SYMPLECTIC GRAPHS AND THEIR AUTOMORPHISMS

ZHONGMING TANG AND ZHE-XIAN WAN

ABSTRACT. The general symplectic graph $Sp(2\nu, q)$ is introduced. It is shown that $Sp(2\nu, q)$ is strongly regular. Its parameters are computed, its chromatic number and group of graph automorphisms are also determined.

1. INTRODUCTION

Let \mathbb{F}_q be a finite field of any characteristic and $\nu \geq 1$ an integer. Let

$$\mathbb{F}_{q}^{(2\nu)} = \{ (a_1, \dots, a_{2\nu}) : a_i \in \mathbb{F}_{q}, i = 1, \dots, 2\nu \}.$$

be the 2ν -dimensional row vector space over \mathbb{F}_q . For any $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q^{(2\nu)}$, we denote the subspace of $\mathbb{F}_q^{(2\nu)}$ generated by $\alpha_1, \ldots, \alpha_n$ by $[\alpha_1, \ldots, \alpha_n]$. Thus, if $\alpha \neq 0 \in \mathbb{F}_q^{(2\nu)}$ then $[\alpha]$ is an one dimensional subspace of $\mathbb{F}_q^{(2\nu)}$ and $[\alpha] = [k\alpha]$ for any $k \in \mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}$.

Let K be a $2\nu \times 2\nu$ nonsingular alternate matrix over \mathbb{F}_q . The symplectic graph relative to K over \mathbb{F}_q is the graph with the set of one dimensional subspaces of $\mathbb{F}_q^{(2\nu)}$ as its vertex set and with the adjacency defined by

 $[\alpha] \sim [\beta]$ if and only if $\alpha K^t \beta \neq 0$, for any $\alpha \neq 0, \beta \neq 0 \in \mathbb{F}_q^{(2\nu)}$,

where $[\alpha] \sim [\beta]$ means that $[\alpha]$ and $[\beta]$ are adjacent. Since any two $2\nu \times 2\nu$ nonsingular alternate matrices over \mathbb{F}_q are cogredient, any two symplectic graphs relative to two different $2\nu \times 2\nu$ nonsingular alternate matrices over \mathbb{F}_q are isomorphic. Thus we can assume that

and consider only the symplectic graph relative to the above K over \mathbb{F}_q , which will be denoted by $Sp(2\nu, q)$.

When q = 2, the special case $Sp(2\nu, 2)$ of the graph $Sp(2\nu, q)$ was studied previously by Rotman [4], Rotman and Weichsel [5], Godsil and Royle [2, 3], etc. In the present paper we study the general case $Sp(2\nu, q)$. In Section 2, we show that

Key words and phrases. symplectic graphs, chromatic numbers, automorphisms.

Both Authors are Supported by the National Natural Science Foundation of China.

 $Sp(2\nu, q)$ is strongly regular and compute its parameters. We also prove that the chromatic number of $Sp(2\nu, q)$ is $q^{\nu} + 1$. Section 3 is devoted to discuss the group of automorphisms $\operatorname{Aut}(Sp(2\nu, q))$ of the graph. The structure of this group depends on q and ν . When q = 2, $\operatorname{Aut}(Sp(2\nu, 2))$ is isomorphic to the symplectic group of degree 2ν over \mathbb{F}_2 . When q > 2, $\operatorname{Aut}(Sp(2\nu, q))$ is the product of two subgroups which are identified clearly (cf. Theorem 3.4).

2. Strongly Regularity and Chromatic Numbers of Symplectic Graphs

For any subspace V of $\mathbb{F}_q^{(2\nu)}$, we denote the subspace of $\mathbb{F}_q^{(2\nu)}$ formed by all $\beta \in \mathbb{F}_q^{(2\nu)}$ such that $\alpha K^t \beta = 0$ for all $\alpha \in V$ by V^{\perp} . Then $[\alpha] \sim [\beta]$ if and only if $\beta \notin [\alpha]^{\perp}$.

Denote the vertex set of the graph $Sp(2\nu, q)$ by $V(Sp(2\nu, q))$. We first show that $Sp(2\nu, q)$ is strongly regular.

Theorem 2.1. $Sp(2\nu, q)$ is a strongly regular graph with parameters

$$\left(\frac{q^{2\nu}-1}{q-1}, q^{2\nu-1}, q^{2\nu-2}(q-1), q^{2\nu-2}(q-1)\right)$$

and eigenvalues $q^{2\nu-1}, q^{\nu-1}$ and $-q^{\nu-1}$.

Proof. As $|\mathbb{F}_q^{(2\nu)}| = q^{2\nu}$, it follows that $|V(Sp(2\nu,q))| = \frac{q^{2\nu}-1}{q-1}$. For any $[\alpha] \in V(Sp(2\nu,q))$, since dim $([\alpha]^{\perp}) = 2\nu - 1$, we see that the degree of $[\alpha]$ which is just the number of one dimensional subspaces $[\beta]$ such that $\beta \notin [\alpha]^{\perp}$, is $\frac{q^{2\nu}-q^{2\nu-1}}{q-1} = q^{2\nu-1}$.

Let $[\alpha], [\beta]$ be any two different vertices of $Sp(2\nu, q)$ which are adjacent with each other or not. Then $\dim([\alpha, \beta]^{\perp}) = 2\nu - 2$. Note that a vertex $[\gamma]$ is adjacent with both $[\alpha]$ and $[\beta]$ is equivalent to that $\gamma \notin [\alpha]^{\perp} \cup [\beta]^{\perp}$. But

$$|[\alpha]^{\perp} \cup [\beta]^{\perp}| = |[\alpha]^{\perp}| + |[\beta]^{\perp}| - |[\alpha, \beta]^{\perp}|.$$

Hence the number of vertices which are adjacent with both $[\alpha]$ and $[\beta]$ is $\frac{q^{2\nu}-2q^{2\nu-1}+q^{2\nu-2}}{q-1} = q^{2\nu-2}(q-1)$. Therefore $Sp(2\nu,q)$ is a strongly regular graph with parameter

$$\left(\frac{q^{2\nu}-1}{q-1}, q^{2\nu-1}, q^{2\nu-2}(q-1), q^{2\nu-2}(q-1)\right).$$

By the same arguments as in [3, Section 10.2], we get that the eigenvalues of $Sp(2\nu, q)$ are $q^{2\nu-1}, q^{\nu-1}$ and $-q^{\nu-1}$.

