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Abstract

Let G be a 4-connected planar graphrorertices. Previous results show titaicontains a cycle
of lengthk for eachk € {n,n — 1,n — 2, n — 3} with kK > 3. These results are proved using
the “Tutte path” technique, and this technique alone cannot be used to obtain further results in this
direction. One approach to obtain further results is to combine Tutte paths and contractible edges.
In this paper, we demonstrate this approach by showingGhalso has a cycle of lengthfor each
k € {n —4,n—5n— 6} with k > 3. This work was partially motivated by an old conjecture of
Malkevitch.
© 2003 Published by Elsevier Ltd.

1. Introduction and notation

In 1931, Whitney 10] proved that every 4-connected planar triangulation contains a
Hamilton cycle, and hence, is 4-face-colorable. In 1956, Ti8eektended Whitney’s
result to all 4-connected planar graphs.

There are many 3-connected planar graphs which do not contain Hamilton cycles
(see []). On the other hand, Plummed][conjectured that any graph obtained from a
4-connected planar graph by deleting one vertex has a Hamilton cycle. This conjecture
follows from a theorem of Tutte as observed by Nelso (sdg Plummer ] also
conjectured that any graph obtained from a 4-connected planar graph by deleting two
vertices has a Hamilton cycle. This conjecture was proved by Thomas angl. Yudte
that deleting three vertices from a 4-connected planar graph may result in a graph which
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Fig. 1. A cyclically 4-edge-connected cubic graph with girth 5.

is not 2-connected (and hence, has no Hamilton cycle). However, Sabfishe{ved that
in any 4-connected planar graph with at least six vertices there are three vertices whose
deletion results in a Hamiltonian graph.

The above results can be rephrased as follows@.bé a 4-connected planar graph on
n vertices. TherG has a cycle of lengtk for everyk € {n,n—1,n—2, n—3} with k > 3.
(In fact, the results inq] and [6] are slightly stronger.) So it is natural to ask whetkger
contains a cycle of length — | for| > 4. The following conjecture of Malkevitch 7],
Conjecture (6.1)) says that this is the case for almost all

Conjecturel1.1. Let G be a4-connected planar graph on n vertices. If G containsa cycle
of length 4, then G contains a cycle of length k for everyk € {n,n—1, ..., 3}.

Note that there are 4-connected planar graphs with no cycles of length 4. For example,
the line graph of a cyclically 4-edge-connected cubic planar graph with girth at least 5
contains no cycle of length 4. An example of a cyclically 4-edge-connected cubic graph
is shown inFig. 1. For this example, its line graph has 30 vertices. Hence, we propose the
following weaker conjecture.

Conjecture1.2. Let G be a 4-connected planar graph on n vertices. Then G contains a
cycleof lengthk for everyk € {n,n —1,..., n — 25} withk > 3.

One may also ask wheth€onjecture 1.holds for sufficiently large if we replace the
number 25 by a non-constant functionrofWe will see that the “Tutte path” method used
in [8], [7], [6] and [5] cannot be extended to show the existence of cycles of lengthfor
| > 4. We believe that a possible approach to attack the above conjectures is to combine
Tutte paths and contractible edges (to be defined later). We will demonstrate this approach
by proving the following result.

Theorem 1.3. Let G be a 4-connected planar graph with n vertices. Then G contains a
cycleof lengthk for everyk € {n — 4,n — 5, n — 6} withk > 3.

This paper is organized as follows. In the rest of this section, we describe notation and
terminology that are necessary for stating and proving resul&ettion 2 we will define
Tutte paths and show how they can be applied to obtain results on Hamilton paths and
cycles. We also explain why this technique cannot be generalize&kdtion 3 we study
contractible edges in 4-connected planar graphs and prove our main result.
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We consider only simple graphs. For a graphV (G) and E(G) denote the vertex set
and edge set o6, respectively. For an edgeof G with incident verticesx andy, we
also usexy or yx to denotee. A graphH is asubgraph of G, denoted byH < G, if
V(H) € V(G) andE(H) € E(G). We will use? to denote the empty graph (as well
as the empty set). For two subgraghsandH of a graph,G U H (respectivelyG N H)
denotes the graph with vertex 8&(G) UV (H) (respectivelyV (G) NV (H)) and edge set
E(G) U E(H) (respectivelyE(G) N E(H)).

Let G be a graph, leX € V(G), and letY € E(G). The subgraph o induced by X,
denoted byG[X], is the graph with vertex seX and edge sefixy € E(G) : X,y € X}.
The subgraph o induced by Y, denoted byG[Y], is the graph with edge s¥tand vertex
set{x € V(G) : x is incident with some edge i¥}. Let H be a subgraph o&. We use
H + X to denote the graph with vertex 3ét{H) U X and edge seE(H), and if X = {x}
thenletH + x := H 4+ X. LetH — X := G[V(H) — X], and letH — Y denote the graph
with vertex setV (H) and edge seE(H) — Y. If X = {x} then letH — x := H — {x},
and ifY = {y} thenletH — y .= H — {y}. Let Z be a set of 2-element subsets\ofG);
then we usés + Z to denote the graph with vertex 9étG) and edge seE(G) U Z, and
if Z={{x, y}}, thenletG + xy =G + Z.

Let G be a graph and leH < G. ThenG/H denotes the graph with vertex set
(V(G) — V(H)) U {h} (whereh ¢ V(G)) and edge setE(G) — E(H)) U thy : y €
V(G) — V(H) andyy’ € E(G) for somey’ € V(H)}. We say thatG/H is obtained from
G by contracting H to the vertexh. If H is induced by an edge= xy, then we writeG/e
or G/xy instead ofG/H. A graphX is aminor of G or G contains anX-minor if X can
be obtained from a subgraph @fby contracting edges.

Let G be a graph. For anX € V(G), let Ng(X) := {u € V(G) — X : u is adjacent
to some vertex inX}. For anyH C G, we write Ng(H) := Ng(V(H)). If X € V(G)
such that X| = k (wherek is a positive integer) an@ — X is not connected, theK is
called ak-cut of G. If {x} is a 1-cut ofG, thenx is called acut vertex of G. We say thaG
is n-connected, whera is a positive integer, ifV(G)| > n + 1 andG has nok-cut with
kK<n.

A graphG is planar if G can be drawn in the plane with no pair of edges crossing,
and such a drawing is calledpane representation of G (or aplane graph). Let G be a
plane graph. Théaces of G are the connected components (in topological sense) of the
complement ofG in the plane. Two vertices d& arecofacial if they are incident with a
common face ofs. Theouter face ofG is the unbounded face. The boundary of the outer
face is called theuter walk of the graph, or theuter cycle if it is a cycle. A cycle is a
facial cyclein a plane graph if it bounds a face of the graptclédsed disc in the plane is a
homeomorphic image dfx, y) : x? + y? < 1} (and the image of(x, y) : X2 + y? = 1}
is theboundary of the disc).

