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Abstract

Let n be a non-negative integer. A graph G is said to be n-matchable
if the subgraph G — § has a perfect matching for any subset S of V(G)
with |S| = n. In this paper, we obtain sufficient conditions for different
classes of graphs to be n-matchable. Since 2k-matchable graphs must be
k-extendable, we have generalized the results about k-extendable graphs.
All results in this paper are sharp.

1 Introduction

Let G be a connected graph with vertex set V(G) and edge set E(G). (Loops and

parallel edges are forbidden in this paper.)

For S C V(G) the induced subgraph of G by S is denoted by G[S]. For conve-
nience, we use G— S for the subgraph induced by V' (G)—S. Denote the number of odd
components and components of a graph G by o(G) and w(G), respectively. For any
vertex z of G, the degree of r is denoted by dg(z). We define N(v) = {u|u € V(G)
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and wv € E(G)} and N(S) = {J,cg N(v). Let H be a subgraph of G, we use the nota-
tion Ng(v) = N(v)NS, Ny(v) = N(v)NV(H), ds(v) = |Ns(v)| and dg(v) = | Ng(v)).
Let G and H be two graphs. We denote by kH k disjoint copies of H and G + H
the join of G and H with each vertex of G joining to each vertex of H.

A matching in G is a set of edges so that no two of them are adjacent and a perfect
matching is a matching which covers every vertex of G. A graph G is k-extendable
if every matching of size k can be extended to a perfect matching. The concept of
k-extendable graphs was first introduced by Plummer [9] and since then there has
been extensive research done on this topic (e.g., {4], [5] - [12]).

Next, we present the main concept of this paper. Let n be a non-negative integer.
A graph G is said to be n-matchable where 0 < n < |V(G)|—2 if the subgraph G— S
has a perfect matching for any subset S of V(G) with |S| = n. The term of n-
matchable graphs is first used by Lou in [7] and is also refereed as n-factor-critical
graphs by Favaron [2, 3] and Yu [12]. This concept is a generalization of notions
of factor-critical graphs and bicritical graphs (i.e., cases of n = 1 and n = 2} in
[8]. A characterization of n-matchable graphs is given in [12]. The properties of
n-matchable graphs and its relationships with other graph parameters (e.g., degree
sum, toughness, binding number, connectivity, etc.) have been discussed in [3], [5]
and [7]. It is interesting to notice the fact that if a graph G is 2k-matchable then
it must be k-extendable. Furthermore, if a graph G is 2k-matchable, then it is
still k-extendable by adding any number of edges to it. Thinking of the fact that
adding an edge to a k-extendable graph may make it not even l-extendable (for
instance, consider k-extendable bipartite graphs}, in this sense 2k-matchab111ty isa
much stronger concept than k-extendability.

In this paper we consider n-matchability of various graphs (such as, claw-free
graphs, power graphs, planar graphs, etc.) and obtain sufficient conditions of such
graphs to be n-matchable. Therefore we generalize several sufficient conditions of
k-extendable graphs to that of 2k-matchable graphs.

2 Sufficient Conditions for n-Matchable Graphs

We start this section with a few lemmas. The first is a characterization of n-
matchable graphs.

Lemma 2.1. ([12])Let G be a graph of order p and n an integer such that 0 <
n <p—2 and n = p(mod 2). Then G is n-matchable if and only if for each subset
S C V(G) with |S| > n, then o(G — S) < |S| —n.

The next result shows a relationship between 2n-matchable graphs and n-extendable
graphs.

Lemma 2.2. ([7))A graph G of even order is 2n-matchable if and only if
(a) G is n-extendable; and
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(b) for any edge set D C E(G), GU D is n-extendable.

Applying Euler’s formula to planar graphs, we can obtain the following classical
result.

Lemma 2.3. If G is a planar triangle-free graph, then
|E(G)| < 2|V(G)| — 4

With the preparation above, we are ready to prove a sufficient condition for pla-
nar graphs to be n-matchable.

Theorem 2.1. Let G be a 5-connected planar graph of order p. Then G is (4 — ¢)-
matchable, where ¢ = 0 or 1 and € = p(mod 2).

Proof. Suppose that G is not (4 — €)-matchable. By Lemma 2.1, since G is 5-
connected, there exists a subset S C V(G) with |S| > 5 > 4 — ¢ such that for some
k>1

o(G—8) =S| —(4—¢) + 2k > 2 )

We choose S to be as small as possible subject to (1). And let Cy,C,,...,C; be
the odd components of G — S, where t = |S| — (4 —¢) + 2k.