Let $n \geq 2$. We say that a graph X is *n*-partite if there are subsets X_1, \ldots, X_n of the vertex set V(X) of X such that $V(X) = X_1 \cup \cdots \cup X_n$, where $X_i \cap X_j = \emptyset$ for all $i \neq j$, and that there is no edge of X joining two vertices of the same subset. We are going to show that $Sp(2\nu, q)$ is $(q^{\nu} + 1)$ -partite. We need some results about subspaces of $\mathbb{F}_q^{(2\nu)}$. A subspace V of $\mathbb{F}_q^{(2\nu)}$ is called *totally isotropic* if $V \subseteq V^{\perp}$. Then totally isotropic subspaces of $\mathbb{F}_q^{(2\nu)}$ are of dimension $\leq \nu$ and there exist totally isotropic subspaces of dimension ν which are called *maximal totally isotropic subspaces*, cf. [6, Corollary 3.8].

The following lemma is due to Dye[1].

Lemma 2.2. There exist maximal totally isotropic subspaces V_i , $i = 1, ..., q^{\nu} + 1$, of $\mathbb{F}_q^{(2\nu)}$ such that

$$\mathbb{F}_q^{(2\nu)} = V_1 \cup \dots \cup V_{q^{\nu}+1}$$

where $V_i \cap V_j = \{0\}$ for all $i \neq j$.

Proposition 2.3. $Sp(2\nu, q)$ is $(q^{\nu} + 1)$ -partite. That is, there exist subsets $X_1, \ldots, X_{q^{\nu}+1}$ of $V(Sp(2\nu, q))$ such that

$$V(Sp(2\nu,q)) = X_1 \cup \cdots \cup X_{q^{\nu}+1},$$

where $X_i \cap X_j = \emptyset$ for all $i \neq j$, and there is no edge of $Sp(2\nu, q)$ joining two vertices of the same subset. Moreover, the subsets $X_1, \ldots, X_{q^{\nu+1}}$ can be so chosen that for any two disinct indices i and j, every $\alpha \in X_i$ is adjacent with exactly $q^{\nu-1}$ vertices in X_j .

Proof. Let $\mathbb{F}_q^{(2\nu)} = V_1 \cup \cdots \cup V_{q^{\nu}+1}$ as in 2.2. Set $X_i = \{ [\alpha] : \alpha \neq 0 \in V_i \}, i = 1, \dots, q^{\nu} + 1$. Then

$$V(Sp(2\nu,q)) = X_1 \cup \cdots \cup X_{q^{\nu}+1}, X_i \cap X_j = \emptyset$$
, for all $i \neq j$.

As V_i is totally isotropic, we see that there is no edge joining any two vertices in X_i . Thus $Sp(2\nu, q)$ is $(q^{\nu} + 1)$ -partite. For any $i \neq j$, let $[\alpha] \in X_i$. Since V_j is maximal totally isotropic of dimension ν , it follows that $\alpha \notin V_j = V_j^{\perp}$ and $\dim([\alpha]^{\perp} \cap V_j) = \dim([\alpha, V_j]^{\perp}) = \nu - 1$. Note that, for any $[\beta] \in X_j$, $[\beta]$ is adjacent with $[\alpha]$ if and only if $\beta \in V_j \setminus ([\alpha]^{\perp} \cap V_j)$. Hence the number of vertices in X_j which is adjacent with $[\alpha]$ is $\frac{q^{\nu}-1}{q-1} - \frac{q^{\nu-1}-1}{q-1} = q^{\nu-1}$. \Box

Now we can compute the chromatic number of $Sp(2\nu, q)$.

Theorem 2.4. $\chi(Sp(2\nu, q)) = q^{\nu} + 1.$

Proof. By 2.3, we see that $\chi(Sp(2\nu,q)) \leq q^{\nu} + 1$. Note that $\chi(Sp(2\nu,q))$ is the minimal *n* such that $Sp(2\nu,q)$ is *n*-partite. Suppose that $Sp(2\nu,q)$ is *n*-partite. Then there exist subsets Y_1, \ldots, Y_n of $V(Sp(2\nu,q))$ such that

$$V(Sp(2\nu,q)) = Y_1 \cup \cdots \cup Y_n, Y_i \cap Y_j = \emptyset$$
, for all $i \neq j$,

and there is no edge joining any two vertices in the same Y_i for i = 1, ..., n. We want to show that $n \ge q^{\nu} + 1$. Suppose that $n < q^{\nu} + 1$. From the above equality, we have $\sum_{i=1}^{n} |Y_i| = \frac{q^{2\nu}-1}{q-1} = (\frac{q^{\nu}-1}{q-1})(q^{\nu}+1)$. Then there exists some *i* such that $|Y_i| > \frac{q^{\nu}-1}{q-1}$. Let W_i be the subspace of $\mathbb{F}_q^{(2\nu)}$ generated by all α such that $[\alpha] \in Y_i$. Then W_i is a totally isotropic subspace, hence dim $W_i \le \nu$. This turns out $|Y_i| \le \frac{q^{\nu}-1}{q-1}$, a contradiction. Hence $\chi(Sp(2\nu,q)) = q^{\nu} + 1$.

