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Abstract

Let ¢ and r be integers. A real number a € [0,1) is a jump for r if for
any € > 0 and any integer m, m > r, any r-uniform graph with n > ng(e, m)
vertices and at least (a+¢) (Z) edges contains a subgraph with m vertices and
at least (a + ¢)("') edges, where ¢ = c(a) does not depend on ¢ and m. It
follows from a theorem of Erdés, Stone and Simonovits that every o € [0,1) is
a jump for r = 2. Erd6s asked whether the same is true for r > 3. However,
Frankl and Rodl gave a negative answer by showing that 1 — ﬁ%l is not a jump
for r if r > 3 and £ > 2r. Peng gave more sequences of non-jumping numbers
for r = 4 and r > 3. However, there are also a lot of unknowns on determining
whether a number is a jump for » > 3. Following a similar approach as that of
Frankl and Rédl, we give several sequences of non-jumping numbers for r = 5,

and extend one of the results to every r > 5, which generalize the above results.

Keywords: extremal problems in hypergraphs; Erdés jumping constant con-

jecture; Lagrangians of uniform graphs; non-jumping numbers

1 Introduction

For a given finite set V' and a positive integer r, denote by (‘:) the family of all
r-subsets of V. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge
set E(G). We call G an r-uniform graph if E(G) C (V(TG)). An r-uniform graph H

*Supported by NSFC.



is called a subgraph of an r-uniform graph G if V(H) C V(G) and E(H) C E(G).
Furthermore, H is called an induced subgraph of G if E(H) = E(G) N (V(H ).

Let G be an r-uniform graph, we define the density of G as %, which is
(")

denoted by d(G). Note that the density of a complete (¢ + 1)- parti‘ge graph with

partition classes of size m is greater than 1 — approaches 1 — = when m — 00).

e+1 ( £+1
The density of a complete r-partite r-uniform graph with partition classes of size m

is greater than :—,[ (approaches :—l when m — 0).

In [7], Katona, Nemetz and Simonovits showed that, for any r-uniform graph G,
the average of densities of all induced subgraphs of G with m > r vertices is d(G).
From this result we know that there exists a subgraph of G with m vertices, whose
density is at least d(G). A natural question is: for a constant ¢ > 0, whether there
exists a subgraph of G' with m vertices and density at least d(G)+ ¢ 7 To be precise,

the concept of “jump” was introduced.

Definition 1.1. A real number a € [0,1) is a jump for r if there exists a constant
¢ > 0 such that for any € > 0 and any integer m, m > r, there exists ng(e, m) such
that any r-uniform graph with n > ng(e, m) vertices and density > a + ¢ contains a

subgraph with m vertices and density > a + c.

Erdés, Stone and Simonovits [2, 3] proved that every a € [0,1) is a jump for

r = 2. This result can be easily obtained from the following theorem.

Theorem 1.1 ([3]). Suppose ¢ is a positive integer. For any € > 0 and any positive
integer m, there exists no(m,e) such that any graph G on n > ny(m, ) vertices with
density d(G) > 1 — % + € contains a copy of the complete (¢ + 1)-partite graph with
partition classes of size m (i.e., there exists £ + 1 pairwise disjoint sets Vi,..., Vi1,
each of them with size m such that {x,y} is an edge whenever x € V; and y € V; for
somel <i<j</{l+1).

Moreover, from the following theorem, Erdés showed that for r > 3, every a € [0, 2)

7TT

is a jump.

Theorem 1.2 ([1]). For any € > 0 and any positive integer m, there exists no(e, m)
such that any r-uniform graph G on n > ng(e, m) vertices with density d(G) > €
contains a copy of the complete r-partite r-uniform graph with partition classes of
size m (i.e., there exist r pairwise disjoint subsets Vi, ..., V,, each of cardinality m

such that {x1, 29, ..., x,.} is an edge whenever z; € V;; 1 <i <r).

Furthermore, Erdés proposed the following jumping constant conjecture.



Conjecture 1.1. Every a € [0,1) is a jump for every integer r > 2.

Unfortunately, Frankl and Rédl [6] disproved this conjecture by showing the fol-

lowing result.

Theorem 1.3 ([6]). Suppose r > 3 and { > 2r, then 1 — 7 is not a jump for r.

Using the approach developed by Frankl and Rodl in [6], some other non-jump
numbers were given. However, for » > 3, there are still a lot of unknowns on de-
termining whether a given number is a jump. A well-known open question of Erdds

is
whether :—i is a jump for r > 3 and what is the smallest non-jump?
In [5], another question was raised:
whether there is an interval of non-jumps for some r >3 ¢

Both questions seem to be very challenging. Regarding the first question, in [5], it

5r!
2rT

until now. Some efforts were made in finding more non-jumps for some r > 3. For

was shown that

is a non-jump for » > 3 and it is the smallest known non-jump

r = 3, one more infinite sequence of non-jumps (converging to 1) was given in [5].
And for r = 4, several infinite sequences of non-jumps (converging to 1) were found in
9, 10, 12, 13]. Every non-jump in the above papers was extended to many sequences
of non-jumps (still converging to 1) in [11, 15, 16]. Besides, in [14], Peng found an
infinite sequence of non-jumps for » = 3 converging to 1—72

If a number « is a jump, then there exists a constant ¢ > 0 such that every number
in [a, a4c¢) is a jump. As a direct result, we have that if there is a set of non-jumping
numbers whose limits form an interval (a number a is a limit of a set A if there is
a sequence {a,}°°,a, € A such that lim, ,..a, = a), then every number in this
interval is not a jump. It is still an open problem whether such a “dense enough” set

of non-jumping numbers exists or not.

In this paper, we intend to find more non-jumping numbers in addition to the
known non-jumping numbers given in [5, 9, 10, 11, 12, 13, 15, 14, 16, 17]. Our
approach is still based on the approach developed by Frankl and Rodl in [6]. We first
consider the case r = 5 and find a sequence of non-jumping numbers. In Section 3,

we prove the following result.

Theorem 1.4. Let { > 2 be an integer. Then 1 — ﬁ% + 214 s not a jump for r =5.



Then we extend Theorem 1.4 to Theorem 1.5 for the case ¢ =5 to every r > 5 in
Section 4. When r = 5, Theorem 1.5 is exactly Theorem 1.4 for the case £ = 5.

Theorem 1.5. Let r > 5, %11"! s not a jump for .

In [15], Peng gave the following result: for positive integers p > r > 3, if a - T—! is
a non-jump for r, then « - £ is a non-jump for p. Combining with the Theorem 1 D,
we have the following corollary directly.

151p

is not a jump for p.

Since in [5], it was shown that 5’} is a non-jumping number for r > 3. In [11], it

was shown that for integers r > 3 and p, 3<p<r, (1— )p ™ is not a jump for

p” Lopler
. . ! Pl
r. In particular, % (take r =5 in 25,7;«), & (takep=3and r =5in (1 — = 1)7;! )
and 222 (take p =4 and r =5 in (1 — pp : )II’)! r1) are non-jumping numbers for r = 5.

In Section 5, we will go back to the case of r = 5 and prove the following result.
Theorem 1.6. Let £ > 2 and g > 1 be integers. Then for r =5, we have
(a) If g =1 or q > 20> + 2¢, thenl—%qL%—%—i—ﬁ—I—%—% £§54 is

not a jump.

(b) If g=1 or g > 1063, then 1 — 10"’___12?5’_03 %—% %—ﬁ is not a
jump.

(¢c)1— 5q 5q3 + 125q4 is not a jump.

(d) 1— 5 5q3 + 62956q4 is not a jump.

(e) ]fq—l orq >3, thenl——%—% 5q3+6§g§4 is not a jump.

When ¢ = 1, (a) reduces to Theorem 1.4 for r = 5, (b) reduces to Theorem 1.3
for r = 5, (c) shows that £=

for r =5, and (e) shows that 232 is not a jump for r = 5.

is not a jump for r = 5, (d) shows that 2% is not a jump

2 Lagrangians and other tools

In this section, we introduce the definition of Lagrangian of an r-uniform graph

and some other tools to be applied in the approach.