Note that a graph is planar iff it has nos-minor or K3 3-minor. It is well known that
if G is a 2-connected plane graph then every fac& a$ bounded by a cycle. Also note
that if G is a plane graph anal, b, ¢, d occur on a facial cycle in this cyclic order, thén
contains no vertex disjoint paths fraato ¢ and fromb to d, respectively.

For any pathP andx, y € V(P), we usexPy to denote the subpath &f betweenx
andy. Given two distinct verticex andy on a cycleC in a plane graph, we useCy to
denote the path i€ from x to y in clockwise order.
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Fig. 2. A Tutte path and its bridges.

2. Tutte paths

In this section, we will show how Tutte paths can be used to derive cycles of length
n,n—1 n—2,n—3in4-connected planar graphswowrertices. We will also explain why
Tutte paths alone cannot give further results in this direction.

Definition 2.1. Let G be a graph and |d€® be a path inG. A P-bridge of G is a subgraph
of G which either (1) is induced by an edge @f— E(P) with both incident vertices in
V (P) or (2) is induced by the edges in a componBnof G — V(P) and all edges from
D to P. For aP-bridgeB of G, the vertices oB N P are theattachments of B on P. We
say thatP is aTutte path in G if every P-bridge of G has at most three attachmentsfn
For any giverC C G, P is called aC-Tutte path in G if P is a Tutte path irG and every
P-bridge ofG containing an edge d& has at most two attachments Bn

Let G be the graph ifrig. 2, let P = uwy, and letC = uvwxy. Then theP-bridges of
G are:G[{uv, vw}], G[{wX, xy}], G[{zu, zw, zy}], andG[{uy}]. It is easy to check that
P is aC-Tutte path inG.

Note that ifP is a Tutte path in a 4-connected graph &ddP)| > 4, thenP isin fact a
Hamilton path. The following result is the main theoremh fvhere aP-bridge is called
a “P-component”.

Theorem 2.2. Let G be a 2-connected plane graph with a facial cycle C, let x € V (C),
eec E(C),andy € V(G) — {x}. Then G contains a C-Tutte path P from x to y such that
eec E(P).

Theorem 2.2mmediately implies that every 4-connected planar graph is Hamiltonian
(by requiringxy € E(G) — {e}). The following result was proved by Thomas and Y& ([
Theorem (2.6)). In§], a C-Tutte path is called anE(C)-snake”.

Theorem 2.3. Let G bea 2-connected plane graph with afacial cycle C. Let x, y € V(C)
be digtinct, let e, f € E(C), and assume that x, y, e, f occur on C in this clockwise
order. Then there exists a yCx-Tutte path P between x and y in G such that {e, f} C
E(P).

We mention thatTheorem 2.3was proved independently by Sandef. [Before
deriving consequences of the above two results, let us introduce several condaptk A
of a graphH is either (1) a maximal 2-connected subgraptHobr (2) a subgraph oH
induced by an edge dfl not contained in any cycle. Aend block of a graphH is a block
of H containing at most one cut vertex Hf.
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Fig. 3.Lemma 2.6

Definition 2.4. We say that a grapi is achain of blocks from x to y if one of the
following holds:

(1) H is 2-connected and andy are distinct vertices off ; or
(2) H is connected but not 2-connectédl,has exactly two end blocks, neithenory
is a cut vertex oH, andx andy belong to different end blocks &1 .

Remark. If H is not a chain of blocks from to y, then there exist an end bloé&of H
and a cut vertek of H such thab € V(B) and(V(B) — {b}) N {x, y} = 4.

Definition 2.5. Let G be a graph anfla;, ..., a} € V(G), wherel is a positive integer.
We say thatG, ay, ..., @) is planar if G can be drawn in a closed disc with no pair of
edges crossing such that, . .., a occur on the boundary of the disc in this cyclic order.
We say thaiG is (4, {as, ..., a})-connected if |V (G)| > | + 1 and for anyT C V(G)
with [T| < 3, every componentdd — T contains some element (d1, ..., a}.

Note that if G is 4-connected, thefs is (4, S)-connected for allS < V(G) with
S # V(G). Using the above results on Tutte paths, we can prove the following result
which will be used extensively in the remainder of this paper.

Lemma2.6. Let G beagraphand{as,...,a} € V(G), where3 < | < 5. Assume that
(G,a1,...,a)isplanar, Gis(4,{as, ..., a})-connected,and G — {a3, ..., & } isachain
of blocks from a; to az. Then

(1) G —{as, ..., a} hasa Hamilton path between a; and a, and
(2) if j € {3,...,1} andaj hasat |east two neighborscontainedinV (G) —{as, ..., a},
then G — ({as, ..., &} — {aj}) hasa Hamilton path between a; and a,.

Proof. (1) LetH := (G — {a3,...,&}) + ajap. Becauses — {a3, ..., &} is a chain of
blocks froma; to ap, eitherV(H) = {a1, a»} or H is 2-connected. IV (H) = {a1, a»}
then clearly (1) holds. So we may assume tHats 2-connected. Sincé€G, a1, ..., a)

is planar, we may assume that+ ajay is drawn in a closed disc with no pair of edges
crossing so thads, ap, ..., a occur in this clockwise order on the boundary of the disc.
SeeFig. 3 ThenH is a 2-connected plane graph. l&denote the outer cycle ¢i. Note
that for eachi € {3,...,1}, those neighbors dd; contained inV (H) are all contained

in V(axCaz). Chooseu, v € V(C) such thatas, as, u, v occur onC in this clockwise
order, Ng(az) N V(H) € V(a2Cu), Ng(ag) N V(H) € V(@UuCv) (if | > 4), and
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Ng(as) NV (H) € V(vCay) (if | = 5). This can be done sinte< 5. Picke, f € E(C)
such thaeis incident withu and f is incident withv. By applyingTheorem 2.30 H (with
H, a1, ap asG, X, y, respectively), we find aapCa;-Tutte pathP betweera; anday in H
such thae, f € E(P) (and hencey, v € V(P)).

