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Abstract. The concept of Yang-Baxter basis is useful to interpret Young’s constructions

for the symmetric group. We extend this concept first to any Weyl group and then to any

Coxeter group.

Yang’s original motivation for introducing the Yang-Baxter equation was the n-body

problem on a circle. Yang introduced certain operators in the group algebra of the sym-

metric group Sn which satisfy the Yang-Baxter equation (see [8]). Then Lascoux-Leclerc-

Thibon extended Yang’s operators to some elements in different Hecke algebras H of Sn,

and called them the Yang-Baxter basis of H (see [6]). Fomin-Kirillov noticed that there

exists a close connection between Schubert polynomials and the Yang-Baxter equation

(see [4]). Lascoux further showed that the coefficients in the expansion of Yang-Baxter

elements can be interpreted in terms of statistic on alternating-sign matrices or ice config-

urations, and the latter in turn give the Chern classes associated to a pair of flags of vector

bundles (see [7]). Owing to its importance in various fields, we shall extend the concept of

Yang-Baxter basis from the symmetric group to an arbitrary Coxeter group in the present

paper.

§1. Yang-Baxter basis for the symmetric group Sn.

1.1. Let (W, S) be a Coxeter system, so W is a Coxeter group with Coxeter generating

set S. The Bruhat-Chevalley order 6 on (W, S) is usually defined by taking subwords of

reduced decompositions. This amounts expanding, in the group algebra of W , expressions
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of type (1+s)(1+ t)(1+s)... (m = o(st) factors, where o(st) is the order of st for s, t ∈ S).

However, since (1+s)(1+ t)(1+s)... 6= (1+ t)(1+s)(1+ t)... (each side contains m factors)

in the case of m > 2, this definition is not satisfactory. We must put weights to make

it equal. For example, let (W, S) be the symmetric group S3 with S = {s1, s2}, si the

transposition of i, i + 1, Lascoux gave the following equation (see [7])

(1.1.1) (1 + s1)(1 + 2s2)(1 + s1) = (1 + s2)(1 + 2s1)(1 + s2).

1.2. The general rule to write weights for Sn is due to Yang (see [8]). Given any sequence

of spectral parameters x1, ..., xn, there exists a linear basis {Yw | w ∈ Sn}, the Yang-Baxter

basis, of C[x1, ..., xn][Sn], which is defined through the following recursions:

(1.2.1) Ywsi
= Yw(1 + (xw(i+1) − xw(i))si), `(wsi) > `(w),

where `(w) is the length function of the Coxeter system (W, S). The validity of such a

definition is ensured by the Yang-Baxter relations:

(1 + αsi)(1 + (α + β)si+1)(1 + βsi) =(1.2.2)

(1 + βsi+1)(1 + (α + β)si)(1 + αsi+1).

In [6], Lascoux-Leclerc-Thibon further extended the concept of Yang-Baxter bases to dif-

ferent Hecke algebras of type An.

1.3. It is interesting to note that the coefficients of the expansion of Yang-Baxter elements

in the basis of permutations have various interpretations in many fields, such as geometry,

representation theory and combinatorics (see [6, 7, 8] ).

1.4. Owing to its importance in various fields, it is desirable to extend the concept of

Yang-Baxter bases to the other Coxeter groups. In the present paper, we shall extend the

concept of Yang-Baxter basis first to any Weyl group in Section 2 (Theorem 2.5) and then

to any Coxeter group in Section 3 (Theorems 3.3 and 3.4). A Yang-Baxter basis will be

defined recurrently in the group algebra S(V )[W ] of a Coxeter group W over the symmetric

algebra S(V ) of V , where V is the euclidean space spanned by the root system of W . Note

that we actually give two different Yang-Baxter bases for a Weyl group corresponding to
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two different defined root systems. Although do not overlap, the results in Section 3 are

more important than those in Section 2 as the former covers a much general case. Finally

we make some comments on Yang-Baxter bases in Section 6.

1.5. The proofs of our results mentioned in 1.4 are reduced to the case of finite dihedral

groups, where the proof of Theorem 2.5 is more or less straightforward, while the proof of

Theorem 3.3 is considerably technical. Two steps in the proof of Theorem 3.3 are quite

tricky: One is to reduce the proof of the equation (3.3.1) to the proof of the equation in

Proposition 4.12 according to a certain tactical partition
⋃

∆(w, k)i for the index set of the

terms in (3.3.1) for any given element w of Dm, where k > 1, and i ranges over a certain

subset of ∆(w, k) (see 4.4 and 4.10). The other is to introduce some auxiliary functions f ,

g, f ′ and g′ in the proof of Proposition 4.12, which enable us to use the invariant theory

of the dihedral group Dm.