We first describe a definition of the Lagrangian of an r-uniform graph, which is a

helpful tool in the approach. More studies of Lagrangians were given in [4, 6, 8, 18].

Definition 2.1. For an r-uniform graph G with vertex set {1,2,...,m}, edge set
E(G) and a vector ¥ = {x1,...,1,} € R™, define

)\(G, f) = Z iy Lig ** * T

{i1,...,ir }EE(Q)
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x; is called the weight of vertex i.

Definition 2.2. Let S = {Z = (z1,22,...,Zm) Yoy x; = 1, 7; > 0 for i =
1,2,...,m}. The Lagrangian of G, denoted by A(G), is defined as

AG) = max{\(G,Z) : ¥ € S}.

A vector Z is called an optimal vector for A\(G) if \(G,Z) = A\(G).

We note that if G is a subgraph of an r-uniform graph H, then for any vector &
in S, M(G, %) < A(H,Z). The following fact is obtained directly.
Fact 2.1. Let GG be a subgraph of an r-uniform graph H. Then

AMG) < A(H).

For an r-uniform graph G and i € V(G) we define G; to be the (r — 1)-uniform
graph on V' —{i} with edge set E(G;) given by e € E(G;) if and only if eU{i} € E(G).

We call two vertices i, j of an r-uniform graph G equivalent if for all f & (V(G)__l{i’j }),
f € E(G,;) if and only if f € E(G)).

The following lemma given in [6] will be useful when calculating Lagrangians of

some certain hypergraphs.

Lemma 2.1 ([6]). Suppose G is an r-uniform graph on vertices {1,2,...,m}.
1. If vertices i1,1s,...,1; are pairwise equivalent, then there exists an optimal
vector ¥ = (Y1, Y2, - - -, Ym) for N(G) such that y;; =y, =+ = Y,

2. Let Y = (y1,Y2, - -, Ym) be an optimal vector for \(G) and y; > 0. Let y; be the
restriction of ¥ on {1,2,...,m}\{i}. Then \(G;,y;) = rA\(G).

We also note that for an r-uniform graph G with m vertices, if we take ¥ =
(1,22, ...,%y), where each z; = %, then

_E©)]  d(G)

m’f'

NG) = NG, ©)

for m > m/(e).
On the other hand, we introduce a blow-up of an r-uniform graph G which allow

us to construct an r-uniform graph with a large number of vertices and density close
to rIA(G).

Definition 2.3. Let G be an r-uniform graph with V(G) = {1,2,...,m} and 1t =
(n1,...,ny) be a positive integer vector. Define the 7 blow-up of G, 7 ® G to be the
m-partite r-uniform graph with vertex set ViU- - -UV,,,, |Vi| = n;, 1 <i < m, and edge
set E(1® Q) = {{vi,, Vi, ..., v, }: v, € V;, for 1 <k <, {iy,ia,...,43,} € E(G)}.
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In addition, we make the following easy remark given in [9].

Remark 2.1 ([9]). Let G be an r-uniform graph with m vertices and ¥ = (y1, Y2, - - - , Ym)
be an optimal vector for \(G). Then for any € > 0, there exists an integer n;(¢),

such that for any integer n > ny(¢),
(L, g - ) © G) > IA(G) —e. )

Let us also state a fact relating the Lagrangian of an r-uniform graph to the

Lagrangian of its blow-up used in [6] ([5, 9, 10, 12] as well).

Fact 2.2 ([6]). If n > 1 and 12 = (n,n,...,n), then \(1 ® G) = A\(G) holds for every

r-uniform graph G.

First, we state a definition as follows.

Definition 2.4. For a € [0,1) and a family F of r-uniform graphs, we say that
« is a threshold for F if for any € > 0 there exists an nyg = ng(e) such that any
r-uniform graph G with d(G) > a + ¢ and |V (G)| > ng contains some member of F
as a subgraph. We denote this fact by a — F.

The following lemma proved in [6] gives a necessary and sufficient condition for a

number « to be a jump.

Lemma 2.2 ([6]). The following two properties are equivalent.

1. « is a jump for r.

2. a — F for some finite family F of r-uniform graphs satisfying \(F') > 5 for
all F e F.

Lemma 2.3 ([6]). For any o > 0 and any integer k > r, there exists to(k,o) such
that for every t > to(k, o), there exists an r-uniform graphs A satisfying:

1. |[V(A)| =t.

2. |E(A)| > ot L.

3. For all Vo C V(A),r < |Vo| < k we have |[E(A) N ()] < [Vo| —r + 1.

We sketch the approach in proving Theorems 1.4, 1.5, 1.6 as follows (similar to the
proof in [9, 10, 12]): Let a be the non-jumping numbers described in those theorems.

Assuming that a is a jump, we will derive a contradiction by the following two steps.

Step 1: Construct an r-uniform graph (in Theorem 1.4, 1.6, r = 5) with the
Lagrangian close to but slightly smaller than %, then use Lemma 2.3 to add an 7-

uniform graph with a large enough number of edges but spare enough (see properties
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2 and 3 in Lemma 2.3) and obtain an r-uniform graph with the Lagrangian > 5 + ¢
for some positive €. Then we “blow up” this r-uniform graph to an new r-uniform
graph, say H, with a large enough number of vertices and density > a+5 (see Remark
2.1). By Lemma 2.2, if a is a jump then « is a threshold for some finite family F of
r-uniform graphs with Lagrangian > . So H must contain some member of F as a

subgraph.
Step 2: We show that any subgraph of H with the number of vertices no more

than max{|V(F)|,F € F} has Lagrangian < & and derive a contradiction.

r!

3 Proof of Theorem 1.4

In this section, we focus on r = 5 and give a proof of Theorem 1.4.

Let / >2and a=1-— e% + e%' Let t be a large enough integer given later. We
first define a 5-uniform hypergraph G(¢,t) on ¢ pairwise disjoint sets Vi, Vs, ..., Vj,
each of cardinality ¢ whose density is close to a when ¢ is large enough. The edge set
of G(¢,t) consists of all 5-subsets taking exactly one vertex from each of V;, Vj, Vi,
Vi, Vi (1 <i<j<k<h<s<{),all 5-subsets taking two vertices from V; and one
vertex from each of V;, Vi, V), (1 <i <0, 1 <j <k <h</{ jk, h+#1),all 5-subsets
taking two vertices from each of V;, V; and one vertex from V;, (1 < i < j </,
1 <k<U{ k+#i,j), all 5-subsets taking three vertices from V;, and one vertex from
eachof V;, Vi, (1 <i</{ 1<j<k<{ jk+#1),all 5-subsets taking three vertices
from V; and two vertices from V; (1 < ¢ < /{¢, 1 <j </, j#1i). When { = 2,34,

some of them are vacant.

Note that

e =)o) () (-2 e (30

+0(0—1) <;> (;) = 1%065155 — co(O)t* + o(th),

where ¢(¢) is positive (we omit giving the precise calculation here). It is easy to
verify that the density of G(¢,t) is close to « if ¢ is large enough. Corresponding to
the ¢t vertices of G({,t), we take the vector & = (x1,...,xy), where z; = é for each
1, 1 <1 < /(t, then

NG(0) 2 XG(e0.3) = EEEI 00 9 o),

which is close to {35 when ¢ is large enough. We will use Lemma 2.3 to add a 5-

uniform graph to G(¢,t) so that the Lagrangian of the resulting graph is > 155 +£(t)
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for some €(t) > 0. Suppose that « is a jump for r = 5. According to Lemma 2.2,

there exists a finite collection F of 5-uniform graphs satisfying:

) A(F) > < forall F € F, and

120
ii) « is a threshold for F.