Next we show thatP is a Hamilton path inH. Suppose for a contradiction that
P is not a Hamilton path irH. Then there is &-bridge B of H such thatV (B) —
V(P) # @. If V(B) — V(P) contains no vertex o€, thenB — V(P) is a component
of H — (V(B) N V(P)) containing no vertex of. Therefore, by planarityp —V (P) is a
component ofs — (V(B) NV (P)) containing no element dfy, . .., &}. This contradicts
the assumption tha® is (4, {a, ..., a})-connected (sincéV(B) N V(P)| < 3). So
assume thaV¥ (B) — V(P) contains a vertex o€. Then|V(B) N V(P)| = 2 sinceP
is a C-Tutte path. By the choice af andv and because, v € V (P), at most one element
of {a3, ..., a} has a neighbor iv(B) — V(P). Hence,T = (V(B)NV(P)) U {a; :
NG (aj) N (V(B) — V(P)) # ¢} is ak-cut of G with k < 3, andB — V (P) is a component
of G — T containing no element dfy, ..., a}. This contradicts the assumption ti@ais
(4, {ay, ..., a})-connected. Therefor®, is a Hamilton path irH, and (1) holds.

(2) LetH = (G — ({as,...,a} — {aj})) + ar@. ThenH is 2-connected because
G —{as, ..., a} is a chain of blocks frona; to a, andG — {ag, ..., a} contains at least
two neighbors ofaj. Becausg(G, a, ..., &) is planar, we may assume th@t+ ajap
is drawn in a closed disc with no pair of edges crossing sodhat. ., a occur on the
boundary of the disc in this clockwise order. Thidris a 2-connected plane graph. @&t
denote the outer cycle ¢i.

First, assume that = 4 orl < 4. Picke € E(C) such that is incident witha;. By
applying Theorem 2.20 H (with H, a1, ap asG, x, y, respectively), we find &£-Tutte
path P betweena; anday in H such thate € E(P). As in the second paragraph in the
proof of (1), we can show tha is a Hamilton path irH betweena; andaz, and so, (2)
holds.

Now assume that = 3 andl = 5. Letu = az, and choose € V (azCay) such that
Ng(ag) N V(H) € V(azgCv) andNg(as) N V(H) C V(vCay). Picke, f € E(C) such
thateis incident withu and f is incident withv. By applyingTheorem 2.3with H, a3, az
asG, x, vy, respectively), we find amyCa;-Tutte pathP in H betweers; anday such that
e, f € E(P). As in the second paragraph in the proof of (1), we can show Phist a
Hamilton path betweea; anday in H, and so, (2) holds.

Finally assume thaj = 5. Letv = as, and choosas € V(axCas) such that
Ng(@3) NV(H) € V(a2Cu) andNg(ag) N V(H) € V(uCas). Picke, f € E(C) such
thateis incident withu and f is incident withv. By applyingTheorem 2.3with H, a3, a,
asG, x, vy, respectively), we find amCa;-Tutte pathP in H betweer; andap such that
e, f € E(P). As in the second paragraph in the proof of (1), we can show Phist a
Hamilton path inH betweere; anday, and so, (2) holds. O

We comment here that the conditior: 5inLemma 2.6s necessary. For otherwise, we
would need a result about Tutte paths between two given vertices and through three given
edges, in the same senseldieorem 2.3But this is not possible as shown by the graph in
Fig. 4. In that graph, we see that there is no Tutte path frotm y and containing edges
e, f, g. Therefore, additional structural information of the graph is needed in order to find
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f

Fig. 4. No Tutte path througk, f andg.

cycles avoiding more vertices in 4-connected planar graphs, and this is our motivation to
study (inSection 3 contractible edges in 4-connected planar graphs.

Below we derive some known results as consequencégwima 2.6 The first is a
combination of a result of Thomassef] and a result of Thomas and Y6][ The second
is due to Sanders].

Corollary 2.7. Let G be a 4-connected planar graph and let u € V(G). Then for each
| € {1,2}thereexistsaset § € V(G) suchthatu € §,|S| =1,and G — § hasa
Hamilton cycle.

Proof. SinceG is 4-connected|V(G)| > 5 > | + 3. Without loss of generality, we
work with a plane representation @. To show the existence o, we pick three
verticesay, az, ag on a facial cycleC of G such thataja; € E(C) andaz = u. Clearly,
(G, a1, ap, ag) is planar. Becaus6 is 4-connectedG is (4, {a1, ap, ag})-connected and
G — az is 3-connected (and hence, is a chain of blocks flno ay). So by (1) of
Lemma 2.6 G — ag contains a Hamilton patP betweena; anday. Let § = {u}; then
ue S, |S| =1, andP + ajay is a Hamilton cycle i — S.

Next we show the existence &. If there is a facial cycleC of G containingu such
that |V (C)| > 4, then we pick verticeay, ap, as, a4 in clockwise order orC such that
aijay € E(C) andu € {ag, a4}, and in this case we I&' = G. (Clearly,(G’, a1, ap, az, as)
is planar.) If all facial cycles o6 containingu have length three, then lapazasa; and
ajaxasa; be facial cycles ofs such thau = ay4, and in this case, we &' .= G — ayag.
(Clearly,(G’, a1, a, as, ag) is planar.) Sincés is 4-connectedG’ is (4, {a1, a2, as, a4})-
connected an@®’ — {as, a4} is 2-connected (and hence, is a chain of blocks fegro ay).
So by (1) ofLemma 2.6 G’ — {as, a4} contains a Hamilton patf) betweere; anday. Let
S = {a3, as}; thenu € S, || = 2, andQ + ajap gives a Hamiltoncycle i — . O

Corollary 2.8. Let G be a 4-connected planar graph with |V (G)| > 6, and let S3 be the
vertex set of atrianglein G. Then G — S hasa Hamilton cycle.

Proof. Let 3 = {as, as, as}. We claim thatG — {a3, as, as} is 2-connected. For otherwise,
G has a 4-cutS containingSs. Let S = {ag, a4, a5, X}, and let A be a component
of G — S. SinceG is 4-connected, contracting to a single vertex and contracting
G — (V(A)U({as, a4, as}) to a single vertex, we producekg-minor in G, a contradiction.
SoG — {ag, a4, as} is 2-connected.

Let D be the cycle which bounds the face ®f— {as, a4, a5} containing{as, as, as}.
Pick an edgeyay € E(D) such thatay is adjacent tas andas is cofacial with botha;
andap. Let G’ .= G — {agas, agas}. Then(G/, a1, ap, a3, a4, as) is planar. Sinces is
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4-connectedG’ is (4, {ay, ..., as})-connected. Note tha®’ — {az,as,as} = G —
{as, a4, as} is 2-connected (and hence, is a chain of blocks feanto az). So by (1) of
Lemma 2.6(with G’ asG in Lemma 2., G’ — {as, a4, as} contains a Hamilton patk
betweerp; anday. Now P + ajap is a Hamilton cycle inG — . O

Because every 4-connected planar graph contains a triangle (by Euler's formula),
Corollary 2.8implies that if G is a 4-connected planar graph an> 6 vertices, then
G has a cycle of length — 3. We conclude this section by proving a convenient lemma.

