case $\ell = 5$ to every $r \ge 5$ in Section 4. When r = 5, Theorem 1.5 is exactly Theorem 1.4 for the case $\ell = 5$.

Theorem 1.5. Let $r \ge 5$, $\frac{151r!}{6r^r}$ is not a jump for r.

In [15], Peng gave the following result: for positive integers $p \ge r \ge 3$, if $\alpha \cdot \frac{r!}{r^r}$ is a non-jump for r, then $\alpha \cdot \frac{p!}{p^p}$ is a non-jump for p. Combining with the Theorem 1.5, we have the following corollary directly.

Corollary 1.1. Let $p \ge r \ge 5$ be positive integers. Then $\frac{151p!}{6p^p}$ is not a jump for p.

Since in [5], it was shown that $\frac{5r!}{2r^r}$ is a non-jumping number for $r \ge 3$. In [11], it was shown that for integers $r \ge 3$ and p, $3 \le p \le r$, $(1 - \frac{1}{p^{p-1}})\frac{p^p}{p!}\frac{r!}{r^r}$ is not a jump for r. In particular, $\frac{12}{125}$ (take r = 5 in $\frac{5r!}{2r^r}$), $\frac{96}{625}$ (take p = 3 and r = 5 in $(1 - \frac{1}{p^{p-1}})\frac{p^p}{p!}\frac{r!}{r^r}$) and $\frac{252}{625}$ (take p = 4 and r = 5 in $(1 - \frac{1}{p^{p-1}})\frac{p^p}{p!}\frac{r!}{r^r}$) are non-jumping numbers for r = 5. In Section 5, we will go back to the case of r = 5 and prove the following result.

Theorem 1.6. Let $\ell \geq 2$ and $q \geq 1$ be integers. Then for r = 5, we have

(a) If q = 1 or $q \ge 2\ell^2 + 2\ell$, then $1 - \frac{10}{\ell q} + \frac{35}{\ell^2 q^2} - \frac{50}{\ell^3 q^3} + \frac{4}{\ell^4 q^4} + \frac{10}{\ell q^4} - \frac{35}{\ell^2 q^4} + \frac{45}{\ell^3 q^4}$ is not a jump.

(b) If q = 1 or $q \ge 10\ell^3$, then $1 - \frac{10}{\ell q} + \frac{35}{\ell^2 q^2} - \frac{50}{\ell^3 q^3} + \frac{10}{\ell q^4} - \frac{35}{\ell^2 q^4} + \frac{50}{\ell^3 q^4} - \frac{1}{\ell^4 q^4}$ is not a jump.

(c) $1 - \frac{2}{q} + \frac{7}{5q^2} - \frac{2}{5q^3} + \frac{12}{125q^4}$ is not a jump. (d) $1 - \frac{2}{q} + \frac{7}{5q^2} - \frac{2}{5q^3} + \frac{96}{625q^4}$ is not a jump. (e) If q = 1 or $q \ge 3$, then $1 - \frac{2}{q} + \frac{7}{5q^2} - \frac{2}{5q^3} + \frac{252}{625q^4}$ is not a jump.

When q = 1, (a) reduces to Theorem 1.4 for r = 5, (b) reduces to Theorem 1.3 for r = 5, (c) shows that $\frac{12}{125}$ is not a jump for r = 5, (d) shows that $\frac{96}{625}$ is not a jump for r = 5, and (e) shows that $\frac{252}{625}$ is not a jump for r = 5.

2 Lagrangians and other tools

In this section, we introduce the definition of Lagrangian of an r-uniform graph and some other tools to be applied in the approach.

We first describe a definition of the Lagrangian of an *r*-uniform graph, which is a helpful tool in the approach. More studies of Lagrangians were given in [4, 6, 8, 18]. **Definition 2.1.** For an *r*-uniform graph *G* with vertex set $\{1, 2, ..., m\}$, edge set E(G) and a vector $\vec{x} = \{x_1, ..., x_m\} \in \mathbb{R}^m$, define

$$\lambda(G, \vec{x}) = \sum_{\{i_1, \dots, i_r\} \in E(G)} x_{i_1} x_{i_2} \cdots x_{i_r}.$$

 x_i is called the weight of vertex *i*.

Definition 2.2. Let $S = \{\vec{x} = (x_1, x_2, \dots, x_m) : \sum_{i=1}^m x_i = 1, x_i \ge 0 \text{ for } i = 1, 2, \dots, m\}$. The Lagrangian of G, denoted by $\lambda(G)$, is defined as

$$\lambda(G) = \max\{\lambda(G, \vec{x}) : \vec{x} \in S\}.$$

A vector \vec{x} is called an optimal vector for $\lambda(G)$ if $\lambda(G, \vec{x}) = \lambda(G)$.

We note that if G is a subgraph of an r-uniform graph H, then for any vector \vec{x} in S, $\lambda(G, \vec{x}) \leq \lambda(H, \vec{x})$. The following fact is obtained directly.

Fact 2.1. Let G be a subgraph of an r-uniform graph H. Then

$$\lambda(G) \le \lambda(H).$$

For an r-uniform graph G and $i \in V(G)$ we define G_i to be the (r-1)-uniform graph on $V - \{i\}$ with edge set $E(G_i)$ given by $e \in E(G_i)$ if and only if $e \cup \{i\} \in E(G)$.

We call two vertices i, j of an r-uniform graph G equivalent if for all $f \in \binom{V(G) - \{i, j\}}{r-1}$, $f \in E(G_i)$ if and only if $f \in E(G_j)$.

The following lemma given in [6] will be useful when calculating Lagrangians of some certain hypergraphs.

Lemma 2.1 ([6]). Suppose G is an r-uniform graph on vertices $\{1, 2, \ldots, m\}$.

1. If vertices i_1, i_2, \ldots, i_t are pairwise equivalent, then there exists an optimal vector $\vec{y} = (y_1, y_2, \ldots, y_m)$ for $\lambda(G)$ such that $y_{i_1} = y_{i_2} = \cdots = y_{i_t}$.

2. Let $\vec{y} = (y_1, y_2, \dots, y_m)$ be an optimal vector for $\lambda(G)$ and $y_i > 0$. Let \hat{y}_i be the restriction of \vec{y} on $\{1, 2, \dots, m\} \setminus \{i\}$. Then $\lambda(G_i, \hat{y}_i) = r\lambda(G)$.

We also note that for an *r*-uniform graph G with m vertices, if we take $\vec{x} = (x_1, x_2, \ldots, x_m)$, where each $x_i = \frac{1}{m}$, then

$$\lambda(G) \ge \lambda(G_i, \vec{x}) = \frac{|E(G)|}{m^r} \ge \frac{d(G)}{r!} - \varepsilon$$

for $m \ge m'(\varepsilon)$.

On the other hand, we introduce a blow-up of an r-uniform graph G which allow us to construct an r-uniform graph with a large number of vertices and density close to $r!\lambda(G)$.

Definition 2.3. Let G be an r-uniform graph with $V(G) = \{1, 2, ..., m\}$ and $\vec{n} = (n_1, ..., n_m)$ be a positive integer vector. Define the \vec{n} blow-up of G, $\vec{n} \otimes G$ to be the m-partite r-uniform graph with vertex set $V_1 \cup \cdots \cup V_m$, $|V_i| = n_i$, $1 \le i \le m$, and edge set $E(\vec{n} \otimes G) = \{\{v_{i_1}, v_{i_2}, ..., v_{i_r}\}: v_{i_k} \in V_{i_k} \text{ for } 1 \le k \le r, \{i_1, i_2, ..., i_r\} \in E(G)\}.$

In addition, we make the following easy remark given in [9].

Remark 2.1 ([9]). Let G be an r-uniform graph with m vertices and $\vec{y} = (y_1, y_2, \ldots, y_m)$ be an optimal vector for $\lambda(G)$. Then for any $\varepsilon > 0$, there exists an integer $n_1(\varepsilon)$, such that for any integer $n \ge n_1(\varepsilon)$,

$$d((\lfloor ny_1 \rfloor, \lfloor ny_2 \rfloor, \dots, \lfloor ny_m \rfloor) \otimes G) \ge r!\lambda(G) - \varepsilon.$$
(1)

Let us also state a fact relating the Lagrangian of an r-uniform graph to the Lagrangian of its blow-up used in [6] ([5, 9, 10, 12] as well).

Fact 2.2 ([6]). If $n \ge 1$ and $\vec{n} = (n, n, ..., n)$, then $\lambda(\vec{n} \otimes G) = \lambda(G)$ holds for every *r*-uniform graph *G*.

First, we state a definition as follows.

Definition 2.4. For $\alpha \in [0,1)$ and a family \mathcal{F} of *r*-uniform graphs, we say that α is a threshold for \mathcal{F} if for any $\varepsilon > 0$ there exists an $n_0 = n_0(\varepsilon)$ such that any *r*-uniform graph *G* with $d(G) \ge \alpha + \varepsilon$ and $|V(G)| > n_0$ contains some member of \mathcal{F} as a subgraph. We denote this fact by $\alpha \to \mathcal{F}$.

The following lemma proved in [6] gives a necessary and sufficient condition for a number α to be a jump.

Lemma 2.2 ([6]). The following two properties are equivalent.

1. α is a jump for r.

2. $\alpha \to \mathcal{F}$ for some finite family \mathcal{F} of r-uniform graphs satisfying $\lambda(F) > \frac{\alpha}{r!}$ for all $F \in \mathcal{F}$.

Lemma 2.3 ([6]). For any $\sigma \ge 0$ and any integer $k \ge r$, there exists $t_0(k, \sigma)$ such that for every $t > t_0(k, \sigma)$, there exists an r-uniform graphs A satisfying:

- 1. |V(A)| = t.
- 2. $|E(A)| \ge \sigma t^{r-1}$.
- 3. For all $V_0 \subset V(A), r \leq |V_0| \leq k$ we have $|E(A) \cap {\binom{V_0}{r}}| \leq |V_0| r + 1$.

We sketch the approach in proving Theorems 1.4, 1.5, 1.6 as follows (similar to the proof in [9, 10, 12]): Let α be the non-jumping numbers described in those theorems. Assuming that α is a jump, we will derive a contradiction by the following two steps.

Step 1: Construct an r-uniform graph (in Theorem 1.4, 1.6, r = 5) with the Lagrangian close to but slightly smaller than $\frac{\alpha}{r!}$, then use Lemma 2.3 to add an r-uniform graph with a large enough number of edges but spare enough (see properties

2 and 3 in Lemma 2.3) and obtain an *r*-uniform graph with the Lagrangian $\geq \frac{\alpha}{r!} + \varepsilon$ for some positive ε . Then we "blow up" this *r*-uniform graph to an new *r*-uniform graph, say *H*, with a large enough number of vertices and density $> \alpha + \frac{\varepsilon}{2}$ (see Remark 2.1). By Lemma 2.2, if α is a jump then α is a threshold for some finite family \mathcal{F} of *r*-uniform graphs with Lagrangian $> \frac{\alpha}{r!}$. So *H* must contain some member of \mathcal{F} as a subgraph.

Step 2: We show that any subgraph of H with the number of vertices no more than $\max\{|V(F)|, F \in \mathcal{F}\}$ has Lagrangian $\leq \frac{\alpha}{r!}$ and derive a contradiction.

3 Proof of Theorem 1.4

In this section, we focus on r = 5 and give a proof of Theorem 1.4.

Let $\ell \geq 2$ and $\alpha = 1 - \frac{5}{\ell^3} + \frac{4}{\ell^4}$. Let t be a large enough integer given later. We first define a 5-uniform hypergraph $G(\ell, t)$ on ℓ pairwise disjoint sets V_1, V_2, \ldots, V_ℓ , each of cardinality t whose density is close to α when t is large enough. The edge set of $G(\ell, t)$ consists of all 5-subsets taking exactly one vertex from each of V_i, V_j, V_k , V_h, V_s $(1 \leq i < j < k < h < s \leq \ell)$, all 5-subsets taking two vertices from V_i and one vertex from each of V_j, V_k, V_h $(1 \leq i \leq \ell, 1 \leq j < k < h \leq \ell, j, k, h \neq i)$, all 5-subsets taking two vertices from each of V_i, V_j and one vertex from V_k $(1 \leq i < j \leq \ell, 1 \leq k \leq \ell, k \neq i, j)$, all 5-subsets taking three vertices from V_i , and one vertex from each of V_j, V_k $(1 \leq i \leq \ell, 1 \leq j < k \leq \ell, j, k \neq i)$, all 5-subsets taking three vertices from V_i and one vertex from each of V_j, V_k $(1 \leq i \leq \ell, 1 \leq j < k \leq \ell, j, k \neq i)$, all 5-subsets taking three vertices from V_i and two vertices from V_j $(1 \leq i \leq \ell, 1 \leq j < \ell, j \neq i)$. When $\ell = 2, 3, 4$, some of them are vacant.

