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Abstract

Let G be a 4-connected planar graph onn vertices. Previous results show thatG contains a cycle
of length k for eachk ∈ {n, n − 1, n − 2, n − 3} with k ≥ 3. These results are proved using
the “Tutte path” technique, and this technique alone cannot be used to obtain further results in this
direction. One approach to obtain further results is to combine Tutte paths and contractible edges.
In this paper, we demonstrate this approach by showing thatG also has a cycle of lengthk for each
k ∈ {n − 4, n − 5, n − 6} with k ≥ 3. This work was partially motivated by an old conjecture of
Malkevitch.
© 2003 Published by Elsevier Ltd.

1. Introduction and notation

In 1931, Whitney [10] proved that every 4-connected planar triangulation contains a
Hamilton cycle, and hence, is 4-face-colorable. In 1956, Tutte [8] extended Whitney’s
result to all 4-connected planar graphs.

There are many 3-connected planar graphs which do not contain Hamilton cycles
(see [1]). On the other hand, Plummer [4] conjectured that any graph obtained from a
4-connected planar graph by deleting one vertex has a Hamilton cycle. This conjecture
follows from a theorem of Tutte as observed by Nelso (see [7]). Plummer [4] also
conjectured that any graph obtained from a 4-connected planar graph by deleting two
vertices has a Hamilton cycle. This conjecture was proved by Thomas and Yu [6]. Note
that deleting three vertices from a 4-connected planar graph may result in a graph which
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Fig. 1. A cyclically 4-edge-connected cubic graph with girth 5.

is not 2-connected (and hence, has no Hamilton cycle). However, Sanders [5] showed that
in any 4-connected planar graph with at least six vertices there are three vertices whose
deletion results in a Hamiltonian graph.

The above results can be rephrased as follows. LetG be a 4-connected planar graph on
n vertices. ThenG has a cycle of lengthk for everyk ∈ {n, n −1, n −2, n −3} with k ≥ 3.
(In fact, the results in [7] and [6] are slightly stronger.) So it is natural to ask whetherG
contains a cycle of lengthn − l for l ≥ 4. The following conjecture of Malkevitch ([2],
Conjecture (6.1)) says that this is the case for almost alll.

Conjecture 1.1. Let G be a 4-connected planar graph on n vertices. If G contains a cycle
of length 4, then G contains a cycle of length k for every k ∈ {n, n − 1, . . . , 3}.

Note that there are 4-connected planar graphs with no cycles of length 4. For example,
the line graph of a cyclically 4-edge-connected cubic planar graph with girth at least 5
contains no cycle of length 4. An example of a cyclically 4-edge-connected cubic graph
is shown inFig. 1. For this example, its line graph has 30 vertices. Hence, we propose the
following weaker conjecture.

Conjecture 1.2. Let G be a 4-connected planar graph on n vertices. Then G contains a
cycle of length k for every k ∈ {n, n − 1, . . . , n − 25} with k ≥ 3.

One may also ask whetherConjecture 1.2holds for sufficiently largen if we replace the
number 25 by a non-constant function ofn. We will see that the “Tutte path” method used
in [8], [7], [6] and [5] cannot be extended to show the existence of cycles of lengthn − l for
l ≥ 4. We believe that a possible approach to attack the above conjectures is to combine
Tutte paths and contractible edges (to be defined later). We will demonstrate this approach
by proving the following result.

Theorem 1.3. Let G be a 4-connected planar graph with n vertices. Then G contains a
cycle of length k for every k ∈ {n − 4, n − 5, n − 6} with k ≥ 3.

This paper is organized as follows. In the rest of this section, we describe notation and
terminology that are necessary for stating and proving results. InSection 2, we will define
Tutte paths and show how they can be applied to obtain results on Hamilton paths and
cycles. We also explain why this technique cannot be generalized. InSection 3, we study
contractible edges in 4-connected planar graphs and prove our main result.
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We consider only simple graphs. For a graphG, V (G) andE(G) denote the vertex set
and edge set ofG, respectively. For an edgee of G with incident verticesx and y, we
also usexy or yx to denotee. A graph H is a subgraph of G, denoted byH ⊆ G, if
V (H ) ⊆ V (G) and E(H ) ⊆ E(G). We will use∅ to denote the empty graph (as well
as the empty set). For two subgraphsG andH of a graph,G ∪ H (respectively,G ∩ H )
denotes the graph with vertex setV (G)∪ V (H ) (respectively,V (G)∩ V (H )) and edge set
E(G) ∪ E(H ) (respectively,E(G) ∩ E(H )).

Let G be a graph, letX ⊆ V (G), and letY ⊆ E(G). The subgraph ofG induced by X ,
denoted byG[X], is the graph with vertex setX and edge set{xy ∈ E(G) : x, y ∈ X}.
The subgraph ofG induced by Y , denoted byG[Y ], is the graph with edge setY and vertex
set{x ∈ V (G) : x is incident with some edge inY }. Let H be a subgraph ofG. We use
H + X to denote the graph with vertex setV (H ) ∪ X and edge setE(H ), and if X = {x}
then letH + x := H + X . Let H − X := G[V (H ) − X], and letH − Y denote the graph
with vertex setV (H ) and edge setE(H ) − Y . If X = {x} then letH − x := H − {x},
and if Y = {y} then letH − y := H − {y}. Let Z be a set of 2-element subsets ofV (G);
then we useG + Z to denote the graph with vertex setV (G) and edge setE(G) ∪ Z , and
if Z = {{x, y}}, then letG + xy := G + Z .

Let G be a graph and letH ⊆ G. Then G/H denotes the graph with vertex set
(V (G) − V (H )) ∪ {h} (whereh /∈ V (G)) and edge set(E(G) − E(H )) ∪ {hy : y ∈
V (G) − V (H ) andyy ′ ∈ E(G) for somey ′ ∈ V (H )}. We say thatG/H is obtained from
G by contracting H to the vertexh. If H is induced by an edgee = xy, then we writeG/e
or G/xy instead ofG/H . A graphX is aminor of G or G contains anX-minor if X can
be obtained from a subgraph ofG by contracting edges.

Let G be a graph. For anyX ⊆ V (G), let NG (X) := {u ∈ V (G) − X : u is adjacent
to some vertex inX}. For anyH ⊆ G, we write NG (H ) := NG (V (H )). If X ⊆ V (G)

such that|X | = k (wherek is a positive integer) andG − X is not connected, thenX is
called ak-cut of G. If {x} is a 1-cut ofG, thenx is called acut vertex of G. We say thatG
is n-connected, wheren is a positive integer, if|V (G)| ≥ n + 1 andG has nok-cut with
k < n.

A graphG is planar if G can be drawn in the plane with no pair of edges crossing,
and such a drawing is called aplane representation of G (or a plane graph). Let G be a
plane graph. Thefaces of G are the connected components (in topological sense) of the
complement ofG in the plane. Two vertices ofG arecofacial if they are incident with a
common face ofG. Theouter face ofG is the unbounded face. The boundary of the outer
face is called theouter walk of the graph, or theouter cycle if it is a cycle. A cycle is a
facial cycle in a plane graph if it bounds a face of the graph. Aclosed disc in the plane is a
homeomorphic image of{(x, y) : x2 + y2 ≤ 1} (and the image of{(x, y) : x2 + y2 = 1}
is theboundary of the disc).