Lemma?29. Let G be a graph and {a;,az,as, a4} < V(G) such that G is
(4, {a1, a2, a3, as})-connected. Then G — {ag, a4} isa chain of blocks from a; to ay.

Proof. Suppose for a contradiction th@t— {asz, a4} is not a chain of blocks frora; to ay.
Then there exist an end bloékand a cut vertek of G — {az, a4} such thab € V(B) and
(V(B) —{b})N{ay, ap} = ¥. ThenB —bis a component o6 — {az, a4, b}. BecausdB — b
contains no element &y, ap, az, a4}, we have reached a contradiction to the assumption
thatG is (4, {a1, a2, ag, a4})-connected. [

3. Longcycles

As we have discussed in the previous section, the Tutte path technique alone cannot be
used to produce cycles of length— | for | > 4. In this section, we will demonstrate a
possible approach by considering contractible edges.

An edgee in a k-connected grapl® is said to bek-contractible if the graphG/e
is alsok-connected. Tutte9] has shown thak, is the only 3-connected graph with no
3-contractible edges. On the other hand, there are infinitely many 4-connected graphs with
no 4-contractible edges, and in fact, all such graphs are characterized in the following result
of Martinov [3].

Theorem 3.1. If G isa 4-connected planar graph with no 4-contractible edges, then G is
either the square of a cycle of length at least 4 or the line graph of a cyclically 4-edge-
connected cubic graph.

The square of a cycl€ is a graph obtained froi@ by adding edges joining vertices of
C with distance two apart. It is not hard to see thaBiis the square of a cycle, thed
has cycles of lengtk for all 3 < k < |V(G)|. However,Theorem 3.1does not provide
information about 4-contractible edges incident with a specific vertex. We show below that
for a 4-connected planar gra@and a vertexu of G, eitherG contains a 4-contractible
edge incident withu or there is a “useful” structure aroundin G. From now on, by
“contractible” we mean 4-contractible.

Theorem 3.2. Let G be a 4-connected planar graph and let u € V(G). Then one of the
following holds:

(1) G hasa contractible edge incident with u; or

(2) there are 4-cuts Sand T of G suchthat 1 <|SNT| <2, Scontainsu and a
neighbor of u, T contains u and a neighbor of u, and G — S has a component
consisting of only one vertex which is also contained in T.
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D|AnD |SNnV(D)l BnD

Fig.5.S, T, A, B,C, D.

Proof. If G has a contractible edge incident withthen (1) holds. So we may assume that
G has no contractible edge incident withHence, for every edge @ incident withu,
both its incident vertices are contained in some 4-cubof et F denote the set of those
4-cuts of G containingu and a neighbor ofi. Note thatF # @. SelectS € F and a
componentA of G — Ssuch that

(i) forany S’ € F and for any compone®®’ of G — S, [V (A)| < [V (A)].

LetB=G — (V(A)U S). Leta be a neighbor ofi contained inV (A). Since the edge
ua is not contractible, there is sonfe € F such thatfu,a} < T. Let C be a component
of G—T,andletD .= G — (V(C) UT). This situation is illustrated ifig. 5.

(i) We claim thatAN C =¥ = AN D.

Suppose for a contradiction that (ii) is false. Without loss of generality, we may assume
that AN C # ¢. For convenience, leK = (SNVECHUSNT)UNMMANT)
andY = (SNVD)UGSNT)Uu (V(B)NT). Clearly, G — X has a component
contained iNnAN C. So X ¢ F by (i). SinceG is 4-connected|X| > 4. Because
{fa,u} € XandX ¢ F, |X| = 5.Since|X| +|Y| = |§ +|T| = 8,|Y] < 3.
Therefore,Y cannot be a cut set @, and so,B N D = ¢. Assume for the moment that
ISNT| = |SNV(D)| = |V(B)NT| = 1. Thisimpliesthat SN V(C)| =2 = |[V(A) N T|.
Let Z:=(SNV(D)UESNTIUNMA)NT);then|Z| =4.1f AnD # @, thenAn D
contains a component d& — Z, and so,Z contradicts the choice o8 in (i) (since
{u,a} € Z). ThusAn D = ¢, and hence}lV (D)| = 1. But thenT and D contradict
the choice ofSand A in (i). So at least one ofSN T|, SN V(D)|, or [V(B) N T| is at
least 2. SinceY| = 3, either|SN V(D) = 0or|V(B)NT| =0.1f SNV (D)| =0
thenD = D N A # ¢, and henceT and D contradict the choice 0% and A in (i). So
|SNV(D)| # 0. ThenV(B)NT| = 0and|S—V (D)| < 3.HenceBNC = B # { contains
a componento6 — (S—V (D)), contradicting the assumption thatis 4-connected. This
completes the proof of (ii).

By (i), V(A) = V(A)NT.If SN V(D) = @, then by (ii),B N D = D # ¢ contains
a component of5 — (T — V(A)), a contradiction (becausg@ — V(A)| < 3 andG is
4-connected). Similarly, iSN V(C) = @, then by (ii)), BN C = C # @ contains a
component of5 — (T — V(A)), a contradiction. So we have

(ii) SNV (D) #¥ # SNV (C).

(iv) We further claim tha/ (B)N' T # @.
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Suppose on the contrary th&t(B) N T = @. Then sinceB # ¢, BN D # ¥ or
BNC#A@.If BND #£@thenS— V(C)isacutofG,andifBNC # @#thenS— V(D)
is a cut of G. Since|S— V(C)| < 3 > |S— V(D)| (by (iii)), we have a contradiction to
the assumption thds is 4-connected. This proves (iv).

By (ii) and (iv) and because € SNT, |V (A)| = [V(A)NT]| < 2. By (iii), |SNT| < 2. If
[V(A)| = 1thenV(A) = {a} C T, and we have (2). So we may assume tNatA)| = 2.
Then by (iv),|SNT| = 1= |V(B)NT]|. Since|S| = 4,|SNV(C)| < lor|SNV(D)| < 1.
By the symmetry betwee@ andD, we may assume thgsN V (C)| < 1. Then sincés is
4-connectedB N C = @. Hence by (ii),V(C) = SN V(C). This meangV(C)| = 1, and
so, T, C contradict the choice d§, Ain (i). O

When dealing with the structures in (2) Dfieorem 3.2n the proof ofTheorem 1.3we
need to find two paths between verticessaf T, one inG — (V (D) U {a}) and the other
in G — (V(C) U {a}), such that the union of these two paths gives the desired cycle. The
following two technical lemmas will be useful for this purpose.

Lemma3.3. Le¢ H be a graph and {aj,ap,a3z, a4} < V(H). Assume that
(H, a1, a2, as, aq) is planar, H is (4, {a1, ap, a3, a4})-connected, and a; has at least two
neighborscontainedin V(H) — {a1, a2, as, a4}. Then one of the following holds:

(1) H — {a, a3, a4} is 2-connected; or
(2) both H — {a1, a3, a4} and H — {ay, ap, ag} are 2-connected.