Note that

$$|E(G(\ell,t))| = {\binom{\ell}{5}}t^5 + \ell {\binom{\ell-1}{3}}{\binom{t}{2}}t^3 + {\binom{\ell}{2}}(\ell-2){\binom{t}{2}}{\binom{t}{2}}t + \ell {\binom{\ell-1}{2}}{\binom{t}{3}}t^2 + \ell (\ell-1){\binom{t}{3}}{\binom{t}{2}} = \frac{\alpha}{120}\ell^5t^5 - c_0(\ell)t^4 + o(t^4),$$

where $c_0(\ell)$ is positive (we omit giving the precise calculation here). It is easy to verify that the density of $G(\ell, t)$ is close to α if t is large enough. Corresponding to the ℓt vertices of $G(\ell, t)$, we take the vector $\vec{x} = (x_1, \ldots, x_{\ell t})$, where $x_i = \frac{1}{\ell t}$ for each $i, 1 \leq i \leq \ell t$, then

$$\lambda(G(\ell, t)) \ge \lambda(G(\ell, t), \vec{x}) = \frac{|E(G(\ell, t))|}{(\ell t)^5} = \frac{\alpha}{120} - \frac{c_0(\ell)}{\ell^5 t} + o(\frac{1}{t}),$$

which is close to $\frac{\alpha}{120}$ when t is large enough. We will use Lemma 2.3 to add a 5uniform graph to $G(\ell, t)$ so that the Lagrangian of the resulting graph is $> \frac{\alpha}{120} + \varepsilon(t)$ for some $\varepsilon(t) > 0$. Suppose that α is a jump for r = 5. According to Lemma 2.2, there exists a finite collection \mathcal{F} of 5-uniform graphs satisfying:

- i) $\lambda(F) > \frac{\alpha}{120}$ for all $F \in \mathcal{F}$, and
- ii) α is a threshold for \mathcal{F} .

Set $k_0 = max_{F \in \mathcal{F}} |V(F)|$ and $\sigma_0 = 2c_0(\ell)$. Let r = 5 and $t_0(k_0, \sigma_0)$ be given as in Lemma 2.3. Take an integer $t > t_0$ and a 5-uniform hypergraph $A(k_0, \sigma_0, t)$ satisfying the three conditions in Lemma 2.3 with $V(A(k_0, \sigma_0, t)) = V_1$. The 5-uniform hypergraph $H(\ell, t)$ is obtained by adding $A(k_0, \sigma_0, t)$ to the 5-uniform hypegraph $G(\ell, t)$. For sufficiently large t, we have

$$\lambda(H(\ell, t)) \geq \frac{|E(H(\ell, t))|}{(\ell t)^5} \geq \frac{|E(G(\ell, t))| + \sigma_0 t^4}{(\ell t)^5} \geq \frac{\alpha}{120} + \frac{c_0(\ell)}{2\ell^5 t}.$$

Now suppose $\vec{y} = (y_1, y_2, \ldots, y_{\ell t})$ is an optimal vector of $\lambda(H(\ell, t))$. Let $\varepsilon = \frac{30c_0(\ell)}{\ell^5 t}$ and $n > n_1(\varepsilon)$ as in Remark 2.1. Then the 5-uniform graph $S_n = (\lfloor ny_1 \rfloor, \ldots, \lfloor ny_{\ell t} \rfloor) \otimes$ $H(\ell, t)$ has density not less than $\alpha + \varepsilon$. Since α is a threshold for \mathcal{F} , some member Fof \mathcal{F} is a subgraph of S_n for $n \ge max\{n_0(\varepsilon), n_1(\varepsilon)\}$. For such $F \in \mathcal{F}$, there exists a subgraph M of $H(\ell, t)$ with $|V(M)| \le |V(F)| \le k_0$, such that $F \subset \vec{n} \otimes M$. By Fact 2.2 we have

$$\lambda(F) \le \lambda(\vec{\boldsymbol{n}} \otimes M) = \lambda(M). \tag{2}$$

Lemma 3.1. Let M be any subgraph of $H(\ell, t)$ with $|V(M)| \leq k_0$. Then

$$\lambda(M) \le \frac{\alpha}{120}$$

holds.

Applying Lemma 3.1 to (2), we have $\lambda(F) \leq \frac{\alpha}{120}$, which contradicts our choice of F, i.e., contradicts the fact that $\lambda(F) > \frac{\alpha}{120}$ for all $F \in \mathcal{F}$.

Proof of Lemma 3.1. By Fact 2.1, we may assume that M is an induced subgraph of $H(\ell, t)$. Let $U_i = V(M) \cap V_i$. Define $M_1 = (U_1, E(M) \cap {\binom{U_1}{5}})$, i.e., the subgraph of M induced on U_1 . In view of Fact 2.1, it is enough to show Lemma 3.1 for the case $E(M_1) \neq \emptyset$. We assume $|V(M_1)| = 4 + d$ with d a positive integer. By Lemma 2.3, M_1 has at most d edges. Let $V(M_1) = \{v_1, v_2, \ldots, v_{4+d}\}$ and $\vec{\xi} = (x_1, x_2, \ldots, x_{4+d})$ be an optimal vector for $\lambda(M)$ where x_i is the weight of vertex v_i . We may assume $x_1 \geq x_2 \geq \ldots \geq x_{4+d}$. The following claim was proved (see Claim 4.4 in [6] there).

Claim 3.1.
$$\sum_{\{v_i, v_j, v_k, v_h, v_s\} \in E(M_1)} x_{v_i} x_{v_j} x_{v_k} x_{v_h} x_{v_s} \le \sum_{5 \le i \le 4+d} x_1 x_2 x_3 x_4 x_i.$$

By Claim 3.1, we may assume that $E(M_1) = \{\{v_1, v_2, v_3, v_4, v_i\}: 5 \le i \le 4 + d\}$. Since v_1, v_2, v_3, v_4 are equivalent, in view of Lemma 2.1, we may assume that $x_1 =$ $x_2 = x_3 = x_4 \stackrel{\text{def}}{=} \rho$. For each *i*, let a_i be the sum of the weights of vertices of U_i . Notice that

$$\begin{cases} \sum_{i=1}^{\ell} a_i = 1, \\ a_i \ge 0, \ 1 \le i \le \ell \\ 0 \le \rho \le \frac{a_1}{4}. \end{cases}$$

Considering different types of edges in ${\cal M}$ and according to the definition of the Lagrangian, we have

$$\begin{split} \lambda(M) &\leq \sum_{1 \leq i < j < k < h < s \leq \ell} a_i a_j a_k a_h a_s + \frac{1}{2} \sum_{2 \leq i \leq \ell, 1 \leq j < k < h \leq \ell_i} a_i^2 a_j a_k a_h \\ &+ \left(\sum_{2 \leq j < k < h \leq \ell_i} a_j a_k a_h\right) \left[\frac{1}{2}(a_1 - 4\rho)^2 + 4\rho(a_1 - 4\rho) + 6\rho^2\right] \\ &+ \frac{1}{2} \left(\sum_{2 \leq j < k < h \leq \ell_i} a_j^2 a_k\right) \left[\frac{1}{2}(a_1 - 4\rho)^2 + 4\rho(a_1 - 4\rho) + 6\rho^2\right] \\ &+ \frac{1}{4} \sum_{2 \leq i < \ell_i^2 \leq k \leq \ell_i} a_i^2 a_j^2 a_k + \frac{1}{6} \sum_{2 \leq i \leq \ell_i^2 1 \leq j < k \leq \ell_i} a_i^3 a_j a_k + \rho^4(a_1 - 4\rho) \\ &+ \left(\sum_{2 \leq j < k \leq \ell_i} a_j a_k\right) \left[\frac{1}{6}(a_1 - 4\rho)^3 + 2\rho(a_1 - 4\rho)^2 + 6\rho^2(a_1 - 4\rho) + 4\rho^3\right] \\ &+ \frac{1}{12} \sum_{2 \leq i < \ell_i^2 \leq j \leq \ell_i} a_i^3 a_j^2 + \frac{1}{6} \left(\sum_{2 \leq i \leq \ell} a_i^3\right) \left[\frac{1}{2}(a_1 - 4\rho)^2 + 6\rho^2(a_1 - 4\rho) + 6\rho^2\right] \\ &+ \frac{1}{2} \left(\sum_{2 \leq j \leq k} a_j^2\right) \left[\frac{1}{6}(a_1 - 4\rho)^3 + 2\rho(a_1 - 4\rho)^2 + 6\rho^2(a_1 - 4\rho) + 6\rho^2\right] \\ &+ \frac{1}{4} \sum_{1 \leq i < j \leq \ell_i} a_j^2 a_k a_h a_s + \frac{1}{2} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^2 a_j a_k a_h \\ &+ \frac{1}{4} \sum_{1 \leq i < j \leq \ell_i 1 \leq k \leq \ell_i} a_i^2 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j a_k + \frac{1}{12} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j a_k + \frac{1}{12} \sum_{1 \leq i \leq \ell_i 1 \leq j < \ell_i < \ell_i} a_i^3 a_j a_k + \frac{1}{12} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j a_k + \frac{1}{12} \sum_{1 \leq i \leq \ell_i 1 \leq j < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j a_k + \frac{1}{12} \sum_{1 \leq i \leq \ell_i 1 \leq j < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j a_k + \frac{1}{12} \sum_{1 \leq i \leq \ell_i 1 \leq j < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_j^2 a_j a_k a_h + \frac{1}{12} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j a_k + \frac{1}{12} \sum_{1 \leq i \leq \ell_i 1 \leq j < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq i \leq \ell_i 1 \leq j < k < \ell_i} a_i^3 a_j^2 a_k + \frac{1}{6} \sum_{1 \leq \ell_i 1 \leq \ell_i < \ell$$

$$\begin{aligned} &-a_{1}\rho^{2}\left(\sum_{2\leq j\leq\ell}a_{j}^{2}\right)-2a_{1}\rho^{2}\left(\sum_{2\leq j$$

Note that

$$f(\frac{1}{\ell}, \frac{1}{\ell}, \dots, \frac{1}{\ell}, 0) = \frac{\alpha}{120}.$$

Therefore, to show Lemma 3.1, we just need to show the following claim:

Claim 3.2.

$$f(a_1, a_2, \dots, a_\ell, \rho) \le f(\frac{1}{\ell}, \frac{1}{\ell}, \dots, \frac{1}{\ell}, 0) = \frac{\alpha}{120}$$

holds under the constraints

$$\begin{cases} \sum_{i=1}^{\ell} a_i = 1, \\ a_i \ge 0, \ 1 \le i \le \ell \\ 0 \le \rho \le \frac{a_1}{4}. \end{cases}$$

Claim 3.3. Let c be a positive number and $L \ge 2$ be an integer. Suppose that $\sum_{i=1}^{L} c_i = c$ and each $c_i \ge 0$. Then the function

$$g(c_1, c_2, \dots, c_L) \stackrel{\text{def}}{=} \sum_{\substack{1 \le i < j < k < h < s \le L \\ 1 \le i < j < k < h < s \le L \\ k \neq i, j}} c_i c_j c_k c_h c_s + \frac{1}{2} \sum_{\substack{1 \le i \le L; 1 \le j < k < h < k < L; \\ j,k,h \neq i}} c_i^2 c_j c_k c_h \\ + \frac{1}{4} \sum_{\substack{1 \le i < j \le L; 1 \le k \le L; \\ k \neq i, j}} c_i^2 c_j^2 c_k + \frac{1}{6} \sum_{\substack{1 \le i \le L; 1 \le j < k \le L; \\ j,k \neq i}} c_i^3 c_j c_k + \frac{1}{12} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j \neq i}} c_i^3 c_j^2 c_k + \frac{1}{6} \sum_{\substack{1 \le i \le L; 1 \le j < k \le L; \\ j,k \neq i}} c_i^3 c_j c_k + \frac{1}{12} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j \neq i}} c_i^3 c_j^2 c_k + \frac{1}{6} \sum_{\substack{1 \le i \le L; 1 \le j < k \le L; \\ j,k \neq i}} c_i^3 c_j c_k + \frac{1}{12} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j \neq i}} c_i^3 c_j^2 c_k + \frac{1}{6} \sum_{\substack{1 \le i \le L; 1 \le j < k \le L; \\ j,k \neq i}} c_i^3 c_j c_k + \frac{1}{12} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j \neq i}} c_i^3 c_j^2 c_k + \frac{1}{6} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j,k \neq i}} c_i^3 c_j^2 c_k + \frac{1}{6} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j,k \neq i}} c_j^3 c_j^2 c_k + \frac{1}{6} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j,k \neq i}} c_j^3 c_j^2 c_k + \frac{1}{12} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j \neq i}} c_j^3 c_j^2 c_k + \frac{1}{6} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j \neq i}} c_j^3 c_j^2 c_k + \frac{1}{12} \sum_{\substack{1 \le i \le L; 1 \le j \le L; \\ j \neq i}} c_j^3 c_j^2 c_j^2 c_j^2 c_j^3 c_j^2 c_$$

reaches the maximum $\frac{1}{120}(1-\frac{5}{L^3}+\frac{4}{L^4})c^5$ when $c_1 = c_2 = \cdots = c_L = \frac{c}{L}$.