3. Automorphisms of Symplectic Graphs

We recall that a $2\nu \times 2\nu$ matrix T is called a symplectic matrix (or generalized symplectic matrix) of order 2ν over \mathbb{F}_q if $TK^tT = K$ (or $TK^tT = kK$ for some $k \in \mathbb{F}_q^*$, respectively). The set of symplectic matrices (or generalized symplectic matrices) of order 2ν over \mathbb{F}_q forms a group with respect to the matrix multiplication, which is called the symplectic group (or generalized symplectic group, respectively,) of degree 2ν over \mathbb{F}_q and denoted by $Sp_{2\nu}(\mathbb{F}_q)$ (or $GSp_{2\nu}(\mathbb{F}_q)$). The center of $Sp_{2\nu}(\mathbb{F}_q)$ consists of the identity matrix E and -E, and the factor group $Sp_{2\nu}(\mathbb{F}_q)/\{E, -E\}$ is called the projective symplectic group of degree 2ν over \mathbb{F}_q and denoted by $PSp_{2\nu}(\mathbb{F}_q)$. The center of $GSp_{2\nu}(\mathbb{F}_q)$ consists of all kE, where $k \in \mathbb{F}_q^*$, and the factor group of $GSp_{2\nu}(\mathbb{F}_q)$ with respect to its center is called the projective generalized symplectic group of degree 2ν over \mathbb{F}_q and denoted by $PGSp_{2\nu}(\mathbb{F}_q)$. Clearly, $PGSp_{2\nu}(\mathbb{F}_q) \cong$ $PSp_{2\nu}(\mathbb{F}_q)$, and when q = 2, $GSp_{2\nu}(\mathbb{F}_2) = Sp_{2\nu}(\mathbb{F}_2)$.

Proposition 3.1. Let T be a $2\nu \times 2\nu$ nonsingular matrix over \mathbb{F}_q and

$$\sigma_T: V(Sp(2\nu, q)) \to V(Sp(2\nu, q))$$
$$[\alpha] \mapsto [\alpha T].$$

Then

- (1) $T \in GSp_{2\nu}(\mathbb{F}_q)$ if and only if $\sigma_T \in Aut(Sp(2\nu,q))$. In particular, when $q = 2, T \in Sp_{2\nu}(\mathbb{F}_2)$ if and only if $\sigma_T \in Aut(Sp(2\nu,2))$
- (2) For any $T_1, T_2 \in GSp_{2\nu}(\mathbb{F}_q)$, $\sigma_{T_1} = \sigma_{T_2}$ if and only if $T_1 = kT_2$ for some $k \in \mathbb{F}_q$;

Proof. It is clear that σ_T is an one-one correspondence from $V(Sp(2\nu, q))$ to itself.

(1) First assume $T \in GSp_{2\nu}(\mathbb{F}_q)$. Then $TK^tT = kK$ for some $k \in \mathbb{F}_q^*$. For any $[\alpha], [\beta] \in V(Sp(2\nu, q))$, since $\alpha K^t\beta = k^{-1}(\alpha T)K^t(\beta T)$, $[\alpha] \sim [\beta]$ if and only if $\sigma_T([\alpha]) \sim \sigma_T([\beta])$, hence $\sigma_T \in \operatorname{Aut}(Sp(2\nu, q))$.

Conversely, assume $\sigma_T \in \operatorname{Aut}(Sp(2\nu,q))$. Then, for any $\alpha, \beta \neq 0 \in \mathbb{F}_q^{(2\nu)}, \alpha K^t\beta = 0$ if and only if $\alpha(TK^tT)^t\beta = 0$. Hence, for any $\alpha \neq 0 \in \mathbb{F}_q^{(2\nu)}$, the two systems of linear equations $(\alpha K)^tX = 0$, $(\alpha TK^tT)^tX = 0$ have the same solutions. But $\operatorname{rank}(\alpha K) = \operatorname{rank}(\alpha TK^tT) = 1$, we see that $\alpha K = k(\alpha TK^tT)$ for some $k \in \mathbb{F}_q^*$, which depends on α . Take $\alpha = (1, 0, \dots, 0), (0, 1, \dots, 0), \dots, (0, 0, \dots, 1)$, we get that $K = \operatorname{diag}(k_1, k_2, \dots, k_{2\nu})TK^tT$, for some $k_1, k_2, \dots, k_{2\nu} \in \mathbb{F}_q^*$. Take $\alpha = (1, 1, \dots, 1)$, we see that $k_1 = k_2 = \dots = k_{2\nu}$, hence $K = k_1TK^tT$.

(2) It is clear that $\sigma_{T_1} = \sigma_{T_2}$ if $T_1 = kT_2$ for some $k \in \mathbb{F}_q^*$. Conversely, suppose that $\sigma_{T_1} = \sigma_{T_2}$. Then, for any $\alpha \neq 0 \in \mathbb{F}_q^{(2\nu)}$, $\alpha T_1 = k\alpha T_2$ for some $k \in \mathbb{F}_q^*$. Take $\alpha = (1, 0, \dots, 0), (0, 1, \dots, 0)$, and so on as above, we see that $T_1 = kT_2$ for some $k \in \mathbb{F}_q^*$. \Box

By 3.1, every generalized symplectic matrix in $GSp_{2\nu}(\mathbb{F}_q)$ induces an automorphism of $Sp(2\nu, q)$ and two generalized symplectic matrices T_1 and T_2 induce the same automorphism of $Sp(2\nu, q)$ if and only if $T_1 = kT_2$ for some $k \in \mathbb{F}_q$. Thus $PSp_{2\nu}(\mathbb{F}_q)$ can be regarded as a subgroup of $Aut(Sp(2\nu, q))$.

Proposition 3.2. $Sp(2\nu, q)$ is vertex transitive and edge transitive.

Proof. For any $[\alpha], [\beta] \in V(Sp(2\nu, q))$, there exists $T \in Sp_{2\nu}(\mathbb{F}_q)$ such that $\alpha T = \beta$ by [6, Lemma 3.11]. Then $\sigma_T \in \operatorname{Aut}(Sp(2\nu,q))$ such that $\sigma_T([\alpha]) = [\beta]$. Hence $Sp(2\nu,q)$ is vertex transitive.