1.6. Among the others, we would like to point out two applications of Yang-Baxter bases.

One is in the description of Bruhat-Chevalley order 6 on a Coxeter system (W, S) (see

Proposition 6.4). The other is concerned with the action of (W, S) on its root system

Φ. Let Π = {γ1, ..., γn} be the simple root system of Φ with si = sγi
∈ S and let S(V )

be the symmetric algebra of the vector space V spanned by Π. Given y 6 w in W , let

w = sj1sj2 ...sjr
be a reduced expression of w. Then βi = sj1sj2 ...sji−1

(γji
), 1 6 i 6 r,

are all the positive roots transformed by w−1 into negative ones. For any integer t with

`(y) 6 t < `(w) and t ≡ `(y) ( mod 2), define ay,w,t =
∑

i1,i2,...,it
βi1βi2 ...βit

, where the

sum ranges over all the subsequences i1, i2, ..., it of 1, 2, ..., r with sji1
sji2

...sjit
= y. Then

Theorems 2.5 and 3.4 tells us a new result that the element ay,w,t ∈ S(V ) only depends

on y, w ∈ W and t ∈ N but not on the choice of a reduced expression of w, in particular,

this is the case when t = `(y).

Besides S(V )[W ], the Yang-Baxter bases can also be defined in a nil-Hecke algebra H

of a Coxeter group W , provided that a ring homomorphism is given from S(V ) to the

coefficient ring of H (see 6.6).

Notations: N (resp., Z, resp., R, resp., C), the set of nonnegative integers (resp., integers,

resp., real numbers, resp., complex numbers).

§2. Yang-Baxter bases for the Weyl groups.

2.1. Let x1, ..., xn be an orthonormal basis in a euclidean space V . Set γij = xi − xj and

γk = γk,k+1 for any 1 6 i 6= j 6 n and 1 6 k < n. Then Φ = {γij | 1 6 i 6= j 6 n} forms
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the root system of type An−1. The element w ∈ Sn acts on γij ∈ Φ via w(γij) = γw(i),w(j).

Then (1.2.1) and (1.2.2) can be rewritten as follows.

(2.1.1) Ywsi
= Yw(1 − w(γi)si), `(wsi) > `(w).

(1 + γisi)(1 + (γi + γi+1)si+1)(1 + γi+1si)(2.1.2)

= (1 + γi+1si+1)(1 + (γi + γi+1)si)(1 + γisi+1).

2.2. Let R[α, β] be the polynomial ring in two variables α, β with real coefficients. Let

Dm = 〈s, t | s2 = t2 = (st)m = 1〉 be the dihedral group of order 2m. With the above

point of view, we shall extend the concept of Yang-Baxter basis to any Weyl group.

Lemma. Let R[α, β][Dm] be the group algebra of Dm over R[α, β].

(1) If m = 2 then (1 − αs)(1 − βt) = (1 − βt)(1 − αs).

(2) If m = 3 then (1 − αs)(1 − (α + β)t)(1 − βs) = (1 − βt)(1 − (α + β)s)(1 − αt).

(3) If m = 4, then

(1 − αs)(1 − (2α + β)t)(1 − (α + β)s)(1 − βt)

= (1 − βt)(1 − (α + β)s)(1 − (2α + β)t)(1 − αs).

(2) If m = 6, then

(1−αs)(1−(3α+β)t)(1−(2α+β)s)(1−(3α+2β)t)(1−(α+β)s)(1−βt)

=(1−βt)(1−(α+β)s)(1−(3α+2β)t)(1−(2α+β)s)(1−(3α+β)t)(1−αs).

Proof. It is straightforward. �

2.3. It is known that Φ(A1 × A1) = {±α,±β}, Φ(A2) = {±α,±(α + β),±β}, Φ(B2) =

{±α,±β,±(α + β),±(2α + β)} and Φ(G2) = {±α,±β,±(α + β),±(2α + β),±(3α +

β),±(3α + 2β)} form the root systems of types A1 × A1, A2, B2, G2, respectively. The
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action of D4 on Φ(B2) is given by s(α) = −α, s(β) = 2α+β, t(β) = −β and t(α) = α+β,

where s, t are regarded as linear transformations on the space V = Rα ⊕ Rβ. We have

(α, s(β), st(α), sts(β)) = (α, 2α + β, α + β, β) and (β, t(α), ts(β), tst(α)) = (β, α + β, 2α +

β, α). On the other hand, define a linear action of D6 on V via s(α) = −α, s(β) = 3α+ β,

t(β) = −β and t(α) = α + β. Then we have (α, s(β), st(α), sts(β), stst(α), ststs(β)) =

(α, 3α+ β, 2α + β, 3α+ 2β, α + β, β) and (β, t(α), ts(β), tst(α), tsts(β), tstst(α)) = (β, α +

β, 3α + 2β, 2α + β, 3α + β, α). The actions of D2, resp., D3 on Φ(A1 × A1), resp., Φ(A2)

can be described similarly.

2.4. Let (W, S) be the Coxeter system of an irreducible Weyl group. Let Φ be the

crystallographic root system of W . Let Π = {γ1, ..., γn} be the simple root system in Φ

with S = {s1, ..., sn}, where si = sγi
. Let V be the euclidean space spanned by Π and let

S(V ) be the symmetric algebra of V over R.