Set ko = max,__|[V(F)| and o9 = 2¢o(€). Let r = 5 and to(ko, 09) be given
as in Lemma 2.3. Take an integer ¢ > t; and a 5-uniform hypergraph A(kg, oo, )
satisfying the three conditions in Lemma 2.3 with V' (A(ko, 0¢,t)) = V1. The 5-uniform
hypergraph H(¢,t) is obtained by adding A(kg,oo,t) to the 5-uniform hypegraph
G(¢,t). For sufficiently large ¢, we have
|E(H(¢,t))] - |E(G(L,1))] + oot? NI co(0)

)\(H(E, t)) > (Et)g) = (gt)n’) — 120 205t

30co (£)
£t
and n > ny(e) as in Remark 2.1. Then the 5-uniform graph S,, = (|[ny1 ], ..., [nye])®

Now suppose ¥ = (y1, Y2, - - -, Yt) is an optimal vector of A\(H(¢,t)). Let ¢ =

H(¢,t) has density not less than av+¢. Since « is a threshold for F, some member F'
of F is a subgraph of S,, for n > maz{ng(¢),ni()}. For such F € F, there exists a
subgraph M of H(¢,t) with |V/(M)| < |V(F)| < ko, such that ' C 11 ® M. By Fact
2.2 we have

AMF) <A@ M) =XM). (2)
Lemma 3.1. Let M be any subgraph of H(¢,t) with |V (M)| < ko. Then
a
M) < —
AM) < 120

holds.

Applying Lemma 3.1 to (2), we have A(F) < 155, which contradicts our choice of

F, i.e., contradicts the fact that A\(F) > {5 for all F' € F.

Proof of Lemma 3.1. By Fact 2.1, we may assume that M is an induced subgraph
of H(¢,t). Let U; = V(M) NYV,. Define My = (Uy, E(M)N (U51)), i.e., the subgraph of
M induced on Uj. In view of Fact 2.1, it is enough to show Lemma 3.1 for the case
E(M;) # 0. We assume |V (M;)| = 4 + d with d a positive integer. By Lemma 2.3,
M has at most d edges. Let V(M) = {v1,v9,...,0444} and E: (21,22, ..., T41q)
be an optimal vector for A(M) where z; is the weight of vertex v;. We may assume

X1 > Xg > ... > x44q. The following claim was proved (see Claim 4.4 in [6] there).

Claim 3.1. Z{% Ty Ty Ty, Ty Ty S ) T1T2T3T475.

Vj,Vk,0p,0s }EE (M) s<iatd
_z_

By Claim 3.1, we may assume that E(M;) = {{vy, v, v3,v4,v;} : 5 < i < 4+d}.

Since vy, vo,v3,v4 are equivalent, in view of Lemma 2.1, we may assume that z; =
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Tg = X3 = T4 et p. For each i, let a; be the sum of the weights of vertices of Us;.
Notice that

a; >0, 1<i</
0<p<7.

Considering different types of edges in M and according to the definition of the
Lagrangian, we have

1
AMM) < g a;a;aRap0s + 5 E afajakah
1<i<j<k<h<s<t 2<i<l;1<j<k<h</¢;
Jik,h#i
1
+ ( 5 ajakah> §(a1 —4p)* + 4pla; — 4p) + 6,02}
2<j<k<h<( L
+ ! E azay 1(al — 4p)* + 4p(ay — 4p) + 6
2 , J 2
2<j<4;2<k<Y;
k#j
1 1
+- ) Glgoa+< Y alaja+pt(ar —4p)
2<i<j<L1<k<L,; 2<i<l1<j<k<t;
=y S
1
+ ( > @jak) {g(al —4p)* + 2p(ar — 4p)® + 6p*(ar — 4p) + 4/)3}
2<j<k<t

1 1 1
T 1 > dldj+ 6 ( > af) {5(6“ —4p)* +4plar — 4p) + 6,02]

2<i<4;2<5 <4 2<i<e
J#i
1 2 1 4 3 2 4 2 2 4 4 3
t3 aj | |glar = 4p)" +2p(ar — 4p)” + 6p7(a1 — 4p) + 4p
2<5<0
1 2
= E a;0;0EAp0s + 5 E a;"a;aiap
1<i<j<k<h<s<{ 1<i<l1<j<k<h</t;
]7k7h¢1‘
1 1 1
2 2 3 32
+ 1 E a; 4 ak + 6 E a;"ajay + I E a;”a;
1<i<G<L1<k<l; 1<i<B1<<k<t; 1<i<1<5<t
k#i,j Jik#i J#i

-2’ ( Z aﬂk%) —p° Z ajag | — éPQ (Z a?)

2<j<k<h<{ 2<j<02<k<L; 2<i<t
K7



4
—ap? ( ) —2a,p? < Z ajak) + §p3 ( Z ajak>
2<j<f 2<j<k<t 2<j<k<t

2
2 4
+§ '+ pt(ar — 4p)
2<_]<€
1 2
= E a;0;0EAp0s + 5 E a;"a;aiap
1<i<j<k<h<s<t 1<i<l;1<j<k<h<¢;
Jrk;h#

1 1 1

=+ 1 E a?a?ak + 6 E ai?’ajak + ID E aigajz
1<i<j<l1<k<Le; 1<i<b1<j<k<e; 1<i<41<5<8;
7527] 7,k i
3 2 2

L, 2 2 4 4 4

—3f a; | —aip a; | + 3" a; | +p" (a1 —4p)
2<i<l 2<i<e 2<i<e
1 2
= E a;0;0kAR0s + 5 E a; a;agap
1<i<j<k<h<s<({ 1<i<b1<j<k<h<t;
gk, h#i

1 1 1

+ Z E a?a?ak + 6 E ai?’ajak + ﬁ E ai3aj2
1<i<j<t;1<k<(; 1<i<1<j<k<t; 1<i<1<5<8;

k#i,j j ki i

2 1
+p’ {amQ —4p° + (gp - al) (1—a)?— 5(1 - al)g]

def
if(aha?)-"aaﬂvp)'

Note that - . .
A R A A T}
Therefore, to show Lemma 3.1, we just need to show the following claim:
Claim 3.2. - ' .
flay,ag, ... ae,p )<f<Z’Z’ E’O):HO

holds under the constraints

a; >0, 1<i</(

0<p<7.

Claim 3.3. Let ¢ be a positive number and L > 2 be an integer.
L

> ¢; = c and each ¢; > 0. Then the function
i=1

10
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def j : 1 § : 2
g(Cl, Coy.ny CL) = CiCjCkChCS + 5 Ci CjCkCh

1<i<j<k<h<s<L 1<<L;1<j<k<h<L;
Jik,h#i
1 1 1
22 3 3.2
+4_1 E G Cicr + 6 E ¢iocicr + D E ¢ e,
1<i<i<Li1<k<Ls 1<i<L1<j<k<L; 1<i<L;1<j<L;
s sk 4
reaches the maximum ﬁ(l — % +2)® when ¢y =cp=---=cp = £.