Proof. Without loss of generality we may assume thiis drawn in a closed disc with no
pair of edges crossing such tlaat ay, ag, a4 occur in this clockwise order on the boundary
of the disc. By planarity,

(i) H contains no disjoint paths from to az and fromay to a4, respectively.

If H .= H — {ap, ag, a4} is 2-connected, then (1) holds. So we may assumeHhat
not 2-connected. We need to show that (2) holdsHigt. . ., Hy, denote the end blocks of
H’and letvo, . .., vm denote the cut vertices &f’ such thatfok = 2, ..., m, vk € V(Hk)
anda; ¢ V (Hx) — {vk}. Note thaim > 2 becauséd’ is not 2-connected. We claim that

(i) foranyk € {2, ..., m}and anyj € {2, 3, 4}, a; has a neighbor i (Hk) — {vk}.

Suppose (i) fails for somk € {2, ..., m} and for somg € {2, 3, 4}. ThenHy — v,
and henceHd — (({ap, a3, a4} — {aj}) U {vk}), has a component containing no element of
{a1, a2, a3, as}, contradicting the assumption thdtis a (4 {a1, a2, as, a4})-connected. So
(ii) holds.

If m > 3, then by (ii) we can find a path fromag toaz in H[V (H2) U {az, a4}] — v2
and find a patlQ froma; toaz in H — ((V (H2) — {v2}) U {a2, a4}). Note thatP andQ are
disjoint paths inH, contradicting (i). Sen = 2. ThereforeH’ has exactly two end blocks.
Let H1 denote the other end block &f’, and letv; denote the cut vertex dfi’ contained
in V(H1). SeeFig. 6.

By the definitions ofHy fork = 2,..., m, a1 € V(H1) — {v1}. Sincea; has at least
two neighbors iV (H) — {a1, a, as, a4}, a1 has at least two neighbors¥h(H1). Hence
|V (H1)| > 3. Becausey, a4 have neighbors iV (Hz) — {v2} (by (ii)) and by planarity,
we conclude that

(i) az has no neighbor iV (Hy).
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Fig. 6. H and end block$Hq, Hp of H'.

We further claim that

(iv) each element ofay, a4} has a neighbor iV (H1) — {az, v1}.

Suppose (iv) fails. By symmetry betweap and a4, we may assume thab has no
neighbor inV (H1) — {a1, v1}. Then by (iii), H1 — {a1, v1}, and henceH’ — {a1, v1, a4},
has a component containing no elementaf, a, as, a4}, contradicting the assumption
thatH is a(4, {a1, a2, ag, a4})-connected. So (iv) holds.

By (ii) and (iv), each element ofap, a4} has at least two neighbors M(H) —
{a1, ap, ag, a4}. We consideH” := H — {a1, as, a4}. Suppose thatl” is not 2-connected.
Note thatap, Ny (a2), andV (H») are all contained in one end block df’. Let H* denote
another end block dfl”, and letv* denote the cut vertex ¢’ contained inv (H*). Then
az has no neighboriv (H*) — {v*} andH™* C H1. By (iii) and sinceH* C Hj, ag has no
neighbor inV (H*) — {v*}. Hence H * — {v*} is a component o —{az, a4, v*} containing
no element ofas, ap, ag, a4}, contradicting the assumption thidtis (4, {a1, ap, as, aa})-
connected. Thereforél” .= H —{ay, a3, a4} is 2-connected. By the same argument (using
symmetry between, andag), we can prove thatl — {a1, az, ag} is 2-connected. [J

Lemma34. Lee H be a graph and {aj,ap,a3z, a4} < V(H). Assume that
(H, a1, ag, ag, ag) is planar, H is (4, {a1, a2, as, a4})-connected, and |V (H)| > 6. Then
thereisavertexz € V(H) —{a1, ap, ag, a4} suchthat H — {z, a3, a4} hasa Hamilton path
fromay to ap.

Proof. Without loss of generality, we may assume thiais drawn in a closed disc with no
pair of edges crossing such tlaat ay, ag, a4 occur in this clockwise order on the boundary
of the disc. We may assume thaj, a4 not in E(H), for otherwise, we can apply our
argumenttaH — ag, a4. By Lemma 2.9we have

(i) H — {as, a4} is a chain of blocks frona; to ap.

(if) We further claim thatH — {az, a4} has a non-trivial block.

For otherwiseH —{a3, a4} is a path. Becaus®/ (H)| > 6, H —{ag, a4} has at least four
vertices. Sincéd is (4, {a1, ap, as, a4})-connected, every vertex Vi(H) — {a1, a2, as, a4}
is adjacent to botlaz and as. But this implies thatH has disjoint paths frona; to a3
and fromay to ay4, respectively, contradicting the assumption thidt a1, ap, az, a4) is
planar.

By (ii), let B be a non-trivial block oH — {as, a4}. Let C denote the outer cycle d.
Letb = a; if a1 € V(B), and otherwise let € V (C) denote the cut vertex ¢i — {az, as}
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Fig. 7. The graptH.

separatin@y from B. Letc = ay if a2 € V(B), and otherwise let € V (C) denote the cut
vertex ofH — {a3, a4} separating, from B. SeeFig. 7.

Note that bothag andas have neighbors itV (cCb) — {b, c}. Otherwise,B — {b, c}
contains a component &f — {az, b, ¢} or a component oH — {ay, b, c}. SinceB — {b, ¢}
contains no element dby, ap, az, a4}, we have a contradiction to the assumption tHat
is (4, {a1, ap, as, ay})-connected.

By planarity, we can pick € V (cChb) — {b, c} such thatNy (az) N V(B) € V(cCz)
andNy (ag) NV (B) C V(zCb). We see that

(i) (H, a1, ap, a3, z, ag) is planar.

In order to apphLemma 2.6we need to show that

(iv) H — {ag3, a4, z} is a chain of blocks frona; to a.

Suppose on the contrary that (iv) is false. Then by (i) and (ii), there is an end block
B1 of B — z such that(V(B1) — {vi}) N {b,c} = @, wherev; is the cutvertex of
B — z contained inV(B1). Suppose botlag and a4 have neighbors iB; — v1. Then
by planarity, all neighbors of are contained irV (By). This implies that the component
of G — {as, a4, v1} containingz contains no element dfy, ap, as, a4}, contradicting the
assumption tha6 is (4, {a1, ap, a3, a4})-connected. So eithexs or a4 has no neighbor
contained inV(B1) — {v1}. Hence,B; — v1 is a component oH — {v1,7, a3} or a
componentoH —{v1, z, a4}. SinceB1—v1 contains no element ¢&,, az, as, a4}, we have
a contradiction to the assumption this (4, {a1, az, ag, a4})-connected. This proves (iv).