Let $[\alpha_1], [\alpha_2], [\beta_1], [\beta_2] \in V(Sp(2\nu, q))$ such that $[\alpha_1] \sim [\alpha_2]$ and $[\beta_1] \sim [\beta_2]$. We may assume that $\alpha_1 K^t \alpha_2 = \beta_1 K^t \beta_2$. Then, by [6, Lemma 3.11] again, there exists $T \in Sp_{2\nu}(\mathbb{F}_q)$ such that $\alpha_1 T = \beta_1$ and $\alpha_2 T = \beta_2$. Then $\sigma_T \in Aut(Sp(2\nu,q))$ such that $\sigma_T([\alpha_1]) = [\beta_1]$ and $\sigma_T([\alpha_2]) = [\beta_2]$. Hence $Sp(2\nu, q)$ is edge transitive.

When q = 2, we have the following

Proposition 3.3. Aut $(Sp(2\nu, 2)) \cong Sp_{2\nu}(\mathbb{F}_2)$.

Proof. Let

$$\sigma: Sp_{2\nu}(\mathbb{F}_2) \to \operatorname{Aut}(Sp(2\nu, 2))$$
$$T \mapsto \sigma_T.$$

Then, by 3.1, σ is an injection. Clearly, σ preserves the operation. It remains to

show that, for any $\tau \in \operatorname{Aut}(Sp(2\nu, 2))$, there exists a $T \in Sp_{2\nu}(\mathbb{F}_2)$ such that $\tau = \sigma_T$. Note that, for any $\alpha \neq 0 \in \mathbb{F}_2^{(2\nu)}$, we have that $[\alpha] = \{0, \alpha\}$. We will denote the uniquely defined element $\tau([\alpha]) \setminus \{0\}$ by $\tau(\alpha)$ and set $\tau(0) = 0$. Then from $\tau \in \operatorname{Aut}(Sp(2\nu, 2))$ we see that $\alpha K^t \beta = \tau(\alpha) K^t(\tau(\beta))$ for any $\alpha, \beta \in \mathbb{F}_2^{(2\nu)}$ (not necessarily non-zero). Fix any $\alpha \in \mathbb{F}_2^{(2\nu)}$. Let $\beta_1, \beta_2 \in \mathbb{F}_2^{(2\nu)}$. Then

$$\alpha K^{t}\beta_{1} = \tau(\alpha)K^{t}(\tau(\beta_{1})),$$

$$\alpha K^{t}\beta_{2} = \tau(\alpha)K^{t}(\tau(\beta_{2})).$$

Thus

$$\alpha K^{t}(\beta_{1}+\beta_{2})=\tau(\alpha)K^{t}(\tau(\beta_{1})+\tau(\beta_{2}))$$

But

$$\alpha K^{t}(\beta_{1}+\beta_{2})=\tau(\alpha)K^{t}(\tau(\beta_{1}+\beta_{2})),$$

hence

$$\tau(\alpha)K^{t}(\tau(\beta_{1}+\beta_{2})+\tau(\beta_{1})+\tau(\beta_{2}))=0.$$

This is true for any $\alpha \in \mathbb{F}_2^{(2\nu)}$, it follows that $\tau(\beta_1 + \beta_2) + \tau(\beta_1) + \tau(\beta_2) = 0$, i.e., $\tau(\beta_1 + \beta_2) = \tau(\beta_1) + \tau(\beta_2)$. Set

$$T = \begin{pmatrix} \tau(1, 0, \dots, 0) \\ \tau(0, 1, \dots, 0) \\ \vdots \\ \tau(0, 0, \dots, 1) \end{pmatrix}.$$

Then $\tau(\alpha) = \alpha T$ for any $\alpha \in \mathbb{F}_2^{(2\nu)}$. Thus T is nonsingular. By 3.1 $T \in Sp_{2\nu}(\mathbb{F}_2)$ and $\tau = \sigma_T$ as required.

From now on, we assume that q > 2. In $\mathbb{F}_q^{(2\nu)}$, let us set

 $\begin{array}{rcl} e_1 &=& (1,0,0,0,\ldots,0,0), \\ f_1 &=& (0,1,0,0,\ldots,0,0), \\ e_2 &=& (0,0,1,0,\ldots,0,0), \\ f_2 &=& (0,0,0,1,\ldots,0,0), \\ & & & \\ & & \\ e_\nu &=& (0,0,0,0,\ldots,1,0), \\ f_\nu &=& (0,0,0,0,\ldots,0,1). \end{array}$

Then $e_i, f_i, i = 1, ..., \nu$, form a basis of $\mathbb{F}_q^{(2\nu)}$ and $e_i K^t f_i = 1, e_i K^t e_j = 0, f_i K^t f_j = 0, i \neq j, i, j = 1, ..., \nu$.

In order to describe $\operatorname{Aut}(Sp(2\nu, q))$ for any prime power q, we need some definition from group theory. Let φ be the natural action of $\operatorname{Aut}(\mathbb{F}_q)$ on the group $\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*$ $(\nu \text{ in number})$ defined by

$$\varphi(\pi)((k_1,\ldots,k_\nu)) = (\pi(k_1),\ldots,\pi(k_\nu)), \text{ for all } \pi \in \operatorname{Aut}(\mathbb{F}_q) \text{ and } k_1,\ldots,k_\nu \in \mathbb{F}_q^*,$$

then the semi-direct product of $\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*$ by $\operatorname{Aut}(\mathbb{F}_q)$ corresponding to φ , denoted by $(\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*) \rtimes_{\varphi} \operatorname{Aut}(\mathbb{F}_q)$, is the group consisting of all elements of the form $(k_1, \ldots, k_{\nu}, \pi)$, where $k_1, \ldots, k_{\nu} \in \mathbb{F}_q^*$ and $\pi \in \operatorname{Aut}(\mathbb{F}_q)$, with multiplication defined by

$$(k_1,\ldots,k_{\nu},\pi)(k_1^{'},\ldots,k_{\nu}^{'},\pi^{'})=(k_1\pi(k_1^{'}),\ldots,k_{\nu}\pi(k_{\nu}^{'}),\pi\pi^{'}).$$

Then the main result about $\operatorname{Aut}(Sp(2\nu,q))$ is as follows.