Note that a graph is planar iff it has noK5-minor or K3,3-minor. It is well known that
if G is a 2-connected plane graph then every face ofG is bounded by a cycle. Also note
that if G is a plane graph anda, b, c, d occur on a facial cycle in this cyclic order, thenG
contains no vertex disjoint paths froma to c and fromb to d, respectively.

For any pathP andx, y ∈ V (P), we usex Py to denote the subpath ofP betweenx
andy. Given two distinct verticesx andy on a cycleC in a plane graph, we usexCy to
denote the path inC from x to y in clockwise order.
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Fig. 2. A Tutte path and its bridges.

2. Tutte paths

In this section, we will show how Tutte paths can be used to derive cycles of length
n, n −1, n −2, n −3 in 4-connected planar graphs onn vertices. We will also explain why
Tutte paths alone cannot give further results in this direction.

Definition 2.1. Let G be a graph and letP be a path inG. A P-bridge of G is a subgraph
of G which either (1) is induced by an edge ofG − E(P) with both incident vertices in
V (P) or (2) is induced by the edges in a componentD of G − V (P) and all edges from
D to P. For aP-bridgeB of G, the vertices ofB ∩ P are theattachments of B on P. We
say thatP is aTutte path in G if every P-bridge ofG has at most three attachments onP.
For any givenC ⊆ G, P is called aC-Tutte path in G if P is a Tutte path inG and every
P-bridge ofG containing an edge ofC has at most two attachments onP.

Let G be the graph inFig. 2, let P = uwy, and letC = uvwxy. Then theP-bridges of
G are:G[{uv, vw}], G[{wx, xy}], G[{zu, zw, zy}], andG[{uy}]. It is easy to check that
P is aC-Tutte path inG.

Note that ifP is a Tutte path in a 4-connected graph and|V (P)| ≥ 4, thenP is in fact a
Hamilton path. The following result is the main theorem in [7], where aP-bridge is called
a “P-component”.

Theorem 2.2. Let G be a 2-connected plane graph with a facial cycle C, let x ∈ V (C),
e ∈ E(C), and y ∈ V (G) − {x}. Then G contains a C-Tutte path P from x to y such that
e ∈ E(P).

Theorem 2.2immediately implies that every 4-connected planar graph is Hamiltonian
(by requiringxy ∈ E(G) − {e}). The following result was proved by Thomas and Yu ([6],
Theorem (2.6)). In [6], a C-Tutte path is called an “E(C)-snake”.

Theorem 2.3. Let G be a 2-connected plane graph with a facial cycle C. Let x, y ∈ V (C)

be distinct, let e, f ∈ E(C), and assume that x, y, e, f occur on C in this clockwise
order. Then there exists a yCx-Tutte path P between x and y in G such that {e, f } ⊆
E(P).

We mention thatTheorem 2.3was proved independently by Sanders [5]. Before
deriving consequences of the above two results, let us introduce several concepts. Ablock
of a graphH is either (1) a maximal 2-connected subgraph ofH or (2) a subgraph ofH
induced by an edge ofH not contained in any cycle. Anend block of a graphH is a block
of H containing at most one cut vertex ofH .
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Fig. 3.Lemma 2.6.

Definition 2.4. We say that a graphH is a chain of blocks from x to y if one of the
following holds:

(1) H is 2-connected andx andy are distinct vertices ofH ; or
(2) H is connected but not 2-connected,H has exactly two end blocks, neitherx nor y

is a cut vertex ofH , andx andy belong to different end blocks ofH .

Remark. If H is not a chain of blocks fromx to y, then there exist an end blockB of H
and a cut vertexb of H such thatb ∈ V (B) and(V (B) − {b}) ∩ {x, y} = ∅.

Definition 2.5. Let G be a graph and{a1, . . . , al} ⊆ V (G), wherel is a positive integer.
We say that(G, a1, . . . , al) is planar if G can be drawn in a closed disc with no pair of
edges crossing such thata1, . . . , al occur on the boundary of the disc in this cyclic order.
We say thatG is (4, {a1, . . . , al})-connected if |V (G)| ≥ l + 1 and for anyT ⊆ V (G)

with |T | ≤ 3, every component ofG − T contains some element of{a1, . . . , al}.
Note that if G is 4-connected, thenG is (4, S)-connected for allS ⊆ V (G) with

S �= V (G). Using the above results on Tutte paths, we can prove the following result
which will be used extensively in the remainder of this paper.

Lemma 2.6. Let G be a graph and {a1, . . . , al} ⊆ V (G), where 3 ≤ l ≤ 5. Assume that
(G, a1, . . . , al) is planar, G is (4, {a1, . . . , al})-connected, and G −{a3, . . . , al} is a chain
of blocks from a1 to a2. Then

(1) G − {a3, . . . , al} has a Hamilton path between a1 and a2, and
(2) if j ∈ {3, . . . , l} and a j has at least two neighbors contained in V (G)−{a3, . . . , al},

then G − ({a3, . . . , al} − {a j }) has a Hamilton path between a1 and a2.

Proof. (1) Let H := (G − {a3, . . . , al}) + a1a2. BecauseG − {a3, . . . , al} is a chain of
blocks froma1 to a2, eitherV (H ) = {a1, a2} or H is 2-connected. IfV (H ) = {a1, a2}
then clearly (1) holds. So we may assume thatH is 2-connected. Since(G, a1, . . . , al)

is planar, we may assume thatG + a1a2 is drawn in a closed disc with no pair of edges
crossing so thata1, a2, . . . , al occur in this clockwise order on the boundary of the disc.
SeeFig. 3. ThenH is a 2-connected plane graph. LetC denote the outer cycle ofH . Note
that for eachi ∈ {3, . . . , l}, those neighbors ofai contained inV (H ) are all contained
in V (a2Ca1). Chooseu, v ∈ V (C) such thata1, a2, u, v occur onC in this clockwise
order, NG (a3) ∩ V (H ) ⊆ V (a2Cu), NG (a4) ∩ V (H ) ⊆ V (uCv) (if l ≥ 4), and
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NG (a5) ∩ V (H ) ⊆ V (vCa1) (if l = 5). This can be done sincel ≤ 5. Picke, f ∈ E(C)

such thate is incident withu and f is incident withv. By applyingTheorem 2.3to H (with
H, a1, a2 asG, x, y, respectively), we find ana2Ca1-Tutte pathP betweena1 anda2 in H
such thate, f ∈ E(P) (and hence,u, v ∈ V (P)).

Next we show thatP is a Hamilton path inH . Suppose for a contradiction that
P is not a Hamilton path inH . Then there is aP-bridge B of H such thatV (B) −
V (P) �= ∅. If V (B) − V (P) contains no vertex ofC, then B − V (P) is a component
of H − (V (B) ∩ V (P)) containing no vertex ofC. Therefore, by planarity,B − V (P) is a
component ofG − (V (B)∩ V (P)) containing no element of{a1, . . . , al}. This contradicts
the assumption thatG is (4, {a1, . . . , al})-connected (since|V (B) ∩ V (P)| ≤ 3). So
assume thatV (B) − V (P) contains a vertex ofC. Then |V (B) ∩ V (P)| = 2 sinceP
is a C-Tutte path. By the choice ofu andv and becauseu, v ∈ V (P), at most one element
of {a3, . . . , al} has a neighbor inV (B) − V (P). Hence,T := (V (B) ∩ V (P)) ∪ {a j :
NG (a j ) ∩ (V (B)− V (P)) �= ∅} is ak-cut of G with k ≤ 3, andB − V (P) is a component
of G − T containing no element of{a1, . . . , al}. This contradicts the assumption thatG is
(4, {a1, . . . , al})-connected. Therefore,P is a Hamilton path inH , and (1) holds.