Proof. Since each term in function g has degree 5, we can assume that ¢ = 1. Suppose
that g reaches the maximum at (¢, co, ..., cp), we show that ¢y =cy = ... =c¢p = T
must hold. If not, without loss of generality, assume that ¢, > ¢;, we will show that
glci+e,co—e,c3,...,cp)—glc1, ca,c3,...,cr) > 0 for small enough € > 0 and derive a
contradiction. Notice that the summation of the terms in g(cq, ¢a, ..., cy) containing

c1,Co 18

(c1 4 ¢2) E CiCiCLCh + C1Co E CiCiCk

3<i<j<k<h<L 3<i<j<k<L
1 1
+ 5(0? +c3) Z cicicy + 5(01 + ¢2) | Z | Ac?cjck
3<i<yj<k<L 3<i<L;3<j<k<L;j,k#i
1 1 1
+ 5(0%02 + c3cp) Z cicj + Seic | Z | .C?C‘j + Z(cfcg) Z C;
3<i<j<L 8<i<L;3<j<Lij#i 3<i<L
1 1 1
+ Z(cf@ + ciey) Z e+ Z(cf +c3) | Z | 'C?C‘j + Z(Cl + o) Z cfc?
3<i<L 3<i<L;3<j<L;j#4 3<i<j<L
1 1 1
- g(c:f +c5) Z cicj + 6(01 + ) | Z | 'C?Cj + 6(6‘1’02 + c16)) Z ¢
3<i<j<L 3<i<L;3<j< LyiA#) 3<i<L
1 1 1 1
+ geice Z ¢+ E(ci’ +c3) Z c? + E(c? +¢c3) Z ¢+ E(c‘;’cg + )
3<i<L 3<i<L 3<i<L
1 1
= (e + o)l dat= > dl+ e+ () )
3<i<L 3<i<L 3<i<L
1 1 1
+ ﬁ(cl + c2)3( Z o)+ Ecl@(QCf + 2¢5 + 3cic3) Z ¢ + E(C?cg + cicd)
3<i<L 3<i<L
1 1
= ﬂ(cl + 62)(1 —C — 02)4 — ﬂ(cl + Cz) 3;L C;l

1 1
+ —(Cl + 02>2(1 —C1 — 02)3 -+ 1—(61 + 02)3(1 —C1 — 62)2

12 2
1 1
+ Eclcg(Qc% + 203 +3ci1c9)(1 — 1 — o) + E(cifcg + c?cg’)
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Therefore,

9(01 +€702 —&,C3,... aCL) —9(01702,03;- . 'aCL)
1
= E(Cl + 8)(62 — E)[Q(Cl + 8)2 + 2(62 — 6)2 + 3(01 + E)(CQ — 8)](1 —C1 — 02)
1 2 2 1 2 2
+ E(Cl +e)(ca—e)(c1 + o) — EC1C2<2C1 + 2¢5 + 3cic9) (1 — ¢ — ¢9)
1
— chcg(cl + ¢9)
1 1
= 6(02 — Cﬁ(C% + C% + 6102)<1 —C1 — 02)8 + 601C2(02 — Cl)(Cl + 02)6 + 0(8) > 0.
Since ¢y > ¢ and ¢y, 1 — ¢; — ¢o cannot be equal to zero simultaneously due to the
assumption that g reaches the maximum at (cy, o, ..., cr). Therefore,
glci+e,c0—¢€,¢3,...,c0) —g(c1,co,03,...,¢c) >0

for small enough € > 0. This contradicts the assumption that g reaches the maximum

at (c1,¢o,...,cL). |

Since 0 < p <%, a; —4p >0, (1 —ay)* >0, then we have,

' 2 1
p* ap® —4p° + (gp - al) (1-a)* = (1 al)?’}

[ 3 2
a;  ay 2 w 5 1 3
S == 1— — (1 -
16 4p+<3x4 ‘“)( a)” = 5 ‘“)]
a3 a? a1
i %‘iﬁ‘(é*g)“‘alf]

(1 1
= p° @(—21&1” + 32a3 + 8a; — 16) — Za%p] :

A
bl\')
|
|
|

Let h(a)) = —21a? + 32a} + 8a; — 16, then, h/(a;) = —63a? + 64a; + 8, h'(ay) =

—126a; + 64. So h/(ay) increases when 0 < a; < %, h'(ay) decreases when %

a; < 1. Hence, h(ay) > min{h'(0),R'(1)} > 0, thus, h(a;) increases when 0

a; < 1. Note that h(0) < 0, (1) < 0, h(1) > 0, when 0 < a; < 1%, we have

PPlaip® —4p° + (3p — a1)(1 — a1)? — 3(1 — a1)?] < 0, by Claim 3.3 and (3), we have

fla,az, ... a¢,p) < g(ai,az,...,a;) < 755. So Claim 3.2 holds for 0 < a; < %
11

Therefore, we can assume that ;z < a; < 1. Since the geometric mean is not greater

than the arithmetic mean, we have,

<
<



IN

(@)

g
—
N

|

—

NS

+

64 [ a® \® _ 1
< -3 < .
at \ 16 x 3 1728

Combining with (3) we have

flai,ag, ... a0, p) < f(ai,az,...,a)

def 1
- Z a;0;0EAp0s + 5 Z a?ajakah
1<i<j<k<h<s<f 1<i<b1<j<k<h<f;
J.k,h#i
+ 1 Z a‘alay, + 1 Z ada;ay + i Z aa? + —1
4 v 6 ‘i v 12 4= 1728
1<i<j<;1<k<(; 1<i<b1<j<k<{; 1<i<b1<5<¢;
ktig JkAi i
Therefore, to show Claim 3.2, it is sufficient to show the following claim:
Claim 3.4.
o
ay,ao,...,0p) < ——
Mar, a )= 130
¢
holds under the constraints »_ a; = 1, a3 > %, and each a; > 0.
i=1
In order to prove Claim 3.4, we need to prove the following claim first:
Claim 3.5.
b def 1 2 1 2 2
(ag,as,...,ap) = Z ajaRapas + 3 Z ajagap + 1 Z ajay
2<j<k<h<s<t 2<j<t;2<k<h<(; 2<j<k<t
=
1 3
+ 6 Z a;”ay,
2<j<4;2<k<Y;
k]
reaches maximum i(l — ﬁ)c4 at ay = a3 = ... = ay = ;% under the constraints
¢
> a; = ¢, and each a; > 0.
i=1
Proof of Claim 3.5. Since h(ag,as, ..., as) is a polynomial with degree 4 for each
term, we just need to prove the claim for the case ¢ = 1. Suppose that h reaches
the maximum at (¢, cs,...,¢p), we show that ¢ = c3 = ... = ¢ = ﬁ Otherwise,
assume that cg > ¢y, we will show that h(ca+¢,c3—¢,¢4q,...,¢0) —h(co,c3,...,¢0) >0

for small enough € > 0 and derive a contradiction. Notice that

13



h(ca +¢e,c3 —€,¢q,y...,¢0) — h(ca, C3,C4, ..., Cp)

= e to)e—o) —aul Y, ga

A<j<k<t
1 1
+ 5[(02 +e) 4 (e3 =)’ = — Z CjCh + 5[(02 +e)(es — &) — cacy Z c
4<j<k<t a<j<e
1 20 2 2. 2 ,
+ 5[(02 +e)*(c3 —€) + (3 —€)*(ca + €) — 33 — Cac3) Z ¢j
4<5<¢
1 1
+ Z[(CQ + 5)2 + (e3 — 5)2 - cg — C%] Z C? + Z[(Cg + 5)2(03 - 5)2 _ cgcg]
4<j<t
1
tollete - -d-dl Y o
4<j<¢
1
+ 6[(02 +€)*(c3 —e) + (c3 — €)*(ca +€) — caes — cacy]
1
= a(cg —c)e+o(e) >0,
for small enough € > 0 and get a contradiction. |

Proof of Claim 3.4. We will apply Claims 3.3 and 3.5. Separating the terms

containing a; from the terms not containing a;, we write function f(a,as,...,as) as
follows:
f(al, az, . .. ,ag)
1 2
= E a;0;0kQR0s + 5 E a; a;akap
2<i<j<k<h<s<l 2<i <2< j <k <h<(;
Jikohi
1 1 1
2 2 3 3 2
+Z g a; a;ag + 6 g a;"a;ar + E E a;"aj
2<i<j <2<k <Y, 2<i<2<j <k <Y, 2<i<2<5<4;
k#i,j Jik#i J#i
+ay ( ajaxana —|—1 alapa —|—1 ala}
1 jUWEWRWs 9 4§ CkUh 4 %k
2<j<k<h<s<f 2< <2<k <h<; 2<j<k<t
k,h#j
1 1 1
3 2 2 2
+6 E a;"ay) + 5(11( E a;agap) + Zal( E aja)
2<j<6;2<k<L; 2<j<k<h<t 2<j<2<k<L;
k#j k#j
1 1 1 1
3 3 2 2 3
+-a E a;ag) + —a g a;)+ —a g a;) + —=—
2<j<k<t 2<j<t 2<j <t
1 2
= E a;Q;0kR0s + 5 E a; a;aap
2<i<j<k<h<s<l 2<i <2< j <k <h<(;
Jyk,h#

14



1 1 1
+Z Z a?a?ak + 6 Z ai3ajak + 1 Z ai?’a?