Theorem 3.4. Regard $PSp_{2\nu}(\mathbb{F}_q)$ as a subgroup of $Aut(Sp(2\nu, q))$ and let E be the subgroup of $Aut(Sp(2\nu, q))$ defined as follows

$$E = \{ \sigma \in \operatorname{Aut}(Sp(2\nu, q)) : \sigma([e_i]) = [e_i], \sigma([f_i]) = [f_i], i = 1, \dots, \nu \}.$$

Then

- (1) Aut $(Sp(2\nu, q)) = PSp_{2\nu}(\mathbb{F}_q) \cdot E;$
- (2) If $\nu = 1$, then E is isomorphic to the symmetric group on q 1 elements;
- (3) If $\nu > 1$, then

$$E \cong \underbrace{(\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*)}_{\nu} \rtimes_{\varphi} \operatorname{Aut}(\mathbb{F}_q).$$

Proof. (1) Let $\tau \in \text{Aut}(Sp(2\nu, q))$. Suppose that $\tau([e_i]) = [e'_i], \tau([f_i]) = [f'_i], i = 1, ..., \nu$. Then $e'_i K^t f'_i \neq 0, e'_i K^t e'_j = 0, f'_i K^t f'_j = 0, i, j = 1, ..., \nu$ and $e'_i K^t f'_j = 0, i \neq j, i, j = 1, ..., \nu$. We may choose $e'_i, f'_i, i = 1, ..., \nu$, such that $e'_i K^t f'_i = 1, i = \frac{e'_i}{2}$

 $1,\ldots,\nu$. Let

$$A = \begin{pmatrix} e_1 \\ f_1 \\ e_2 \\ f_2 \\ \vdots \\ e_{\nu} \\ f_{\nu} \end{pmatrix}, A' = \begin{pmatrix} e'_1 \\ f'_1 \\ e'_2 \\ f'_2 \\ \vdots \\ e'_{\nu} \\ f'_{\nu} \end{pmatrix}.$$

Then $AK^tA = K = A'K^tA'$. Thus, by [6, Lemma 3.11], there exists $T \in Sp_{2\nu}(\mathbb{F}_q)$ such that A = A'T, i.e., $e'_iT = e_i$, $f'_iT = f_i$, $i = 1, \ldots, \nu$. Set $\tau_1 = \sigma_T\tau$. Then $\tau_1([e_i]) = [e_i], \tau_1([f_i]) = [f_i], i = 1, \ldots, \nu$, hence $\tau_1 \in E$. Thus $\tau \in PSp_{2\nu}(\mathbb{F}_q) \cdot E$. It follows that $\operatorname{Aut}(Sp(2\nu, q)) = PSp_{2\nu}(\mathbb{F}_q) \cdot E$.

(2) When $\nu = 1$, it is clear that E is isomorphic to the symmetric group on the q-1 vertices of Sp(2,q) since Sp(2,q) is a complete graph.

(3) Suppose that $\nu > 1$. Firstly, let us write out some elements of E. Let $k_1, \ldots, k_{\nu} \in \mathbb{F}_q^*$ and $\pi \in \operatorname{Aut}(\mathbb{F}_q)$. Let $\sigma_{(k_1,\ldots,k_{\nu},\pi)}$ be the map which takes any vertex $[a_1, a_2, a_3, a_4, \ldots, a_{2\nu-1}, a_{2\nu}]$ of $Sp(2\nu, q)$ to the vertex

$$[\pi(a_1), k_1\pi(a_2), k_2\pi(a_3), k_1k_2^{-1}\pi(a_4), \dots, k_{\nu}\pi(a_{2\nu-1}), k_1k_{\nu}^{-1}\pi(a_{2\nu})].$$

Then it is clear that $\sigma_{(k_1,\ldots,k_{\nu},\pi)}$ is well-defined. Furthermore, it is easy to see that $\sigma_{(k_1,\ldots,k_{\nu},\pi)}$ is injective, but the vertex set of $Sp(2\nu,q)$ is finite, $\sigma_{(k_1,\ldots,k_{\nu},\pi)}$ is a bijection from $V(Sp(2\nu,q))$ to itself. Let $\alpha = [a_1, a_2, a_3, a_4, \ldots, a_{2\nu-1}, a_{2\nu}]$, $\beta = [a'_1, a'_2, a'_3, a'_4, \ldots, a'_{2\nu-1}, a'_{2\nu}]$ be two vertices of $Sp(2\nu,q)$. If $\alpha \not\sim \beta$, then, by definition,

$$(a_1a'_2 - a_2a'_1) + (a_3a'_4 - a_4a'_3) + \ldots + (a_{2\nu-1}a'_{2\nu} - a_{2\nu}a'_{2\nu-1}) = 0,$$

which implies that

$$(\pi(a_1)k_1\pi(a_2') - \pi(a_2)k_1\pi(a_1')) + (k_2\pi(a_3)k_1k_2^{-1}\pi(a_4') - k_1k_2^{-1}\pi(a_4)k_2\pi(a_3')) + \dots + (k_{\nu}\pi(a_{2\nu-1})k_1k_{\nu}^{-1}\pi(a_{2\nu}') - k_1k_{\nu}^{-1}\pi(a_{2\nu})k_{\nu}\pi(a_{2\nu-1}')) = 0,$$