(2) Let H := (G − ({a3, . . . , al} − {a j })) + a1a2. Then H is 2-connected because
G − {a3, . . . , al} is a chain of blocks froma1 to a2 andG − {a3, . . . , al} contains at least
two neighbors ofa j . Because(G, a1, . . . , al) is planar, we may assume thatG + a1a2
is drawn in a closed disc with no pair of edges crossing so thata1, . . . , al occur on the
boundary of the disc in this clockwise order. ThenH is a 2-connected plane graph. LetC
denote the outer cycle ofH .

First, assume thatj = 4 or l ≤ 4. Picke ∈ E(C) such thate is incident witha j . By
applyingTheorem 2.2to H (with H, a1, a2 as G, x, y, respectively), we find aC-Tutte
path P betweena1 anda2 in H such thate ∈ E(P). As in the second paragraph in the
proof of (1), we can show thatP is a Hamilton path inH betweena1 anda2, and so, (2)
holds.

Now assume thatj = 3 andl = 5. Let u = a3, and choosev ∈ V (a3Ca1) such that
NG (a4) ∩ V (H ) ⊆ V (a3Cv) andNG (a5) ∩ V (H ) ⊆ V (vCa1). Pick e, f ∈ E(C) such
thate is incident withu and f is incident withv. By applyingTheorem 2.3(with H, a1, a2
asG, x, y, respectively), we find ana2Ca1-Tutte pathP in H betweena1 anda2 such that
e, f ∈ E(P). As in the second paragraph in the proof of (1), we can show thatP is a
Hamilton path betweena1 anda2 in H , and so, (2) holds.

Finally assume thatj = 5. Let v = a5, and chooseu ∈ V (a2Ca5) such that
NG (a3) ∩ V (H ) ⊆ V (a2Cu) andNG (a4) ∩ V (H ) ⊆ V (uCa5). Pick e, f ∈ E(C) such
thate is incident withu and f is incident withv. By applyingTheorem 2.3(with H, a1, a2
asG, x, y, respectively), we find ana2Ca1-Tutte pathP in H betweena1 anda2 such that
e, f ∈ E(P). As in the second paragraph in the proof of (1), we can show thatP is a
Hamilton path inH betweena1 anda2, and so, (2) holds. �

We comment here that the conditionl ≤ 5 in Lemma 2.6is necessary. For otherwise, we
would need a result about Tutte paths between two given vertices and through three given
edges, in the same sense ofTheorem 2.3. But this is not possible as shown by the graph in
Fig. 4. In that graph, we see that there is no Tutte path fromx to y and containing edges
e, f, g. Therefore, additional structural information of the graph is needed in order to find
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Fig. 4. No Tutte path throughe, f andg.

cycles avoiding more vertices in 4-connected planar graphs, and this is our motivation to
study (inSection 3) contractible edges in 4-connected planar graphs.

Below we derive some known results as consequences ofLemma 2.6. The first is a
combination of a result of Thomassen [7] and a result of Thomas and Yu [6]. The second
is due to Sanders [5].

Corollary 2.7. Let G be a 4-connected planar graph and let u ∈ V (G). Then for each
l ∈ {1, 2} there exists a set Sl ⊆ V (G) such that u ∈ Sl , |Sl | = l, and G − Sl has a
Hamilton cycle.

Proof. SinceG is 4-connected,|V (G)| ≥ 5 ≥ l + 3. Without loss of generality, we
work with a plane representation ofG. To show the existence ofS1, we pick three
verticesa1, a2, a3 on a facial cycleC of G such thata1a2 ∈ E(C) anda3 = u. Clearly,
(G, a1, a2, a3) is planar. BecauseG is 4-connected,G is (4, {a1, a2, a3})-connected and
G − a3 is 3-connected (and hence, is a chain of blocks froma1 to a2). So by (1) of
Lemma 2.6, G − a3 contains a Hamilton pathP betweena1 anda2. Let S1 = {u}; then
u ∈ S1, |S1| = 1, andP + a1a2 is a Hamilton cycle inG − S1.

Next we show the existence ofS2. If there is a facial cycleC of G containingu such
that |V (C)| ≥ 4, then we pick verticesa1, a2, a3, a4 in clockwise order onC such that
a1a2 ∈ E(C) andu ∈ {a3, a4}, and in this case we letG′ = G. (Clearly,(G′, a1, a2, a3, a4)

is planar.) If all facial cycles ofG containingu have length three, then leta2a3a4a2 and
a1a2a4a1 be facial cycles ofG such thatu = a4, and in this case, we letG′ := G − a2a4.
(Clearly,(G′, a1, a2, a3, a4) is planar.) SinceG is 4-connected,G′ is (4, {a1, a2, a3, a4})-
connected andG′ − {a3, a4} is 2-connected (and hence, is a chain of blocks froma1 to a2).
So by (1) ofLemma 2.6, G′ − {a3, a4} contains a Hamilton pathQ betweena1 anda2. Let
S2 = {a3, a4}; thenu ∈ S2, |S2| = 2, andQ + a1a2 gives a Hamilton cycle inG − S2. �
Corollary 2.8. Let G be a 4-connected planar graph with |V (G)| ≥ 6, and let S3 be the
vertex set of a triangle in G. Then G − S3 has a Hamilton cycle.

Proof. Let S3 = {a3, a4, a5}. We claim thatG−{a3, a4, a5} is 2-connected. For otherwise,
G has a 4-cutS containingS3. Let S := {a3, a4, a5, x}, and let A be a component
of G − S. Since G is 4-connected, contractingA to a single vertex and contracting
G − (V (A)∪{a3, a4, a5}) to a single vertex, we produce aK5-minor in G, a contradiction.
SoG − {a3, a4, a5} is 2-connected.

Let D be the cycle which bounds the face ofG − {a3, a4, a5} containing{a3, a4, a5}.
Pick an edgea1a2 ∈ E(D) such thata2 is adjacent toa3 anda5 is cofacial with botha1
anda2. Let G′ := G − {a2a5, a3a5}. Then(G′, a1, a2, a3, a4, a5) is planar. SinceG is
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4-connected,G′ is (4, {a1, . . . , a5})-connected. Note thatG′ − {a3, a4, a5} = G −
{a3, a4, a5} is 2-connected (and hence, is a chain of blocks froma1 to a2). So by (1) of
Lemma 2.6(with G′ asG in Lemma 2.6), G′ − {a3, a4, a5} contains a Hamilton pathP
betweena1 anda2. Now P + a1a2 is a Hamilton cycle inG − S3. �

Because every 4-connected planar graph contains a triangle (by Euler’s formula),
Corollary 2.8implies that if G is a 4-connected planar graph onn ≥ 6 vertices, then
G has a cycle of lengthn − 3. We conclude this section by proving a convenient lemma.

Lemma 2.9. Let G be a graph and {a1, a2, a3, a4} ⊆ V (G) such that G is
(4, {a1, a2, a3, a4})-connected. Then G − {a3, a4} is a chain of blocks from a1 to a2.

