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ABSTRACT
The integrity of a graph G = (V, E) is defined as I(G) =
min{|S| + m(G − S) : S ⊆ V (G)}, where m(G − X)
denotes the order of the largest component in the graph
G − X . This is a better parameter to measure the stability
of a network G, as it takes into account both the amount of
work done to damage the network and how badly the net-
work is damaged. In this paper, the maximum networks are
obtained with prescribed order and integrity, and a method
for constructing this sort of networks is also presented. Fi-
nally, we give the trees of minimum integrity with given
order and maximum degree.
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1 Introduction

In an analysis of the vulnerability of a communication
network to disruption, two qualities that come to mind
are the number of elements that are not functioning and
the size of the largest remaining subnetwork within which
mutual communication can still occur. In particular, in
an adversarial relationship, it would be desirable for an
opponent’s network to be such that the two qualities can
be made to be simultaneously small.

The integrity of a graph G = (V, E), which was in-
troduced in [1] as a useful measure of the vulnerability of
the graph, is defined as follows:

I(G) = min{|S|+ m(G − S) : S ⊆ V (G)},

where m(G − S) denotes the order of the largest compo-
nent in G − S.

Unlike the connectivity measures, integrity shows
not only the difficulty to break down the network but also
the damage that has been caused. In [1] Barefoot et al gave
some basic results on integrity and Clark et al [4] proved
that the determination of the integrity is NP-complete. In
[5] Moazzami et al compared the integrity, connectivity,
binding number, toughness, and tenacity for several classes

of graphs. To know more about integrity, one can see a
survey of integrity in [2].

A vertex subset S of a graph G is called an I-set of G

if it satisfies that I(G) = |S| + m(G − S).

A network is called the maximum (minimum) network
if it has maximum (minimum) number of edges with
prescribed order and some properties.

As a useful parameter to measure the stability of
networks, what we are interested in it is the following
question: For any given two integers n and I such that
2 ≤ I ≤ n, how can we construct a network with order
n and integrity I? The paper is organized as follows: In
Section 2, the maximum network with prescribed order
and integrity is given, and a method for constructing such
maximum network is presented in Section 3. In Section 4,
we give the minimum integrity of trees with given order
and maximum degree.

Throughout this paper, a graph G = (V, E) always
means a simple connected graph with vertex set V and edge
set E. We use Bondy and Murty [3] for terminology and
notations not defined here. En and Kn, respectively, de-
notes the null graph and complete graph of order n. If S is
a nonempty subset of V, we use G[S] denotes the induced
subgraph of G. We shall use bxc for the largest integer not
larger than a real number x. ∆ denotes the maximum de-
gree of a graph. A ∆-edge is an edge which joins two ver-
tices of degree ∆. A leaf means a vertex of degree 1. An
edge incident with a leaf is called a leaf-edge. An edge is
said to be subdivided when it is replaced by a path of length
two connecting its ends, and the internal vertex in this path
is a new vertex.

2 The maximum network with prescribed
order and integrity

In this section, we give the maximum network with given
order and integrity. The following lemma is used in the
proof of our main theorem.

Lemma 2.1 ([2]) If G is a connected graph with order n

and integrity I, then 2 ≤ I(G) ≤ n, and I(G) = n if and



only if G = Kn.

In the following, we denote by G[n, I ] the set of all
connected graphs with order n and integrity I. Then, we
have

Theorem 2.1

maxG∈G[n,I]|E(G)| =
1

2
I(I − 1) + (I − 1)(n − I).

Proof. Let S ⊆ V (G) be an I-set of G, i.e.,

I(G) = |S| + m(G − S).

Suppose that the components of G−S are G1, G2, · · ·Gp,

and let |S| = x, |V (Gi)| = ni (i = 1, 2, · · · , p). Then we
have

G − S = G1 ∪ G2 ∪ · · · ∪ Gp

and

I(G) = x + m(G − S),

p
∑

i=1

ni = n − x.

If we want the number of edges of a graph G, |E(G)| to
achieve the maximum, the following statements must hold:

(1) G[S] is a complete subgraph of G,

(2) All Gi (i = 1, 2, · · · , p) are complete subgraphs of G,

(3) All vertices in S must be adjacent to all vertices in Gi

(i = 1, 2, · · · , p).

If the above three conditions are satisfied, let
f(n1, n2, · · · , np, x) denotes the number of edges of graph
G, then we have,

f(n1, n2, · · · , np, x)
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ninj .

So, by
∑p

i=1 ni = n − x we have

f(n1, n2, · · · , np, x) =

1

2
(n − x)2 + (x − 1

2
)(n − x) +

(x

2

)

−
∑

1≤i<j≤p

ninj .