Then the following result follows immediately from Lemma 2.2 and the observation in

2.3.

Theorem 2.5. Let (W, S) be a Weyl group with S = {s1, ..., sn}, Π = {γ1, ..., γn} and

S(V ) defined as above. Then the Yang-Baxter basis {Yw | w ∈ W} can be defined in the

group algebra S(V )[W ] of W over S(V ) via the recursions:

(2.5.1) Ywsi
= Yw(1 − w(γi)si), if `(wsi) > `(w).

Remark 2.6. Here we must clarify that the Yang-Baxter bases given here do not involve

the R-matrix defined by Cherednik, though the equations in Lemma 2.2 look somewhat

like the ones in [2, Definition 2.1]. So even in the case where W is of type B, C or D, the

Yang-Baxter basis given here has no essential relation with the ones given by Cherednik in

[1]. Also, note the difference between the group algebra S(V )[W ] and any corresponding

(degenerate) affine Hecke algebra: elements of S(V ) commute with elements of W in

S(V )[W ], such a relation never holds in any (degenerate) affine Hecke algebra. So the

Yang-Baxter bases given here can not be extended to a corresponding affine Hecke algebra

in a simple way. However, they can be extended to a nil-Hecke algebra H of W , provided

that a ring homomorphism is given from S(V ) to the coefficient ring of H (see 6.6).

§3. Yang-Baxter basis for any Coxeter group.
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In the present section, we want to extend the concept of Yang-Baxter basis further to

any Coxeter group. Note that the Yang-Baxter bases given in this section are not a simple

generalization of the ones in Section 2: the root systems involved here are different from

those in Section 2 in the case where W is a Weyl group.

3.1. Let (W, S) be a Coxeter system with S = {s1, s2, ..., sn}. Via the Tits representation

ρ : W −→ GL(V ) of W , we can define a root system Φ(W ) in V for (W, S) in a standard

way. Φ(W ) consists of certain vectors of unit length. Φ(W ) has a simple root system

Π = {γ1, γ2, ..., γn} such that ρ(si) is the reflection in V with respect to the vector γi

for 1 6 i 6 n (see [5, §5.4]). In particular, when (W, S) is the dihedral group (Dm, S)

with S = {s, t} (hence s2 = t2 = (st)m = 1), Φ(Dm) = {αk | 0 6 k < 2m}, where

αk =
(

cos (k−1)π
m

)

x +
(

sin (k−1)π
m

)

y for k ∈ Z, and x, y are an orthonormal basis in the

euclidean space V = R2. The relation αk+m = −αk for k ∈ Z is useful in the subsequent

discussion. s, t are reflections in V with respect to the roots α = α1, β = αm respectively.

We have

(3.1.1) s(αj) = αm+2−j and t(αj) = αm−j for any j ∈ Z

This implies that

(α, s(β), st(α), sts(β), ...) = (α1, α2, α3, α4, ..., αm)(3.1.2)

(β, t(α), ts(β), tst(α), ...) = (αm, αm−1, αm−2, αm−3, ..., α1).(3.1.3)

where both sides of (3.1.2) (resp., (3.1.3)) contains m terms.

3.2. Let S(V ) be the symmetric algebra of V . Since both {x, y} and {α, β} are R-bases

of V , S(V ) can be identified with either R[x, y] or R[α, β], both are polynomial ring in two

variables over R.

It is well known that the degrees of the group Dm are 2, m. So the Dm invariant

subalgebra S(V )Dm of S(V ) is generated by two homogenous polynomials P = x2 +y2 and

Q =
∑bm

2
c

k=0 (−1)k
(

m
2k

)

x2kym−2k (see [5, §3.7]), where bcc is the largest integer not greater

than c ∈ R. Moreover, τ(P ) = P for any orthogonal transformation τ of V . For any h ∈ N,

let S(V )h be the hth homogenous component of S(V ) and let S(V )Dm

h = S(V )h∩S(V )Dm .
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Then we see that any f ∈ S(V )Dm

k with k < m must be an integer power of P up to a

constant factor. We say that f ∈ S(V ) is a Dm skew invariant if w(f) = (−1)`(w)f for

all w ∈ Dm, where `(w) is the length function on elements w ∈ W . It is well known that

J =
∏m

j=1 αj is a Dm skew invariant and that any Dm skew invariant of S(V ) must be a

multiple of J .

For any r ∈ {s, t}, denote by r the element in {s, t} with r 6= r.

Theorem 3.3. Let (Dm, S) and Φ(Dm) be as above. We have the following equation in

the group algebra S(V )[Dm] of Dm over S(V ):

(1 − α1s)(1 − α2t)(1 − α3s)...(1− αmrst)(3.3.1)

= (1 − αmt)(1 − αm−1s)(1 − αm−2t)...(1 − α1rst),

where we set rst = s if m is odd and rst = t if m is even.

The proof of the theorem will be given in Sections 4 and 5.