Proof. Since each term in function g has degree 5, we can assume that c = 1. Suppose that g reaches the maximum at (c_1, c_2, \ldots, c_L) , we show that $c_1 = c_2 = \ldots = c_L = \frac{c}{L}$ must hold. If not, without loss of generality, assume that $c_2 > c_1$, we will show that $g(c_1 + \varepsilon, c_2 - \varepsilon, c_3, \ldots, c_L) - g(c_1, c_2, c_3, \ldots, c_L) > 0$ for small enough $\varepsilon > 0$ and derive a contradiction. Notice that the summation of the terms in $g(c_1, c_2, \ldots, c_L)$ containing c_1, c_2 is

$$\begin{split} &(c_1+c_2)\sum_{3\leq i< j< k< h\leq L}c_ic_jc_kc_h+c_1c_2\sum_{3\leq i< j< k\leq L}c_ic_jc_k\\ &+\frac{1}{2}(c_1^2+c_2^2)\sum_{3\leq i< j< k\leq L}c_ic_jc_k+\frac{1}{2}(c_1+c_2)\sum_{3\leq i\leq L; 3\leq j< k\leq L; j, k\neq i}c_i^2c_jc_k\\ &+\frac{1}{2}(c_1^2c_2+c_2^2c_1)\sum_{3\leq i< j\leq L}c_ic_j+\frac{1}{2}c_1c_2\sum_{3\leq i\leq L; 3\leq j\leq L; j\neq i}c_i^2c_j+\frac{1}{4}(c_1^2c_2^2)\sum_{3\leq i\leq L}c_i\\ &+\frac{1}{4}(c_1^2c_2+c_2^2c_1)\sum_{3\leq i\leq L}c_i^2+\frac{1}{4}(c_1^2+c_2^2)\sum_{3\leq i\leq L; 3\leq j\leq L; j\neq i}c_i^2c_j+\frac{1}{4}(c_1+c_2)\sum_{3\leq i< j\leq L}c_i^2c_j^2c_j\\ &+\frac{1}{6}(c_1^3+c_2^3)\sum_{3\leq i< L}c_ic_j+\frac{1}{6}(c_1+c_2)\sum_{3\leq i\leq L; 3\leq j\leq L; i\neq j}c_i^3c_j+\frac{1}{6}(c_1^3c_2+c_1c_2^3)\sum_{3\leq i\leq L}c_i\\ &+\frac{1}{6}c_1c_2\sum_{3\leq i\leq L}c_i^3+\frac{1}{12}(c_1^3+c_2^3)\sum_{3\leq i\leq L}c_i^2+\frac{1}{12}(c_1^2+c_2^2)\sum_{3\leq i\leq L}c_i^3+\frac{1}{12}(c_1^3c_2^2+c_1^2c_2^3)\\ &=\frac{1}{24}(c_1+c_2)[(\sum_{3\leq i\leq L}c_i)^4-\sum_{3\leq i\leq L}c_i^4]+\frac{1}{12}(c_1+c_2)^2(\sum_{3\leq i\leq L}c_i)^3\\ &+\frac{1}{12}(c_1+c_2)^3(\sum_{3\leq i\leq L}c_i)^2+\frac{1}{12}c_1c_2(2c_1^2+2c_2^2+3c_1c_2)\sum_{3\leq i\leq L}c_i+\frac{1}{12}(c_1^3c_2^2+c_1^2c_2^3)\\ &=\frac{1}{24}(c_1+c_2)(1-c_1-c_2)^4-\frac{1}{24}(c_1+c_2)\sum_{3\leq i\leq L}c_i^4\\ &+\frac{1}{12}(c_1+c_2)^2(1-c_1-c_2)^3+\frac{1}{12}(c_1+c_2)^3(1-c_1-c_2)^2\\ &+\frac{1}{12}c_1c_2(2c_1^2+2c_2^2+3c_1c_2)(1-c_1-c_2)+\frac{1}{12}(c_1^3c_2^2+c_1^2c_2^3). \end{split}$$

Therefore,

$$\begin{split} g(c_1 + \varepsilon, c_2 - \varepsilon, c_3, \dots, c_L) &- g(c_1, c_2, c_3, \dots, c_L) \\ &= \frac{1}{12} (c_1 + \varepsilon) (c_2 - \varepsilon) [2(c_1 + \varepsilon)^2 + 2(c_2 - \varepsilon)^2 + 3(c_1 + \varepsilon) (c_2 - \varepsilon)] (1 - c_1 - c_2) \\ &+ \frac{1}{12} (c_1 + \varepsilon)^2 (c_2 - \varepsilon)^2 (c_1 + c_2) - \frac{1}{12} c_1 c_2 (2c_1^2 + 2c_2^2 + 3c_1 c_2) (1 - c_1 - c_2) \\ &- \frac{1}{12} c_1^2 c_2^2 (c_1 + c_2) \\ &= \frac{1}{6} (c_2 - c_1) (c_1^2 + c_2^2 + c_1 c_2) (1 - c_1 - c_2) \varepsilon + \frac{1}{6} c_1 c_2 (c_2 - c_1) (c_1 + c_2) \varepsilon + o(\varepsilon) > 0. \end{split}$$

Since $c_2 > c_1$ and c_1c_2 , $1 - c_1 - c_2$ cannot be equal to zero simultaneously due to the assumption that g reaches the maximum at (c_1, c_2, \ldots, c_L) . Therefore,

$$g(c_1+\varepsilon,c_2-\varepsilon,c_3,\ldots,c_L)-g(c_1,c_2,c_3,\ldots,c_L)>0$$

for small enough $\varepsilon > 0$. This contradicts the assumption that g reaches the maximum at (c_1, c_2, \ldots, c_L) .

Since $0 \le \rho \le \frac{a_1}{4}$, $a_1 - 4\rho \ge 0$, $(1 - a_1)^2 \ge 0$, then we have,

$$\begin{split} \rho^2 \left[a_1 \rho^2 - 4\rho^3 + \left(\frac{2}{3}\rho - a_1\right) (1 - a_1)^2 - \frac{1}{3}(1 - a_1)^3 \right] \\ &\leq \rho^2 \left[\frac{a_1^3}{16} - \frac{a_1^2}{4}\rho + \left(\frac{2}{3} \times \frac{a_1}{4} - a_1\right) (1 - a_1)^2 - \frac{1}{3}(1 - a_1)^3 \right] \\ &= \rho^2 \left[\frac{a_1^3}{16} - \frac{a_1^2}{4}\rho - \left(\frac{a_1}{2} + \frac{1}{3}\right) (1 - a_1)^2 \right] \\ &= \rho^2 \left[\frac{1}{48} (-21a_1^3 + 32a_1^2 + 8a_1 - 16) - \frac{1}{4}a_1^2\rho \right]. \end{split}$$

Let $h(a_1) = -21a_1^3 + 32a_1^2 + 8a_1 - 16$, then, $h'(a_1) = -63a_1^2 + 64a_1 + 8$, $h''(a_1) = -126a_1 + 64$. So $h'(a_1)$ increases when $0 \le a_1 \le \frac{32}{63}$, $h'(a_1)$ decreases when $\frac{32}{63} \le a_1 \le 1$. Hence, $h'(a_1) \ge \min\{h'(0), h'(1)\} > 0$, thus, $h(a_1)$ increases when $0 \le a_1 \le 1$. Note that h(0) < 0, $h(\frac{11}{15}) < 0$, h(1) > 0, when $0 \le a_1 \le \frac{11}{15}$, we have $\rho^2[a_1\rho^2 - 4\rho^3 + (\frac{2}{3}\rho - a_1)(1 - a_1)^2 - \frac{1}{3}(1 - a_1)^3] \le 0$, by Claim 3.3 and (3), we have $f(a_1, a_2, \ldots, a_\ell, \rho) \le g(a_1, a_2, \ldots, a_\ell) \le \frac{\alpha}{120}$. So Claim 3.2 holds for $0 \le a_1 \le \frac{11}{15}$. Therefore, we can assume that $\frac{11}{15} \le a_1 \le 1$. Since the geometric mean is not greater than the arithmetic mean, we have,

$$\rho^2 \left[\frac{a_1^3}{16} - \frac{a_1^2}{4}\rho - \left(\frac{a_1}{2} + \frac{1}{3} \right) (1 - a_1)^2 \right] = \frac{64}{a_1^4} \left(\frac{a_1^2 \rho}{8} \right)^2 \left[\frac{a_1^3}{16} - \frac{a_1^2}{4}\rho - \left(\frac{a_1}{2} + \frac{1}{3} \right) (1 - a_1)^2 \right]$$

$$\leq \frac{64}{a_1^4} \left[\frac{\frac{a_1^3}{16} - \left(\frac{a_1}{2} + \frac{1}{3}\right) (1 - a_1)^2}{3} \right]^3$$
$$< \frac{64}{a_1^4} \left(\frac{a_1^3}{16 \times 3} \right)^3 \le \frac{1}{1728}.$$

Combining with (3) we have

$$f(a_{1}, a_{2}, \dots, a_{\ell}, \rho) \leq f(a_{1}, a_{2}, \dots, a_{\ell})$$

$$\stackrel{\text{def}}{=} \sum_{\substack{1 \leq i < j < k < h < s \leq \ell}} a_{i}a_{j}a_{k}a_{h}a_{s} + \frac{1}{2} \sum_{\substack{1 \leq i \leq \ell; 1 \leq j < k < h \leq \ell; \\ j,k,h \neq i}} a_{i}^{2}a_{j}a_{k}a_{h}$$

$$+ \frac{1}{4} \sum_{\substack{1 \leq i < j \leq \ell; 1 \leq k \leq \ell; \\ k \neq i, j}} a_{i}^{2}a_{j}^{2}a_{k} + \frac{1}{6} \sum_{\substack{1 \leq i \leq \ell; 1 \leq j < k \leq \ell; \\ j,k \neq i}} a_{i}^{3}a_{j}a_{k} + \frac{1}{12} \sum_{\substack{1 \leq i \leq \ell; 1 \leq j < \ell; \\ j \neq i}} a_{i}^{3}a_{j}^{2} + \frac{1}{1728}.$$

Therefore, to show Claim 3.2, it is sufficient to show the following claim:

Claim 3.4.

$$f(a_1, a_2, \dots, a_\ell) \le \frac{\alpha}{120}$$

holds under the constraints $\sum_{i=1}^{\ell} a_i = 1$, $a_1 \ge \frac{11}{15}$, and each $a_i \ge 0$.

In order to prove Claim 3.4, we need to prove the following claim first:

Claim 3.5.

$$h(a_{2}, a_{3}, \dots, a_{\ell}) \stackrel{\text{def}}{=} \sum_{\substack{2 \le j < k < h < s \le \ell}} a_{j} a_{k} a_{h} a_{s} + \frac{1}{2} \sum_{\substack{2 \le j \le \ell; 2 \le k < h \le \ell; \\ k, h \neq j}} a_{j}^{2} a_{k} a_{h} + \frac{1}{4} \sum_{\substack{2 \le j < k \le \ell \\ k \neq j}} a_{j}^{2} a_{k}^{2} + \frac{1}{6} \sum_{\substack{2 \le j \le \ell; 2 \le k \le \ell; \\ k \neq j}} a_{j}^{3} a_{k},$$

reaches maximum $\frac{1}{24}\left(1-\frac{1}{(\ell-1)^3}\right)c^4$ at $a_2 = a_3 = \ldots = a_\ell = \frac{c}{\ell-1}$ under the constraints $\sum_{i=1}^{\ell} a_i = c$, and each $a_i \ge 0$.