To get the maximum value of f(n1, n2, · · · , np, x), it
is necessary to make

∑

1≤i<j≤p

ninj

minimum. And it is easy to see that

1 ≤ ni ≤ n − x − (p − 1) (i = 1, 2, · · · , p).

Now let us determine the minimum value of
∑

1≤i<j≤p

ninj ,

i.e., solve the following nonlinear integer programming

ming(N) =
∑

1≤i<j≤p

ninj

s.t







1 ≤ ni ≤ n − x − (p − 1)

i = 1, 2, · · · , p
∑p

i=1 ni = n − x

ni ∈ Z

where N = (n1, n2, · · · , np), Z is the set of positive
integers.

To solve this problem, we first suppose that N 0 =
(n0

1, n
0
2, · · · , n0

p) is an arbitrary feasible solution of the
above nonlinear integer programming. Let n0

j be the first
number larger than 1 among n0

1, n
0
2, · · · , n0

p , i.e.,

N0 = (1, 1, · · · , 1
︸ ︷︷ ︸

j−1

, n0
j , · · · , n0

p).

Construct a new feasible solution

N1 = (1, 1, · · · , 1
︸ ︷︷ ︸

j

, n0
j+1 + n0

j − 1, n0
j+2, · · · , n0

p).

Then we have g(N1) ≤ g(N0). Repeating the above pro-
cess, we can finally get a feasible solution

N ′ = (1, 1, · · · , 1
︸ ︷︷ ︸

p−1

, · · · , n − x − p + 1).

Since N0 is an arbitrary feasible solution, we know that N ′

is optimal. That’s to say, when n1 = n2 = · · · = np−1 = 1
and np = n − x − p + 1,

∑

1≤i<j≤p

ninj



is minimized. Now substitute these values into
f(n1, n2, · · · , np, x), we have

f(1, 1, · · · , 1, n − x − p + 1, x) =

(
n − x − p + 1

2

)

+

(
x

2

)

+ x(n − x).

On the other hand, from above we know that
m(G − S) = np = I − x, and so we get

f1(x) = f(1, 1, · · · , 1, n − x − p + 1, x)

=

(
I − x

2

)

+

(
x

2

)

+ x(n − x).

It is easy to see that |S| = x ≥ 1 and
np = I − x ≥ 1, i.e., 1 ≤ x ≤ I − 1.

In order to get the maximum value of f1(x), we solve the
following nonlinear integer programming.

maxf1(x) =

(
I − x

2

)

+

(
x

2

)

+ x(n − x)

s.t

{

1 ≤ x ≤ I − 1

x ∈ Z,

where Z is the set of positive integers.

Since f ′
1(x) = n − I , by Lemma 2.1 we know that

f ′
1(x) ≥ 0, and so f1(x) is an increasing function in the

interval 1 ≤ x ≤ I − 1. Then we have

maxf1(x) = f(I − 1) =
1

2
I(I − 1) + (I − 1)(n − I),

i.e.,

max|E(G)| =
1

2
I(I − 1) + (I − 1)(n − I).

This completes the proof.

It is easy to see that, when I(G) = n, the maximum
network G is just the complete graph Kn.

3 Construction and examples

From Section 2 we know the size of the maximum network
with prescribed order and integrity. In the following,
we introduce a method for constructing such maximum
network G = (V, E) with order n and integrity I(G) = I .

Construction:

(1) If I = n, construct the complete graph Kn.

(2) If 2 ≤ I ≤ n − 1, then the construction is as follows:

Step 1 Construct the complete graph KI ,

Step 2 Construct the null graph En−I , such that

V (En−I ) ∩ V (KI) = Φ,

Step 3 Arbitrarily select any I − 1 vertices in graph KI

and join these vertices to all the vertices in En−I .

Thus we get the graphs satisfying the requirements.
Clearly, when 2 ≤ I ≤ n − 1, the maximum network
obtained by the above method is not unique. In the
following we give two examples.

Example 3.1 Consider a graph G with n = |V (G)| = 6,
I(G) = 6. Then we use (1) of the Construction to
construct a complete graph with max|E(G)| = 15, as
shown in (a) of Figure 1.

Example 3.2 Consider a graph G with n = |V (G)| = 6,
I(G) = 4. Then we use (2) of the Construction to
construct a graph with max|E(G)| = 12, as shown in (b)
of Figure 1.