By Theorem 3.3 and equations (3.1.2) and (3.1.3), we get

Theorem 3.4. Let (W, S) be a Coxeter system with Φ(W ) and S(V ) as in 3.1–3.2. Then

the Yang-Baxter basis {Yw | w ∈ W} can be defined in the group algebra S(V )[W ] of W

over S(V ) via the recursions:

(3.4.1) Ywsi
= Yw(1 − w(γi)si), if `(wsi) > `(w).

Let F (V ) be the fraction field of S(V ). Then the set {Yw | w ∈ W} forms an F (V )-

basis of F (V )[W ]. This is because, by (3.4.1), we have, for any w ∈ W , an expression

Yw =
∑

y6w cyy for some cy ∈ S(V ) with cw 6= 0.

§4. A reduction for the proof of Theorem 3.3.

In the present section, we reduce the proof of Theorem 3.3 to the proof of Proposition

4.12. This is achieved by a detailed comparison for the corresponding terms of both sides

of (3.3.1). The key steps for the reduction consists of Lemma 4.7, Proposition 4.9 and the

observation in 4.10 (the last is the most tricky one).
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4.1. Denote by FL (resp., FR) the expression on the LHS (resp., RHS) of (3.3.1). Write

FL =
∑

w∈Dm
cL(w)w and FR =

∑

w∈Dm
cR(w)w with cL(w), cR(w) ∈ S(V ). Further,

write cL(w) =
∑

k cL(w, k) and cR(w) =
∑

k cR(w, k) with cL(w, k), cR(w, k) ∈ S(V )k.

Clearly, the coefficient of the longest element w0 of Dm on each side of (3.3.1) is the

same. It is also clear that cL(w, k) 6= 0 (resp., cR(w, k) 6= 0) only if k ≡ `(w) ( mod 2). So

to show Theorem 3.3, we need only show that for any w ∈ Dm with w 6= w0, the equation

cL(w, k) = cR(w, k) holds for any k with `(w) 6 k < m and k ≡ `(w) ( mod 2).

We assume w 6= w0 throughout the rest of the paper unless otherwise specified.

4.2. We have

(4.2.1) αk =
sin kπ

m

sin π
m

α +
sin (k−1)π

m

sin π
m

β

for any k ∈ Z.

Let θst (resp., θαβ) be an R-algebra homomorphism of R[α, β][Dm] such that for any

g ∈ R[α, β][Dm], θst(g) (resp., θαβ(g)) is obtained from g by transposing s and t (resp., by

transposing α and β). Clearly, both θst and θαβ are involutive. We have θstθαβ = θαβθst.

Let φ = θstθαβ.

4.3. For any r ∈ {s, t}, denote by r the element in {s, t} with r 6= r. Let k ∈ {1, 2, ..., m}

and suppose that r ∈ {s, t}. Then the factor 1 − αkr occurring in the expression of FL is

the kth factor of FL (counting from the left). In that case, we see that

(i) 1 − αm+1−kr is the kth factor of FR (also counting from left).

(ii) 1 − αkr (resp., 1 − αkr) is the (m + 1 − k)th factor of FR if m is even (resp., odd).

(iii) 1 − αm+1−kr (resp., 1 − αm+1−kr) is the (m + 1 − k)th factor of FL if m is odd

(resp., even).

4.4. For w ∈ Dm and k ∈ N with k ≡ `(w) ( mod 2), let ∆L(w, k) (resp., ∆R(w, k)) be

the set of all the subsequences i = (i1, i2, ..., ik) of 1, 2, ..., m such that if 1 − αih
rh is the

ihth factors of FL (resp., FR) for 1 6 h 6 k then r1r2...rk = w. Then i ∈ ∆L(w, k) (resp.,

i ∈ ∆R(w, k)) contributes to cL(w, k) (resp., cR(w, k)) the value aL(i) = (−1)`(w)
∏k

j=1 αij

(resp., aR(i) = (−1)`(w)
∏k

j=1 αm+1−ij
).

4.5. Assume m + `(w) even. Then the following conditions are equivalent:

(i) i = (i1, i2, ..., ik) ∈ ∆L(w, k);

(ii) m + 1 − i = (m + 1 − ik, m + 1 − ik−1, ..., m + 1 − i1) ∈ ∆L(w, k);
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(iii) i = (i1, i2, ..., ik) ∈ ∆R(θst(w), k);

(iv) m + 1 − i = (m + 1 − ik, m + 1 − ik−1, ..., m + 1 − i1) ∈ ∆R(θst(w), k).

When the equivalent conditions hold, we have θαβ(aL(i)) = aL(m+1−i) and θαβ(aR(i)) =

aR(m + 1 − i).

4.6. Now assume m + `(w) odd. Then the following conditions are equivalent:

(i) i = (i1, i2, ..., ik) ∈ ∆L(w, k);

(ii) m + 1 − i = (m + 1 − ik, m + 1 − ik−1, ..., m + 1 − i1) ∈ ∆L(θst(w), k);

(iii) i = (i1, i2, ..., ik) ∈ ∆R(θst(w), k);

(iv) m + 1 − i = (m + 1 − ik, m + 1 − ik−1, ..., m + 1 − i1) ∈ ∆R(w, k).