Proof of Claim 3.5. Since $h(a_2, a_3, \ldots, a_\ell)$ is a polynomial with degree 4 for each term, we just need to prove the claim for the case c = 1. Suppose that h reaches the maximum at $(c_2, c_3, \ldots, c_\ell)$, we show that $c_2 = c_3 = \ldots = c_\ell = \frac{1}{\ell-1}$. Otherwise, assume that $c_3 > c_2$, we will show that $h(c_2 + \varepsilon, c_3 - \varepsilon, c_4, \ldots, c_\ell) - h(c_2, c_3, \ldots, c_\ell) > 0$ for small enough $\varepsilon > 0$ and derive a contradiction. Notice that

$$\begin{split} h(c_2 + \varepsilon, c_3 - \varepsilon, c_4, \dots, c_{\ell}) &- h(c_2, c_3, c_4, \dots, c_{\ell}) \\ = & [(c_2 + \varepsilon)(c_3 - \varepsilon) - c_2 c_3] \sum_{4 \le j < k \le \ell} c_j c_k \\ &+ \frac{1}{2} [(c_2 + \varepsilon)^2 + (c_3 - \varepsilon)^2 - c_2^2 - c_3^2] \sum_{4 \le j < k \le \ell} c_j c_k + \frac{1}{2} [(c_2 + \varepsilon)(c_3 - \varepsilon) - c_2 c_3] \sum_{4 \le j \le \ell} c_j^2 \\ &+ \frac{1}{2} [(c_2 + \varepsilon)^2 (c_3 - \varepsilon) + (c_3 - \varepsilon)^2 (c_2 + \varepsilon) - c_2^2 c_3 - c_2 c_3^2] \sum_{4 \le j \le \ell} c_j \\ &+ \frac{1}{4} [(c_2 + \varepsilon)^2 + (c_3 - \varepsilon)^2 - c_2^2 - c_3^2] \sum_{4 \le j \le \ell} c_j^2 + \frac{1}{4} [(c_2 + \varepsilon)^2 (c_3 - \varepsilon)^2 - c_2^2 c_3^2] \\ &+ \frac{1}{6} [(c_2 + \varepsilon)^3 + (c_3 - \varepsilon)^3 - c_3^2 - c_3^3] \sum_{4 \le j \le \ell} c_j \\ &+ \frac{1}{6} [(c_2 + \varepsilon)^3 (c_3 - \varepsilon) + (c_3 - \varepsilon)^3 (c_2 + \varepsilon) - c_2^2 c_3 - c_3^3 c_2] \\ &= \frac{1}{6} (c_3^3 - c_2^3) \varepsilon + o(\varepsilon) > 0, \end{split}$$

for small enough $\varepsilon > 0$ and get a contradiction.

Proof of Claim 3.4. We will apply Claims 3.3 and 3.5. Separating the terms containing a_1 from the terms not containing a_1 , we write function $f(a_1, a_2, \ldots, a_\ell)$ as follows:

$$+ \frac{1}{4} \sum_{\substack{2 \le i < j \le \ell; 2 \le k \le \ell; \\ k \ne i, j}} a_i^2 a_j^2 a_k + \frac{1}{6} \sum_{\substack{2 \le i \le \ell; 2 \le j < k \le \ell; \\ j, k \ne i}} a_i^3 a_j a_k a_k + \frac{1}{12} \sum_{\substack{2 \le i \le \ell; 2 \le j \le k \le \ell; \\ j \ne i}} a_i^3 a_j^2 \\ + a_1 (\sum_{\substack{2 \le j < k < h < s \le \ell \\ k \ne j}} a_j a_k a_h a_s + \frac{1}{2} \sum_{\substack{2 \le j \le \ell; 2 \le k < h \le \ell; \\ k, h \ne j}} a_j^2 a_k a_h + \frac{1}{4} \sum_{\substack{2 \le j < k \le \ell \\ k, h \ne j}} a_j^2 a_k^2 \\ + \frac{1}{6} \sum_{\substack{2 \le j \le \ell; 2 \le k \le \ell; \\ k \ne j}} a_j^3 a_k) + \frac{1}{12} a_1^3 (\sum_{2 \le j \le \ell} a_j)^2 + \frac{1}{12} a_1^2 (\sum_{2 \le j \le \ell} a_j)^3 + \frac{1}{1728}.$$

Applying Claim 3.3 by taking $L = \ell - 1$ variables a_2, a_3, \ldots, a_ℓ and $c = 1 - a_1$, Claim 3.5 and $\frac{1}{12}a_1^2(\sum_{2 \le j \le \ell} a_j)^3 + \frac{1}{12}a_1^3(\sum_{2 \le j \le \ell} a_j)^2 = \frac{1}{12}a_1^2(1-a_1)^3 + \frac{1}{12}a_1^3(1-a_1)^2 = \frac{1}{12}a_1^2(1-a_1)^2$, we have

$$f(a_1, a_2, \dots, a_\ell) \le f(a_1) \stackrel{\text{def}}{=} \frac{1}{120} \left[1 - \frac{5}{(\ell - 1)^3} + \frac{4}{(\ell - 1)^4} \right] (1 - a_1)^5 \\ + \frac{1}{24} \left[1 - \frac{1}{(\ell - 1)^3} \right] (1 - a_1)^4 a_1 + \frac{1}{12} a_1^2 (1 - a_1)^2 + \frac{1}{1728}.$$

Therefore, to show Claim 3.4, we need to show the following claim:

Claim 3.6.

$$f(a_1) \le \frac{\alpha}{120}$$

holds when $\frac{11}{15} \leq a_1 \leq 1$.

Proof. By a direct calculation,

$$\begin{split} f'(a_1) &= \frac{1}{6} \left[\frac{1}{(\ell-1)^3} - \frac{1}{(\ell-1)^4} \right] (1-a_1)^4 + \frac{1}{6(\ell-1)^3} (1-a_1)^3 a_1 - \frac{1}{6} a_1^3 (1-a_1), \\ f''(a_1) &= \left[\frac{2}{3(\ell-1)^4} - \frac{1}{2(\ell-1)^3} \right] (1-a_1)^3 - \frac{1}{2(\ell-1)^3} (1-a_1)^2 a_1 + \frac{2}{3} a_1^3 - \frac{1}{2} a_1^2, \\ f^{(3)}(a_1) &= \left[\frac{1}{(\ell-1)^3} - \frac{2}{(\ell-1)^4} \right] (1-a_1)^2 + \frac{1}{(\ell-1)^3} (1-a_1) a_1 + 2a_1^2 - a_1, \\ f^{(4)}(a_1) &= \left[4 - \frac{4}{(\ell-1)^4} \right] a_1 - 1 - \frac{1}{(\ell-1)^3} + \frac{4}{(\ell-1)^4}, \end{split}$$

Note that $f^{(4)}(a_1) > 0$, when $\frac{11}{15} \le a_1 \le 1$, so $f^{(3)}(a_1)$ increases when $\frac{11}{15} \le a_1 \le 1$. By a direct calculation, $f^{(3)}(\frac{11}{15}) > 0$, so $f''(a_1)$ increases when $\frac{11}{15} \le a_1 \le 1$. Since we have $f''(\frac{11}{15}) < 0$, f''(1) > 0, thus, $f'(a_1) \le \max\{f'(\frac{11}{15}), f'(1)\}$. By a direct calculation, $f'(\frac{11}{15}) < 0$, f'(1) = 0, so $f(a_1)$ is a decreasing function when $\frac{11}{15} \le a_1 \le 1$. When $\ell = 2$, $f(\frac{11}{15}) = \frac{1}{12} \times \frac{11^2 \times 4^2}{15^4} + \frac{1}{1728} < \frac{1}{120} \times \frac{5}{8} = \frac{\alpha}{120}$. If $\ell \ge 3$, since $1 - \frac{5}{(\ell-1)^3} + \frac{4}{(\ell-1)^4} \ge 1 - \frac{5}{(2)^3} + \frac{4}{(2)^4}$, then we have $f(\frac{11}{15}) = \frac{1}{120} [1 - \frac{5}{(\ell-1)^3} + \frac{4}{(\ell-1)^4}] - (1 - \frac{1}{(\ell-1)^4}) = \frac{1}{(\ell-1)^4} = 1 - \frac{5}{(\ell-1)^4} + \frac{1}{(\ell-1)^4} = \frac{1}{(\ell-1)^4} = 1 - \frac{5}{(\ell-1)^4} + \frac{4}{(\ell-1)^4} = 1 - \frac{5}{(\ell-1)^4} + \frac{1}{(\ell-1)^4} = 1 - \frac{5}{(\ell-1)^4} + \frac{1}{(\ell-1)^4} = 1 - \frac{5}{(\ell-1)^4} + \frac{1}{(\ell-1)^4} = 1 - \frac{1}{(\ell-1)^4} + \frac{1}{(\ell-1)^4} + \frac{1}{(\ell-1)^4} = 1 - \frac{1}{(\ell-1)^4} + \frac{1}{(\ell$

$$\begin{split} & \frac{4^5}{15^5} \right) \times \frac{1}{120} \left(1 - \frac{5}{(\ell)^3} + \frac{4}{(\ell)^4} \right) + \frac{1}{24} \left[1 - \frac{1}{(\ell-1)^3} \right] \times \frac{11 \times 4^4}{15^5} + \frac{1}{12} \times \frac{11^2 \times 4^2}{15^4} + \frac{1}{1728} \le \frac{1}{120} \left[1 - \frac{5}{(\ell-1)^3} + \frac{4}{(\ell-1)^4} \right] - \left(1 - \frac{4^5}{15^5} \right) \times \frac{1}{120} \left(1 - \frac{5}{2^3} + \frac{4}{2^4} \right) + \frac{1}{24} \times \frac{11 \times 4^4}{15^5} + \frac{1}{12} \times \frac{11^2 \times 4^2}{15^4} + \frac{1}{1728} \le \frac{1}{120} \left[1 - \frac{5}{(\ell-1)^3} + \frac{4}{(\ell-1)^4} \right] \\ & \text{So, } f(a_1) \le f(\frac{11}{15}) \le \frac{1}{120} \left[1 - \frac{5}{(\ell-1)^3} + \frac{4}{(\ell-1)^4} \right] < \frac{1}{120} \left[1 - \frac{5}{\ell^3} + \frac{4}{\ell^4} \right] = \frac{\alpha}{120}. \end{split}$$
 This completes the proof of Claim 3.6.

Applying Claim 3.2 to (3), we have

$$\lambda(M) \le \frac{\alpha}{120}.$$

This completes the proof of Lemma 3.1.

4 Proof of Theorem 1.5

Theorem 1.5 extends Theorem 1.4 for the case $\ell = 5$ to every integer $r \ge 5$. The proof is based on an extension of the 5-uniform graph $H(\ell, t)$ in Section 3 for the case $\ell = 5$.

Suppose that $\frac{151r!}{6r^r}$ is a jump for $r \ge 5$. In view of Lemma 2.2, there exists a finite collection \mathcal{F} of r-uniform graphs satisfying the following:

i) $\lambda(F) > \frac{151}{6r^r}$ for all $F \in \mathcal{F}$, and

ii) $\frac{151r!}{6r^r}$ is a threshold for \mathcal{F} .

Set $k_0 = \max_{F \in \mathcal{F}} |V(F)|$ and $\sigma_0 = 2c_0(\ell)$ be the number defined as in the above. Let r = 5 and $t_0(k_0, \sigma_0)$ be given as in Lemma 2.3. Take an integer $t > t_0$ and a 5-uniform hypergraph H(5, t) (i.e. $\ell = 5$) the same way as in the above with the new k_0 . For simplicity, we write H(5, t) as H(t).

Since Theorem 1.4 holds, we may assume that $r \ge 6$.

Based on the 5-uniform graph H(t), we construct an *r*-uniform graph $H^{(r)}(t)$ on r pairwise disjoint sets $V_1, V_2, V_3, V_4, V_5, \ldots, V_r$, each with order t by taking the edge set $\{u_1, u_2, u_3, u_4, u_5, \ldots, u_r\}$, where $\{\{u_1, u_2, u_3, u_4, u_5\}$ is an edge in H(t) and for each $j, 6 \leq j \leq r, u_j \in V_j\}$. Notice that

$$|E(H^{(r)}(t))| = t^{r-5}|E(H(t))|.$$

Take $\ell = 5$, we get

$$|E(H(t))| \ge \frac{151}{6}t^5 + \frac{c_0(\ell)t^4}{2}.$$

Hence, we have

$$\lambda(H^{(r)}(t)) \ge \frac{|E(H^{(r)}(t))|}{(rt)^r} \ge \frac{151}{6r^r} + \frac{c_0(\ell)}{2r^r t}.$$

Similar as the case that Theorem 1.4 follows from Lemma 3.1, we have that Theorem 1.5 follows from the following lemma.