i.e., $\sigma_{(k_1,\ldots,k_{\nu},\pi)}(\alpha) \not\sim \sigma_{(k_1,\ldots,k_{\nu},\pi)}(\beta)$. Since the edges set of $Sp(2\nu,q)$ is finite, $\alpha \not\sim \beta$ if and only if $\sigma_{(k_1,\ldots,k_{\nu},\pi)}(\alpha) \not\sim \sigma_{(k_1,\ldots,k_{\nu},\pi)}(\beta)$. Hence $\sigma_{(k_1,\ldots,k_{\nu},\pi)} \in \operatorname{Aut}(Sp(2\nu,q))$. Note that $\sigma_{(k_1,\ldots,k_{\nu},\pi)}([e_i]) = [e_i], \ \sigma_{(k_1,\ldots,k_{\nu},\pi)}([f_i]) = [f_i], \ i = 1,\ldots,\nu$, hence, $\sigma_{(k_1,\ldots,k_{\nu},\pi)} \in E$.

If we define a map h as $(k_1, \ldots, k_{\nu}, \pi) \mapsto \sigma_{(k_1, \ldots, k_{\nu}, \pi)}$, then it is easy to verify that h is a group homomorphism from $(\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*) \times_{\varphi} \operatorname{Aut}(\mathbb{F}_q)$ to E. It is also easy to see that if $(k_1, \ldots, k_{\nu}, \pi) \neq (k'_1, \ldots, k'_{\nu}, \pi')$ then $\sigma_{(k_1, \ldots, k_{\nu}, \pi)} \neq \sigma_{(k'_1, \ldots, k'_{\nu}, \pi')}$. Thus, to show that h is a group isomorphism, it remains to show that every element of E is of the form $\sigma_{(k_1, \ldots, k_{\nu}, \pi)}$.

Suppose that $\sigma \in E$. Note that if $\sigma([a_1, a_2, \dots, a_{2\nu}]) = [b_1, b_2, \dots, b_{2\nu}]$, then $a_{2i-1} \neq 0$ if and only if $[a_1, a_2, \dots, a_{2\nu}] \sim [f_i]$ and $a_{2i} \neq 0$ if and only if $[a_1, a_2, \dots, a_{2\nu}] \sim [e_i]$, and similar results are also true for b_i . But $\sigma([e_i]) = [e_i]$ and $\sigma([f_i]) = [f_i]$, it follows that $a_i = 0$ if and only if $b_i = 0$. For any vertex $[a_1, a_2, \dots, a_{2\nu}]$, if $a_1 = \dots = a_{i-1} = 0$ and $a_i \neq 0$ then $[a_1, a_2, \dots, a_{2\nu}]$ can be uniquely written as $[0, \dots, 0, 1, a'_{i+1}, \dots, a'_{2\nu}]$ and $\sigma([a_1, a_2, \dots, a_{2\nu}])$ can be uniquely written as

 $[0, \ldots, 0, 1, b'_{i+1}, \ldots, b'_{2\nu}]$. Let us show how to determine $b'_{i+1}, \ldots, b'_{2\nu}$ from $a'_{i+1}, \ldots, b'_{2\nu}$ $a'_{2\nu}$. We will use frequently the fact that, for any vertices $[\alpha], [\beta], \text{ if } [\alpha] \not\sim [\beta]$ then $\sigma([\alpha]) \not\sim \sigma([\beta]).$

In the following, we will denote $[a_1, a'_1, a_2, a'_2, ..., a_{\nu}, a'_{\nu}]$ by $\sum_{i=1}^{\nu} a_i[e_i] + \sum_{i=1}^{\nu} a'_i[f_i]$, for example, $[a, b, 0, \ldots, 0]$ is denoted by $a[e_1] + b[f_1]$. Since σ is a bijection from $V(Sp(2\nu,q))$ to itself, we have permutations π_i , $i = 2, \ldots, 2\nu$, of \mathbb{F}_q with $\pi(0) = 0$ such that

$$\sigma([e_1] + a_{2i-1}[e_i]) = [e_1] + \pi_{2i-1}(a_{2i-1})[e_i], \sigma([e_1] + a_{2i}[f_i]) = [e_1] + \pi_{2i}(a_{2i})[f_i].$$

We firstly consider the cases $\sigma([0, 1, a_3, \ldots, a_{2\nu}])$ and $\sigma([1, a_2, a_3, \ldots, a_{2\nu}])$. Let $\sigma([0, 1, a_3, \dots, a_{2\nu}]) = [0, 1, a'_3, \dots, a'_{2\nu}] \text{ and } j \ge 1.$ If $a_{2j+1} \ne 0$, then, from $[0, 1, a_3, \dots, a_{2\nu}] \not\sim [e_1] + a_{2j+1}^{-1}[f_{j+1}]$ we have $[0, 1, a'_3, \dots, a'_{2\nu}] \not\sim [e_1] + \pi_{2j+2}(a_{2j+1}^{-1})[f_{j+1}],$ hence, $a'_{2j+1} = \pi_{2j+2}(a_{2j+1}^{-1})^{-1}$. If $a_{2j+2} \neq 0$, then from $[0, 1, a_3, \dots, a_{2\nu}] \not\sim [e_1]$ $a_{2j+2}^{-1}[e_{j+1}]$ we have $[0, 1, a'_3, \dots, a'_{2\nu}] \not\sim [e_1] + \pi_{2j+1}(-a_{2j+2}^{-1})[e_{j+1}]$, hence, $a'_{2j+2} = a_{2j+2}$ $-\pi_{2j+1}(-a_{2j+2}^{-1})^{-1}$. Thus

(1)
$$\sigma([0, 1, a_3, \dots, a_{2\nu}]) = [0, 1, a'_3, \dots, a'_{2\nu}],$$

where $a'_{2j+1} = \pi_{2j+2}(a_{2j+1}^{-1})^{-1}$ if $a_{2j+1} \neq 0$ and $a'_{2j+2} = -\pi_{2j+1}(-a_{2j+2}^{-1})^{-1}$ if $a_{2j+2} \neq 0$.