2<i<j <2<k <L; 2<i<b2<j<k<L; 2<i<b2<5 <Y,
k#i,j Jik#i J#i
+ ( ) —i—l 2 —i—l 2 2
aq Qi QEApGs 9 CL]-CLkCLh 1 ajak
2<j<k<h<s</l 2<j<l;2<k<h <Y, 2<j<k<e
k,h#j
1 1 1 1
3 3 2 2 3
+- E a;°ag) + —a g a;)”" + —a E a;)” + ——.
2<j<4;2<k<Y; 2<5<e 2<5<4
k#j

Applying Claim 3.3 by taking L = ¢ — 1 variables as, as, ..., a, and ¢ = 1 — a, Claim

35and ha2( Y 4+ had( Y ) = Sad(l-an)+hadl-a)? = Sad(l-ay)?,

2<j<t 2<j<t
we have
def 1 5 4 5
< =— |1 — 1—
f(alaa% aaf) = f(al) 120 |: (f . 1)3 + (6 . 1)4:| ( al)
1 1 1 1
—1-—1(1=-a)* —a?(1 —ay)? + —.
MY { = 1)3} (1= @)+ ol =)+ 7758

Therefore, to show Claim 3.4, we need to show the following claim:

Claim 3.6.
o

f(al)ﬁﬁo

holds when % <a <1.

Proof. By a direct calculation,

N S 1 . 1 , ;

Mo = [ o) O ' gt e - gl —e)
1 2 1 3 1 2 2.5 1,
f'(ar) = [3@_ 07~ 20— 1)3] (1—a1)” — m(l — @) a1+ zay - oay,

3 _ 1 2 2 1 2
S ay) = [(é_ R 1)4} (1—a)”+ = 1)3(1 —ay)ay + 2aj] — ay,

o 4 1 4
ﬂ““*‘%‘w—w%“‘l‘w—n3+w—nv

Note that f(a;) > 0, when % < a; <1,s0 f®(a;) increases when % <a <1.

By a direct calculation, f(3)(%) > 0, so f"(ay) increases when }—é <a <1. S-

ince we have f"(11) < 0, f"(1) > 0, thus, f'(a1) < maz{f'(%),f'(1)}. By a
direct calculation, f'(1) < 0, f'(1) = 0, so f(a1) is a decreasing function when
%Salgl. When ¢ = 2, f(%)ZI—IQX 11125X442+ﬁ<510><§:%0. If ¢ > 3, since

5 4 5 4 1y _ 1 5 4
l— 3+ o7 2 1 — @ + @ then we have f(55) = 551 — ¢ + oy — (1—

15



5 4 2 2
5 > 21 = g+ i)+ A1 el ¢ B8+ x L < ol e+

155 120 @3 T (03 24 (e—1)3
4 45 1 5 , 4 1, 11x4* | 1, 112x42 1 1 5 4
el U—im) X ml-—gta)tu X t5X 5 tom < wl— et e
So, fla1) < f(34) < 15[l — ﬁ + ﬁ] < 511 — & + 7] = 15 This completes
the proof of Claim 3.6. |
Applying Claim 3.2 to (3), we have
a
AMM) < —.
(M) < 120
This completes the proof of Lemma 3.1. |

4 Proof of Theorem 1.5

Theorem 1.5 extends Theorem 1.4 for the case ¢ =5 to every integer r > 5. The
proof is based on an extension of the 5-uniform graph H(¢,t) in Section 3 for the case
¢ =05.

151!
6r”

collection F of r-uniform graphs satisfying the following:
i) A(F) > & for all F € F, and
ii) 1512 is a threshold for F.

Set ko = max,__|V(F)| and 09 = 2¢(¢) be the number defined as in the above.

Let r = 5 and to(ko, 0p) be given as in Lemma 2.3. Take an integer t > t, and a

Suppose that is a jump for r > 5. In view of Lemma 2.2, there exists a finite

5-uniform hypergraph H(5,t) (i.e. £ =5) the same way as in the above with the new
ko. For simplicity, we write H(5,t) as H(t).

Since Theorem 1.4 holds, we may assume that r > 6.

Based on the 5-uniform graph H(t), we construct an r-uniform graph H)(t) on
r pairwise disjoint sets Vi, Vo, V3, Vy, Vs, ..., V., each with order ¢ by taking the edge
set {uy, ug, us, ug, us, ..., u}, where {{uy, us, us, ug,us} is an edge in H(t) and for
each j, 6 < j <r, u; € V;}. Notice that

[E(HD(0)| = t°|E(H(1))].

Take ¢ =5, we get

B ) = 2k 4 9O

Hence, we have

(r)
L IBEOM) 151 elt)
(rt)r 67" 217t



Similar as the case that Theorem 1.4 follows from Lemma 3.1, we have that Theorem

1.5 follows from the following lemma.

Lemma 4.1. Let M") be a subgraph of H™(t) with |V (M™)| < ky. Then

151

MM <
( )< 67"

holds.

Proof. In view of Fact 2.1, we may assume that M) is a non-empty induced
subgraph of H"(t). Define U; = V(M)NV; for 1 <i <r. Let M®) be the 5-uniform
5

graph defined on |J U;. The edge set of M®) consists of all 5-sets of the form of
i=1

5 -
e (J Ui), where e is an edge of M. Let £ be an optimal vector for A\(M ™). Let
i=1

5(5) be the restriction of gto Uy U, UUsUJULUUs. Let a; be the sum of the weights

of vertices of U;, 1 < i < r, respectively.

According to the relationship between M) and M®), we have

AMM®)y = MNM® D) x ] a.
=6

5 r
Applying Lemma 3.1 with ¢ = 5 and observing that > a; = 1= a;, we obtain that,

=1 i=6
r 5
T r 1 - Z a; r
1 604 1 604 =
(r) _ 5 il 5 =6
)\(M ) < m X ¥<1 CLZ) a; < B X 1 X 97 X 5 ]i[(lZ
=6 =6 =6
1 604 5 1\" 151
=— X —F—XdXxX|-] = .
120 54 r 6r"
This completes the proof of Lemma 4.1. |

5 Proof of Theorem 1.6

In this section, we focus on r = 5 and prove the following Theorem, which implies
Theorem 1.6.

Theorem 5.1. Let ¢ > 2, q > 1 be integers. Let N({) be any of the five numbers

given below.

17



( 5 4

1— Ve + 7, or

1-— zi47 or
N(l) = ¢ £ (in this case, view { =5), or
96 (; - - _
@z (in this case, view { =5), or
252
\ 625

(in this case, view £ =15).
Then

10 35 50 10 35 50 1 N(K)
N/ =]l-—4 =4+ — — — -
( 7Q) lq + 2q B3¢ + ¢ gt Bg g

s not a jump for & provided

(5)

g=lor (1= NO) @+ +q+1)—10* (¢ +q+1)+35(g+1) —50 > 0 (6)

holds.

Now let us explain why Theorem 5.1 implies Theorem 1.6.

If N(¢) = a, then

= £3<€_3 @+ +a+1) - 1062(¢* +q + 1) +350(g + 1) — 50
= %[(55 —4)¢® + (5 — 100> — 4)¢* + (50 — 106 + 35(* — 4)q

+ (=450 — 100% + 350% — 4)]
< fi(g)

is an increasing function of ¢ when ¢ > 2¢2+2¢ and f;(2¢*+2() > 0. Therefore, when
q > 20* + 20, (6) is satisfied. Applying Theorem 5.1, we get Part (a) of Theorem 1.6.