(a) (b)

Figure 1. Maximum networks with given order and in-
tegrity

4 The trees of minimum integrity with given
order and maximum degree

In this section, we determine the minimum integrity of
trees with given order and maximum degree. Meanwhile,
a method for constructing such trees is presented. The
following lemmas are used later.

Lemma 4.1([6]) For three positive integers m, n (m ≥ n)
and s, there exists an integer r(0 ≤ r ≤ n − 1) such that
m = sn + r.



Lemma 4.2([1]) If H is a connected spanning subgraph of
a connected graph G, then I(G) ≥ I(H).

Lemma 4.3 If T is a tree with maximum degree ∆ and
order n, then T has at most b n−2

∆−1c vertices of degree ∆.

Proof. Let V ′ = {v : dT (v) = ∆} and |V ′| = x. In
order to have the number of vertices of degree ∆ achieve
the maximum, without loss of generality, we assume that
T [V ′] is a path, and so we have (n− x) ≥ ∆x− 2(x− 1),
i.e., x(∆ − 1) ≤ n − 2. Noticing that x is an positive
integer, we have that x ≤ b n−2

∆−1c.

Definition 4.1 A tree is called a saturated tree with p

vertices of maximum degree ∆ if the following conditions
are satisfied:

(1) T has p vertices of degree ∆,

(2) besides all the above vertices, the other vertices in T

are all leaves.

Example 4.1 Consider a tree T with order n = 14 and
∆ = 5. So we have b n−2

∆−1c = b 14−2
5−1 c = 3, and thus the

saturated tree is constructed as follows:

Step 1 Construct a path P3 of length 2 such that its vertices
are labelled as v1, v2, v3 from left to right.

Step 2 Join v1 to four new vertices v4, v5, v6, v7, and join
v3 to another four new vertices v8, v9, v10, v11, then join
v2 to three new vertices v12, v13, v14. The tree is shown in
Figure 2.

v4 v11

v5

v6

v7

v1 v2 v3

v12 v13

v14

v8

v9

v10

Figure 2. A saturated tree with three vertices of degree
∆ = 5

Theorem 4.1 Let T be a tree with order n (n ≥ 3) and
maximum degree ∆ (∆ ≥ 2). Then the minimum integrity
of T is

minT∈T [n,∆]I(T ) =







b n−2
∆−1c + 1,

if d( n−2
∆−1) < b n−2

∆−1c
b n−2

∆−1c + 2,

if d( n−2
∆−1) ≥ b n−2

∆−1c

where T [n, ∆] = {T : |V (T )| = n, ∆(T ) = ∆}, d( n−2
∆−1 )

denotes the remainder of n − 2 divided by ∆ − 1.

Proof. We distinguish two cases:

Case 1. If d( n−2
∆−1) < b n−2

∆−1c, then we construct a tree as
follows:

(1) Construct a saturated tree T ′ with n− d( n−2
∆−1 ) vertices

and with b n−2
∆−1c vertices of degree ∆.

(2) It is easy to see that T ′ has (b n−2
4−1c−1) ∆-edges. Arbi-

trarily select d( n−2
∆−1) ∆-edges and subdivide them, and we

thus get a tree T with order n and b n−2
∆−1c vertices of degree

∆, such that d( n−2
∆−1) < b n−2

∆−1c. From the construction we
know that the vertex subset S = {v : dT (v) = ∆} is an
I-set of tree T such that m(T − S) = 1 and |S| = b n−2

∆−1c.
Hence

I(T ) = b n − 2

∆ − 1
c + 1.

The minimality is obvious.

Case 2. If d( n−2
∆−1 ) ≥ b n−2

∆−1c, we distinguish two subcases:

Subcase 2.1 If d( n−2
∆−1) = b n−2

∆−1c, we construct a tree as
follows:

(1) Construct a saturated tree T1 with n− d( n−2
∆−1 ) vertices

and with b n−2
∆−1c vertices of degree ∆.

(2) It is easy to see that there exist (b n−2
∆−1c − 1) ∆-edges

in T1. First, subdivide them, then randomly select one
leaf-edge and also subdivide it. We thus get a new tree
T with order n and b n−2

4−1c vertices of degree ∆. So, by the
construction of the tree T we know that the vertex sub-
set S = {v : dT (v) = ∆} is an I-set of T such that
|S| = b n−2

∆−1c and m(T − S) = 2. Thus we have

I(T ) = b n − 2

∆ − 1
c + 2.

Subcase 2.2 If d( n−2
∆−1) > b n−2

∆−1c, we construct a tree as
follows:

(1) Construct a saturated tree T1 with order n − d( n−2
∆−1 )

and with b n−2
∆−1c vertices of degree ∆. It is obvious that T

has (∆ − 2)b n−2
∆−1c + 2 leaves.