By (i) and (iv), we can apply (1) ofLemma 2.6 (with H,aj, ap, a3,z a4 as
G, a1, ap, ag, a4, a5 in Lemma 2.6 respectively), and we find the desired Hamilton path
betweera; andax in H — {z, a3, a4}. O

In order to prove our main result, we prove a stronger result fol5.

Theorem 3.5. Let G be a 4-connected planar graph and let u € V(G). Then for each
|l e {l,...,5}thereisaset § C V(G) suchthatu € §, |S| =1,andif [V(G)| > | + 3
then G — § hasa Hamilton cycle.

Proof. Suppose that this theorem is not true. I@tbe a counter example such that
|V (G)| is minimum. We will derive a contradiction by finding a sgtC V (G) for each
| € {1,2,3,4,5)suchthatu € S, |S| =I,and if[V(G)| > | +3thenG — § has a
Hamilton cycle.

We claim thatG contains no contractible edge incident withOtherwise, lee = uv
be a contractible edge @& incident withu. ThenG/e s also a 4-connected planar graph.
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Let u* denote the vertex o6 /e resulted from the contraction & By the choice of
G, for eachl € {1,...,5}, there is a se§* C V(G/e) such thau* ¢ §, |§]| = I,
and if [V(G/e)| > | 4+ 3 thenG/e — § has a Hamilton cycle. Fdr = 1,2, 3, 4, let
Sy1 = (§ — {U*) U{u,v}. ThenG — §,1 = G/e — § has a Hamilton cycle for
| €{1,...,4}. LetS = {u}. By Corollary 2.7 G — § has a Hamilton cycle. Therefore,
G is not a counter example, a contradiction.

Hence byTheorem 3.2here are 4-cutS andT of G such that 1< [SNT| < 2,
S containsu and a neighbor ofi, T containsu and a neighbor ofi, andG — S has
a componentA consisting of only one vertex which is also . Let a be the only
vertex inV (A), and letB .= G — ({a} U S). Let C be a component o6 — T and let
D:=G— (V(C)UT). (SeeFig. 5)

We claimthatSNV(C) # 0 # SNV (D). Forif SNV (C) =@,thenBNC=C #¢
is a component o5 — (T — {a}), contradicting the assumption th@t is 4-connected.
Similarly, if SNV (D) = #thenBN D = D # ¢ is a componentofs — (T — {a}), a
contradiction.

We consider two cases.

Case 1. The abovesandT may be chosen such th&@nN T| = 2.

Inthis case|SNV(C)| =1=|SNV(D)| (becaus&sNV(C) # @ # SNV (D)). By
symmetry, we may assume th&t(B) N V(C)| < [V(B) NV (D)|. Recall thau € SN T.
Let v denote the other vertex i8N T, let w denote the vertex is N V(C), letb denote
the vertex inSnN V (D), and letc denote the vertex ivV(B) N T. SeeFig. 8 Note that
{a, u} is contained in a triangle d& becauses containsu and some neighbor af. So by
Corollaries 2.7and 2.8, there exists§ C V(G) for eachl € {1, 2, 3} such thatu € S,
S| =I,andif|[V(G)| > | + 3 thenG — § has a Hamilton cycle.

To derive a contradiction, we need to figifor| = 4,5 and|V(G)| > | + 3. Let
Hi:= G[V(C) U {u, v, c}] andHz := G[V (D) U {u, v, c}]. Sinceau, av € E(G), in any
plane representation @, a andv are cofacial, ané andu are cofacial. Becaust is a
cut set ofG, we see that in any plane representatioot andv are cofacial, and and
u are cofacial. Therefore, sin@is adjacent to botth andw, (H1, ¢, v, w, u) is planar
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and(Hy, ¢, v, b, u) is planar. Sincé& is 4-connectedH is (4, {c, v, w, u})-connected (if
BNC # @) andHzis (4, {c, v, b, u})-connected (iBN D # @). Therefore byremma 2.9
Hi—{u, w} is a chain of blocks frona to v, andH>—{u, b} is a chain of blocks froma to v.
Then by applying (1) okemma 2.§with Hi, ¢, v, w, u asG, a1, a2, ag, a4 in Lemma 2.6
respectively), we have that

(i) if BN C # @ thenH; — {u, w} has a Hamilton pati®; fromc to v.

Similarly, by applying (1) ofLemma 2.6(with Hp, c, v, b, u as G, aj, ap, ag, a4 in
Lemma 2.6respectively), we have that

(i) if BN D # @ thenH, — {u, b} has a Hamilton pat®, from c to v.

By applying Lemma 3.4 (with Hp,c,v,b,u as H,aj, ap,a3,a4 in Lemma3.4
respectively), we have that

(i) if |V(B)NV(D)| > 2thenthereis avertexe V(B)NV (D) suchthaH>—{z, b, u}
has a Hamilton patl®, fromc to v.

(iv) We may assume th&d N C = ¢.

Suppose thaB N C # ¢. BecausgV(B) NV (D)| > [V(B)NnV(C)|, BN D # 4.
Let S = {a, b, u, w}; then by (i) and (ii),P. U P, is a Hamilton cycle inG — &. If
IV(B) N V(D)| > 2 then letS = {a,b,u, w,z}; and by (i) and (iii),P, U Py is a
Hamilton cycle inG — Ss. So|V(B) N V(D)| = 1. Then|V(B) N V(C)|] = 1 since
1< |V(B)NV(©)| < |V(B)NnV(D)|. ThereforgV(G)| = 8. Lety denote the vertex in
V(B) N V(C), and letz denote the vertex iv (B) N V(D). ThenNg (y) = {c, u, v, w}.
Because is not adjacent ta and the degree afis at least 4¢ is adjacent to at least one
element of{b, v, w}. If c is adjacent ta then letS .= {a, b, u, w, y}, if c is adjacent to
b then letS .= {a, u, v, w, y}, and ifc is adjacent tav then letS .= {a, b, u, v, z}. It is
then easy to see th& — S has a Hamilton cycle. This completes the proof of (iv).

By (iv), Ng(w) = T. We may assume thaV (B) N V(D)| > 1; otherwise there is
nothing to prove. We may further assume that

(V) V(B)NV(D)| > 2.

Otherwise |V (B) N V(D)| = 1. In this case, we only need to fit®l. Let z denote the
vertex inV(B) NV (D). ThenNg (2) = {b, c, u, v}. Because is not adjacent ta and the
degree ot is at least 4¢ is adjacent to at least one elementbfv}. If c is adjacent td
then letS; .= {a, u, v, w}, and ifc is adjacent tw then letS; .= {a, b, u, w}. It is easy to
check thalG — & has a Hamilton cycle.