Proof. Suppose for a contradiction thatG −{a3, a4} is not a chain of blocks froma1 to a2.
Then there exist an end blockB and a cut vertexb of G − {a3, a4} such thatb ∈ V (B) and
(V (B)−{b})∩{a1, a2} = ∅. ThenB −b is a component ofG −{a3, a4, b}. BecauseB −b
contains no element of{a1, a2, a3, a4}, we have reached a contradiction to the assumption
thatG is (4, {a1, a2, a3, a4})-connected. �

3. Long cycles

As we have discussed in the previous section, the Tutte path technique alone cannot be
used to produce cycles of lengthn − l for l ≥ 4. In this section, we will demonstrate a
possible approach by considering contractible edges.

An edgee in a k-connected graphG is said to bek-contractible if the graphG/e
is alsok-connected. Tutte [9] has shown thatK4 is the only 3-connected graph with no
3-contractible edges. On the other hand, there are infinitely many 4-connected graphs with
no 4-contractible edges, and in fact, all such graphs are characterized in the following result
of Martinov [3].

Theorem 3.1. If G is a 4-connected planar graph with no 4-contractible edges, then G is
either the square of a cycle of length at least 4 or the line graph of a cyclically 4-edge-
connected cubic graph.

The square of a cycleC is a graph obtained fromC by adding edges joining vertices of
C with distance two apart. It is not hard to see that ifG is the square of a cycle, thenG
has cycles of lengthk for all 3 ≤ k ≤ |V (G)|. However,Theorem 3.1does not provide
information about 4-contractible edges incident with a specific vertex. We show below that
for a 4-connected planar graphG and a vertexu of G, eitherG contains a 4-contractible
edge incident withu or there is a “useful” structure aroundu in G. From now on, by
“contractible” we mean 4-contractible.

Theorem 3.2. Let G be a 4-connected planar graph and let u ∈ V (G). Then one of the
following holds:

(1) G has a contractible edge incident with u; or
(2) there are 4-cuts S and T of G such that 1 ≤ |S ∩ T | ≤ 2, S contains u and a

neighbor of u, T contains u and a neighbor of u, and G − S has a component
consisting of only one vertex which is also contained in T .
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Fig. 5.S, T, A, B, C, D.

Proof. If G has a contractible edge incident withu, then (1) holds. So we may assume that
G has no contractible edge incident withu. Hence, for every edge ofG incident withu,
both its incident vertices are contained in some 4-cut ofG. LetF denote the set of those
4-cuts ofG containingu and a neighbor ofu. Note thatF �= ∅. SelectS ∈ F and a
componentA of G − S such that

(i) for any S′ ∈ F and for any componentA′ of G − S′, |V (A)| ≤ |V (A′)|.
Let B = G − (V (A) ∪ S). Let a be a neighbor ofu contained inV (A). Since the edge

ua is not contractible, there is someT ∈ F such that{u, a} ⊆ T . Let C be a component
of G − T , and letD := G − (V (C) ∪ T ). This situation is illustrated inFig. 5.

(ii) We claim thatA ∩ C = ∅ = A ∩ D.
Suppose for a contradiction that (ii) is false. Without loss of generality, we may assume

that A ∩ C �= ∅. For convenience, letX := (S ∩ V (C)) ∪ (S ∩ T ) ∪ (V (A) ∩ T )

and Y := (S ∩ V (D)) ∪ (S ∩ T ) ∪ (V (B) ∩ T ). Clearly, G − X has a component
contained inA ∩ C. So X /∈ F by (i). Since G is 4-connected,|X | ≥ 4. Because
{a, u} ⊆ X and X /∈ F , |X | ≥ 5. Since|X | + |Y | = |S| + |T | = 8, |Y | ≤ 3.
Therefore,Y cannot be a cut set ofG, and so,B ∩ D = ∅. Assume for the moment that
|S∩T | = |S∩V (D)| = |V (B)∩T | = 1. This implies that|S ∩ V (C)| = 2 = |V (A) ∩ T |.
Let Z := (S ∩ V (D)) ∪ (S ∩ T ) ∪ (V (A) ∩ T ); then|Z | = 4. If A ∩ D �= ∅, thenA ∩ D
contains a component ofG − Z , and so,Z contradicts the choice ofS in (i) (since
{u, a} ⊆ Z ). Thus A ∩ D = ∅, and hence,|V (D)| = 1. But thenT and D contradict
the choice ofS and A in (i). So at least one of|S ∩ T |, |S ∩ V (D)|, or |V (B) ∩ T | is at
least 2. Since|Y | = 3, either|S ∩ V (D)| = 0 or |V (B) ∩ T | = 0. If |S ∩ V (D)| = 0
then D = D ∩ A �= ∅, and hence,T and D contradict the choice ofS and A in (i). So
|S∩V (D)| �= 0. Then|V (B)∩T | = 0 and|S−V (D)| ≤ 3. Hence,B∩C = B �= ∅ contains
a component ofG − (S − V (D)), contradicting the assumption thatG is 4-connected. This
completes the proof of (ii).

By (ii), V (A) = V (A) ∩ T . If S ∩ V (D) = ∅, then by (ii),B ∩ D = D �= ∅ contains
a component ofG − (T − V (A)), a contradiction (because|T − V (A)| ≤ 3 andG is
4-connected). Similarly, ifS ∩ V (C) = ∅, then by (ii), B ∩ C = C �= ∅ contains a
component ofG − (T − V (A)), a contradiction. So we have

(iii) S ∩ V (D) �= ∅ �= S ∩ V (C).
(iv) We further claim thatV (B) ∩ T �= ∅.
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Suppose on the contrary thatV (B) ∩ T = ∅. Then sinceB �= ∅, B ∩ D �= ∅ or
B ∩ C �= ∅. If B ∩ D �= ∅ thenS − V (C) is a cut ofG, and if B ∩ C �= ∅ thenS − V (D)

is a cut ofG. Since|S − V (C)| ≤ 3 ≥ |S − V (D)| (by (iii)), we have a contradiction to
the assumption thatG is 4-connected. This proves (iv).

By (ii) and (iv) and becauseu ∈ S∩T , |V (A)| = |V (A)∩T | ≤ 2. By (iii), |S∩T | ≤ 2. If
|V (A)| = 1 thenV (A) = {a} ⊆ T , and we have (2). So we may assume that|V (A)| = 2.
Then by (iv),|S∩T | = 1 = |V (B)∩T |. Since|S| = 4, |S∩V (C)| ≤ 1 or |S∩V (D)| ≤ 1.
By the symmetry betweenC andD, we may assume that|S ∩ V (C)| ≤ 1. Then sinceG is
4-connected,B ∩ C = ∅. Hence by (ii),V (C) = S ∩ V (C). This means|V (C)| = 1, and
so,T, C contradict the choice ofS, A in (i). �

When dealing with the structures in (2) ofTheorem 3.2in the proof ofTheorem 1.3, we
need to find two paths between vertices ofS ∪ T , one inG − (V (D) ∪ {a}) and the other
in G − (V (C) ∪ {a}), such that the union of these two paths gives the desired cycle. The
following two technical lemmas will be useful for this purpose.

Lemma 3.3. Let H be a graph and {a1, a2, a3, a4} ⊆ V (H ). Assume that
(H, a1, a2, a3, a4) is planar, H is (4, {a1, a2, a3, a4})-connected, and a1 has at least two
neighbors contained in V (H ) − {a1, a2, a3, a4}. Then one of the following holds:

(1) H − {a2, a3, a4} is 2-connected; or

(2) both H − {a1, a3, a4} and H − {a1, a2, a3} are 2-connected.

