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Abstract: In 1991 Ferri, Faccio and D’Amico introduced and investigated two numerical tri-
angles, called the DFF and DFFz triangles. Later Trzaska also considered the DFF triangle.
And in 1994 Jeannin generalized the two triangles. In this paper, we focus our attention on the
generalized Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas polynomials,
and several numerical triangles deduced by them.

1. The Generalized Fibonacci and Lucas Polynomials

Let us define a sequence of polynomials {Fn(y)} by the recurrence relation

Fn+1(y) = Fn(y) + yFn−1(y), n ≥ 1, (1.1)

where F0(y) = a, F1(y) = b. Notice that (1.1) yield the Fibonacci and Lucas sequences Fn and
Ln when y = 1 with the initial values a = b = 1, a = 2, b = 1, respectively.

Define

Fn(y) =

n
∑

k=0

fn, ky
k, F (x, y) =

∑

n≥0

Fn(y)xn. (1.2)

By (1.1) and (1.2) it is easy to derive

F (x, y) =
a + (b − a)x

1 − x − x2y
, (1.3)

and

fn, k = [xnyk]F (x, y) = [xnyk](a + (b − a)x)
∑

k≥0

x2kyk

(1 − x)k+1

= a

(

n − k

n − 2k

)

+ (b − a)

(

n − k − 1

n − 2k − 1

)

= a

(

n − k − 1

k − 1

)

+ b

(

n − k − 1

k

)

,

which satisfies the recurrence fn+1, k = fn, k + fn−1, k−1, with the initial conditions f0, 0 =
a, f1, 0 = b.
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Let an+1, k = f2n+2, n−k+1 and bn, k = f2n+1, n−k, then we have

an+1, k = a

(

n + k

2k

)

+ b

(

n + k

2k − 1

)

, bn, k = a

(

n + k

2k + 1

)

+ b

(

n + k

2k

)

,

which generate two lower triangles

Table 1.1 Table 1.2
n/k 0 1 2 3 4

0 a
1 a b
2 a a + 2b b
3 a 3a + 3b a + 4b b
4 a 6a + 4b 5a + 10b a + 6b b

n/k 0 1 2 3 4

0 b
1 a + b b
2 2a + b a + 3b b
3 3a + b 4a + 6b a + 5b b
4 4a + b 10a + 10b 6a + 15b a + 7b b

Theorem 1.1 Let A
(i)
n×n = (an+k+i+1, k+i+1)0≤k≤n and B

(i)
n×n = (bn+k+i, k+i)0≤k≤n, then

|A
(i)
n×n| = |B

(i)
n×n| = 2(

n+1

2 )bn+1.

Proof. We only prove the second statement. Note that

bn+k+i, k+i = a

(

2n + 2k + 2i

n − 1

)

+ b

(

2n + 2k + 2i

n

)

is a polynomial in k of degree n with the coefficient of the highest term 2nb
n! , according to the

Tepper identity [2, 8],

n
∑

k=0

(−1)n−k

(

n

k

)

(α − k)r

n!
=

{

0 if 0 ≤ r < n,

1 if r = n.

We have
n

∑

k=0

(−1)n−k

(

n

k

)

bn+k+i, k+i

=

n
∑

k=0

(−1)n−k

(

n

k

)(

a

(

2n + 2k + 2i

n − 1

)

+ b

(

2n + 2k + 2i

n

))

=

n
∑

k=0

(−1)n−k

(

n

k

)(

2nb

n!
kn + the terms of lower orders

)

= 2nb.

Then the results hold by trivial computations on determinant. �

In the special case a = b = 1,

an, k =

(

n + k

2k

)

, bn, k =

(

n + k + 1

2k + 1

)

.

Tables 1.1 and 1.2 reduce to the triangles DFF [3, 11] and DFFz [3, 4] respectively.

Table 1.3 (DFF ) Table 1.4 (DFFz) Table 1.5
n/k 0 1 2 3 4

0 1
1 1 1
2 1 3 1
3 1 6 5 1
4 1 10 15 7 1

n/k 0 1 2 3 4

0 1
1 2 1
2 3 4 1
3 4 10 6 1
4 5 20 21 8 1

n/k 0 1 2 3 4

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
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It is well-known that Fn+1 is the number of (0, 1)−sequences of length n without successive
ones. It is easy to show that an, k (bn, k) is the number of such sequences of length 2n − 1(2n)
containing exact n − k ones, which illustrates that the row sums of Table 1.3 (Table 1.4) are
equal to the Fibonacci numbers with even(old) subscripts [3, 4]. In fact Tables 1.3 and 1.4 can
be obtained directly from the classical Pascal triangle displayed in Table 1.5, where Table 1.3
is just the even columns and Table 1.4 the odd columns of the Pascal triangle. Note that the
un-bared and bared numbers in Pascal triangles are respectively the numbers of the diagonals
of Tables 1.3 and 1.4, which illustrates that the sums of the diagonals are the powers of 2 [3, 4].