(vi) We may assume thatis not adjacent to.

Suppose is adjacent ta. Let & := {a, b, u, w}; then P, 4 cv is a Hamilton cycle
inG — &. LetS == {a, b, u, w, z}; then by (v) and (iii),P; 4 cv is a Hamilton cycle in
G-S.

(vii) We may further assume thatis not adjacent td.

If cis adjacent td, then by deletinguw, by contractingab, and by contractindgd N D
to a single vertex, we produceka 3-minor of G, a contradiction. So we have (vii).

(viii) We may assume thdt has at least two neighborsh(B) N V(D).

If bis not adjacent ta, then (viii) follows from (vii). SO we may assume thiatis
adjacent tw. Recall thaiHy, v, b, u, ) is planar. By (v),Hz is (4, {b, c, u, v})-connected.
So by Lemma 2.9(with Hz, v, b, u, c as G, az, a2, ag, a4 in Lemma 2.9 respectively),
H2 — {u, ¢} is a chain of blocks fronb to v. Hence we can apply (1) dfemma 2.6with
Ho, v, b, u, c asG, az, ap, ag, a4 in Lemma 2.6 respectively) to find a Hamilton pat
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in Hz — {u, c} betweenv andb. We can also applyemma 3.4(with Hp, v, b, u, ¢, as
G, a1, ap, ag, a4 in Lemma 3.4 respectively) to find a vertex € V(B) N V(D) and a
Hamilton pathQ’ in H> — {u, ¢, Z} betweerv andb. Let §; := {a, u, ¢, w}; thenQ + vb

is a Hamilton cycle irG — ;. Let S5 := {a, u, ¢, w, Z'}; thenQ’ + vb is a Hamilton cycle
in G — Ss. So (viii) holds.

Because is not adjacent t@ and by (vi) and (vii),c is adjacent to none df, b, v}.
Hence,

(ix) ¢ has at least two neighborsh(B) N V(D).

By (viii) and (ix) and by Lemma 3.3 (with Hz,c,v,b,u as H, a;,az,asz,as in
Lemma 3.3respectively), there is somxee {v, ¢} such thatH, — ({b, c, u, v} — {x}) is 2-
connected. Pick a vertex of Ho — ({b, c, u, v} — {x}) such thai’x is an edge anél, can
be drawn in a closed disc so that’ lies on the boundary and x’, {b, c, u, v} — {x} occur
in this cyclic order on the boundary of the disc. Note tkiagxists becauseis adjacent to
none of{a, b, v}. By (1) of Lemma 2.§with Hy — ({b, c, u, v} — {x}), X, X/, {b, c, u, v} —
{x} asG, a1, ap, {as, a4, as} in Lemma 2.6 respectively)H> — ({b, ¢, u, v} — {x}) has a
Hamilton pathR from x to x’. Becauséb has at least two neighbors Wi(B) N V (D),
we can apply (2) oLemma 2.6(with H> — ({b, c, u, v} — {x}), x, X/, {b, ¢, u, v} — {X}
as G, aj, ap, {as, a4, as} in Lemma 2.6 respectively), to find a Hamilton patR’ in
H — ({c, u, v} — {x}) fromx to x". Now letS; := {a, u, w} U ({v, ¢} — {x}); thenR' + xx’
is a Hamilton cycle inG — ;. Let S .= {a, u, w} U ({b, v, ¢} — {x}); thenR + xx’ is a
Hamilton cycle inG — S.

Case 2. For all choices o5andT, we havgSNT| = 1.

ThenSN T = {u}. Leta be the only vertex imA, and letB .= G — ({a}U S). LetC
be a componentds — T and letD .= G — (V(C) U T) such thaiSn V(C)| = 2 and
|SNV(D)| = 1. This can be done becauSe\ V(C) # @ # SN V(D). Letv, w denote
the vertices inrSN V (C), letb denote the only vertex iB N V (D), and letc, d denote the
vertices inV (B) N T. SeeFig. 9.

Let Hy:=G[V(C)U{u,c,d}] and let Hy .= G[V (D) U{u, c,d}]. Becausea is
adjacent tau andT is a 4-cut ofG, c andd are cofacial. Likewisey andw are cofacial.
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Without loss of generality, assume th@ats, ¢, d, u, v, w) is planar. Ther(Hz, ¢, d, u, b)
is planar. We claim that

(i) BNC # 4.

SupposeB N C = ¢. Then one element dfv, w} is not adjacent to some element
of {c, d}; otherwise, by contractings[V (D) U {u}] to a single vertex, we produce a
K3z 3-minor of G, a contradiction. Ifv is not adjacent to some element {@f d}, then
T’ := Ng(v) € F and|SN T’| = 2, a contradiction (since we are in Case 2). Similarly, if
w is not adjacent to some element{ofd}, thenT’ .= Ng(w) € Fand|SNT'| =2,a
contradiction.

(if) We claim thatH; — {u, v, w} is a chain of blocks frons to d.

Otherwise, by (i), letKk be an end block oH; — {u, v, w} and letr be the cut
vertex of H1 — {u, v, w} contained inV(K) such that(V(K) — {r}) n {c,d} = @.
SinceG is 4-connected, each element{of v, w} has a neighbor iv (K) — {r}. Since
(H1,¢,d,u, v, w) is planar, T’ := {a,u,r,w} € F and |SNT’| = 2, a contradiction
(since we are in Case 2). So (ii) holds.

Since(H1, ¢, d, u, v, w) is planar and by (ii), we may apply (1) demma 2.6(with
Hi, c,d,u, v, w asG, a1, ap, az, a4, as in Lemma 2.6 respectively). Hence,

(iii) there is a Hamilton path® in Hy — {u, v, w} fromctod.

We may assume that

(v) Bn D = @ for all choices ofS, T, A, B,C, D with SN V(D)] = 1 and
ISNV(C)| = 2.

SupposeB N D # @ for some choice o5, T, A, B, C, D. Since(Hz, c,d, u,b) is
planar and byemma 2.Qwith Hyp, ¢, d, u, basG, a1, ap, as, a4, respectively)Ho—{b, u}
is a chain of blocks front to d. By applying (1) ofLemma 2.6(with Hp, c,d, u, b as
G, a1, ap, az, a4 in Lemma 2.6 respectively), we find a Hamilton pafR from cto d in
H>—{b, u}. Because the degreelofs at least 4b has at least two neighborsVih(Hz)—{u}.
Therefore, by applying (2) ofemma2.6(with Hp,c,d,u,b as G, a3, ap, a3, a4 in
Lemma 2.6 respectively), we find a Hamilton patQ betweenc andd in Hy — u. Let
S ={a,u,v, w}andletS :={a, b, u, v, w}. ThenP U Q is a Hamilton cycle irG — &
andP U Ris a Hamilton cycle inG — S. This completes the proof of (iv).