Lemma 4.1. Let $M^{(r)}$ be a subgraph of $H^{(r)}(t)$ with $|V(M^{(r)})| \leq k_0$. Then

$$\lambda(M^{(r)}) \le \frac{151}{6r^r}$$

holds.

Proof. In view of Fact 2.1, we may assume that $M^{(r)}$ is a non-empty induced subgraph of $H^{(r)}(t)$. Define $U_i = V(M) \cap V_i$ for $1 \le i \le r$. Let $M^{(5)}$ be the 5-uniform graph defined on $\bigcup_{i=1}^{5} U_i$. The edge set of $M^{(5)}$ consists of all 5-sets of the form of $e \cap (\bigcup_{i=1}^{5} U_i)$, where e is an edge of $M^{(r)}$. Let $\vec{\xi}$ be an optimal vector for $\lambda(M^{(r)})$. Let $\vec{\xi}^{(5)}$ be the restriction of $\vec{\xi}$ to $U_1 \cup U_2 \cup U_3 \cup U_4 \cup U_5$. Let a_i be the sum of the weights of vertices of U_i , $1 \le i \le r$, respectively.

According to the relationship between $M^{(r)}$ and $M^{(5)}$, we have

$$\lambda(M^{(r)}) = \lambda(M^{(5)}, \vec{\xi}^{(5)}) \times \prod_{i=6}^{r} a_i.$$

Applying Lemma 3.1 with $\ell = 5$ and observing that $\sum_{i=1}^{5} a_i = 1 - \sum_{i=6}^{r} a_i$, we obtain that,

$$\lambda(M^{(r)}) \le \frac{1}{120} \times \frac{604}{5^4} (1 - \sum_{i=6}^r a_i)^5 \prod_{i=6}^r a_i \le \frac{1}{120} \times \frac{604}{5^4} \times 5^5 \times \left(\frac{1 - \sum_{i=6}^r a_i}{5}\right)^5 \prod_{i=6}^r a_i$$
$$= \frac{1}{120} \times \frac{604}{5^4} \times 5^5 \times \left(\frac{1}{r}\right)^r = \frac{151}{6r^r}.$$

This completes the proof of Lemma 4.1.

5 Proof of Theorem 1.6

In this section, we focus on r = 5 and prove the following Theorem, which implies Theorem 1.6.

Theorem 5.1. Let $\ell \geq 2$, $q \geq 1$ be integers. Let $N(\ell)$ be any of the five numbers given below.

$$N(\ell) = \begin{cases} 1 - \frac{5}{\ell^3} + \frac{4}{\ell^4}, \ or \\ 1 - \frac{1}{\ell^4}, \ or \\ \frac{12}{125} \ (in \ this \ case, \ view \ \ell = 5), \ or \\ \frac{96}{625} \ (in \ this \ case, \ view \ \ell = 5), \ or \\ \frac{252}{625} \ (in \ this \ case, \ view \ \ell = 5). \end{cases}$$
(4)

Then

$$N(\ell,q) = 1 - \frac{10}{\ell q} + \frac{35}{\ell^2 q^2} - \frac{50}{\ell^3 q^3} + \frac{10}{\ell q^4} - \frac{35}{\ell^2 q^4} + \frac{50}{\ell^3 q^4} - \frac{1}{q^4} + \frac{N(\ell)}{q^4}$$
(5)

is not a jump for 5 provided

$$q = 1 \text{ or } \ell^3 (1 - N(\ell))(q^3 + q^2 + q + 1) - 10\ell^2 (q^2 + q + 1) + 35\ell(q + 1) - 50 \ge 0$$
(6)

holds.

Now let us explain why Theorem 5.1 implies Theorem 1.6.

If $N(\ell) = \alpha$, then

$$\ell^{3}(1 - N(\ell))(q^{3} + q^{2} + q + 1) - 10\ell^{2}(q^{2} + q + 1) + 35\ell(q + 1) - 50$$

$$= \ell^{3}(\frac{5}{\ell^{3}} - \frac{4}{\ell^{4}})(q^{3} + q^{2} + q + 1) - 10\ell^{2}(q^{2} + q + 1) + 35\ell(q + 1) - 50$$

$$= \frac{1}{\ell}[(5\ell - 4)q^{3} + (5\ell - 10\ell^{3} - 4)q^{2} + (5\ell - 10\ell^{3} + 35\ell^{2} - 4)q + (-45\ell - 10\ell^{3} + 35\ell^{2} - 4)]$$

$$\stackrel{\text{def}}{=} f_{1}(q)$$

is an increasing function of q when $q \ge 2\ell^2 + 2\ell$ and $f_1(2\ell^2 + 2\ell) > 0$. Therefore, when $q \ge 2\ell^2 + 2\ell$, (6) is satisfied. Applying Theorem 5.1, we get Part (a) of Theorem 1.6. If $N(\ell) = 1 - \frac{1}{\ell^4}$, then

$$\begin{split} \ell^3(1-N(\ell))(q^3+q^2+q+1) &-10\ell^2(q^2+q+1)+35\ell(q+1)-50\\ =& \ell^3(\frac{1}{\ell^4})(q^3+q^2+q+1)-10\ell^2(q^2+q+1)+35\ell(q+1)-50\\ =& \frac{1}{\ell}[q^3-(10\ell^3-1)q^2-(10\ell^3-35\ell^2-1)q+(1-10\ell^3+35\ell^2-50\ell)]\\ \stackrel{\text{def}}{=}& f_2(q) \end{split}$$

is an increasing function of q when $q \ge 7\ell^3$ and $f_2(10\ell^3) > 0$. Therefore, when $q \ge 10\ell^3$, (6) is satisfied. Applying Theorem 5.1, we get Part (b) of Theorem 1.6.

If $\ell = 5$ and $N(\ell) = \frac{12}{125}$, then $\ell^3(1 - N(\ell))(q^3 + q^2 + q + 1) - 10\ell^2(q^2 + q + 1) + 35\ell(q + 1) - 50$ $= 113q^3 - 137q^2 + 38q - 12$ $\stackrel{\text{def}}{=} f_3(q)$

is an increasing function of q when $q \ge 1$ and $f_3(2) > 0$. Therefore, (6) is satisfied. Applying Theorem 5.1, we get Part (c) of Theorem 1.6.

$$\begin{split} \ell &= 5 \text{ and } N(\ell) = \frac{96}{625}, \text{ then} \\ &\quad \ell^3(1 - N(\ell))(q^3 + q^2 + q + 1) - 10\ell^2(q^2 + q + 1) + 35\ell(q + 1) - 50 \\ &\quad = \frac{1}{5}(529q^3 - 721q^2 + 154q - 96) \\ &\quad \stackrel{\text{def}}{=} f_4(q) \end{split}$$

is an increasing function of q when $q \ge 1$ and $f_4(2) > 0$. Therefore, (6) is satisfied. Applying Theorem 5.1, we get Part (d) of Theorem 1.6.

If $\ell = 5$ and $N(\ell) = \frac{252}{625}$, then

If

$$\ell^{3}(1 - N(\ell))(q^{3} + q^{2} + q + 1) - 10\ell^{2}(q^{2} + q + 1) + 35\ell(q + 1) - 50$$

= $\frac{1}{5}(373q^{3} - 877q^{2} - 2q - 252)$
 $\stackrel{\text{def}}{=} f_{5}(q)$

is an increasing function of q when $q \ge 2$ and $f_5(3) > 0$. Therefore, when $q \ge 3$, (6) is satisfied. Applying Theorem 5.1, we get Part (e) of Theorem 1.6.

Now we give the proof of Theorem 5.1.

Proof of Theorem 5.1. Let integers ℓ, q and numbers $N(\ell)$ and $N(\ell, q)$ be given as in Theorem 5.1. We will show that $N(\ell, q)$ is not a jump for 5. Let t be a fixed large enough integer determined later. We first define a 5-uniform hypergraph $G(\ell, t)$ on ℓ pairwise disjoint sets V_1, \ldots, V_ℓ , each of them with size t and the density of $G(\ell, t)$ is close to $N(\ell)$ when t is large enough. Each of five choices of $N(\ell)$ corresponds to a construction.

1. If $N(\ell) = \alpha$, then $G(\ell, t)$ is defined in section 3. Notice that

$$d(G(\ell,t)) = \frac{\binom{\ell}{5}t^5 + \ell\binom{\ell-1}{3}\binom{t}{2}t^3 + \binom{\ell}{2}(\ell-2)\binom{t}{2}\binom{t}{2}t + \ell\binom{\ell-1}{2}\binom{t}{3}t^2 + \ell(\ell-1)\binom{t}{3}\binom{t}{2}}{\binom{\ell t}{5}}$$

which is close to α if t is large enough.

2. If $N(\ell) = 1 - \frac{1}{\ell^4}$, then $G(\ell, t)$ is defined on ℓ pairwise disjoint sets V_1, V_2, \ldots, V_ℓ , where $|V_i| = t$, and the edge set of $G(\ell, t)$ is $\binom{\cup_{i=1}^{\ell} V_i}{5} - \bigcup_{i=1}^{\ell} \binom{V_i}{5}$. Notice that

$$d(G(\ell, t)) = \frac{\binom{\ell t}{5} - \ell\binom{t}{5}}{\binom{\ell t}{5}}$$

which is close to $1 - \frac{1}{\ell^4}$ if t is large enough.

3. If $N(5) = \frac{12}{125}$ (in this case, view $\ell = 5$), then G(5,t) is defined on 5 pairwise disjoint sets V_1, V_2, V_3, V_4, V_5 , where $|V_i| = t$, and the edge set of G(5,t) consists of all 5-sets in the form of $\{\{a, b, c, v_4, v_5\}$, where $a \in V_1$, $b \in V_2$, $c \in V_3$ and $v_4 \in V_4$, $v_5 \in V_5\}$, or $\{\{a, b, c, v_4, v_5\}$, where $\{a, b\} \in \binom{V_1}{2}$, $c \in V_2$ and $v_4 \in V_4$, $v_5 \in V_5\}$, or $\{\{a, b, c, v_4, v_5\}$, where $\{a, b\} \in \binom{V_1}{2}$, $c \in V_5\}$, or $\{\{a, b, c, v_4, v_5\}$, where $\{a, b\} \in \binom{V_2}{2}$, $c \in V_3$ and $v_4 \in V_4$, $v_5 \in V_5\}$, or $\{\{a, b, c, v_4, v_5\}$, where $\{a, b\} \in \binom{V_2}{2}$, $c \in V_1$ and $v_4 \in V_4$, $v_5 \in V_5\}$. Notice that

$$d(G(5,t)) = \frac{t^5 + 3\binom{t}{2}t^3}{\binom{5t}{5}}$$

which is close to $\frac{12}{125}$ if t is large enough.

4. If $N(5) = \frac{96}{625}$ (in this case, view $\ell = 5$), then G(5,t) is defined on 5 pairwise disjoint sets V_1, V_2, V_3, V_4, V_5 , where $|V_i| = t$, and the edge set of G(5,t) consists of all 5-sets in the form of $\{\{v_1, v_2, v_3, v_4, v_5\}$, where $\{v_1, v_2, v_3\} \in \binom{\cup_{i=1}^3 V_i}{3} - \bigcup_{i=1}^3 \binom{V_i}{3}$, and $v_4 \in V_4, v_5 \in V_5\}$. Notice that

$$d(G(5,t)) = \frac{\binom{3t}{3} - \binom{t}{3}t^2}{\binom{5t}{5}}$$

which is close to $\frac{96}{625}$ if t is large enough.

5. If $N(5) = \frac{252}{625}$ (in this case, view $\ell = 5$), then G(5,t) is defined on 5 pairwise disjoint sets V_1, V_2, V_3, V_4, V_5 , where $|V_i| = t$, and the edge set of G(5,t) consists of all 5-sets in the form of $\{\{v_1, v_2, v_3, v_4, v_5\}, \text{ where } \{v_1, v_2, v_3, v_4\} \in \binom{\cup_{i=1}^4 V_i}{4} - \bigcup_{i=1}^4 \binom{V_i}{4}, \text{ and } v_5 \in V_5\}$. Notice that

$$d(G(5,t)) = \frac{\binom{4t}{4} - 4\binom{t}{4}t}{\binom{5t}{5}}$$

which is close to $\frac{252}{625}$ if t is large enough.

We also note that

$$\frac{|E(G(\ell,t))| + \frac{1}{12}\ell^4 t^4}{(\ell t)^5} \ge \frac{1}{120}(N(\ell) + \frac{1}{\ell^5 t})$$
(7)

holds for $t \geq t_1$.