Theorem 1.2 Let A = (an, k)0≤k≤n and B = (bn, k)0≤k≤n, then we have

A−1 =

(

(−1)n−k 2k + 1

2n + 1

(

2n + 1

n − k

))

0≤k≤n

(1.4)

B−1 =

(

(−1)n−k k + 1

n + 1

(

2n + 2

n − k

))

0≤k≤n

, (1.5)

where A−1 is the inverse of the matrix A.

Proof. It suffices to prove (1.4) that

n
∑

k=0

(−1)m−k 2m + 1

2k + 1

(

2k + 1

k − m

)(

n + k

2k

)

= δmn, (1.6)

where δmn is the Kronecker symbol.
It is easy to see that (1.6) holds for m ≥ n. In case m < n, we have

n
∑

k=0

(−1)m−k 2m + 1

2k + 1

(

2k + 1

k − m

)(

n + k

2k

)

=

n
∑

k=0

(−1)m−k 2m + 1

m + k + 1

(

2k

k + m

)(

n + k

2k

)

=

n
∑

k=0

(−1)m−k 2m + 1

m + k + 1

(

n + k

m + k

)(

n − m

k − m

)

=
n

∑

k=0

(−1)m+k 2m + 1

n − m

(

n + k

m + k + 1

)(

n − m

k − m

)

=
n

∑

k=0

2m + 1

m − n

(

m − n

m + k + 1

)(

n − m

n − k

)

=
2m + 1

m − n

(

0

m + n + 1

)

= 0.

Then (1.4) holds and (1.5) follows in the same way. �

In the special case a = 2, b = 1, we have

an, k =

(

n + k

2k

)

+

(

n + k − 1

2k

)

=
2n

n + k

(

n + k

2k

)

,

bn, k =

(

n + k + 1

2k + 1

)

+

(

n + k

2k + 1

)

=
2n + 1

2k + 1

(

n + k

2k

)

,
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with a0, 0 = 2. And Table 1.1 and 1.2 yield the triangles,

Table 1.6 Table 1.7
n/k 0 1 2 3 4

0 2
1 2 1
2 2 4 1
3 2 9 6 1
4 2 16 20 8 1

n/k 0 1 2 3 4

0 1
1 3 1
2 5 5 1
3 7 14 7 1
4 9 30 27 9 1

It is also well-known that Ln is the number of (0, 1)−sequences of length n without successive
ones, where the first and last components of the sequences are considered to be adjacent. It is
easy to show that an, k (bn, k) is the number of such sequences of length 2n (2n− 1) containing
exact n− k ones, which illustrates the row sums of Table 1.6 (Table 1.7) are equal to the Lucas
numbers with even (odd) subscripts.

Theorem 1.3 Let A = (an+1, k+1)0≤k≤n and B = (bn+1, k+1)0≤k≤n, then we have

A−1 =

(

(−1)n−k

(

2n + 2

n − k

))

0≤k≤n

B−1 =

(

(−1)n−k

(

2n + 1

n − k

))

0≤k≤n

.

Proof. This proof is similar to the proof of Theorem (1.2) so it is omitted. �

2. The Generalized Pell and Pell-Lucas Polynomials

Let us define a sequence of polynomials {Pn(y)} by the recurrence relation

Pn+1(y) = (1 + y)Pn(y) + y2Pn−1(y), n ≥ 1, (2.1)

where P0(y) = 1, P1(y) = 1 + y, which generates the Pell sequence {Pn} when y = 1.
Define

Pn(y) =

n
∑

k=0

Pn, n−ky
k, P (x, y) =

∑

n≥0

Pn(y)xn. (2.2)

By (2.1) and (2.2) it is easy to derive

P (x, y) =
1

1 − x − xy − x2y2
, (2.3)

and

Pn, k = [xnyn−k]P (x, y) = [xnyn−k]
∑

r≥0

xr

(1 − xy − x2y2)r+1

= [xnyn−k]
∑

r, m≥0

∑

i0+i1+···+ir=m

r
∏

j=0

Fij x
m+rym

=
∑

i0+i1+···+ik=n−k

k
∏

j=0

Fij , (2.4)
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which satisfies the recurrence Pn+1, k = Pn, k + Pn, k−1 + Pn−1, k, with the initial conditions
P0, 0 = P1, 0 = P1, 1 = 1.