Proof. Without loss of generality we may assume thatH is drawn in a closed disc with no
pair of edges crossing such thata1, a2, a3, a4 occur in this clockwise order on the boundary
of the disc. By planarity,

(i) H contains no disjoint paths froma1 to a3 and froma2 to a4, respectively.
If H ′ := H − {a2, a3, a4} is 2-connected, then (1) holds. So we may assume thatH ′ is

not 2-connected. We need to show that (2) holds. LetH2, . . . , Hm denote the end blocks of
H ′ and letv2, . . . , vm denote the cut vertices ofH ′ such that fork = 2, . . . , m, vk ∈ V (Hk)

anda1 /∈ V (Hk) − {vk}. Note thatm ≥ 2 becauseH ′ is not 2-connected. We claim that
(ii) for any k ∈ {2, . . . , m} and anyj ∈ {2, 3, 4}, a j has a neighbor inV (Hk) − {vk}.
Suppose (ii) fails for somek ∈ {2, . . . , m} and for somej ∈ {2, 3, 4}. ThenHk − vk ,

and henceH − (({a2, a3, a4} − {a j }) ∪ {vk}), has a component containing no element of
{a1, a2, a3, a4}, contradicting the assumption thatH is a (4, {a1, a2, a3, a4})-connected. So
(ii) holds.

If m ≥ 3, then by (ii) we can find a pathP from a4 to a2 in H [V (H2) ∪ {a2, a4}] − v2
and find a pathQ from a1 to a3 in H − ((V (H2)−{v2})∪{a2, a4}). Note thatP andQ are
disjoint paths inH , contradicting (i). Som = 2. Therefore,H ′ has exactly two end blocks.
Let H1 denote the other end block ofH ′, and letv1 denote the cut vertex ofH ′ contained
in V (H1). SeeFig. 6.

By the definitions ofHk for k = 2, . . . , m, a1 ∈ V (H1) − {v1}. Sincea1 has at least
two neighbors inV (H ) − {a1, a2, a3, a4}, a1 has at least two neighbors inV (H1). Hence
|V (H1)| ≥ 3. Becausea2, a4 have neighbors inV (H2) − {v2} (by (ii)) and by planarity,
we conclude that

(iii) a3 has no neighbor inV (H1).
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Fig. 6. H and end blocksH1, H2 of H ′.

We further claim that
(iv) each element of{a2, a4} has a neighbor inV (H1) − {a1, v1}.
Suppose (iv) fails. By symmetry betweena2 anda4, we may assume thata2 has no

neighbor inV (H1) − {a1, v1}. Then by (iii), H1 − {a1, v1}, and hence,H ′ − {a1, v1, a4},
has a component containing no element of{a1, a2, a3, a4}, contradicting the assumption
that H is a(4, {a1, a2, a3, a4})-connected. So (iv) holds.

By (ii) and (iv), each element of{a2, a4} has at least two neighbors inV (H ) −
{a1, a2, a3, a4}. We considerH ′′ := H −{a1, a3, a4}. Suppose thatH ′′ is not 2-connected.
Note thata2, NH (a2), andV (H2) are all contained in one end block ofH ′′. Let H ∗ denote
another end block ofH ′′, and letv∗ denote the cut vertex ofH ′′ contained inV (H ∗). Then
a2 has no neighbor inV (H ∗) − {v∗} andH ∗ ⊆ H1. By (iii) and sinceH ∗ ⊆ H1, a3 has no
neighbor inV (H ∗)−{v∗}. Hence,H ∗−{v∗} is a component ofH −{a1, a4, v

∗} containing
no element of{a1, a2, a3, a4}, contradicting the assumption thatH is (4, {a1, a2, a3, a4})-
connected. Therefore,H ′′ := H −{a1, a3, a4} is 2-connected. By the same argument (using
symmetry betweena2 anda4), we can prove thatH − {a1, a2, a3} is 2-connected. �
Lemma 3.4. Let H be a graph and {a1, a2, a3, a4} ⊆ V (H ). Assume that
(H, a1, a2, a3, a4) is planar, H is (4, {a1, a2, a3, a4})-connected, and |V (H )| ≥ 6. Then
there is a vertex z ∈ V (H )−{a1, a2, a3, a4} such that H −{z, a3, a4} has a Hamilton path
from a1 to a2.

Proof. Without loss of generality, we may assume thatH is drawn in a closed disc with no
pair of edges crossing such thata1, a2, a3, a4 occur in this clockwise order on the boundary
of the disc. We may assume thata3, a4 not in E(H ), for otherwise, we can apply our
argument toH − a3, a4. By Lemma 2.9, we have

(i) H − {a3, a4} is a chain of blocks froma1 to a2.
(ii) We further claim thatH − {a3, a4} has a non-trivial block.
For otherwise,H −{a3, a4} is a path. Because|V (H )| ≥ 6, H −{a3, a4} has at least four

vertices. SinceH is (4, {a1, a2, a3, a4})-connected, every vertex inV (H )−{a1, a2, a3, a4}
is adjacent to botha3 and a4. But this implies thatH has disjoint paths froma1 to a3
and froma2 to a4, respectively, contradicting the assumption that(H, a1, a2, a3, a4) is
planar.

By (ii), let B be a non-trivial block ofH − {a3, a4}. Let C denote the outer cycle ofB.
Let b = a1 if a1 ∈ V (B), and otherwise letb ∈ V (C) denote the cut vertex ofH −{a3, a4}
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Fig. 7. The graphH .

separatinga1 from B. Let c = a2 if a2 ∈ V (B), and otherwise letc ∈ V (C) denote the cut
vertex ofH − {a3, a4} separatinga2 from B. SeeFig. 7.

Note that botha3 anda4 have neighbors inV (cCb) − {b, c}. Otherwise,B − {b, c}
contains a component ofH −{a3, b, c} or a component ofH −{a4, b, c}. SinceB −{b, c}
contains no element of{a1, a2, a3, a4}, we have a contradiction to the assumption thatH
is (4, {a1, a2, a3, a4})-connected.

By planarity, we can pickz ∈ V (cCb) − {b, c} such thatNH (a3) ∩ V (B) ⊆ V (cCz)
andNH (a4) ∩ V (B) ⊆ V (zCb). We see that

(iii) (H, a1, a2, a3, z, a4) is planar.
In order to applyLemma 2.6, we need to show that
(iv) H − {a3, a4, z} is a chain of blocks froma1 to a2.
Suppose on the contrary that (iv) is false. Then by (i) and (ii), there is an end block

B1 of B − z such that(V (B1) − {v1}) ∩ {b, c} = ∅, wherev1 is the cutvertex of
B − z contained inV (B1). Suppose botha3 and a4 have neighbors inB1 − v1. Then
by planarity, all neighbors ofz are contained inV (B1). This implies that the component
of G − {a3, a4, v1} containingz contains no element of{a1, a2, a3, a4}, contradicting the
assumption thatG is (4, {a1, a2, a3, a4})-connected. So eithera3 or a4 has no neighbor
contained inV (B1) − {v1}. Hence,B1 − v1 is a component ofH − {v1, z, a3} or a
component ofH−{v1, z, a4}. SinceB1−v1 contains no element of{a1, a2, a3, a4}, we have
a contradiction to the assumption thatH is (4, {a1, a2, a3, a4})-connected. This proves (iv).