If N(¢) =1— 4, then

CA—=NOYWE+ @ +q+1)— 102> + g+ 1) +350(g + 1) — 50

1
=)@+ ¢ +a+1) = 108(¢° + g +1) +35(g + 1) = 50
1
:Z[q?’ — (106> — 1)¢* — (10£* — 3507 — 1)q + (1 — 10£* + 35¢* — 50¢)]
def
= fa(q)

is an increasing function of ¢ when ¢ > 7¢3 and f5(10¢3) > 0. Therefore, when

q > 1063, (6) is satisfied. Applying Theorem 5.1, we get Part (b) of Theorem 1.6.

18



If ¢ =5 and N({) = %, then

125°

G- NO)NP+ @ +q+1)—100%(¢° + g+ 1) +350(g + 1) — 50
=113¢" — 137¢* + 38¢ — 12
def
= f3(q)
is an increasing function of ¢ when ¢ > 1 and f5(2) > 0. Therefore, (6) is satisfied.
Applying Theorem 5.1, we get Part (c¢) of Theorem 1.6.

If { =5 and N({) = 2% then

— %
CA-=NONE+ @ +q+1) = 102> + ¢+ 1) +350(q + 1) — 50

1
:3(529q3 — 721¢* + 154q — 96)
def

= fa(q)

is an increasing function of ¢ when ¢ > 1 and f4(2) > 0. Therefore, (6) is satisfied.
Applying Theorem 5.1, we get Part (d) of Theorem 1.6.

If £ =5 and N({) = 222 then

6250
CA-=NONF+ @+ q+1) —10%(¢* + g+ 1) +350(g + 1) — 50
1
25(373q3 — 877¢* — 2q — 252)

“f5(0)
is an increasing function of ¢ when ¢ > 2 and f5(3) > 0. Therefore, when ¢ > 3, (6)
is satisfied. Applying Theorem 5.1, we get Part (e) of Theorem 1.6.

Now we give the proof of Theorem 5.1.

Proof of Theorem 5.1. Let integers ¢, ¢ and numbers N (¢) and N (¢, q) be given as
in Theorem 5.1. We will show that N(¢,q) is not a jump for 5. Let ¢ be a fixed large
enough integer determined later. We first define a 5-uniform hypergraph G(¢,t) on
¢ pairwise disjoint sets Vi, ..., V}, each of them with size ¢ and the density of G(¢,1)
is close to N(¢) when ¢ is large enough. Each of five choices of N(¢) corresponds to

a construction.

1. If N(¢) = «, then G(¢,t) is defined in section 3. Notice that

AG(U1) = (52 + (5N B+ Q) =2 ) )t +(5) () + e =1 () ()

(5)

which is close to « if ¢ is large enough.
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2.IfN()=1— ei47 then G(¢,t) is defined on /¢ pairwise disjoint sets Vi, Vs, ..., V4,
where |V;| = t, and the edge set of G(/,1) is (U%Vi) — UL, (‘g) Notice that

d(G(ﬁ, t)) _ (€5t) — E(é)

7]
()
which is close to 1 — z%l if ¢ is large enough.

3. If N(5) = 7= (in this case, view ¢ = 5), then G(5,t) is defined on 5 pairwise
disjoint sets Vi, Vo, V3, Vy, Vs, where |V;| = ¢, and the edge set of G(5,t) consists
of all 5-sets in the form of {{a,b,c,vy,v5}, where a € Vi, b € V,, ¢ € V3 and vy €
Vi, vs € Vi}, or {{a,b, c,vy,v5}, where {a, b} € (‘;1), c€ Voand vy € Vy, vs € V5}, or
{{a,b, c,vq,vs5}, where {a,b} € (‘;2), c € Vyand vy € Vi, vs € V5}, or {{a,b, c,vy,v5},

where {a,b} € (‘23), ceViand vy € Vy, vs € V5}. Notice that

o +3(4)88

(%)

d(G(5,t)) =

which is close to 11—225 if ¢ is large enough.
4. If N(5) = 22 (in this case, view ¢ = 5), then G(5,¢) is defined on 5 pairwise

disjoint sets V1, Vi, V3, Vi, Vs, where |V;| = ¢, and the edge set of G(5,t) consists of all
5-sets in the form of {{v,vs, v3, vy, v5}, where {vy,ve,v3} € (U%Vi) — Ule(‘g), and
vy € Vi, vs € V5}. Notice that

d(G(5,t)) = ((35) =3(x)r

which is close to % if ¢ is large enough.
5. If N(5) = 222 (in this case, view ¢ = 5), then G(5,t) is defined on 5 pairwise

disjoint sets Vi, Vo, V3, Vi, Vi, where |V;| = ¢, and the edge set of G(5,t) consists of

. 1 v .
all 5-sets in the form of {{vy, vo, v3, vy, v5}, where {vy,ve, v3,v4} € (Uﬁlv’) — UL, (Z’),
and vs € V5}. Notice that

d(G(5,1)) = W

which is close to &= if ¢ is large enough.

We also note that

|E(G(C,1))] + 504 1 1
e > (N0 + ) (7)

holds for ¢ > t;.
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The 5-uniform graph G(¢, q,t) on {q pairwise disjoint sets V;, 1 < i < {q, each of
them with size ¢ is obtained as follows: for each p, 0 < p < g—1, take a copy of G(/,t)
on the vertex set Ups1<j<(pt+1)¢Vj, then add all other edges (not entirely in any copy
of G(¢,t)) in the form of {{v},,v;,,v;s, vj,, vjs }, Where 1 < j; < jo < j3 < js < j5 < {g
and v;, € Vj, for 1 <k < 5}. We will use Lemma 2.3 to add a 5-uniform graph to
G(?,q,t) so that the Lagrangian of the resulting graph is > %%q) + £(t) for some

g(t) > 0. The precise argument is given below.

Suppose that N(¢,q) is a jump for r = 5. By Lemma 2.2, there exists a finite

collection F of 5-uniform graphs satisfying the following:

i) A(F) > X%9 for all F € F, and

120

ii) N(¢,q) is a threshold for F.

Assume that » = 5 and set k; = mazpex|V(F)| and 01 = 1—12€4q. Let to(k1,01) be
given as in Lemma 2.3. Fix an integer ¢ > max(to,t1), where ¢; is the number from
(7).

Take a 5-uniform graph Ay, ., (t) satisfying the conditions in Lemma 2.3 with
V(Ak, 0, (t)) = V1. The 5-uniform hypergraph H (¢, q,t) is obtained by adding Ay, o, (t)
to the 5-uniform hypergraph G(¢,q,t). Now we give a lower bound of A\(H (¢, q,t)).
Notice that,

[E(H (¢, g,1))|
AMH(C q,t)) = W

In view of the construction of H (¢, q,t), we have

|E(H(C,q.1)] _ |E(G(L,q,t)] + o1t

(Lqt)? (Lqt)

_ dBGED) + 5l + (5) —a()P

(Lqt)
_B@EOI e 1 10 3 50 1 10 85 5
- (ﬁqt)5 120 gq gzq2 gsqg q4 gq4 52q4 g3q4
DL NG, 11 1085 501 10 35 50
- 120" ¢* (Lq)>t 120 bg 022 g3 g gt Pt B¢t
) 1 1
= —(N/ :

Hence, we have
1 1
MNH,q,t)) > —(N(£ —).

Now suppose ¥ = {y1,%2, - .-, Yeqt} is an optimal vector of A\(H(¢,q,t)). Let ¢ =
W and n > ny(¢) as in Remark 2.1. Then 5-uniform graph S,, = (|ny1], ..., [nYeqt])
® H(¢,q,t) has density larger than N(¢,q) + . Since N(/,q) is a threshold for
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F, some member F of F is a subgraph of S, for n > max{ng(¢),n;(¢)}. For
such F' € F, there exists a subgraph M’ of H(¢,q,t) with |[V(M')| < k; so that
FcneM Ccn® H({,q,t).