The 5-uniform graph $G(\ell, q, t)$ on ℓq pairwise disjoint sets V_i , $1 \leq i \leq \ell q$, each of them with size t is obtained as follows: for each p, $0 \leq p \leq q-1$, take a copy of $G(\ell, t)$ on the vertex set $\bigcup_{p\ell+1\leq j\leq (p+1)\ell}V_j$, then add all other edges (not entirely in any copy of $G(\ell, t)$) in the form of $\{\{v_{j_1}, v_{j_2}, v_{j_3}, v_{j_4}, v_{j_5}\}$, where $1 \leq j_1 < j_2 < j_3 < j_4 < j_5 \leq \ell q$ and $v_{j_k} \in V_{j_k}$ for $1 \leq k \leq 5\}$. We will use Lemma 2.3 to add a 5-uniform graph to $G(\ell, q, t)$ so that the Lagrangian of the resulting graph is $> \frac{N(\ell, q)}{120} + \varepsilon(t)$ for some $\varepsilon(t) > 0$. The precise argument is given below.

Suppose that $N(\ell, q)$ is a jump for r = 5. By Lemma 2.2, there exists a finite collection \mathcal{F} of 5-uniform graphs satisfying the following:

- i) $\lambda(F) > \frac{N(\ell,q)}{120}$ for all $F \in \mathcal{F}$, and
- ii) $N(\ell, q)$ is a threshold for \mathcal{F} .

Assume that r = 5 and set $k_1 = \max_{F \in \mathcal{F}} |V(F)|$ and $\sigma_1 = \frac{1}{12} \ell^4 q$. Let $t_0(k_1, \sigma_1)$ be given as in Lemma 2.3. Fix an integer $t > \max(t_0, t_1)$, where t_1 is the number from (7).

Take a 5-uniform graph $A_{k_1,\sigma_1}(t)$ satisfying the conditions in Lemma 2.3 with $V(A_{k_1,\sigma_1}(t)) = V_1$. The 5-uniform hypergraph $H(\ell, q, t)$ is obtained by adding $A_{k_1,\sigma_1}(t)$ to the 5-uniform hypergraph $G(\ell, q, t)$. Now we give a lower bound of $\lambda(H(\ell, q, t))$. Notice that,

$$\lambda(H(\ell, q, t)) \ge \frac{|E(H(\ell, q, t))|}{(\ell q t)^5}.$$

In view of the construction of $H(\ell, q, t)$, we have

$$\begin{split} \frac{|E(H(\ell,q,t))|}{(\ell q t)^5} &= \frac{|E(G(\ell,q,t))| + \sigma_1 t^4}{(\ell q t)^5} \\ &= \frac{q|E(G(\ell,t))| + \frac{1}{12} \ell^4 q t^4 + (\binom{\ell q}{5} - q\binom{\ell}{5}) t^5}{(\ell q t)^5} \\ &= \frac{q|E(G(\ell,t))| + \frac{1}{12} \ell^4 q t^4}{(\ell q t)^5} + \frac{1}{120} (1 - \frac{10}{\ell q} + \frac{35}{\ell^2 q^2} - \frac{50}{\ell^3 q^3} - \frac{1}{q^4} + \frac{10}{\ell q^4} - \frac{35}{\ell^2 q^4} + \frac{50}{\ell^3 q^4}) \\ \stackrel{(7)}{\geq} \frac{1}{120} (\frac{N(\ell)}{q^4} + \frac{1}{(\ell q)^5 t}) + \frac{1}{120} (1 - \frac{10}{\ell q} + \frac{35}{\ell^2 q^2} - \frac{50}{\ell^3 q^3} - \frac{1}{q^4} + \frac{10}{\ell q^4} - \frac{35}{\ell^2 q^4} + \frac{50}{\ell^3 q^4}) \\ \stackrel{(5)}{=} \frac{1}{120} (N(\ell, q) + \frac{1}{(\ell q)^5 t}). \end{split}$$

Hence, we have

$$\lambda(H(\ell, q, t)) \ge \frac{1}{120} (N(\ell, q) + \frac{1}{(\ell q)^5 t}).$$

Now suppose $\vec{y} = \{y_1, y_2, \dots, y_{\ell q t}\}$ is an optimal vector of $\lambda(H(\ell, q, t))$. Let $\varepsilon = \frac{1}{2(\ell q)^5 t}$ and $n > n_1(\varepsilon)$ as in Remark 2.1. Then 5-uniform graph $S_n = (\lfloor ny_1 \rfloor, \dots, \lfloor ny_{\ell q t} \rfloor)$ $\otimes H(\ell, q, t)$ has density larger than $N(\ell, q) + \varepsilon$. Since $N(\ell, q)$ is a threshold for \mathcal{F} , some member F of \mathcal{F} is a subgraph of S_n for $n \geq \max\{\mathbf{n}_0(\varepsilon), \mathbf{n}_1(\varepsilon)\}$. For such $F \in \mathcal{F}$, there exists a subgraph M' of $H(\ell, q, t)$ with $|V(M')| \leq k_1$ so that $F \subset \vec{n} \otimes M' \subset \vec{n} \otimes H(\ell, q, t)$.

Theorem 5.1 will follow from the following lemma.

Lemma 5.1. Let M' be any graph of $H(\ell, q, t)$ with $|V(M')| \leq k_1$. Then

$$\lambda(M') \le \frac{1}{120} N(\ell, q) \tag{8}$$

holds.

The proof of Lemma 5.1 will be given as follows. We continue the proof of Theorem 5.1 by applying this Lemma. By Fact 2.2 we have

$$\lambda(F) \le \lambda(\vec{n} \otimes M') = \lambda(M') \le \frac{1}{120} N(\ell, q)$$

which contradicts our choice of F, i.e., contradicts the fact that $\lambda(F) > \frac{1}{120}N(\ell,q)$ for all $F \in \mathcal{F}$. This completes the proof of Theorem 5.1.

Proof of Lemma 5.1. Let M' be any subgraph of $H(\ell, q, t)$ with $|V(M')| \leq k_1$ and $\vec{\xi}$ be an optimal vector for $\lambda(M')$. Define $U_i = V(M') \cap V_i$ for $1 \leq i \leq \ell q$. Let a_i be the sum of the weights in U_i , $1 \leq i \leq \ell q$, respectively. Note that $\sum_{i=1}^{\ell q} a_i = 1$ and $a_i \geq 0$ for each $i, 1 \leq i \leq \ell q$.

The proof of Lemma 5.1 is based on Lemma 3.1, Claim 3.2, 3.3 and an estimation given in [5] and [11] on the summation of the terms in $\lambda(M')$ corresponding to edges in $E(M') \cap \binom{\bigcup_{i=1}^{\ell} V_i}{5}$, denoted by $\lambda(M' \cap \bigcup_{i=1}^{\ell} V_i)$. For our purpose, we formulate Claim 3.2 in Section 3, Lemma 4.2 in [5] and Lemma 3.2 in [11] as follows.

Lemma 5.2. There exists a function f such that

$$\lambda(M' \cap \bigcup_{i=1}^{\ell} V_i) \le f(a_1, a_2, \dots, a_{\ell}, \rho), \tag{9}$$

where the function f satisfies the following property:

$$f(a_1, a_2, \dots, a_\ell, \rho) \le f(\frac{1}{\ell}, \frac{1}{\ell}, \dots, \frac{1}{\ell}, 0) = \frac{1}{120} N(\ell)$$
 (10)

holds under the constraints $\sum_{j=1}^{\ell} a_j = 1$ and each $a_j \ge 0$, $1 \le j \le \ell$ and $0 \le \rho \le \frac{a_1}{4}$.

In view of the construction of $H(\ell, q, t)$, for each $p, 1 \leq p \leq q-1$, the structure of M' restricted on the vertex set $\bigcup_{i=p\ell+1}^{(p+1)\ell} V_i$ is similar to the structure of M' restricted on the vertex set $\bigcup_{i=1}^{\ell} V_i$, but there might be some other extra edges in $\binom{V_1}{5}$ for M'

restricted on the vertex set $\bigcup_{i=1}^{\ell} V_i$. Therefore, for each $p, 1 \leq p \leq q-1$ the summation of the terms in $\lambda(M')$ corresponding to edges in $E(M') \cap \left(\bigcup_{i=p\ell+1}^{(p+1)\ell} V_i \right)$ denoted by $\lambda(M' \cap \bigcup_{i=p\ell+1}^{(p+1)\ell} V_i)$. For our purpose, we formulate Claim 3.3 in section 3, Lemma 4.2 in [5] and Lemma 3.2 in [11] as follows.

Lemma 5.3. There exists a function g such that

$$\lambda(M' \cap \bigcup_{i=p\ell+1}^{(p+1)\ell} V_i) \le g(a_{p\ell+1}, a_{p\ell+2}, \dots, a_{(p+1)\ell}),$$
(11)

where the function g satisfies the following property:

$$g(d_{p\ell+1}, d_{p\ell+2}, \dots, d_{(p+1)\ell}) \le g(\frac{c}{\ell}, \frac{c}{\ell}, \dots, \frac{c}{\ell}) = \frac{1}{120} N(\ell) c^5$$
(12)

holds under the constraints $\sum_{j=p\ell+1}^{(p+1)\ell} d_j = c$ and each $d_j \ge 0$, $p\ell + 1 \le j \le (p+1)\ell$ for any positive constant c.

Consequently,

$$\lambda(M') \leq f(a_1, a_2, \dots, a_\ell, \rho) + \sum_{p=1}^{q-1} g(a_{p\ell+1}, a_{p\ell+2}, \dots, a_{(p+1)\ell}) \\ + (\sum_{1 \leq i_1 < i_2 < i_3 < i_4 < i_5 \leq \ell q} a_{i_1} a_{i_2} a_{i_3} a_{i_4} a_{i_5} - \sum_{p=0}^{q-1} \sum_{p\ell+1 \leq i_1 < i_2 < i_3 < i_4 < i_5 \leq (p+1)\ell} a_{i_1} a_{i_2} a_{i_3} a_{i_4} a_{i_5}) \\ \stackrel{\text{def}}{=} F(a_1, a_2, \dots, a_{\ell q}, \rho).$$

Note that

$$F(\frac{1}{\ell q}, \frac{1}{\ell q}, \dots, \frac{1}{\ell q}, 0) = \frac{N(\ell)}{120q^4} + \frac{\binom{\ell q}{5} - q\binom{\ell}{5}}{(\ell q)^5} = \frac{N(\ell, q)}{120}.$$
 (13)

Therefore, to show Lemma 5.1, we only need to show the following claim:

Claim 5.1.

$$F(a_1, a_2, \dots, a_{\ell q}, \rho) \le F(\frac{1}{\ell q}, \frac{1}{\ell q}, \dots, \frac{1}{\ell q}, 0)$$
 (14)

holds under the constraints $\sum_{j=1}^{\ell q} a_j = 1$ and each $a_j \ge 0$, $1 \le j \le \ell q$ and $0 \le \rho \le \frac{a_1}{4}$.