By (iii) and (iv), we can apply (1) ofLemma 2.6 (with H, a1, a2, a3, z, a4 as
G, a1, a2, a3, a4, a5 in Lemma 2.6, respectively), and we find the desired Hamilton path
betweena1 anda2 in H − {z, a3, a4}. �

In order to prove our main result, we prove a stronger result forl ≤ 5.

Theorem 3.5. Let G be a 4-connected planar graph and let u ∈ V (G). Then for each
l ∈ {1, . . . , 5} there is a set Sl ⊆ V (G) such that u ∈ Sl , |Sl | = l, and if |V (G)| ≥ l + 3
then G − Sl has a Hamilton cycle.

Proof. Suppose that this theorem is not true. LetG be a counter example such that
|V (G)| is minimum. We will derive a contradiction by finding a setSl ⊆ V (G) for each
l ∈ {1, 2, 3, 4, 5} such thatu ∈ Sl , |Sl | = l, and if |V (G)| ≥ l + 3 thenG − Sl has a
Hamilton cycle.

We claim thatG contains no contractible edge incident withu. Otherwise, lete = uv

be a contractible edge ofG incident withu. ThenG/e is also a 4-connected planar graph.
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Fig. 8. Case 1.

Let u∗ denote the vertex ofG/e resulted from the contraction ofe. By the choice of
G, for eachl ∈ {1, . . . , 5}, there is a setS∗

l ⊆ V (G/e) such thatu∗ ∈ S∗
l , |S∗

l | = l,
and if |V (G/e)| ≥ l + 3 thenG/e − S∗

l has a Hamilton cycle. Forl = 1, 2, 3, 4, let
Sl+1 = (S∗

l − {u∗}) ∪ {u, v}. Then G − Sl+1 = G/e − S∗
l has a Hamilton cycle for

l ∈ {1, . . . , 4}. Let S1 = {u}. By Corollary 2.7, G − S1 has a Hamilton cycle. Therefore,
G is not a counter example, a contradiction.

Hence byTheorem 3.2there are 4-cutsS and T of G such that 1≤ |S ∩ T | ≤ 2,
S containsu and a neighbor ofu, T containsu and a neighbor ofu, and G − S has
a componentA consisting of only one vertex which is also inT . Let a be the only
vertex in V (A), and letB := G − ({a} ∪ S). Let C be a component ofG − T and let
D := G − (V (C) ∪ T ). (SeeFig. 5.)

We claim thatS ∩ V (C) �= ∅ �= S ∩ V (D). For if S ∩ V (C) = ∅, thenB ∩ C = C �= ∅
is a component ofG − (T − {a}), contradicting the assumption thatG is 4-connected.
Similarly, if S ∩ V (D) = ∅ then B ∩ D = D �= ∅ is a component ofG − (T − {a}), a
contradiction.

We consider two cases.
Case 1. The aboveS andT may be chosen such that|S ∩ T | = 2.
In this case,|S ∩ V (C)| = 1 = |S ∩ V (D)| (becauseS ∩ V (C) �= ∅ �= S ∩ V (D)). By

symmetry, we may assume that|V (B) ∩ V (C)| ≤ |V (B) ∩ V (D)|. Recall thatu ∈ S ∩ T .
Let v denote the other vertex inS ∩ T , let w denote the vertex inS ∩ V (C), let b denote
the vertex inS ∩ V (D), and letc denote the vertex inV (B) ∩ T . SeeFig. 8. Note that
{a, u} is contained in a triangle ofG becauseS containsu and some neighbor ofu. So by
Corollaries 2.7and2.8, there existsSl ⊆ V (G) for eachl ∈ {1, 2, 3} such thatu ∈ Sl ,
|Sl | = l, and if |V (G)| ≥ l + 3 thenG − Sl has a Hamilton cycle.

To derive a contradiction, we need to findSl for l = 4, 5 and|V (G)| ≥ l + 3. Let
H1 := G[V (C) ∪ {u, v, c}] andH2 := G[V (D) ∪ {u, v, c}]. Sinceau, av ∈ E(G), in any
plane representation ofG, a andv are cofacial, anda andu are cofacial. BecauseT is a
cut set ofG, we see that in any plane representation ofG, c andv are cofacial, andc and
u are cofacial. Therefore, sincea is adjacent to bothb andw, (H1, c, v,w, u) is planar
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and(H2, c, v, b, u) is planar. SinceG is 4-connected,H1 is (4, {c, v,w, u})-connected (if
B ∩C �= ∅) andH2 is (4, {c, v, b, u})-connected (ifB ∩ D �= ∅). Therefore byLemma 2.9,
H1−{u, w} is a chain of blocks fromc tov, andH2−{u, b} is a chain of blocks fromc tov.
Then by applying (1) ofLemma 2.6(with H1, c, v,w, u asG, a1, a2, a3, a4 in Lemma 2.6,
respectively), we have that

(i) if B ∩ C �= ∅ thenH1 − {u, w} has a Hamilton pathP1 from c to v.
Similarly, by applying (1) ofLemma 2.6(with H2, c, v, b, u as G, a1, a2, a3, a4 in

Lemma 2.6, respectively), we have that
(ii) if B ∩ D �= ∅ thenH2 − {u, b} has a Hamilton pathP2 from c to v.
By applying Lemma 3.4 (with H2, c, v, b, u as H, a1, a2, a3, a4 in Lemma 3.4,

respectively), we have that
(iii) if |V (B)∩V (D)| ≥ 2 then there is a vertexz ∈ V (B)∩V (D) such thatH2−{z, b, u}

has a Hamilton pathP ′
2 from c to v.

(iv) We may assume thatB ∩ C = ∅.
Suppose thatB ∩ C �= ∅. Because|V (B) ∩ V (D)| ≥ |V (B) ∩ V (C)|, B ∩ D �= ∅.

Let S4 := {a, b, u, w}; then by (i) and (ii),P1 ∪ P2 is a Hamilton cycle inG − S4. If
|V (B) ∩ V (D)| ≥ 2 then letS5 := {a, b, u, w, z}; and by (i) and (iii), P ′

2 ∪ P1 is a
Hamilton cycle inG − S5. So |V (B) ∩ V (D)| = 1. Then|V (B) ∩ V (C)| = 1 since
1 ≤ |V (B) ∩ V (C)| ≤ |V (B) ∩ V (D)|. Therefore|V (G)| = 8. Let y denote the vertex in
V (B) ∩ V (C), and letz denote the vertex inV (B) ∩ V (D). ThenNG (y) = {c, u, v,w}.
Becausec is not adjacent toa and the degree ofc is at least 4,c is adjacent to at least one
element of{b, v,w}. If c is adjacent tov then letS5 := {a, b, u, w, y}, if c is adjacent to
b then letS5 := {a, u, v,w, y}, and ifc is adjacent tow then letS5 := {a, b, u, v, z}. It is
then easy to see thatG − S5 has a Hamilton cycle. This completes the proof of (iv).

By (iv), NG (w) = T . We may assume that|V (B) ∩ V (D)| ≥ 1; otherwise there is
nothing to prove. We may further assume that

(v) |V (B) ∩ V (D)| ≥ 2.
Otherwise,|V (B) ∩ V (D)| = 1. In this case, we only need to findS4. Let z denote the

vertex inV (B) ∩ V (D). ThenNG (z) = {b, c, u, v}. Becausec is not adjacent toa and the
degree ofc is at least 4,c is adjacent to at least one element of{b, v}. If c is adjacent tob
then letS4 := {a, u, v,w}, and ifc is adjacent tov then letS4 := {a, b, u, w}. It is easy to
check thatG − S4 has a Hamilton cycle.