From (2.3), we can deduce another formula for Pn, k,

Pn, k = [xnyn−k]P (x, y) = [xnyn−k]
∑

r≥0

(xy)r(1 + xy)r

(1 − x)r+1

= [xnyn−k]
∑

r, m≥0

r
∑

i=0

(

r

i

)(

r + m

m

)

xm+r+iyr+i

=
∑

r+i=n−k

(

r

i

)(

r + k

k

)

=

[(n−k)/2]
∑

i=0

(

n − i

i

)(

n − 2i

k

)

. (2.5)

By (2.4) and (2.5), we have the following interesting identity.

∑

i0+i1+···+ik=n−k

k
∏

j=0

Fij =

[(n−k)/2]
∑

i=0

(

n − i

i

)(

n − 2i

k

)

.

Now we give a combinatorial interpretation for Pn, k, that is the following:

Theorem 2.1 For any integer n, k ≥ 0, Pn−k+1, k is the number of (0, 1, 2)−sequences of

length n with k 2’s but without subsequences 11, 12, 21, 22.

Proof. Let Sn, k be the desired number. Consider the last component xn of such sequences in
three cases, i.e., xn = 0, 1 or 2, we have

Sn+1, k = Sn, k + Sn−1, k + Sn−1, k−1, (n ≥ 1),

with the initial conditions S0, 0 = 1, S1, 0 = 2, S1, 1 = 1. It is easy to verify that Pn−k+1, k also
satisfies this recurrence with the same initial values, so it must equal Sn, k. �

Notice that Pn, 0 = Fn, and Pn, k leads to the triangle

Table 2.1
n/k 0 1 2 3 4 5

0 1
1 1 1
2 2 2 1
3 3 5 3 1
4 5 10 9 4 1
5 8 20 22 14 5 1

Theorem 2.2 Let P
(i)
n×n = (Pn+k+i, k+i)0≤k≤n, then

|P
(i)
n×n| = 1. (2.6)

Proof. It suffices to show that

n
∑

k=0

(−1)n−k

(

n

k

)

Pn+k+i, k+i = 1, (2.7)
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Note that

Pn+k+i, k+i = [xn+k+iyn]P (x, y) = [xn+k+i]
xk+i

(1 − x − x2)k+i+1
= [xn]

1

(1 − x − x2)k+i+1
.

Then by the Cauchy Residue Theorem (for details see [2]), we get
n

∑

k=0

(−1)n−k

(

n

k

)

Pn+k+i, k+i =

n
∑

k=0

res
u

(u − 1)n

uk+1
res
x

(1 − x − x2)−k−i−1

xn+1

= res
x

(1 − x − x2)−i−1

xn+1
(

1

1 − x − x2
− 1)n

= res
x

(1 + x)n

x(1 − x − x2)n+i+1

= 1.

Thus the result holds. �

Now let us define another sequence of polynomials {Qn(y)} by the recurrence relation

Qn+1(y) = (1 + y)Qn(y) + y2Qn−1(y), n ≥ 1, (2.8)

where Q0(y) = 1, Q1(y) = 1 + 2y, which generates the Pell-Lucas sequence {2Qn} when y = 1.
Define

Qn(y) =

n
∑

k=0

Qn, n−ky
k, Q(x, y) =

∑

n≥0

Qn(y)xn. (2.9)

By (2.8) and (2.9) it is easy to derive

Q(x, y) =
1 + xy

1 − x − xy − x2y2
, (2.10)

and

Qn, k = [xnyn−k]Q(x, y) = [xnyn−k]
∑

r≥0

(1 + xy)xr

(1 − xy − x2y2)r+1

= [xnyn−k]
∑

r, m≥0

∑

i0+i1+···+ir=m

Fi0+1

r
∏

j=1

Fij x
m+rym

=
∑

i0+i1+···+ik=n−k

Fi0+1

k
∏

j=1

Fij , (2.11)

which satisfies the recurrence Qn+1, k = Qn, k + Qn, k−1 + Qn−1, k, with the initial conditions
Q0, 0 = 1, Q1, 0 = 2, Q1, 1 = 1.