We claim that, for each z of S, z is adjacent to at least three of Cy , Cy, ..., C;.
Otherwise, there is a vertex z in S which is adjacent to at most two of C; , Cs, ...,
C;. Let ' = S — {z}. Then o(G — 5') = |S'| — (4 — €) + 2q for some ¢ > k and
|S| > |S’| = 4 — ¢, which contradicts to the choice of S or the connectedness of G.

Since G is 5-connected, for each component C of G — § C is adjacent to at least
five vertices in S. Now we obtain a bipartite graph H with bipartition (S,Y) by
deleting all edges in G[S] and contracting each component of G — S to a vertex and
deleting the multiple edges. Then clearly H is planar and triangle free. On the other
hand, for each vertex v in S, dg(v) > 3, and for each vertex u in Y, dg(u) > 5. As
G is 5-connected, we have |S| > 5 and Y| > |S| — (4 —¢) + 2k > 3. So |E(H)| >
3(3]JS|+5|Y]). Since |Y| > |S| — (4 —¢) +2, we can write [Y| = |S| - (4—¢) +2+m
for m > 0. Then

[VH)| =S| +|Y|=21S|-(4—e)+2+m

and
[E(H)| > 3BIS[+5(IS| - (4 —¢) +2+m)]
= (4IS|-24—¢e)+4+2m—-4) - (4-e)+5+ 7
> 2(|V(H)|[-2)
This contradicts Lemma 2.3. 0

Remark 1. Theorem 2.1 implies that a 5-connected planar graph G of even order
is 2-extendable, which was proven by Lou [6] and Plummer [10]. Moreover, adding
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any number of edges to G, the resulting graph (which may not be planar anymore) is
still 2-extendable by Lemma 2.2. In fact, any graph of even order having a spanning
5-connected planar subgraph is 2-extendable.

Theorem 2.2. Let G be a graph of order p and n an integer such that0 <n < p—2
and n = p(mod 2). If G is (2n + k)-connected and K, niki2-free, then G is n-
matchable where 2n + k > 1.

Proof. Suppose that G is not n-matchable. By Lemma 2.1, there exists a subset
S C V(G) with |S| > 2n + k (as G is (2n + k)-connected) such that

wG-8)20(G-8)>2|S|—-n+2>2 (2)

Let C1,Cy, . .., C; be the components of G— S, where t = w(G—S). Let eg(X,Y)

denote the number of edges with one endvertex in X and the other in Y. Since G

is K nik+2-free, each vertex v in S is adjacent to at most n + k + 1 components of

G —S. Then we have eg(X,Y) < |S|(n+k+1). By the (2n+ k)-connectedness of G,

each C; is adjacent to at least 2n + k vertices in S. Then eq(S,G — S) > t(2n + k).
Therefore, t(2n + k) < |S|(n + k + 1). Recall |S| > 2n + k and thus we have

|S|(n+k+1) n-—1
—_ = < — = -
wi@-5)=t< 2n+k 151 2n+k

a contradiction to (2). : o

1S < |S| =n+1,

Combining Theorem 2.2 with Lemma 2.2 we have the following corollary which
generalizes a result of Sumner [11].

Corollary 2.1. If a graph G of even order is (4n + k)-connected and K1 gniki2-
free, then G is n-extendable and adding any edge to G the resulting graph is still
n-extendable. In other words, every graph of even order that has a (dn+k)-connected
K\ onik+2-free spanning subgraph is n-extendable.

The condition of connectivity of Theorem 2.10 is the weakest possible. Let G; =
K, 1,4 ¢V(Gy),i=1,23,..,n+k and G; = (n+k+1)Kj3, where V(G1)NV(G:)
= @ and {ul, Uy veey un+k}ﬂV(G2) = @ Then we let G = (Glu{ul, Uy, ...,U,H.k}) +G2
Then we can easily see that G is K pk+o-free and £(G) = 2n+k+ 1. However, since
we have o(G — (V(G)U{u1, 4z, ..., unsk})) = n+k+1 > |V(G1)U{u1, ug, ..o, Ungr } —
n=n+k + 1, G is not n-matchable.

Further, G = (K, U (n + k)K}) + (n + k + 2) K3 shows that the upper bound on
r for K .-free graphs in Theorem 2.2 is sharp.

Next we discuss the matchability of power graphs. The rth power of a graph G,
G", is the graph with vertex set V(G) and edge set {uv | dg(u,v) < r}.

Theorem 2.3. Let G be a graph of order p and n an integer such that0 <n < p—2
and n = p(mod 2).
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(a) If G is h-connected and h > |3 |, then G™ is n-matchable for r > 2;
(b) If G is h-connected and 1 < h < |3|, then G" is n-matchable for r >
n—2h+3.