For the case $\sigma([1, a_2, a_3, \dots, a_{2\nu}])$. Let $\sigma([1, a_2, a_3, \dots, a_{2\nu}]) = [1, a_2'', a_3'', \dots, a_{2\nu}'']$. From $[1, a_2, a_3, \dots, a_{2\nu}] \not\sim [e_1] + a_2[f_1]$ we get $[1, a_2'', a_3'', \dots, a_{2\nu}''] \not\sim [e_1] + \pi_2(a_2)[f_1],$ $\begin{array}{l} \text{Hom } [1, a_{2}, a_{3}, \dots, a_{2\nu}] \neq [c_{1}] + a_{2}[j_{1}] \text{ we get } [1, a_{2}, a_{3}, \dots, a_{2\nu}] \neq [c_{1}] + a_{2}(a_{2})[j_{1}], \\ \text{hence, } a_{2}'' = \pi_{2}(a_{2}). \text{ Let } j \geq 1. \text{ If } a_{2j+1} \neq 0, \text{ then, from } [1, a_{2}, a_{3}, \dots, a_{2\nu}] \neq [f_{1}] - a_{2j+1}^{-1}[f_{j+1}] \text{ and } \sigma([f_{1}] - a_{2j+1}^{-1}[f_{j+1}]) = [f_{1}] - \pi_{2j+1}(a_{2j+1})^{-1}[f_{j+1}] \text{ as been shown above,} \\ \text{we have } [1, a_{2}'', a_{3}'', \dots, a_{2\nu}''] \neq [f_{1}] - \pi_{2j+1}(a_{2j+1})^{-1}[f_{j+1}], \text{ hence, } a_{2j+1}'' = \pi_{2j+1}(a_{2j+1}). \\ \text{Similarly, if } a_{2j+2} \neq 0, \text{ then from } [1, a_{2}, a_{3}, \dots, a_{2\nu}] \neq [f_{1}] + a_{2j+2}^{-1}[e_{j+1}] \text{ we have} \\ \end{array}$ $[1, a_2'', a_3'', \ldots, a_{2\nu}''] \not\sim [f_1] + \pi_{2j+2}(a_{2j+2})^{-1}[e_{j+1}], \text{ hence, } a_{2j+2}'' = \pi_{2j+2}(a_{2j+2}).$ Thus, for any $a_2, a_3, \ldots, a_{2\nu} \in \mathbb{F}_q$,

(2)
$$\sigma([1, a_2, a_3, \dots, a_{2\nu}]) = [1, \pi_2(a_2), \pi_3(a_3), \dots, \pi_{2\nu}(a_{2\nu})]$$

Then, let $i \geq 2$, we discuss the general cases $\sigma([0,\ldots,0,1,a_{2i+1},\ldots,a_{2\nu}])$ and $\sigma([0,\ldots,0,1,a_{2i},\ldots,a_{2\nu}])$. The above results of case i = 1 will be used. Let $\sigma([0,\ldots,0,1,a_{2i+1},\ldots,a_{2\nu}]) = [0,\ldots,0,1,a'_{2i+1},\ldots,a'_{2\nu}] \text{ and } j \ge i.$ If $a_{2j+1} \ne 0$, then, from

$$[0, \ldots, 0, 1, a_{2i+1}, \ldots, a_{2\nu}] \not\sim [e_1] + [e_i] + a_{2j+1}^{-1}[f_{j+1}]$$

and $\sigma([e_1] + [e_i] + a_{2j+1}^{-1}[f_{j+1}]) = [e_1] + \pi_{2i-1}(1)[e_i] + \pi_{2j+2}(a_{2j+1}^{-1})[f_{j+1}]$ as been shown above, we have

$$[0,\ldots,0,1,a'_{2i+1},\ldots,a'_{2\nu}] \not\sim [e_1] + \pi_{2i-1}(1)[e_i] + \pi_{2j+2}(a_{2j+1}^{-1})[f_{j+1}],$$

hence, $a'_{2j+1} = \pi_{2i-1}(1)\pi_{2j+2}(a^{-1}_{2j+1})^{-1}$. Similarly, if $a_{2j+2} \neq 0$, then from $[0, \ldots, 0, 1, a_{2i+1}, \ldots, a_{2\nu}] \not\sim [e_1] + [e_i] - a_{2i+2}^{-1}[e_{i+1}]$

we have

$$[0,\ldots,0,1,a'_{2i+1},\ldots,a'_{2\nu}] \not\sim [e_1] + \frac{\pi_{2i-1}}{8}(1)[e_i] + \frac{\pi_{2j+1}}{(-a_{2j+2}^{-1})[e_{j+1}]},$$

hence, $a'_{2j+2} = -\pi_{2i-1}(1)\pi_{2j+1}(-a^{-1}_{2j+2})^{-1}$. Thus,

(3) $\sigma([0,\ldots,0,1,a_{2i+1},\ldots,a_{2\nu}]) = [0,\ldots,0,1,a'_{2i+1},\ldots,a'_{2\nu}],$

where $a'_{2j+1} = \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+1}^{-1})^{-1}$ if $a_{2j+1} \neq 0$ and $a'_{2j+2} = -\pi_{2i-1}(1)\pi_{2j+1}(-a_{2j+2}^{-1})^{-1}$ if $a_{2j+2} \neq 0$.