Proof. Suppose the function F reaches the maximum at $(a_1, a_2, \ldots, a_\ell, \rho)$. By applying Lemma 5.2, we claim that we can assume that $a_1 = a_2 = \cdots = a_\ell$ and $\rho = 0$. Otherwise, let $c_1 = c_2 = \cdots = c_\ell = \frac{\sum_{j=1}^{\ell} a_j}{\ell}$. Then

$$F(c_1, c_2, \dots, c_{\ell}, a_{\ell+1}, \dots, a_{\ell q}, 0) - F(a_1, a_2, \dots, a_{\ell}, a_{\ell+1}, \dots, a_{\ell q}, \rho)$$

$$=f(c_{1}, c_{2}, \dots, c_{\ell}, 0) - f(a_{1}, a_{2}, \dots, a_{\ell}, \rho)$$

$$+ (\sum_{1 \leq i < j < k < h \leq \ell} c_{i}c_{j}c_{k}c_{h} - \sum_{1 \leq i < j < k < h \leq \ell} a_{i}a_{j}a_{k}a_{h})(\sum_{s=\ell+1}^{\ell q} a_{s})$$

$$+ (\sum_{1 \leq i < j < k \leq \ell} c_{i}c_{j}c_{k} - \sum_{1 \leq i < j < k \leq \ell} a_{i}a_{j}a_{k})(\sum_{\ell+1 \leq h < s \leq \ell q} a_{h}a_{s})$$

$$+ (\sum_{1 \leq i < j \leq \ell} c_{i}c_{j} - \sum_{1 \leq i < j \leq \ell} a_{i}a_{j})(\sum_{\ell+1 \leq k < h < s \leq \ell q} a_{k}a_{h}a_{s}) \geq 0$$

holds by combining (10), $\sum_{1 \leq i < j < k < h \leq \ell} c_i c_j c_k c_h - \sum_{1 \leq i < j < k < h \leq \ell} a_i a_j a_k a_h \geq 0$, $\sum_{1 \leq i < j < k \leq \ell} c_i c_j c_k - \sum_{1 \leq i < j < k \leq \ell} a_i a_j a_k \geq 0$ and $\sum_{1 \leq i < j \leq \ell} c_i c_j - \sum_{1 \leq i < j \leq \ell} a_i a_j \geq 0$. This implies that $a_1 = a_2 = \cdots = a_\ell$ and $\rho = 0$ can be assumed. Similarly, by applying Lemma 5.3, for each p, $1 \leq p \leq q - 1$, we can assume that $a_{p\ell+1} = a_{p\ell+2} = \cdots = a_{(p+1)\ell}$. Set $b_{p+1} = a_{p\ell+1} = a_{p\ell+2} = \cdots = a_{(p+1)\ell}$ for each $0 \leq p \leq q - 1$. In view of Lemma 5.2 and Lemma 5.3, we have

$$\begin{split} F(a_1, a_2, \dots, a_{\ell q}, \rho) &\leq H(b_1, b_2, \dots, b_q) \\ \stackrel{\text{def}}{=} \frac{N(\ell)}{120} \sum_{p=1}^q \ell^5 b_p^5 + \sum_{p=1}^q \binom{\ell}{4} b_p^4 (1-\ell b_p) + \sum_{1 \leq p_1 \leq q; 1 \leq p_2 \leq q; p_2 \neq p_1} \binom{\ell}{3} \binom{\ell}{2} b_{p_1}^3 b_{p_2}^2 \\ &+ \sum_{1 \leq p_1 \leq q; 1 \leq p_2 < p_3 \leq q; p_2, p_3 \neq p_1} \binom{\ell}{3} \ell^2 b_{p_1}^3 b_{p_2} b_{p_3} + \sum_{1 \leq p_1 < p_2 \leq q; 1 \leq p_3 \leq q; p_3 \neq p_1, p_2} \binom{\ell}{2}^2 \ell b_{p_1}^2 b_{p_2}^2 b_{p_3} \\ &+ \sum_{1 \leq p_1 \leq q; 1 \leq p_2 < p_3 < p_4 \leq q; p_2, p_3, p_4 \neq p_1} \binom{\ell}{2} \ell^3 b_{p_1}^2 b_{p_2} b_{p_3} b_{p_4} + \sum_{1 \leq p_1 < p_2 < p_3 < p_4 < p_5 \leq q} \ell^5 b_{p_1} b_{p_2} b_{p_3} b_{p_4} b_{p_5}. \end{split}$$

Note that

$$H(\frac{1}{\ell q}, \frac{1}{\ell q}, \dots, \frac{1}{\ell q}) = F(\frac{1}{\ell q}, \frac{1}{\ell q}, \dots, \frac{1}{\ell q}, 0) \stackrel{(11)}{=} \frac{N(\ell, q)}{120}.$$
 (15)

Therefore, to show Claim 5.1, it is sufficient to show the following claim

Claim 5.2.

$$H(b_1, b_2, \dots, b_q) \le H(\frac{1}{\ell q}, \frac{1}{\ell q}, \dots, \frac{1}{\ell q})$$

holds under the constraints

$$\begin{cases} \sum_{i=1}^{q} b_i = \frac{1}{\ell}, \\ b_i \ge 0, \quad 1 \le i \le q. \end{cases}$$
(16)

Suppose that function H reaches the maximum at (b_1, b_2, \ldots, b_q) . We will apply Claim 5.3 and 5.4 stated below.

Claim 5.3. Let $i, j, 1 \leq i < j \leq q$ be a pair of integers and ε be a real number. Let $c_i = b_i + \varepsilon$, $c_j = b_j - \varepsilon$, and $c_k = b_k$ for $k \neq i, j$. Let $(b_j - b_i)A(b_1, b_2, \ldots, b_q)$ and $B(b_1, b_2, \ldots, b_q)$ be the coefficients of ε and ε^2 in $H(c_1, c_2, \ldots, c_q) - H(b_1, b_2, \ldots, b_q)$, respectively, i.e.,

$$H(c_1, c_2, \dots, c_q) - H(b_1, b_2, \dots, b_q)$$

= $(b_j - b_i)A(b_1, b_2, \dots, b_q)\varepsilon + B(b_1, b_2, \dots, b_q)\varepsilon^2 + o(\varepsilon^2).$

If $b_i \neq b_j$, then

$$A(b_1, b_2, \dots, b_q) + B(b_1, b_2, \dots, b_q) \ge 0.$$

Proof. Without loss of generality, we take i = 1 and j = 2. By the definition of the function $H(b_1, b_2, \ldots, b_q)$, we have

$$\begin{split} H(b_1 + \varepsilon, b_2 - \varepsilon, \dots, b_q) &= H(b_1, b_2, \dots, b_q) \\ &= \frac{N(\ell)}{120} \ell^5 [(b_1 + \varepsilon)^5 + (b_2 - \varepsilon)^5 - b_1^5 - b_2^5] \\ &+ \binom{\ell}{4} [(b_1 + \varepsilon)^4 (1 - \ell b_1 - \ell \varepsilon) + (b_2 - \varepsilon)^4 (1 - \ell b_2 + \ell \varepsilon) - b_1^4 (1 - \ell b_1) - b_2^4 (1 - \ell b_2)] \\ &+ \binom{\ell}{3} \binom{\ell}{2} [(b_1 + \varepsilon)^3 + (b_2 - \varepsilon)^3 - b_1^3 - b_2^3] (\sum_{3 \le p_1 \le q} b_{p_1}^3) \\ &+ \binom{\ell}{3} \binom{\ell}{2} [(b_1 + \varepsilon)^2 + (b_2 - \varepsilon)^2 - b_1^2 - b_2^2] (\sum_{3 \le p_1 \le q} b_p^3) \\ &+ \binom{\ell}{3} \ell^2 [(b_1 + \varepsilon)^3 (b_2 - \varepsilon)^2 + (b_2 - \varepsilon)^3 (b_1 + \varepsilon)^2 - b_1^3 b_2^2 - b_2^3 b_1^2] \\ &+ \binom{\ell}{3} \ell^2 [(b_1 + \varepsilon)^3 + (b_2 - \varepsilon)^3 - b_1^3 - b_2^3] (\sum_{3 \le p_1 < p_2 \le q} b_{p_1} b_{p_2}) \\ &+ \binom{\ell}{3} \ell^2 [(b_1 + \varepsilon)^3 (b_2 - \varepsilon) + (b_2 - \varepsilon)^3 (b_1 + \varepsilon) - b_1^3 b_2 - b_2^3 b_1] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{3} \ell^2 [(b_1 + \varepsilon)^2 + (b_2 - \varepsilon)^2 - b_1^2 - b_2^2] (\sum_{3 \le p_1 \le q; 3 \le p_2 \le q; p_2 \ne q; p_2 \ne p_1} b_{p_2}^2 b_{p_2}) \\ &+ \binom{\ell}{2} \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{2} \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{2} \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{2} \ell \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{2} \ell \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{2} \ell \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{2} \ell \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{2} \ell \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2] (\sum_{3 \le p_1 \le q} b_{p_1}) \\ &+ \binom{\ell}{2} \ell \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon)^2 - b_1^2 b_2^2 b_1 + \varepsilon) - b_1^2 b_2 - b_2^2 b_1] (\sum_{3 \le p_1 \le q} b_{p_1}^2) \\ &+ \binom{\ell}{2} \ell \ell [(b_1 + \varepsilon)^2 (b_2 - \varepsilon) + (b_2 - \varepsilon)^2 (b_1 + \varepsilon) - b_1^2 b_2 - b_2^2 b_1] (\sum_{3 \le p_1 \le q} b_{p_1}^2) \\ &+ \binom{\ell}{2} \ell \ell \ell (b_1 + \varepsilon)^2 (b_2 - \varepsilon) + (b_2 - \varepsilon)^2 (b_1 + \varepsilon) - b_1^2 b_2 - b_2^2 b_1] (\sum_{3 \le p_1 \le q} b_{p_1}^2) \\ &+ \binom{\ell}{2} \ell \ell \ell \ell \ell d_1 + \ell \ell \ell \ell d_2 + \ell \ell \ell \ell d_2 + \ell \ell \ell \ell \ell \ell d_2 + \ell \ell \ell \ell \ell d_2 + \ell \ell \ell \ell \ell d_2 + \ell \ell \ell \ell \ell \ell d_2 + \ell \ell \ell$$

$$+ \binom{\ell}{2} \ell^{3} [(b_{1} + \varepsilon)^{2} + (b_{2} - \varepsilon)^{2} - b_{1}^{2} - b_{2}^{2}] (\sum_{3 \le p_{1} < p_{2} < p_{3} \le q} b_{p_{1}} b_{p_{2}} b_{p_{3}}) \\ + \binom{\ell}{2} \ell^{3} [(b_{1} + \varepsilon)^{2} (b_{2} - \varepsilon) + (b_{2} - \varepsilon)^{2} (b_{1} + \varepsilon) - b_{1}^{2} b_{2} - b_{2}^{2} b_{1}] (\sum_{3 \le p_{1} < p_{2} \le q} b_{p_{1}} b_{p_{2}}) \\ + \binom{\ell}{2} \ell^{3} [(b_{1} + \varepsilon) (b_{2} - \varepsilon) - b_{1} b_{2}] (\sum_{3 \le p_{1} \le q; 3 \le p_{2} \le q; p_{2} \ne p_{1}} b_{p_{1}}^{2} b_{p_{2}}) \\ + \ell^{5} [(b_{1} + \varepsilon) (b_{2} - \varepsilon) - b_{1} b_{2}] (\sum_{3 \le p_{1} < p_{2} < p_{3} \le q} b_{p_{1}} b_{p_{2}} b_{p_{3}}).$$

By a direct calculation, we obtain that

$$\begin{split} &A(b_1, b_2, \dots, b_q) + B(b_1, b_2, \dots, b_q) \\ &= -\frac{N(\ell)}{24} \ell^5(b_1 + b_2)(b_1^2 + b_2^2) + 5\ell \binom{\ell}{4}(b_1 + b_2)(b_1^2 + b_2^2) - 4\binom{\ell}{4}(b_1^2 + b_2^2 + b_1b_2) \\ &+ 2\binom{\ell}{3}\binom{\ell}{2}b_1b_2(b_1 + b_2) + \binom{\ell}{3}\ell^2(b_1 - b_2)^2(\sum_{3\leq p_1\leq q}b_{p_1}) + 2\binom{\ell}{2}^2\ell b_1b_2(\sum_{3\leq p_1\leq q}b_{p_1}) \\ &+ \frac{N(\ell)}{12}\ell^5(b_1^3 + b_2^3) + \binom{\ell}{4}(6b_1^2 + 6b_2^2 - 10\ell b_1^3 - 10\ell b_2^3) + \binom{\ell}{3}\binom{\ell}{2}(b_1^3 + b_2^3 - 3b_1b_2^2 - 3b_1^2b_2) \\ &- 3\binom{\ell}{3}\ell^2(b_1 - b_2)^2(\sum_{3\leq p_1\leq q}b_{p_1}) + \binom{\ell}{2}^2\ell(b_1^2 + b_2^2 - 4b_1b_2)(\sum_{3\leq p_1\leq q}b_{p_1}) \\ &= [2\ell\binom{\ell}{4} - 2\binom{\ell}{3}\ell^2 + \binom{\ell}{2}^2\ell]\frac{\ell}{4}\frac{1}{\ell}(b_1 - b_2) \\ &+ [\frac{N(\ell)}{24}\ell^5 - 5\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2} + 2\binom{\ell}{3}\ell^2 - \binom{\ell}{2}^2\ell](b_1 + b_2)(b_1 - b_2)^2 \\ &\geq [2\ell\binom{\ell}{4} - 2\binom{\ell}{3}\ell^2 + \binom{\ell}{2}^2\ell](b_1 + b_2)(b_1 - b_2)^2 \\ &+ [\frac{N(\ell)}{24}\ell^5 - 5\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2} + 2\binom{\ell}{3}\ell^2 - \binom{\ell}{2}^2\ell](b_1 + b_2)(b_1 - b_2)^2 \\ &= [\frac{N(\ell)}{24}\ell^5 - 3\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2}(2) + 2\binom{\ell}{3}\ell^2 - \binom{\ell}{2}^2\ell(b_1 + b_2)(b_1 - b_2)^2 \\ &= [\frac{N(\ell)}{24}\ell^5 - 3\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2}(2)(b_1 + b_2)(b_1 - b_2)^2 \\ &= [\frac{N(\ell)}{24}\ell^5 - 3\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2}(2)(b_1 + b_2)(b_1 - b_2)^2 \\ &= [\frac{N(\ell)}{24}\ell^5 - 3\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2}(2)(b_1 + b_2)(b_1 - b_2)^2 \\ &= [\frac{N(\ell)}{24}\ell^5 - 3\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2}(2)(b_1 + b_2)(b_1 - b_2)^2 \\ &= [\frac{N(\ell)}{24}\ell^5 - 3\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2}(2)(b_1 + b_2)(b_1 - b_2)^2 \\ &= [\frac{N(\ell)}{24}\ell^5 - 3\ell\binom{\ell}{4} + \binom{\ell}{3}\binom{\ell}{2}(2)(b_1 + b_2)(b_1 - b_2)^2 \\ &= \frac{\binom{5}{12}\ell^4 - \frac{23}{24}\ell^3 + \frac{3}{12}\ell^2 - \frac{1}{24}\ell(b_1 + b_2)(b_1 - b_2)^2 \\ &= \frac{\binom{5}{12}\ell^4 - \frac{23}{24}\ell^3 + \frac{3}{12}\ell^2 - \frac{1}{24}\ell(b_1 + b_2)(b_1 - b_2)^2 \\ &= \frac{\binom{5}{12}\ell^4 - \frac{23}{24}\ell^3 + \frac{3}{12}\ell^2 - \frac{1}{24}\ell(b_1 + b_2)(b_1 - b_2)^2 \\ &= \frac{\binom{5}{12}\ell^4 - \frac{23}{24}\ell^3 + \frac{3}{12}\ell^2 - \frac{1}{24}\ell(b_1 + b_2)(b_1 - b_2)^2 \\ &= \frac{\binom{5}{12}\ell^4 - \frac{23}{24}\ell^3 + \frac{3}{12}\ell^2 - \frac{1}{24}\ell(b_1 + b_2)(b_1 - b_2)^2 \\ &= \frac{\binom{5}{12}\ell^4 - \frac{23}{24}\ell^3 + \frac{3}{12}\ell^2 - \frac{1}{24}\ell(b_1 + b_2)(b_1 - b_2)^2 \\ &= \frac{\binom{5}{12}\ell^4 - \frac{23}{24}\ell^3 + \frac{3}{12}\ell^2 - \frac{1}{24}\ell(b_1 + b_2)(b_1 - b_2)^2$$