When the equivalent conditions hold, we have

aL(i) = aR(m + 1 − i) = (−1)`(w)
k

∏

j=1

αij
,

aL(m + 1 − i) = aR(i) = (−1)`(w)
k

∏

j=1

αm+1−ij
.

From these facts, we get immediately the following

Lemma 4.7. (a) cL(w, k) = cR(w, k) when m + `(w) is odd.

(b) θαβ(cL(w, k)) = cL(w, k) and θαβ(cR(w, k)) = cR(w, k) when m + `(w) is even.

Example 4.8. Let m = 6. Then

FL = (1 − α1s)(1 − α2t)(1 − α3s)(1 − α4t)(1 − α5s)(1 − α6t),

FR = (1 − α6t)(1 − α5s)(1 − α4t)(1 − α3s)(1 − α2t)(1 − α1s).

Then

∆L(sts, 3) = {(1, 2, 3), (1, 2, 5), (1, 4, 5), (3, 4, 5)}

∆R(sts, 3) = {(2, 3, 4), (2, 3, 6), (2, 5, 6), (4, 5, 6)}.

(1, 2, 3), (1, 2, 5), (1, 4, 5), (3, 4, 5) (resp., (4, 5, 6), (2, 5, 6), (2, 3, 6), (2, 3, 4)) contribute the

values (−1)3α1α2α3, (−1)3α1α2α5, (−1)3α1α4α5, (−1)3α3α4α5, respectively to cL(sts, 3)

(resp., cR(sts, 3)). On the other hand,

∆L(st, 4) ={(1, 2, 3, 5), (1, 2, 4, 6), (1, 3, 5, 6), (2, 4, 5, 6)},

∆R(st, 4) ={(2, 3, 4, 6), (1, 3, 4, 5)}.
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We have θαβ(aL((1, 2, 3, 5))) = aL((2, 4, 5, 6)), θαβ(aL((1, 2, 4, 6))) = aL((1, 3, 5, 6)) and

θαβ(aR((1, 3, 4, 5))) = aR((2, 3, 4, 6)). So

θαβ(cL(st, 4)) = cL(st, 4) and θαβ(cR(st, 4)) = cR(st, 4).

By Lemma 4.7, to verify Theorem 3.3, it is enough to show the following

Proposition 4.9. cL(w, k)) = cR(w, k) for any w ∈ Dm and k ∈ N with m + `(w) even.

4.10. The proof of Proposition 4.9 is divided into two steps. We proceed the first step in

the present subsection, where we reduce the proof of Proposition 4.9 to the proof of a more

general result, i.e., Proposition 4.12. Then the second step is to prove Proposition 4.11,

which will be done in Section 5. Assume m+`(w) even. By 4.5, we see that i = (i1, i2, ..., ik)

is in ∆L(w, k) if and only if m + 1 − i = (m + 1 − ik, m + 1 − ik−1, ..., m + 1 − i1) is in

∆R(θst(w), k). For i = (i1, i2, ..., ik) ∈ ∆L(w, k), we have aL(i) = (−1)`(w)
∏k

j=1 αij
. If

ik < m then m − i = (m − ik, m − ik−1, ..., m − i1) is in ∆R(w, k) and aR(m − i) =

(−1)`(w)
∏k

j=1 αij+1. If ik = m then 1+ i = (1, i1 +1, i2 +1, ..., ik−1 +1) is in ∆L(w, k) and

aL(1 + i) = (−1)`(w)
(

∏k−1
j=1 αij+1

)

α1 = (−1)`(w)+1
∏k

j=1 αij+1 by the relation αm+1 =

−α1. Similar result holds when interchanging the role of “ L ” and “ R ”.

Let ∆(w, k) = ∆L(w, k) ∪ ∆R(w, k). By the assumption that m + `(w) is even, we see

that this is a disjoint union and that a(i) 6= a(j) for any i 6= j in ∆(w, k) (see 4.5 and note

that S(V ) is a UFD as a polynomial ring), where a(i) stands for aL(i) or aR(i) according

to i being in ∆L(w, k) or ∆R(w, k). Let us take some elements from the set ∆(w, k) in

the following way: Start with taking an arbitrary element i = (i1, i2, ..., ik) in ∆(w, k).

Suppose that we have taken l elements j(1) = i, j(2), ..., j(l) from ∆(w, k) (repetition is

allowed) for some 1 6 l < m. Assume j(l) = (j1, j2, ..., jk) in ∆L(w, k) (resp. ∆R(w, k)).

Then the (l + 1)th element of ∆(w, k) to be taken is m − i in ∆R(w, k) (resp. ∆L(w, k))

if jk < m, and is 1 + j in ∆L(w, k) (resp. ∆R(w, k)) if jk = m. Let ∆i(w, k) be the

set of all the elements of ∆(w, k) being taken after m steps. Then all the elements of

∆i(w, k) must be taken with the same number of times (say h times) in this m steps. To

see this, we need only note that if i′ is the (m + 1)th element being taken from ∆(w, k),

then i′ must be i itself. For, we may assume i ∈ ∆L(w, k) without loss of generality.