From (2.10), we can deduce another formula for Qn, k,

Qn, k = [xnyn−k]Q(x, y) = [xnyn−k]
∑

r≥0

(xy)r(1 + xy)r+1

(1 − x)r+1

= [xnyn−k]
∑

r, m≥0

r+1
∑

i=0

(

r + 1

i

)(

r + m

m

)

xm+r+iyr+i

=
∑

r+i=n−k

(

r + 1

i

)(

r + k

k

)

=

[(n−k)/2]
∑

i=0

(

n − k − i + 1

i

)(

n − i

k

)

. (2.12)
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By (2.11) and (2.12), we obtain the following identity.

∑

i0+i1+···+ik=n−k

Fi0+1

k
∏

j=1

Fij =

[(n−k)/2]
∑

i=0

(

n − k − i + 1

i

)(

n − i

k

)

.

Notice that Qn, 0 = Fn+1, and (2.11) implies Qn, k = Pn, k + Pn−1, k . We can display
{Qn, k} in a triangle

Table 2.2
n/k 0 1 2 3 4 5

0 1
1 2 1
2 3 3 1
3 5 7 4 1
4 8 15 12 5 1
5 13 30 31 18 6 1

Theorem 2.3 Let Q
(i)
n×n = (Qn+k+i, k+i)0≤k≤n, then

|Q
(i)
n×n| = 1. (2.13)

Proof. This proof is similar to the proof of Theorem (2.2) so it is omitted. �

Considering the sums and alternating sums of the diagonals of Table 2.2, we obtain the
following.

Theorem 2.4 For any integers n ≥ 2k ≥ 0, we get

∑

k≥0

Qn−k, k = 2n, (2.14)

∑

k≥0

(−1)kQn−k, k = 2 − δ0n. (2.15)

Proof. It suffices to show (2.14). By (2.12) and the Cauchy Residue Theorem, we have

∑

k≥0

Qn−k, k =
∑

k≥0

∑

r≥0

(

r + 1

n − 2k − r

)(

r + k

k

)

=
∑

k≥0

∑

r≥0

res
x

(1 + x)r+1

xn−2k−r+1
res

y

(1 − y)−r−1

yk+1

=
∑

r≥0

res
x

(1 + x)r+1

xn−r+1
(1 − x2)−r−1

=
∑

r≥0

res
x

xr(1 − x)−r−1

xn+1

= res
x

(1 − 2x)−1

xn+1
= 2n.

Then (2.14) holds and (2.15) follows in the same way. �
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3. The Generalized Jacobsthal and Jaco-Lucas Polynomials

Let us define a sequence of polynomials {Jn(y)} by the recurrence relation

Jn+1(y) = Jn(y) + (1 + y)Jn−1(y), n ≥ 1, (3.1)

where J0(y) = J1(y) = 1, which generates the Jacobsthal sequence {2Jn} when y = 1. Other
references related to Jacobsthal and Jaco-Lucas Polynomials, see [1, 5, 6, 9, 10].

Define

Jn(y) =
n

∑

k=0

Jn, ky
k, J(x, y) =

∑

n≥0

Jn(y)xn. (3.2)

By (3.1) and (3.2) it is easy to derive

J(x, y) =
1

1 − x − x2 − x2y
, (3.3)

and

Jn, k = [xnyk]J(x, y) = [xnyk]
∑

r≥0

x2ryr

(1 − x − x2)r+1

= [xnyk]
∑

r, m≥0

∑

i0+i1+···+ir=m

r
∏

j=0

Fij x
m+2ryr

=
∑

i0+i1+···+ik=n−2k

k
∏

j=0

Fij , (3.4)

which satisfies the recurrence Jn+1, k = Jn, k + Jn−1, k + Jn−1, k−1, with the initial conditions
J0, 0 = J1, 0 = 1, J1, 1 = 0.

From (3.3), we can deduce another formula for Jn, k,

Jn, k = [xnyk]J(x, y) = [xnyk]
∑

r≥0

x2r(1 + y)r

(1 − x)r+1

= [xnyk]
∑

r, m≥0

r
∑

i=0

(

r

i

)(

r + m

m

)

xm+2ryi

=
∑

m+2r=n

(

r

k

)(

r + m

m

)

=

[n/2]
∑

i=0

(

n − i

i

)(

i

k

)

. (3.5)

By (3.4) and (3.5), we have the following interesting identity.

∑

i0+i1+···+ik=n−2k

k
∏

j=0

Fij =

[n/2]
∑

i=0

(

n − i

i

)(

i

k

)

.