Proof. Suppose that G™ is not n-matchable. By Lemma 2.1, there is a subset S C
V(G) with |S| > n such that o(G™ — S) = |S| — n + 2m for some m > 1. Let
Sy = S—{v1,v,..., v}, where vy, vs, ..., v, are any n vertices in S. Then o(G™ - S) =

(a) For the case of h > |2], as G is h-connected, each component of G™ — § is
adjacent in G to at least h vertices in S. Suppose that no two odd components of
G™ — S in G have a common neighbor in S. Then there are at least (|S| + 2m)h
vertices in S. But S has only |S| = |S1| +n < (|S1| + 2m)h vertices, a contradiction.
So at least two odd components, say C; and Cj, have a common neighbor v in S.
Then there is a vertex u in C) and a vertex w in C, such that uv € E(G) and
wv € E(G). In G", u and w are adjacent. So u and w are in the same component
of G" — S, a contradiction to the fact that C) and C; are different components of
Gr-S.

(b) For the case of 1 < h < |3], let Cy, Cy, ..., C; be the components of G — S
and let N; be the set of vertices in S adjacent to vertices of C; in G. Since G is
h-connected, each N; contains at least h vertices. Furthermore, N;’s are pairwise
disjoint. Otherwise, a component C; contains a vertex u that is distance two from a
vertex v in another component C;. But then u and v would be in the same component
of G"— S. Because G is connected, there exists a path P in G from a vertex w; in V;
to a vertex w; in N;(i # j). Choose P to be such a path with the minimum length
among all the path P’s. Then P is contained in S and none of the internal vertices of
Pisin Ny (1 <1 <t). Since|S| = |S)|+n and t > |S;|+2m, the order of P is at most
|S1|+n—h(]|S1|+2m)+2 < |S1|+n—h(|Si|+2)+2 = n—2h—|S5;|(h—1)+2 < n—2h+2.
There is a vertex z; in C; and a vertex z; in C; adjacent to w; and wj, respectively.
Then 2;Pz; is a path of length at most n — 2h + 3. So z; and z; are adjacent in
G7, which contradicts to the fact that C; and C; are different components of G" — S
again. O

Similar to Remark 1, we can see that Theorem 2.3 implies that for an h-connected
graph G of even order its r-power graph G” is k-extendable where either k¥ < h and
r>2o0r k> handr > 2(k—h)+ 3. This result was proven by Holton, Lou and
McAvaney in [4].

Our last result is to deal with the n-matchability of total graph T'(G).

The total graph T(G) of a graph G is that graph whose vertex set can be put
in one-to-one correspondence with the set V(G) U E(G) such that two vertices of
T(G) are adjacent if and only if the corresponding elements of G are adjacent or in-
cident. The subdivision graph S(G) of a graph G is the graph obtained by replacing
all edges of G with paths of length two. Behzad [1] proved that for any graph G,
T(G) = (S@))™.
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Theorem 2.4. Let T(G) be a total graph of order p and n an integer such that
0<n<p—-2andn = p(mod?2). If T(G) is (n + 1)-connected, then T(G) is
n-matchable.

Proof. Suppose that T'(G) is not n-matchable. By Lemma 2.1 and (n+1)-connectedness,
there exists a minimal vertex cut S of T(G) such that |S| > n+1 and for somem > 1

oT(G)-8)=|5|—n+2m (4)

We claim that the cut set .S contains a subdivision vertex w of S(G). Oth-
erwise, let P = z115...x2, be a path in G joining two components C; and C; of
T(G) — S, where z; € V(C,) and z,, € V(C:). Since T(G) = (S(G))?, then P' =
T\Y1Z2Y2 - - - Tn_1Yn_1Zn iS & path joining z; and z, in (S(G))?, where y1, s, .., Yn-1
are subdivision vertices of edges x5, 2223, . . . Tn_1Z,. It is easy to see that y1ys ... yn_1
is a path connecting C; and C; in (S(G))?. Thus, if none of 1, ¥s,. - -,yn_1 is in the
cut set S, then there is a path connecting C; and C, in T(G) = (S(G))?, which
contradicts to fact that S is a cut set.

Let w be a subdivision vertex of S(G) in S. Then w is adjacent to at most two
components of T(G) — S. Set S; = S — {w}, then o(T(G) — S1) = [S1| — n + 2m,
for some m; > m > 1. If |S)| = n, then it contradicts to the (n + 1)-connectedness
of T(G). 1f |51| 2 n+ 1 and o(T(G) — S1) = |S1| — n + 2my, it contradicts to the
minimality of S. O

Remark 2. The graphs considered in this paper may have arbitrarily large diame-
ter. We show that adding a new edge to it the resulting graphs are still k-extendable.
However, the resulting graphs may not satisfy the original hypotheses in the theo-
rems for those graphs to be k-extendable. So we have found new large families of
k-extendable graphs.
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