Then aL(i′) = (−1)`(w)+m
∏k

h=1 αih+m = (−1)`(w)
∏k

h=1 αih
= aL(i) by the fact that

m ≡ `(w) ≡ k ( mod 2). Moreover, ∆(w, k) should be a disjoint union of some ∆i(w, k)’s.
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By the above observation, we see that the contribution of the elements in ∆i(w, k) to

cL(w, k) − cR(w, k) is m
h

∑m−1
h=0 (−1)`(w)+h

∏k
j=1 αh+ij

.

Example 4.11. To better understand the above process, let us consider the case of

m = 6. Take i = (i1, i2) = (1, 4) in ∆L(st, 2) to start with. Then the 6 elements so taken

from the set ∆(st, 2) by our process are (1, 4), (2, 5), (3, 6), (1, 4), (2, 5), (3, 6) in turn, each

occurs twice here. So ∆i(st, 2) = {(1, 4), (2, 5), (3, 6)}. The contribution of ∆i(st, 2) to

cL(st, 2)− cR(st, 2) is 1
2

∑5
h=0(−1)hαh+1αh+4.

So Proposition 4.9 is a consequence of the following more general result.

Proposition 4.12. Let k < m be in N with m + k even. Then for any 1 6 i1 6 i2 6 ... 6

ik 6 m, we have
∑m−1

h=0 (−1)h
∏k

j=1 αh+ij
= 0.

Example 4.13. Let m = 6. Then ∆L(st, 4) = {(1, 2, 3, 5), (1, 2, 4, 6), (1, 3, 5, 6), (2, 4, 5, 6)}

and ∆R(st, 4) = {(2, 3, 4, 6), (1, 3, 4, 5)}. We have cL(st, 4) = α1α2α3α5 + α1α2α4α6 +

α1α3α5α6 + α2α4α5α6 and cR(st, 4) = α1α3α4α5 + α2α3α4α6. Hence

cL(st, 4) − cR(st, 4) =

5
∑

h=0

(−1)hα1+hα2+hα3+hα5+h,

where we use the relation αj+6 = −αj for any j ∈ Z. By substitution of (4.2.1), we can

check directly that cL(st, 4)− cR(st, 4) = 0.

§5. Proof of Theorem 3.3.

In Section 4, we reduced the proof of Theorem 3.3 to that of Proposition 4.12. In the

present section, we shall prove Theorem 3.3 by showing Proposition 4.12. A tricky step in

doing this is to introduce four auxiliary functions f, g, f ′, g′, which enables us to use the

invariant theory of the group Dm in our proof.

5.1. Fix a sequence 1 6 i1 6 i2 6 ... 6 ik 6 m with k < m. Denote f =
∑m−1

h=0 (−1)h
∏k

j=1 αh+ij
,

g =
∑m−1

h=0 (−1)h
∏k

j=1 αh−ij
, f ′ =

∑m−1
h=0

∏k
j=1 αh+ij

and g′ =
∑m−1

h=0

∏k
j=1 αh−ij

.

To show Proposition 4.12, we have to show f = 0 under the assumption of m + k ≡ 0 (

mod 2).

Recall the action of s, t on αj (j ∈ Z): s(αj) = αm+2−j and t(αj) = αm−j (see 3.1.1).

Consider the action of s, t on the elements f ± g.
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s(f±g)=

m−1
∑

h=0

(−1)h





k
∏

j=1

αm+2−h−ij
±

k
∏

j=1

αm+2−h+ij





=

m−1
∑

h=0

(−1)h+k





k
∏

j=1

α2−h−ij
±

k
∏

j=1

α2−h+ij





=
m−1
∑

p=0

(−1)m−1−p+k





k
∏

j=1

α3+p−m−ij
±

k
∏

j=1

α3+p−m+ij



 (substituting p=m−1−h)

=

m−1
∑

p=0

(−1)p+1+k





k
∏

j=1

α3+p−ij
±

k
∏

j=1

α3+p+ij



 (since m + k is even)

=
m+2
∑

q=3

(−1)q+k





k
∏

j=1

αq−ij
±

k
∏

j=1

αq+ij



 (substituting q = p + 3)

=

m−1
∑

q=3

(−1)q+k





k
∏

j=1

αq−ij
±

k
∏

j=1

αq+ij



+(−1)m+2+k





k
∏

j=1

αm+2−ij
±

k
∏

j=1

αm+2+ij





+(−1)m+1+k





k
∏

j=1

αm+1−ij
±

k
∏

j=1

αm+1+ij



+(−1)m+k





k
∏

j=1

αm−ij
±

k
∏

j=1

αm+ij





=

m−1
∑

q=0

(−1)q+k





k
∏

j=1

αq−ij
±

k
∏

j=1

αq+ij



 = (−1)k(g ± f), (5.1.1)