Theorem 5.1 will follow from the following lemma.

Lemma 5.1. Let M’ be any graph of H({,q,t) with |V (M')| < ky. Then

M) < SN (L) (®)

holds.

The proof of Lemma 5.1 will be given as follows. We continue the proof of Theorem
5.1 by applying this Lemma. By Fact 2.2 we have

AF) < A © M') = X(M') < = N(L,q)

which contradicts our choice of F, i.e., contradicts the fact that A\(F) > 5N (¢, q)

for all F' € F. This completes the proof of Theorem 5.1. |

Proof of Lemma 5.1. Let M’ be any subgraph of H({,q,t) with |V (M’)| < k; and
€ be an optimal vector for A(M’). Define U; = V(M') NV, for 1 < i < {q. Let a; be
the sum of the weights in U;, 1 < i < {q, respectively. Note that Zfil a; = 1 and
a; > 0 for each 7, 1 <17 < /{q.

The proof of Lemma 5.1 is based on Lemma 3.1, Claim 3.2, 3.3 and an estimation
given in [5] and [11] on the summation of the terms in A(M’) corresponding to edges
in E(M")N (U%lvi), denoted by A(M’NU_,V;). For our purpose, we formulate Claim

3.2 in Section 3, Lemma 4.2 in [5] and Lemma 3.2 in [11] as follows.

Lemma 5.2. There exists a function f such that
)\(Mlmuf=1‘/;) S f(a17a27"'7a’€7p)7 (9)

where the function f satisfies the following property:

Loy = L (10)

11
< f(=,—-,..., = =
f(a17a2a 7a€7p) = f(£’€7 a€7 ) 120

holds under the constraints Ze

jzlajzlandeachaij, 1<j<land0<p< 9

In view of the construction of H(¢,q,t), for each p, 1 < p < g—1, the structure of

M’ restricted on the vertex set U,E’; J;BflVi is similar to the structure of M’ restricted

on the vertex set U_,V;, but there might be some other extra edges in (‘gl) for M’
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restricted on the vertex set U?_, V;. Therefore, for each p, 1 < p < ¢—1 the summation
U+

of the terms in A(M’) corresponding to edges in E(M')N ("= P“l ) denoted by A\(M'N

Ugi ;,})flvi). For our purpose, we formulate Claim 3.3 in sectlon 3, Lemma 4.2 in [5]

and Lemma 3.2 in [11] as follows.

Lemma 5.3. There exists a function g such that

)‘(MI N Uz(p+pl}—)&-lv) < g(apes1, Qpegas - - - 7a(p+1)£)7 (11)

where the function g satisfies the following property:

c 1

Cc C
9(dpeg1, dpesa, - - 5 dprrye) < 9(@ VIRREE z) = 1—20N(5)C5 (12)

holds under the constraints jp;zﬂ dj =cand each d; >0, pl +1 < j < (p+1)¢

for any positive constant c.

Consequently,
qg—1
ANM') <flar,as, ... asp) + Zg(&peﬂ, Apet2, - - -, Apt1)e)
p=1
qg—1
+ ( Z iy Wiy Qg Qg Qs — Z Z Ay aigai3ai4ai5)
1<y <ig<iz<iq<is<lq P=0 pl+1<iy <io<iz<is<is<(p+1)¢
def
=F(a1,as, ..., a4y, p).
Note that
(L L L NGO (¥) —a(5) _ N(tg) (13
lqg’ g’ b’ 12044 (£q)> 120
Therefore, to show Lemma 5.1, we only need to show the following claim:
Claim 5.1.
F )< (g7 0) (14)
a1,02,...,0 — ey —
1, W2, y Qpgy P) > €q7€q7 7€q7

holds under the constraints 2?1:1 aj =1landeacha; >0, 1<j</lgand(0<p <.
Proof. Suppose the function F' reaches the maximum at (aq, as, ..., as, p). By apply-
ing Lemma 5.2, we claim that we can assume that a; = ay = --- = ap and p = 0.
£
Otherwise, let ¢i = ¢y = --- = ¢y = @ Then
F(ChCQa <5 Cey Qo1 - - -y Qg O) - F(a17a2a sy Qg Aoy - 7a€q7p)
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:f<Cl,C2,...,C[,O) _f(aba?v"';a@ap)
£Lq

+ ( Z CiCiCrCh — Z a;a;jagap)( Z as)

1<i<j<k<h<l 1<i<j<k<h<t s=0+1

+ ( Z cicjcr — Z aa;ag)( Z anas)

1<i<j<k<t 1<i<j<k<t (+1<h<s<lq

+ ( E CiCj — E aiaj)( E akahas) >0
1<i<j<t 1<i<j<t (+1<k<h<s<lq

holds by combining (10), > ;i cpencr CiCICECh — D 1<icjchen<e %i00kan > 0,

Zl§i<j<k§£ CiCjCr — Zl§i<j<k:§£ a;ajar > 0 and Zlgi<j§£ CiCj — Zl§i<j§€ aia;j = 0.

This implies that a; = a3 = --- = ay, and p = 0 can be assumed. Similarly, by
applying Lemma 5.3, for each p, 1 <p < ¢ — 1, we can assume that ayi11 = apeyo =
C= Aprrye- Set bpp1 = apeyr = Apppo = = a(py1) for each 0 < p < g —1. In view

of Lemma 5.2 and Lemma 5.3, we have

F(al,aQ,... agq,p) H(by, by, ..., b,)

= ]\1[20 26565 + Z ( (1 — tb,) 3 (g) (5) b b2,

1<p1<q;1<p2<q;p2#p1

0 o (
+ > (3) 0263 by,by, + > ( 2) 002 02 by

1<p1<q;1<p2<p3<¢;p2,p37£P1 1<p1<p2<q;1<p3<q;p3#p1,p2

14
+ Z (2) & bzl bpsbps bpy + Z e bp1 Dp bps Op, by -

1<p1<q;1<p2<p3<pa<¢q;p2,p3,p47P1 1<p1 <p2<p3<ps<p5<q

v

Note that

(L1 L) _pL ] 1y N(4q)
bqg' bqg’ T bg” T Mg g g 120

Therefore, to show Claim 5.1, it is sufficient to show the following claim

Claim 5.2.
H(by,by,....by) < H(—,—,...,—)

holds under the constraints
 po =1
{ S0 1< (16)

Suppose that function H reaches the maximum at (b1, bs,...,b0,). We will apply
Claim 5.3 and 5.4 stated below.

24



Claim 5.3. Let i, 7, 1 <1 < j < g be a pair of integers and € be a real number.
Let ¢; =b;+¢, ¢; =bj —¢, and ¢ = by for k # 4, 5. Let (b; — b;)A(b1, b, ..., b,) and
B(by, by, ...,b,) be the coefficients of € and €* in H(cy,ca,...,¢q) — H(by,ba, ..., b,),

respectively, i.e.,

H(Cl,CQ,...,Cq) — H(bl,bg,...,bq)
=(b;j — b)) A(by, by, ..., b,)e + B(by, by, ..., b,)e* + o(e?).

If b; # b;, then
A(by, b, ..., by) + B(b1,ba, ..., b,) > 0.