(vi) We may assume thatc is not adjacent tov.
Supposec is adjacent tov. Let S4 := {a, b, u, w}; then P2 + cv is a Hamilton cycle

in G − S4. Let S5 := {a, b, u, w, z}; then by (v) and (iii),P ′
2 + cv is a Hamilton cycle in

G − S5.
(vii) We may further assume thatc is not adjacent tob.
If c is adjacent tob, then by deletingaw, by contractingab, and by contractingB ∩ D

to a single vertex, we produce aK3,3-minor of G, a contradiction. So we have (vii).
(viii) We may assume thatb has at least two neighbors inV (B) ∩ V (D).
If b is not adjacent tov, then (viii) follows from (vii). So we may assume thatb is

adjacent tov. Recall that(H2, v, b, u, c) is planar. By (v),H2 is (4, {b, c, u, v})-connected.
So by Lemma 2.9(with H2, v, b, u, c as G, a1, a2, a3, a4 in Lemma 2.9, respectively),
H2 − {u, c} is a chain of blocks fromb to v. Hence we can apply (1) ofLemma 2.6(with
H2, v, b, u, c asG, a1, a2, a3, a4 in Lemma 2.6, respectively) to find a Hamilton pathQ
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Fig. 9. Case 2.

in H2 − {u, c} betweenv andb. We can also applyLemma 3.4(with H2, v, b, u, c, as
G, a1, a2, a3, a4 in Lemma 3.4, respectively) to find a vertexz′ ∈ V (B) ∩ V (D) and a
Hamilton pathQ′ in H2 − {u, c, z′} betweenv andb. Let S4 := {a, u, c, w}; thenQ + vb
is a Hamilton cycle inG − S4. Let S5 := {a, u, c, w, z′}; thenQ′ + vb is a Hamilton cycle
in G − S5. So (viii) holds.

Becausec is not adjacent toa and by (vi) and (vii),c is adjacent to none of{a, b, v}.
Hence,

(ix) c has at least two neighbors inV (B) ∩ V (D).
By (viii) and (ix) and by Lemma 3.3 (with H2, c, v, b, u as H, a1, a2, a3, a4 in

Lemma 3.3, respectively), there is somex ∈ {v, c} such thatH2 − ({b, c, u, v} − {x}) is 2-
connected. Pick a vertexx ′ of H2− ({b, c, u, v}− {x}) such thatx ′x is an edge andH2 can
be drawn in a closed disc so thatxx ′ lies on the boundary andx, x ′, {b, c, u, v}−{x} occur
in this cyclic order on the boundary of the disc. Note thatx ′ exists becausec is adjacent to
none of{a, b, v}. By (1) of Lemma 2.6(with H2 − ({b, c, u, v} − {x}), x, x ′, {b, c, u, v} −
{x} asG, a1, a2, {a3, a4, a5} in Lemma 2.6, respectively),H2 − ({b, c, u, v} − {x}) has a
Hamilton pathR from x to x ′. Becauseb has at least two neighbors inV (B) ∩ V (D),
we can apply (2) ofLemma 2.6(with H2 − ({b, c, u, v} − {x}), x, x ′, {b, c, u, v} − {x}
as G, a1, a2, {a3, a4, a5} in Lemma 2.6, respectively), to find a Hamilton pathR′ in
H − ({c, u, v} − {x}) from x to x ′. Now let S4 := {a, u, w} ∪ ({v, c} − {x}); thenR′ + xx ′
is a Hamilton cycle inG − S4. Let S5 := {a, u, w} ∪ ({b, v, c} − {x}); then R + xx ′ is a
Hamilton cycle inG − S5.

Case 2. For all choices ofS andT , we have|S ∩ T | = 1.
ThenS ∩ T = {u}. Let a be the only vertex inA, and letB := G − ({a} ∪ S). Let C

be a component ofG − T and letD := G − (V (C) ∪ T ) such that|S ∩ V (C)| = 2 and
|S ∩ V (D)| = 1. This can be done becauseS ∩ V (C) �= ∅ �= S ∩ V (D). Let v,w denote
the vertices inS ∩ V (C), let b denote the only vertex inS ∩ V (D), and letc, d denote the
vertices inV (B) ∩ T . SeeFig. 9.

Let H1 := G[V (C) ∪ {u, c, d}] and let H2 := G[V (D) ∪ {u, c, d}]. Becausea is
adjacent tou andT is a 4-cut ofG, c andd are cofacial. Likewise,v andw are cofacial.



ARTICLE  IN  PRESS
16 G. Chen et al. / European Journal of Combinatorics ( ) –

Without loss of generality, assume that(H1, c, d, u, v,w) is planar. Then(H2, c, d, u, b)

is planar. We claim that
(i) B ∩ C �= ∅.
SupposeB ∩ C = ∅. Then one element of{v,w} is not adjacent to some element

of {c, d}; otherwise, by contractingG[V (D) ∪ {u}] to a single vertex, we produce a
K3,3-minor of G, a contradiction. Ifv is not adjacent to some element of{c, d}, then
T ′ := NG (v) ∈ F and|S ∩ T ′| = 2, a contradiction (since we are in Case 2). Similarly, if
w is not adjacent to some element of{c, d}, thenT ′ := NG (w) ∈ F and|S ∩ T ′| = 2, a
contradiction.

(ii) We claim thatH1 − {u, v,w} is a chain of blocks fromc to d.
Otherwise, by (i), letK be an end block ofH1 − {u, v,w} and let r be the cut

vertex of H1 − {u, v,w} contained inV (K ) such that(V (K ) − {r}) ∩ {c, d} = ∅.
SinceG is 4-connected, each element of{u, v,w} has a neighbor inV (K ) − {r}. Since
(H1, c, d, u, v,w) is planar,T ′ := {a, u, r, w} ∈ F and |S ∩ T ′| = 2, a contradiction
(since we are in Case 2). So (ii) holds.

Since(H1, c, d, u, v,w) is planar and by (ii), we may apply (1) ofLemma 2.6(with
H1, c, d, u, v,w asG, a1, a2, a3, a4, a5 in Lemma 2.6, respectively). Hence,

(iii) there is a Hamilton pathP in H1 − {u, v,w} from c to d.
We may assume that
(iv) B ∩ D = ∅ for all choices ofS, T, A, B, C, D with |S ∩ V (D)| = 1 and

|S ∩ V (C)| = 2.
SupposeB ∩ D �= ∅ for some choice ofS, T, A, B, C, D. Since(H2, c, d, u, b) is

planar and byLemma 2.9(with H2, c, d, u, b asG, a1, a2, a3, a4, respectively),H2−{b, u}
is a chain of blocks fromc to d. By applying (1) ofLemma 2.6(with H2, c, d, u, b as
G, a1, a2, a3, a4 in Lemma 2.6, respectively), we find a Hamilton pathR from c to d in
H2−{b, u}. Because the degree ofb is at least 4,b has at least two neighbors inV (H2)−{u}.
Therefore, by applying (2) ofLemma 2.6(with H2, c, d, u, b as G, a1, a2, a3, a4 in
Lemma 2.6, respectively), we find a Hamilton pathQ betweenc andd in H2 − u. Let
S4 := {a, u, v,w} and letS5 := {a, b, u, v,w}. ThenP ∪ Q is a Hamilton cycle inG − S4
andP ∪ R is a Hamilton cycle inG − S5. This completes the proof of (iv).

