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Abstract: We give generalizations and simple proofs of some q-identities of Dilcher, Fu and
Lascoux related to divisor functions.

Let a1, . . . , aN be N indeterminates. It is easy to see that

1

(1− a1z)(1− a2z) . . . (1− aNz)
=

N∑

k=1

∏N
j=1,j 6=k(1− aj/ak)

−1

1− akz
. (1)

The coefficient of zτ (τ ≥ 0) in the left side of (1) is usually called the τ -th complete
symmetric function hτ (a1, . . . , aN) of a1, . . . , aN . Clearly, we have h0(a1, . . . , aN) = 1 and
equating the coefficients of zτ (τ ≥ 1) in two sides of (1) yields

hτ (a1, . . . , aN) :=
∑

1≤i1≤i2≤···≤iτ≤N

ai1ai2 . . . aiτ =
N∑

k=1

N∏

j=1,j 6=k

(1− aj/ak)
−1 aτ

k. (2)

In particular, if ak = a−bqk+i−1

c−zqk+i−1 (1 ≤ k ≤ N) for a fixed integer i (1 ≤ i ≤ n), then

formula (2) with N = n− i + 1 reads

hτ

(
a− bqi

c− zqi
,
a− bqi+1

c− zqi+1
, . . . ,

a− bqn

c− zqn

)
=

cn−i+1(zqi/c)n−i+1

(q)n−i+1(az − bc)n−i

·
n∑

k=i

(−1)k−i

[
n− i + 1

n− k

]
q(

k−i+1
2 )−k(n−i) (1− qk−i+1)(a− bqk)τ+n−i

(c− zqk)τ+1
, (3)

where (x)n = (1− x)(1− xq) . . . (1− xqn−1) and
[
n
i

]
= (qn−i+1)i/(q)i with (x)0 = 1.

The aim of this note is to show that (3) turns out to be a common source of several
q-identities surfacing recently in the literature.

First of all, the i = 1 case of formula (3) with τ = m−n+1 corresponds to an identity
of Fu and Lascoux [3, Prop. 2.1]:

hτ

(
a− bq

c− zq
,
a− bq2

c− zq2
, . . . ,

a− bqn

c− zqn

)

=
cn(zq/c)n

(q)n(az − bc)n−1

n∑

k=1

[
n

k

]
(−1)k−1q(

k+1
2 )−nk (1− qk)(a− bqk)m

(c− zqk)τ+1
. (4)
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Next, for i = 1, . . . , n and m ≥ 1 set

Ai(z) :=
qi(zq)i−1(q)n

(q)i(zq)n

hm−1

(
qi

1− zqi
, . . . ,

qn

1− zqn

)
. (5)

Then we have the following polynomial identity in x:

n∑

k=1

[
n

k

]
(x− 1) · · · (x− qk−1)

(1− zqk)m
qmk =

n∑

k=1

(−1)k

[
n

k

]
q(

k
2)+mk

(1− zqk)m
+

n∑
i=1

Ai(z)xi. (6)

Indeed, using the q-binomial formula [1, p. 36]:

(x− 1)(x− q) . . . (x− qN−1) =
N∑

j=0

[
N

j

]
(−1)N−jxjq(

N−j
2 ),

we see that the coefficient of xi (1 ≤ i ≤ n) in the left side of (6) is equal to

n∑

k=i

(−1)k−i

[
n

k

][
k

i

]
qmk+(k−i

2 )

(1− zqk)m
=

qi(zq)i−1(q)n

(q)i(zq)n

hm−1

(
qi

1− zqi
, . . . ,

qn

1− zqn

)
, (7)

where the last equality follows from (3) with a = 0, c = 1, b = −1 and τ = m− 1.
Now, with z = i = 1 and m shifted to m + 1, formula (7) reduces to Dilcher’s

identity [2]:

n∑

k=1

[
n

k

]
(−1)k−1q(

k
2)+mk

(1− qk)m
= hm

(
q

1− q
, . . . ,

qn

1− qn

)
=

n∑
i=1

Ai(1).

On the other hand, formula (1) with N = n + 1 and ai = qi−1 (1 ≤ i ≤ N) yields

n∑

k=0

(−1)k

[
n

k

]
q(

k
2)+k

1− zqk
=

(q)n

(z)n+1

.

Hence, setting, respectively, z = 1 and m = 1 in formula (6) we recover two recent
formulae of Fu and Lascoux [4] (see also [5]):

n∑

k=1

[
n

k

]
(x− 1) · · · (x− qk−1)

(1− qk)m
qmk =

n∑
i=1

(xi − 1)Ai(1), (8)

and
n∑

k=0

[
n

k

]
(x− 1) · · · (x− qk−1)

1− zqk
qk =

(q)n

(z)n+1

n∑
i=0

(z)i

(q)i

xiqi. (9)
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