if $b_1 \neq b_2$ and since $2\ell \binom{\ell}{4} - 2\binom{\ell}{3}\ell^2 + \binom{\ell}{2}^2\ell = \frac{\ell^2(\ell-1)}{2} > 0$ and $\frac{1}{\ell} \geq (b_1 + b_2)$. This

completes the proof of Claim 5.3.

We will apply Claim 5.3 to prove the following claim.

Claim 5.4. Let $i, j, 1 \le i < j \le q$ be a pair of integers. Let $A(b_1, b_2, \ldots, b_q)$ and $B(b_1, b_2, \ldots, b_q)$ be given as in Claim 5.3.

Case 1. If $A(b_1, b_2, ..., b_q) > 0$ then $b_i = b_j$;

Case 2. If $A(b_1, b_2, ..., b_q) \le 0$, then either $b_i = b_j$, or $min\{b_i, b_j\} = 0$.

The proof of Claim 5.4 (based on Claim 5.3) can be given by exactly the same lines as in the proof of Claim 4.5 in [9] and is omitted here.

Proof of Claim 5.2. By Claim 5.4, either $b_1 = b_2 = \cdots = b_q = \frac{1}{\ell q}$ or for some integer p < q, $b_{i_1} = b_{i_2} = \cdots = b_{i_p} = \frac{1}{\ell p}$ and other $b_i = 0$.

Now we compare $H(\frac{1}{\ell q}, \frac{1}{\ell q}, \dots, \frac{1}{\ell q}) = \frac{N(\ell, q)}{120}$ and $H(\frac{1}{\ell p}, \frac{1}{\ell p}, \dots, \frac{1}{\ell p}, 0, \dots, 0) = \frac{N(\ell, p)}{120}$. It sufficient to show that $N(\ell, p) \leq N(\ell, q)$ when $1 \leq p \leq q$. Note that condition (6) implies that $N(\ell, 1) \leq N(\ell, q)$. Hence it is sufficient to show that $N(\ell, p) \leq N(\ell, q)$ when $2 \leq p \leq q$ for each of the five choices of $N(\ell)$. In each case, we view $N(\ell, q)$ as a function with one variable q.

Case a. $N(\ell) = \alpha$ and $q \ge 2\ell^2 + 2\ell$.

In this case, the derivative of $N(\ell, q)$ with respect to q is

$$\frac{d(N(\ell,q))}{dq} = \frac{10}{\ell q^2} - \frac{70}{\ell^2 q^3} + \frac{150}{\ell^3 q^4} - \frac{16}{\ell^4 q^5} - \frac{40}{\ell q^5} + \frac{140}{\ell^2 q^5} - \frac{180}{\ell^3 q^5} \\ = \frac{1}{\ell^4 q^5} (10\ell^3 q^3 - 70\ell^2 q^2 + 150\ell q - 16 - 40\ell^3 + 140\ell^2 - 180\ell).$$

Let $h_1(q) = 10\ell^3 q^3 - 70\ell^2 q^2 + 150\ell q - 16 - 40\ell^3 + 140\ell^2 - 180\ell$, then $h'_1(q) = 30\ell^3 q^2 - 140\ell^2 q + 150\ell$, $h''_1(q) = 60\ell^3 q - 140\ell^2$. Note that $h''_1(q) > 0$ when $q \ge 2$, $\ell \ge 2$, so $h'_1(q)$ increases when $q \ge 2$, $\ell \ge 2$. By a direct calculation, $h'_1(2) > 0$ when $\ell \ge 2$, thus, $h_1(q)$ increases when $q \ge 2$, $\ell \ge 2$. Since, $h_1(2) = 40\ell^3 - 140\ell^2 + 120\ell - 16 > 0$ when $q \ge 2$, $\ell \ge 3$, we know that $N(\ell, q)$ increases when $q \ge 2$, $\ell \ge 3$. When $\ell = 2$, by a direct calculation, $h_1(3) > 0$, so N(2, q) increases when $q \ge 3$. Also we calculate that $N(2, 2) \le N(2, q)$ since $q \ge 2\ell^2 + 2\ell$. So $N(\ell, p) \le N(\ell, q)$ for $2 \le p \le q$.

Case b. $N(\ell) = 1 - \frac{1}{\ell^4}$ and $q \ge 10\ell^3$.

In this case, the derivative of $N(\ell, q)$ with respect to q is

$$\frac{d(N(\ell,q))}{dq} = \frac{10}{\ell q^2} - \frac{70}{\ell^2 q^3} + \frac{150}{\ell^3 q^4} + \frac{4}{\ell^4 q^5} - \frac{40}{\ell q^5} + \frac{140}{\ell^2 q^5} - \frac{200}{\ell^3 q^5}$$
$$= \frac{1}{\ell^4 q^5} (10\ell^3 q^3 - 70\ell^2 q^2 + 150\ell q + 4 - 40\ell^3 + 140\ell^2 - 200\ell).$$

Let $h_2(q) = 10\ell^3 q^3 - 70\ell^2 q^2 + 150\ell q + 4 - 40\ell^3 + 140\ell^2 - 200\ell$, then $h'_2(q) = 30\ell^3 q^2 - 140\ell^2 q + 150\ell$, $h''_2(q) = 60\ell^3 q - 140\ell^2$. Note that $h''_2(q) > 0$ when $q \ge 2$, $\ell \ge 2$, so $h'_2(q)$ increases when $q \ge 2$, $\ell \ge 2$. By a direct calculation, $h'_2(2) > 0$ when $\ell \ge 2$, thus, $h_2(q)$ increases when $q \ge 2$, $\ell \ge 2$. Since, $h_2(2) = 40\ell^3 - 140\ell^2 + 100\ell + 4 > 0$ when $q \ge 2$, $\ell \ge 3$, we know that $N(\ell, q)$ increases when $q \ge 2$, $\ell \ge 3$. When $\ell = 2$, by a direct calculation, $h_2(3) > 0$, so N(2, q) increases when $q \ge 3$. Also we calculate that $N(2, 2) \le N(2, q)$ since $q \ge 10\ell^3$. So $N(\ell, p) \le N(\ell, q)$ for $2 \le p \le q$.

Case c. $N(\ell) = \frac{12}{125}$ and $\ell = 5$.

In this case, the derivative of N(5, q) with respect to q is

$$\frac{d(N(\ell,q))}{dq} = \frac{2}{q^2} - \frac{14}{5q^3} + \frac{6}{5q^4} - \frac{48}{125q^5} = \frac{1}{125q^5}(250q^3 - 350q^2 + 150q - 48) \ge 0$$

when $q \ge 2$. This proves that N(5,q) increases as $q \ge 2$ increases. So $N(5,p) \le N(5,q)$ for $2 \le p \le q$.

Case d. $N(\ell) = \frac{96}{625}$ and $\ell = 5$.

In this case, the derivative of N(5,q) with respect to q is

$$\frac{d(N(\ell,q))}{dq} = \frac{2}{q^2} - \frac{14}{5q^3} + \frac{6}{5q^4} - \frac{384}{625q^5} = \frac{1}{625q^5}(1250q^3 - 1750q^2 + 750q - 384) \ge 0$$

when $q \ge 2$. This proves that N(5,q) increases as $q \ge 2$ increases. So $N(5,p) \le N(5,q)$ for $2 \le p \le q$.

Case e. $N(\ell) = \frac{252}{625}$ and $\ell = 5$.

In this case, the derivative of N(5,q) with respect to q is

$$\frac{d(N(\ell,q))}{dq} = \frac{2}{q^2} - \frac{14}{5q^3} + \frac{6}{5q^4} - \frac{1008}{625q^5} = \frac{1}{625q^5}(1250q^3 - 1750q^2 + 750q - 1008) \ge 0$$

when $q \ge 2$. This proves that N(5,q) increases as $q \ge 2$ increases. So $N(5,p) \le N(5,q)$ for $2 \le p \le q$.

The proof is thus complete.

References

- P. Erdős, On extremal problems of graphs and generalized graphs, *Israel J. Math.* 2(1964), 183–190.
- [2] P. Erdős, M. Simonovits, A limit theorem in graph theory, Studia Sci. Mat. Hung. Acad. 1(1966), 51–57.

- [3] P. Erdős, A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52(1946), 1087–1091.
- [4] P. Frankl, Z. Füredi, Extremal problems whose solutions are the blow-ups of the small Witt-designs, J. Combin. Theory (A) 52(1989), 129–147.
- [5] P. Frankl, Y. Peng, V. Rödl, J. Talbot, A note on the jumping constant conjecture of Erdős, J. Combin. Theory (B) 97(2007), 204–216.
- [6] P. Frankl, V. Rödl, Hypergrpahs do not jump, *Combinatorica* 4(1984), 149–159.
- [7] G. Katona, T. Nemetz and M. Simonovits, On a graph problem of Turán, Mat. Lapok 15(1964), 228–238.
- [8] T.S. Motzkin, E.G. Straus, maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17(1965), 533–540.
- Y. Peng, Non-jumping numbers for 4-uniform hypergraphs, Graphs Combin. 23(1)(2007), 97–110.
- [10] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (II), Discrete Math. 307(2007), 1754–1766.
- [11] Y. Peng, A note on non-jumping numbers, Australasian J. Combin. 41(2008), 3–13.
- [12] Y. Peng, Using Lagrangians of hypergraphs to find non-jumping numbers (I), Ann. Comb. 12(2008), 307–324.
- [13] Y. Peng, A note on the Structure of Turán Densities of Hypergraphs, Graphs and Combin. 24(2008), 113–125.
- [14] Y. Peng, On Substructure Densities of Hypergraphs, Graphs and Combin. 25(2009), 583–600.
- [15] Y. Peng, On Jumping Densities of Hypergraphs, Graphs and Combin. 25(2009), 759–766.
- [16] Y. Peng, C. Zhao, Generating non-jumping numbers recursively, Discrete Appl. Math. 156(2008), 1856–1864.
- [17] O. Pikhurko, On possible Turán densities, arXiv:1204.4423v3.
- [18] J. Talbot, Lagrangians of hypergraphs, Combin. Probab. Comput. 11(2002), 199– 216.