Let S == {a, u, v, w}; then by (iii) and (iv),(P + b) + {bc, bd} is a Hamilton cycle in
G — . Next we construc§s. If cis adjacent tal, then letS = {a, b, u, v, w}, and by
(i), P + cdis a Hamilton cycle irG — Ss. So we may assume thats not adjacent tal.

(v) We may assume thdthas at least two neighborsih(B) NV (C).

Otherwise, assume thal has at most one neighbor iW(B) N V(C). Since
(H1, ¢, d, u, v, w) is planar and becauseis not adjacent tal, d is adjacent to both
u and v, u is adjacent tov, u has no neighbor iV (B) N V(C), andd has exactly
one neighbor inv(B) N V(C). LetH’ := Hy — u. Then(H’, ¢, d, v, w) is planar and
H’ is (4, {c,d, v, w})-connected (sinc& is 4-connected). Hence dyemma 2.9(with
H’,d, v, w,c asG, a1, ag, a3, a4 as inLemma 2.9 respectively)H’ — {c, w} is a chain
of blocks fromd to v. By (1) of Lemma 2.6(with H’,d, v, w, ¢ asG, az, ap, ag, a4 in
Lemma 2.6 respectively),H’ — {c, w} contains a Hamilton patf®’ from d to v. Let
S = {a,b,c,u, w}. ThenP’ + dv is a Hamilton cycle i"G — S = H’ — {c, w}. This
proves (V).

(vi) We claim thatH1 — {c, d, u} is a chain of blocks from to w.
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Otherwise, letk denote an end block dfl; — {c, d, u} and letr be the cut vertex
of H1 — {c, d, u} contained inV (K) such that(V(K) — {r}) N {v, w} = @. SinceG is
4-connected and@Hs, ¢, d, u, v, w) is planar, each ofc, d, u} has a neighbor iV (K) —
{r}. Since(Hy, c,d, u, v, w) is planar, T’ := {a,c,u,r} € F. LetC’ be the component
of G — T’ containing{v, w}, and letD’ := G — (V(C') UT’). Then|SNV(D)| = 1,
ISNV(C’)| =2, andB N D’ # @, contradicting (iv). This completes the proof of (vi).

If v is adjacent tow, then letS = {a, b, c,d,u}. By (1) of Lemma 2.6(with
Hi,v, w,c,d,u asG, aj, ap, as, a4, as in Lemma 2.6 respectively), we find a Hamilton
pathP’in Hy — {c, d, u} fromv to w. ThenP’ + vw is a Hamilton cycle irG — S. So we
may assume that

(vii) v is not adjacent tav.

By (vii) and by the same argument as for (v) (by exchanging the rolesasfdv and
by exchanging the roles afandw), we may assume that

(viii) v has at least two neighborsh(B) NV (C).

(ix) We claim thatH1 — {c, u, w} is 2-connected.

Suppose on the contrary thidt — {c, u, w} is not 2-connected. Lel, ..., Jn denote
the end blocks oH; — {c, u, w}, and lety; be the cutvertex oH1 — {c, u, w} contained
in V(J) (fori = 1,...,m). Then foranyi € {1,..., m}, eitherv € V(J)) — {v} or
d € V(J) — {v;}; otherwise, each element ¢¢, u, w} has a neighbor iV (J)) — {v;}
(becausés is 4-connected), and this contradicts the assumption(thatc, d, u, v, w) is
planar. Hencen = 2, and we may assume thiat V (J1) — {v1} andv € V (J) — {v2}. By
(v) and (viii), [V(J1)| = 3 and|V(Jp)| > 3. SinceG is 4-connected and by planarity,
w,U € Ng(V(J) — {v2}) andu,c € Ng(V(J1) — {v1}). Since (Hy, c,d,u, v, w)
is planar, T’ = {a,u,v2,w} € ForT” = {a,u,vi,c} € F.If T" € F, then
ISN T'| = 2, a contradiction (since we are in Case 2). B6 € F. Let C’' be
the component of — T” containing{v, w}, and let D’ .= G — (V(C) UT"). Then
ISNV(D)| =1,|SNV(C)| =2,andB N D’ # @, contradicting (iv). This proves (ix).

So let F denote the outer cycle dfl; — {u,c, w}. Let d’ be a neighbor ofd on
F such thatd’, d, v occur onF in this clockwise order. Ley € V(vFd’) such that
NH,(w) € V(vFy) andNp,(c) € V(yFd). Lete and f be edges of incident with
v andy, respectively. Applyingrheorem 2.3with H; — {c,u, w}, F,d’,d asG, C, x, y
in Theorem 2.3respectively), we find af-Tutte pathP* in Hy — {c, u, w} from d to
d’ such thate, f € E(P*). SinceG is 4-connected, we can show (as in the proof of
Lemma 2. that P* is a Hamilton path irH; — {c,u, w}. Let S := {a, b, ¢, u, w}; then
P* +dd’ is a Hamiltoncycle irG — . O

Proof of Theorem 1.3. Suppose this theorem is not true. IGbe a counter example such
that |V (G)| is minimum. If G contains a contractible edge we considerG/e. Let u
be the vertex resulted from the contractioneofApplying Theorem 3.5we see that for
eachl € {1,...,5}, there is some&§ C V(G/e) such thatu € S, |§| = I, and if
IV(G/e)| > | + 3 thenG/e — § has a Hamilton cycle. Hence, for edclke {1, ..., 6},
if n > | + 3 thenG has a cycle of length — |. By Corollary 2.7 G also has a cycle of
lengthn.

So G contains no contractible edge. Then Biyeorem 3.1 eitherG is the square of
a cycle orG is the line graph of a cyclically 4-edge-connected cubic graph. Bedause
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is a counter examples is the line graph of a cyclically 4-edge-connected cubic graph.
ThereforeG is 4-regular, every vertex is contained in exactly two triangles, and no two
triangles share an edge. Using these properties and by planarity, it is easy to show that every
triangleT in G is contractible, thatis/ T is 4-connected and planar. Letlenote the new

vertex resulted from the contraction ®f Now by Theorem 3.5for eachl € {1, ..., 5},
there is some&g C V(G/T) such thatu € §, |S§| =1, and if V(G/T)| > | + 3 then
G/T — § has a Hamilton cycle. Henc&, has cycles of length—I foreach € {4, ..., 8}

with n—I > 3. ThatG has a cycle of length, n—1, n—2, n—3 follows fromCorollaries 2.7
and2.8 O
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