In the above calculation, we use the fact that αm+l = −αl for any l ∈ Z. Also, we have

t(f±g)=

m−1
∑

h=0

(−1)h





k
∏

j=1

αm−h−ij
±

k
∏

j=1

αm−h+ij





=
m−1
∑

h=0

(−1)h+k





k
∏

j=1

α−h−ij
±

k
∏

j=1

α−h+ij





=

m−1
∑

p=0

(−1)m−1−p+k





k
∏

j=1

αp−m+1−ij
±

k
∏

j=1

αp−m+1+ij



 (substituting p=m−1−h)

=
m−1
∑

p=0

(−1)p+k+1





k
∏

j=1

αp+1−ij
±

k
∏

j=1

αp+1+ij



 (since m + k is even)
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=

m
∑

q=1

(−1)q+k





k
∏

j=1

αq−ij
±

k
∏

j=1

αq+ij



 (substituting q=p+1)

=
m−1
∑

q=1

(−1)q+k





k
∏

j=1

αq−ij
±

k
∏

j=1

αq+ij



+(−1)m+k





k
∏

j=1

αm−ij
±

k
∏

j=1

αm+ij





=(−1)k(g ± f). (5.1.2)

The last equality holds since

(−1)m+k





k
∏

j=1

αm−ij
±

k
∏

j=1

αm+ij



 = (−1)k





k
∏

j=1

α−ij
±

k
∏

j=1

αij



 .

Next we shall consider two cases m≡k≡1 and m≡k≡0 ( mod 2) separately.

Lemma 5.2. Let k < m be two odd numbers in N. Then

(1) f + g is a Dm skew invariant and hence f + g = 0.

(2) f − g is a Dm invariant and hence f = 0.

Proof. By (5.1.1)–(5.1.2) and the assumption of k, m both odd, we have s(f+g) = −(f+g)

and t(f + g) = −(f + g). So f + g is a Dm skew invariant. By the invariant theory of Dm,

we have either f + g = 0 or J |(f + g) (see 3.2). Since f + g ∈ S(V )k and k < m, it forces

f + g = 0 and hence (1) is proved. For (2), by (5.1.1)–(5.1.2) and the assumption of k, m

both odd, we get s(f − g) = f − g and t(f − g) = f − g. So f − g ∈ S(V )Dm . We know

that the algebra S(V )Dm is generated by P and Q with deg P = 2 and deg Q = m (see

3.2). Since f − g ∈ S(V )k and k < m, f − g must be either 0 or an integer power of P up

to a constant factor. But the latter case is impossible since k is odd. So f − g = 0. This,

together with the equation f + g = 0, forces f = 0, as required. �

Lemma 5.3. Let k < m be two even numbers in N. Then

(1) Both f − g and f ′ − g′ are Dm skew invariants and hence f = g, f ′ = g′.

(2) Both f and f ′ are Dm invariants and hence f = 0.

Proof. The assertions that f − g is a Dm skew invariant and that f + g is in S(V )Dm

follow by (5.1.1)–(5.1.2) and the assumption of k, m both even. Then the assertion of

f = g follows by the relation J |(f − g) in the invariant theory of Dm and by the facts that

J ∈ S(V )m, f −g ∈ S(V )k and k < m. Since f +g ∈ S(V )Dm , we have f ∈ S(V )Dm by the
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fact f = g. We can show that f ′− g′ is a Dm skew invariant and that f ′ + g′, f ′ ∈ S(V )Dm

in the same way as that for f − g, f + g and f . Let f11 =
∑

m
2
−1

h=0

∏k
j=1 α2h+ij

and

f12 =
∑

m
2
−1

h=0

∏k
j=1 α2h+1+ij

. Then f = f11−f12 and f ′ = f11+f12. So f11, f12 ∈ S(V )Dm

k .

Since k < m, f11 and f12 must be the same integer power of P up to a constant factor.

Let σ be the anti-clockwise rotation of angle π
m

around the origin in the space V . Then σ

acts on S(V ), fixing the polynomial P and sending f11 to f12. This implies that f11 = f12

and hence f = f11 − f12 = 0. �

Now Proposition 4.12 is a consequence of Lemmas 5.2 and 5.3. Hence Theorem 3.3

follows.

§6. Some comments.

6.1. Let s, t ∈ S be with o(st) = m. By replacing all the numbers 1 by an indeterminate

X in equation (3.3.1), we get

(X − α1s)(X − α2t)(X − α3s)...(X − αmrst)(6.1.1)

= (X − αmt)(X − αm−1s)(X − αm−2t)...(X − α1rst)

where rst is defined as in (3.3.1). The equation remains valid by the proof of Theorem 3.3.