Proof. Without loss of generality, we take ¢« = 1 and j = 2. By the definition of the

function H (by, b, . .., b,), we have

H(bl+€,b2—€,...,bq)—H(bl,bg,...,bq)

_ N() 5 5 5_ 15 _ 15
= Wﬁ [(b1 +¢€)° + (by — €)” — by — by)]

(i)

by + ) (1 — lby — Le) + (by — ) (1 — by + Le) — bi(1 — £by) — b3(1 — £by)]

—~

#(5) (5) 10+ 4 e -t Y )
+(5) (5) @+ o+ tamer -8 - S )
() (5) 101+ 2000 = 202 (00— 21200+ 22 - i3 — g
b ()PP s e -t Y b
+ (g) 62[([)1 + 8)3(b2 — 5) + (b2 — 8)3(b1 + E) — b:{’bg — bgbl]( Z bp1)
+ (g) 62[(b1 + €>(b2 — 5) — blbg]( Z bf)l)
£ ? 2 2 2_ _2 2
SR CRE e R (D DR TS
3<p1<¢;3<p2<q;p27p1
#(5) 0+ 2P o7 = 8RS )
¢ ? 2 _2 _ 2 2 2
+ (2) U(by+2)*(by — &) + (b — £)*(by + &) — bba — 3u)( > D7)
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14

o

63 bl ‘|’ 5 b2 - 5)2 b - bg]( Z bplbmbps)

3<p1<p2<p3<q

(o)
(5) by 4+ €)*(by — &) + (by — )*(by + ) — biby — b3by]( Z B,y )
(o)

+

3<p1<p2<q

14

e

63 bl + 8 bz - 5) - ble]( Z bf;lbm)
3<p1<¢;3<p2<q;p2#p1

+ °(by + ) (ba — ) — bibo]( Z by, bpybps )

3<p1<p2<p3<q

By a direct calculation, we obtain that

A(by, by, ... by) + B(by, by, ..., b,)
N(f)

l l
= — 765(191 + by) (b2 + b3) + 5 <4) (by + by) (b? + b?) 4(4) (b + b3 + bibo)

0\ (¢ ( A\
+2<3) (2)b1b2(b1+b2>+ (3> (b1 = b2)*( Y by) +2 (2) (haby( D byy)
3<p1<q

3<p1<q
N(¢
(£)

3/ \2

~3(§) 002X o+ (5) 05 - 3 b

3<p1<q 3<p1<q

= [%(ﬁ) —2(§)£2+ (g %
+ [%65 — 50 (ﬁ) + (ﬁ) +2 (g) - <§>2£](b1 + b) (b — b2)?
> [%@ —~ 2@62 + (5)2&(61 +b)(by — b)”
+ [%65’ 14 (ﬁ) + (g) <§> + 2 (6) ?— <§>2£](b1 + by)(by — by)?
)

_ [%ﬁ 36() (g <§> 1(by + by) (by — by)?

r (%f4 2363 3€2+(13€ bl+b2)(b1—bg)2 when, N(g):
(554" = 3253 1302 = 510 (b1 + b2)(by — by)? when N =1-4%

= B(by +bs)(by — bs)* when £ =5 and N(5) =

45(by + by)(by — b2)* when ¢ =5 and N(5) = 625

\ %(bl +bo)(by — by)? when £ =5 and N(5) = ggg

125

> 0

if by # by and since 28(51) — 2(5)62 + (ﬁ)zﬁ = WTA) > 0 and % > (by + bg). This

26
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completes the proof of Claim 5.3. |
We will apply Claim 5.3 to prove the following claim.

Claim 5.4. Let i, j, 1 <i < j < ¢ be a pair of integers. Let A(by,bo,...,b,) and
B(by,ba, ..., b,) be given as in Claim 5.3.

Case 1. If A(by,bs,...,by) > 0 then b; = b;;

Case 2. If A(by, b, ...,b;) <0, then either b; = b;, or min{b;,b;} = 0.

The proof of Claim 5.4 (based on Claim 5.3) can be given by exactly the same

lines as in the proof of Claim 4.5 in [9] and is omitted here. |
Proof of Clatm 5.2. By Claim 5.4, either by = by = --- = b, = %} or for some
integer p < q, by, = by, = -+ =b;, :ﬁ and other b; = 0.
Now we compare H(&p - .,%) = leoq and H(gp, gp,...,ég,() 50) = %.

It sufficient to show that N(¢,p) < N({,q) when 1 < p < ¢. Note that condition (6)
implies that N(¢,1) < N(¢,q). Hence it is sufficient to show that N(¢,p) < N(¢,q)
when 2 < p < g for each of the five choices of N(¢). In each case, we view N(/,q) as

a function with one variable q.
Case a. N({) =« and q > 20> + 2/.
In this case, the derivative of N (¢, q) with respect to ¢ is

d(N(¢,q)) 10 70 150 16 40 140 180

dq - Tl 2f + Bf Bp P + 2Py Bp
1
=g —— (106°¢° — 70£2” + 150£q — 16 — 40£° 4 140¢> — 180¢).

Let hy(q) = 1063¢3 — 700%¢> + 1500 — 16 — 4043 + 14002 — 180/, then h)(q) = 30£3¢* —
14002q + 1500, B!/ (q) = 60£3q — 140¢%. Note that h{(q) > 0 when ¢ > 2, £ > 2, so
h'(q) increases when ¢ > 2, ¢ > 2. By a direct calculation, h}(2) > 0 when ¢ > 2,
thus, hi(q) increases when g > 2, ¢ > 2. Since, hy(2) = 4003 — 140¢* + 120 — 16 > 0
when ¢ > 2, ¢ > 3, we know that N(¢,q) increases when ¢ > 2, ¢ > 3. When ¢ = 2,
by a direct calculation, hy(3) > 0, so N(2,q) increases when ¢ > 3. Also we calculate
that N(2,2) < N(2,q) since ¢ > 2 +2(. So N(¢,p) < N(¢,q) for 2 <p <gq.

Case b. N({) =1— 7 and ¢ > 10,

In this case, the derivative of N (¢, q) with respect to ¢ is

dN(tg) 10 70 150 4 40 140 200
dq gq 52 3 £3q4 €4q5 €q5 £2q5 €3q5

1063¢® — 700%¢* + 1500q + 4 — 400° 4 140¢% — 200¢).

~ 7
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Let ho(q) = 1003¢> — 7002 + 1500q + 4 — 403 + 140¢% — 2004, then hly(q) = 3003¢* —
1400%q + 1500, hY(q) = 60£3q — 140¢2. Note that hj(q) > 0 when ¢ > 2, £ > 2, so
h%(q) increases when ¢ > 2, ¢ > 2. By a direct calculation, h5(2) > 0 when ¢ > 2,
thus, hy(q) increases when ¢ > 2, £ > 2. Since, hy(2) = 403 — 140¢* + 100¢ + 4 > 0
when ¢ > 2, ¢ > 3, we know that N (¢, q) increases when ¢ > 2, ¢ > 3. When ¢ = 2,
by a direct calculation, hy(3) > 0, so N(2,q) increases when ¢ > 3. Also we calculate
that N(2,2) < N(2,q) since ¢ > 103. So N(¢,p) < N({,q) for 2 < p < gq.

Case c. N({) = 1% and ¢ = 5.

125
In this case, the derivative of N(5,q) with respect to ¢ is

dN(t,q) 2 14 6 48

el R — 250¢° — 350¢° + 150 — 48) > 0
dq Z 58 54 1p 125 2% ¢+ 150g — 48) =

when ¢ > 2. This proves that N(5,¢q) increases as ¢ > 2 increases. So N(5,p) <
N(5,q) for 2 <p <q.
Case d. N({) = 2£ and ¢ = 5.

~ 625
In this case , the derivative of N(5,q) with respect to ¢ is

dN(t,g) 2 14 6 384

— _ = 1250¢% — 1750¢% + 750q — 384) > 0
dq 2 50 5 62sg - omg 0M ¢ +750g - 384) 2

when ¢ > 2. This proves that N(5,q) increases as ¢ > 2 increases. So N(5,p) <
N(5,q) for 2 <p <q.
Case e. N({) = 22 and ( = 5.

= 625
In this case , the derivative of N(5,q) with respect to ¢ is

d(N(¢,q)) 2 14 6 1008 1

4 - 1250¢° — 1750¢% + 750q — 1008) > 0
dq @ 5 N 5gt  625¢° 625q5( 1 TR )2

when ¢ > 2. This proves that N(5,q) increases as ¢ > 2 increases. So N(5,p) <
N(5,q) for 2 <p <gq.
The proof is thus complete. |
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