Note that by (2.4) and (3.4), Jn, k = Pn−k, k, so Jn+1, k also counts the number of (0, 1, 2)-
sequences of length n with k 2’s, but without subsequences 11, 12, 21, 22. Also J2n, k and J2n+1, k
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produce the triangles

Table 3.1 Table 3.2
n/k 0 1 2 3 4

0 1
1 2 1
2 5 5 1
3 13 20 9 1
4 34 71 51 14 1

n/k 0 1 2 3 4

0 1
1 3 2
2 8 10 3
3 21 38 22 4
4 55 130 111 40 5

Theorem 3.1 For any integer n, k ≥ 0, we have

n
∑

i=0

(−1)n−i

(

n

i

)

Jn+2k+2i, k+i = 1.

Proof. This proof is similar to the proof of Theorem (2.2), so it is omitted. �

Now let us define another sequence of polynomials {JLn(y)} by the recurrence relation

JLn+1(y) = JLn(y) + (1 + y)JLn−1(y), n ≥ 1, (3.6)

where JL0(y) = 2, JL1(y) = 1, which generates the Jaco-Lucas sequence {JLn} when y = 1.
Define

JLn(y) =

n
∑

k=0

JLn, ky
k, JL(x, y) =

∑

n≥0

JLn(y)xn. (3.7)

By (3.6) and (3.7) it is easy to deduce

JL(x, y) =
2 − x

1 − x − x2 − x2y
, (3.8)

and

JLn, k = [xnyk]JL(x, y) = [xnyk]
∑

r≥0

(2 − x)x2ryr

(1 − x − x2)r+1

= [xnyk]
∑

r, m≥0

∑

i0+i1+···+ir=m

Li0

r
∏

j=1

Fij x
m+2ryr

=
∑

i0+i1+···+ik=n−2k

Li0

k
∏

j=1

Fij , (3.9)

which satisfies the recurrence JLn+1, k = JLn, k+JLn, k−1+JLn−1, k, with the initial conditions
JL0, 0 = 2, JL1, 0 = 1, JL1, 1 = 0.
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From (3.8), we can deduce another formula for JLn, k for n ≥ 1,

JLn, k = [xnyk]JL(x, y) = [xnyk]
∑

r≥0

(2 − x)x2r(1 + y)r

(1 − x)r+1

= [xnyk]
∑

r, m≥0

r
∑

i=0

(

r

i

)(

r + m

m

)

xm+2ryi(2 − x)

=
∑

m+2r=n

(

2r

k

)(

r + m

m

)

−
∑

m+2r+1=n

(

r

k

)(

r + m

m

)

=

[n/2]
∑

i=0

((

n − i

i

)

+

(

n − i − 1

i − 1

))(

i

k

)

=

[n/2]
∑

i=0

n

n − i

(

n − i

i

)(

i

k

)

. (3.10)

By (3.9) and (3.10), we obtain the following identity for n ≥ 1, k ≥ 0,

∑

i0+i1+···+ik=n−2k

Li0

k
∏

j=1

Fij =

[n/2]
∑

i=0

n

n − i

(

n − i

i

)(

i

k

)

.

Notice that JLn, 0 = Ln, and JL2n, k, JL2n+1, k lead to the triangles.

Table 3.3 Table 3.4
n/k 0 1 2 3 4

0 2
1 3 2
2 7 8 2
3 18 30 15 2
4 47 104 80 24 2

n/k 0 1 2 3 4

0 1
1 4 3
2 11 15 5
3 29 56 35 7
4 76 189 171 66 9

Theorem 3.2 For any integer n, k ≥ 0, we have

n
∑

i=0

(−1)n−i

(

n

i

)

JLn+2k+2i, k+i = 2.

Proof. This proof is similar to the proof of Theorem (2.2) so it is omitted. �

Similar to Theorem (2.1), we can also give a combinatorial interpretation for JLn, k, that is
the following:

Theorem 3.3 For any integer n, k ≥ 0, JLn, k is the number of (0, 1, 2)−sequences of length

n with k 2’s, but without subsequences 11, 12, 21, 22, where the first and last components of

the sequences are considered to be adjacent.

Proof. Let Tn, k be the desired number. Consider the last component xn of such sequences in
three cases, i.e., xn = 0, 1 or 2, we have

Tn+1, k = Jn+1, k + Jn−1, k + Jn−1, k−1, (n ≥ 1),

with the initial values T0, 0 = 2, T1, 0 = 1, T1, 1 = 0.
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By (3.3) and (3.8), we have JLn+1, k = 2Jn+1, k − Jn, k = Jn+1, k + Jn−1, k + Jn−1, k−1, and
JL0, 0 = 2, JL1, 0 = 1, JL1, 1 = 0, so JLn, k must coincide with Tn, k. �
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