Let S4 := {a, u, v,w}; then by (iii) and (iv),(P + b) + {bc, bd} is a Hamilton cycle in
G − S4. Next we constructS5. If c is adjacent tod, then letS5 := {a, b, u, v,w}, and by
(ii), P + cd is a Hamilton cycle inG − S5. So we may assume thatc is not adjacent tod.

(v) We may assume thatd has at least two neighbors inV (B) ∩ V (C).
Otherwise, assume thatd has at most one neighbor inV (B) ∩ V (C). Since

(H1, c, d, u, v,w) is planar and becausec is not adjacent tod, d is adjacent to both
u and v, u is adjacent tov, u has no neighbor inV (B) ∩ V (C), and d has exactly
one neighbor inV (B) ∩ V (C). Let H ′ := H1 − u. Then(H ′, c, d, v,w) is planar and
H ′ is (4, {c, d, v,w})-connected (sinceG is 4-connected). Hence byLemma 2.9(with
H ′, d, v,w, c asG, a1, a2, a3, a4 as inLemma 2.9, respectively),H ′ − {c, w} is a chain
of blocks fromd to v. By (1) of Lemma 2.6(with H ′, d, v,w, c as G, a1, a2, a3, a4 in
Lemma 2.6, respectively),H ′ − {c, w} contains a Hamilton pathP ′ from d to v. Let
S5 := {a, b, c, u, w}. ThenP ′ + dv is a Hamilton cycle inG − S5 = H ′ − {c, w}. This
proves (v).

(vi) We claim thatH1 − {c, d, u} is a chain of blocks fromv to w.
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Otherwise, letK denote an end block ofH1 − {c, d, u} and letr be the cut vertex
of H1 − {c, d, u} contained inV (K ) such that(V (K ) − {r}) ∩ {v,w} = ∅. SinceG is
4-connected and(H1, c, d, u, v,w) is planar, each of{c, d, u} has a neighbor inV (K ) −
{r}. Since(H1, c, d, u, v,w) is planar,T ′ := {a, c, u, r} ∈ F . Let C ′ be the component
of G − T ′ containing{v,w}, and letD′ := G − (V (C ′) ∪ T ′). Then|S ∩ V (D′)| = 1,
|S ∩ V (C ′)| = 2, andB ∩ D′ �= ∅, contradicting (iv). This completes the proof of (vi).

If v is adjacent tow, then let S5 := {a, b, c, d, u}. By (1) of Lemma 2.6(with
H1, v,w, c, d, u asG, a1, a2, a3, a4, a5 in Lemma 2.6, respectively), we find a Hamilton
pathP ′ in H1 −{c, d, u} from v to w. ThenP ′ + vw is a Hamilton cycle inG − S5. So we
may assume that

(vii) v is not adjacent tow.
By (vii) and by the same argument as for (v) (by exchanging the roles ofd andv and

by exchanging the roles ofc andw), we may assume that
(viii) v has at least two neighbors inV (B) ∩ V (C).
(ix) We claim thatH1 − {c, u, w} is 2-connected.
Suppose on the contrary thatH1 − {c, u, w} is not 2-connected. LetJ1, . . . , Jm denote

the end blocks ofH1 − {c, u, w}, and letvi be the cutvertex ofH1 − {c, u, w} contained
in V (Ji ) (for i = 1, . . . , m). Then for anyi ∈ {1, . . . , m}, eitherv ∈ V (Ji ) − {vi } or
d ∈ V (Ji ) − {vi }; otherwise, each element of{c, u, w} has a neighbor inV (Ji ) − {vi }
(becauseG is 4-connected), and this contradicts the assumption that(H1, c, d, u, v,w) is
planar. Hencem = 2, and we may assume thatd ∈ V (J1)−{v1} andv ∈ V (J2)−{v2}. By
(v) and (viii), |V (J1)| ≥ 3 and|V (J2)| ≥ 3. SinceG is 4-connected and by planarity,
w, u ∈ NG (V (J2) − {v2}) and u, c ∈ NG (V (J1) − {v1}). Since (H1, c, d, u, v,w)

is planar,T ′ := {a, u, v2, w} ∈ F or T ′′ := {a, u, v1, c} ∈ F . If T ′ ∈ F , then
|S ∩ T ′| = 2, a contradiction (since we are in Case 2). SoT ′′ ∈ F . Let C ′ be
the component ofG − T ′′ containing{v,w}, and let D′ := G − (V (C ′) ∪ T ′′). Then
|S ∩ V (D′)| = 1, |S ∩ V (C ′)| = 2, andB ∩ D′ �= ∅, contradicting (iv). This proves (ix).

So let F denote the outer cycle ofH1 − {u, c, w}. Let d ′ be a neighbor ofd on
F such thatd ′, d, v occur on F in this clockwise order. Lety ∈ V (vFd ′) such that
NH1(w) ⊆ V (vFy) and NH1(c) ⊆ V (y Fd). Let e and f be edges ofF incident with
v andy, respectively. ApplyingTheorem 2.3(with H1 − {c, u, w}, F, d ′, d asG, C, x, y
in Theorem 2.3, respectively), we find anF-Tutte pathP∗ in H1 − {c, u, w} from d to
d ′ such thate, f ∈ E(P∗). SinceG is 4-connected, we can show (as in the proof of
Lemma 2.6) that P∗ is a Hamilton path inH1 − {c, u, w}. Let S5 := {a, b, c, u, w}; then
P∗ + dd ′ is a Hamilton cycle inG − S5. �

Proof of Theorem 1.3. Suppose this theorem is not true. LetG be a counter example such
that |V (G)| is minimum. If G contains a contractible edgee, we considerG/e. Let u
be the vertex resulted from the contraction ofe. Applying Theorem 3.5, we see that for
eachl ∈ {1, . . . , 5}, there is someSl ⊆ V (G/e) such thatu ∈ Sl , |Sl | = l, and if
|V (G/e)| ≥ l + 3 thenG/e − Sl has a Hamilton cycle. Hence, for eachl ∈ {1, . . . , 6},
if n ≥ l + 3 thenG has a cycle of lengthn − l. By Corollary 2.7, G also has a cycle of
lengthn.

So G contains no contractible edge. Then byTheorem 3.1, eitherG is the square of
a cycle orG is the line graph of a cyclically 4-edge-connected cubic graph. BecauseG
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is a counter example,G is the line graph of a cyclically 4-edge-connected cubic graph.
ThereforeG is 4-regular, every vertex is contained in exactly two triangles, and no two
triangles share an edge. Using these properties and by planarity, it is easy to show that every
triangleT in G is contractible, that is,G/T is 4-connected and planar. Letu denote the new
vertex resulted from the contraction ofT . Now by Theorem 3.5, for eachl ∈ {1, . . . , 5},
there is someSl ⊆ V (G/T ) such thatu ∈ Sl , |Sl | = l, and if |V (G/T )| ≥ l + 3 then
G/T − Sl has a Hamilton cycle. Hence,G has cycles of lengthn−l for eachl ∈ {4, . . . , 8}
with n−l ≥ 3. ThatG has a cycle of lengthn, n−1, n−2, n−3 follows fromCorollaries 2.7
and2.8. �
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