Then by substituting X = −1 into (6.1.1), we get

(1 + α1s)(1 + α2t)(1 + α3s)...(1 + αmrst)(6.1.2)

= (1 + αmt)(1 + αm−1s)(1 + αm−2t)...(1 + α1rst)

6.2. Let zj , j ∈ Z, be a set of parameters satisfying the relation zh+m = −zh for any

h ∈ Z. We introduce the expression F ′
L (resp., F ′

R) which is obtained from the LHS (resp.,

RHS) of (6.1.1) by replacing αj by zj for 1 6 j 6 m. From the proof of Theorem 3.3,

we see that the equation F ′
L = F ′

R holds if the following equation on the parameters zj

(j ∈ Z) holds for any subsequence i1, i2, ..., ik of 1, 2, ..., m with m ≡ k ( mod 2):

(6.2.1)

m−1
∑

h=0

(−1)h





k
∏

j=1

zh+ij



 = 0.

For example, we can take zj = ζj−1
m for j ∈ Z, where ζm = e

iπ
m is the primitive 2mth

root of unity in C. For, there exists a unique algebra homomorphism φ : S(V ) −→ C
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determined by φ(αj) = ζj−1
m for j ∈ Z. This implies that the equation

(X − s)(X − ζmt)(X − ζ2
ms)...(X − ζm−1

m rst)(6.2.2)

= (X − ζm−1
m t)(X − ζm−2

m s)(X − ζm−3
m t)...(X − rst)

holds.

6.3. Let Yw (w ∈ W ) be a Yang-Baxter base element defined either by (2.5.1) when W

is a Weyl group or by (3.4.1) when W is a Coxeter group. Let Φ be the root system of

W with Π = {γ1, ..., γn} a choice of simple root system both of which are compatible with

the definition of Yw. Write Yw =
∑

y∈W ay,wy with ay,w ∈ S(V ). Then the following

result shows that the Yang-Baxter base elements play an important role in the study of

Bruhat-Chevalley order on (W, S).

Proposition 6.4. In the above setup, we have ay,w 6= 0 if and only if y 6 w.

Proof. The implication “ =⇒ ”is obvious by the definition of Yang-Baxter basis for W .

Now we show the implication “ ⇐= ”. Suppose y 6 w in W . Let w = s1s2...sr be a

reduced expression of w with si ∈ S. We have an expression of Yw as follows.

(6.4.1) Yw = (1 − β1s1)(1 − β2s2)...(1− βrsr),

where β1, ..., βr are all the positive roots of Φ sent by w−1 to the negative ones (see (2.5.1)

and (3.4.1)). Then

(6.4.2) ay,w = (−1)`(y)
∑

i1,i2,...,it

βi1βi2 ...βit
,

where i1, i2, ..., it ranges over all the subsequences of 1, 2, ..., r with si1si2 ...sit
= y (such a

subsequence always exists by the condition y 6 w). Clearly, each βi1βi2 ...βit
is a sum of

the terms γk1

1 γk2

2 ...γkn
n (some ki ∈ N with

∑

i ki = t) with nonnegative coefficients (at least

one term with strictly positive coefficient). Since γ1, ..., γn are algebraically independent

over R, there is no cancelation among the terms in the expansion of ay,w. Hence ay,w 6= 0

for any y ∈ W with y 6 w. �

Since the simple roots γ1, ..., γn are algebraically independent elements of S(V ) over R,

we can define the Yang-Baxter basis {Yw | w ∈ W} by specializing γ1, ..., γn to particular
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values, say complex numbers. To ensure the condition ay,w 6= 0 for any y 6 w in W ,

we may take all these values in any such a subset E of C \ {0} that E is closed under

both addition and multiplication, e.g., take E the set of all positive real numbers and take

γi = 1 for any i. Then the root βj in (6.4.1) becomes the height of βj for any j.

6.5. Note that the positive roots β1, ..., βr in (6.4.1) are arranged in a reflection order of

Φ (in the sense of Dyer, see [3]). Given y 6 w in W , we observe a remarkable consequence

of Theorem 3.3 and its proof. The expression (6.4.2) for the coefficient ay,w of y in Yw

(and hence any of its homogeneous parts) depends only on the elements y, w, but not on

the choice of a reduced expression of w. It would be interesting to interpret ay,w purely

in terms of the action of w, y on Φ without involving any particular reduced expression of

w. Such an interpretation would provide a more intrinsic proof for Theorems 2.5 and 3.4.

6.6. For any Coxeter system (W, S), the Yang-Baxter bases can also be defined in the

nil-Hecke algebra H of W , provided that a ring homomorphism η is given from S(V ) to

the coefficient ring A of H. In this case, let {Tw | w ∈ W} be the standard A-basis of

H satisfying the relations TxTy = Txy for any x, y ∈ W with `(xy) = `(x) + `(y) and

T 2
s = 0 for any s ∈ S. Then by the observation in 6.5, we see that the Yang-Baxter basis

{Yw | w ∈ W} of H can be defined recurrently by the formula (3.4.1) with Tsi
, η(w(γi))

in the place of si, w(γi) respectively. Then the coefficient of Ty in Yw is η(ay,w,k) for any

y 6 w in W with k = `(y), where ay,w,k is obtained from the element ay,w in (6.4.2) by

fixing t = k.
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