(2) Subdivide every ∆-edge of T1, and we get a new tree
T2 with

n − d(
n − 2

∆ − 1
) + b n − 2

∆ − 1
c − 1

vertices and with (∆ − 2)b n−2
∆−1c + 2 leaves. By Lemma

4.1 we know that

d(
n − 2

∆ − 1
) ≤ ∆ − 2.



So, we have

d(
n − 2

∆ − 1
) − b n − 2

∆ − 1
c + 1 < (∆ − 2)b n − 2

∆ − 1
c + 2.

Then we arbitrarily select d( n−2
∆−1 )−b n−2

∆−1c+1 leaf-edges.
By subdividing them, we get a new tree T with order n and
with b n−2

∆−1c vertices of degree ∆. From the construction
we know that the vertex subset S = {v : dT (v) = ∆} is an
I-set of T such that |S| = b n−2

∆−1c and m(T − S) = 2. So
we have

I(T ) = b n − 2

∆ − 1
c + 2.

It is easy to see that this theorem gives a method to
construct trees with minimum integrity when its order and
maximum degree are given.

Remark From the proof of theorem 4.1, it is easy to see
that the tree of the minimum integrity with given order and
maximum degree is not unique.

Example 4.2 Denote by T [n, I ] the set of trees of order n

and integrity I .

(1) Construct a tree T with order 15 and ∆ = 4 such
that T has minimum integrity in T [15, 4]. Since n = 15,
∆ = 4 and d( n−2

∆−1) = d( 13
3 ) = 1 < 4 = b 13

3 c = b n−2
∆−1c,

we know that the tree T is constructed as shown in Figure 3.

(2) Construct a tree T with order 21 and ∆ = 6 such
that T has minimum integrity in T [21, 6]. Since n = 21,
∆ = 6 and d( n−2

∆−1) = d( 19
5 ) = 4 > 3 = b 19

5 c = b n−2
∆−1c,

we know that the tree T is constructed as shown in Figure 4.

(3) Construct a tree T with order 23 and ∆ = 7 such
that T has minimum integrity in T [23, 7]. Since n = 23,
∆ = 7 and d( n−2

∆−1 ) = d( 21
6 ) = 3 = b 21

6 c = b n−2
∆−1c,

we know that the tree T is constructed as shown in Figure 5.

Figure 3. A tree of minimum integrity with order 15 and
∆ = 4

The above theorem gives the minimum integrity of a
tree T with given order and ∆. It is well-known that any
connected graph has a spanning tree, and so we have the
following corollary.

Figure 4. A tree of minimum integrity with order 21 and
∆ = 6

Figure 5. A tree of minimum integrity with order 23 and
∆ = 7

Corollary 4.1 If G = (V, E) is a connected graph such
that |V (G)| = n ≥ 3 and ∆(G) = ∆ ≥ 2, then we have

minG∈G[n,∆]I(G) =







b n−2
∆−1c + 1,

if d( n−2
∆−1) < b n−2

∆−1c
b n−2

∆−1c + 2,

if d( n−2
∆−1) ≥ b n−2

∆−1c

where G[n, ∆] = {G : |V (G)| = n, ∆(G) = ∆}, d( n−2
∆−1 )

denotes the remainder of n − 2 divided by ∆ − 1.

Proof. From Lemma 4.2 we know that I(G) ≥ I(T ),
where T is the spanning tree of G. It follows from The-
orem 4.1 that

minG∈G[n,∆]I(G) =







b n−2
∆−1c + 1,

if d( n−2
∆−1) < b n−2

∆−1c
b n−2

∆−1c + 2,

if d( n−2
∆−1) ≥ b n−2

∆−1c

where G[n,4] = {G : |V (G)| = n, ∆(G) = ∆}, d( n−2
∆−1 )

denotes the number of remainder of n − 2 divided by
∆ − 1.

5 Conclusion

The robustness of a distributed system of computers can
be represented by the integrity of the graph describing
the network. The authors present and prove a formula
to calculate the maximum number of edges in a network
of given integrity. Two construction methods for such
networks are given, respectively to construct the maximum
network with a given integrity and the minimum integrity
network when the network graph is a tree. As a useful



parameter, integrity has been studied extensively, but there
are many problems remaining unsolved. One interesting
problem is: If G = (V, E) is a connected graph with order
n and integrity I(d2

√
n + 1e − 1 ≤ I ≤ n − 1), then

minG∈G[n,I]|E(G)| =? Another interesting problem is
how to construct such networks.
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