Finally, for the case $\sigma([0, \ldots, 0, 1, a_{2i}, \ldots, a_{2\nu}])$. Let $\sigma([0, \ldots, 0, 1, a_{2i}, \ldots, a_{2\nu}]) = [0, \ldots, 0, 1, a_{2i}', \ldots, a_{2\nu}']$. From

$$[0, \ldots, 0, 1, a_{2i}, \ldots, a_{2\nu}] \not\sim [e_1] + [e_i] + a_{2i}[f_i]$$

we get

$$[0, \dots, 0, 1, a_{2i}'', \dots, a_{2\nu}''] \not\sim [e_1] + \pi_{2i-1}(1)[e_i] + \pi_{2i}(a_{2i})[f_i],$$

hence, $a_{2i}'' = \pi_{2i-1}(1)^{-1}\pi_{2i}(a_{2i})$. Let $j \ge i$. If $a_{2j+1} \ne 0$, then from
 $[0, \dots, 0, 1, a_{2i}, \dots, a_{2\nu}] \not\sim [f_i] - a_{2j+1}^{-1}[f_{j+1}]$

we have

$$[0, \dots, 0, 1, a_{2i}', \dots, a_{2\nu}''] \not\sim [f_i] - \pi_{2i-1}(1)^{-1} \pi_{2j+1}(a_{2j+1})^{-1}[f_{j+1}],$$

hence, $a_{2j+1}'' = \pi_{2i-1}(1)^{-1} \pi_{2j+1}(a_{2j+1})$. If $a_{2j+2} \neq 0$, then from
 $[0, \dots, 0, 1, a_{2i}, \dots, a_{2\nu}] \not\sim [f_i] + a_{2j+2}^{-1}[e_{j+1}]$

we have

$$[0, \dots, 0, 1, a_{2i}'', \dots, a_{2\nu}''] \not\sim [f_i] + \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+2})^{-1}[e_{j+1}],$$

hence, $a_{2j+2}'' = \pi_{2i-1}(1)^{-1}\pi_{2j+2}(a_{2j+2}).$ Thus, for any $a_{2i}, a_{2i+1}, \dots, a_{2\nu} \in \mathbb{F}_q,$
(4) $\sigma([0, \dots, 0, 1, a_{2i}, a_{2i+1}, \dots, a_{2\nu}])$
 $= [0, \dots, 0, 1, \pi_{2i-1}(1)^{-1}\pi_{2i}(a_{2i}), \pi_{2i-1}(1)^{-1}\pi_{2i+1}(a_{2i+1}), \dots, \pi_{2i-1}(1)^{-1}\pi_{2\nu}(a_{2\nu})].$

Having represented σ by π_i , $i = 2, \ldots, 2\nu$, let us discuss some properties of π_i .

Lemma 3.5. (1) For any
$$i \ge 1$$
 and $a \in \mathbb{F}_q$,
 $\pi_{2i+1}(1)\pi_{2i+2}(a) = \pi_{2i+2}(1)\pi_{2i+1}(a) = \pi_2(a);$
(2) For any $i \ge 2$ and $a, b \in \mathbb{F}_q$,
 $\pi_i(a+b) = \pi_i(a) + \pi_i(b);$
 $\pi_i(-a) = -\pi_i(a);$
 $\pi_i(ab) = \pi_i(a)\pi_i(b)\pi_i(1)^{-1};$
 $\pi_i(a^{-1}) = \pi_i(a)^{-1}\pi_i(1)^2 \text{ if } a \ne 0.$

Proof. (1) We may assume that $a \neq 0$. Since $[e_1] + a[e_{i+1}] + a[f_{i+1}] \not\sim [e_{i+1}] + [f_{i+1}]$, it follows that $\sigma([e_1] + a[e_{i+1}] + a[f_{i+1}]) \not\sim \sigma([e_{i+1}] + [f_{i+1}])$, but

$$\sigma([e_1] + a[e_{i+1}] + a[f_{i+1}]) = [e_1] + \pi_{2i+1}(a)[e_{i+1}] + \pi_{2i+2}(a)[f_{i+1}],$$

$$\sigma([e_{i+1}] + [f_{i+1}]) = [e_{i+1}] + \pi_{2i+1}(1)^{-1}\pi_{2i+2}(1)[f_{i+1}],$$

we have that

$$\pi_{2i+1}(1)^{-1}\pi_{2i+2}(1)\pi_{2i+1}(a) - \pi_{2i+2}(a) = 0,$$

i.e.,

$$\pi_{2i+1}(1)\pi_{2i+2}(a) = \pi_{2i+2}(1)\pi_{2i+1}(a).$$

Similarly, since $[e_1] + a[f_1] + [e_{i+1}] \not\sim [e_1] + a[f_{i+1}]$, we have that $[e_1] + \pi_2(a)[f_1] + \pi_{2i+1}(1)[e_{i+1}] \not\sim [e_1] + \pi_{2i+2}(a)[f_{i+1}]$, hence, $\pi_{2i+1}(1)\pi_{2i+2}(a) = \pi_2(a)$. (2) From $[e_1] + (a+b)[f_1] + [e_2] \not\sim [e_1] + a[f_1] + b[f_2]$ we have that

$$[e_1] + \pi_2(a+b)[f_1] + \pi_3(1)[e_2] \not\sim [e_1] + \pi_2(a)[f_1] + \pi_4(b)[f_2].$$

Then $\pi_2(a) - \pi_2(a+b) + \pi_3(1)\pi_4(b) = 0$, but $\pi_3(1)\pi_4(b) = \pi_2(b)$, hence, $\pi_2(a+b) = \pi_2(a) + \pi_2(b)$. It turns out from (1) that this equality holds for all $i \ge 2$. Thus $\pi_i(-a) = -\pi_i(a)$ as $\pi_i(0) = 0$.

For multiplication, let $i \ge 1$, from $[e_1] + b[e_{i+1}] + ab[f_{i+1}] \not\sim [e_{i+1}] + a[f_{i+1}]$ we get that

$$[e_1] + \pi_{2i+1}(b)[e_{i+1}] + \pi_{2i+2}(ab)[f_{i+1}] \not\sim [e_{i+1}] + \pi_{2i+1}(1)^{-1}\pi_{2i+2}(a)[f_{i+1}]$$

hence, $\pi_{2i+1}(b)\pi_{2i+1}(1)^{-1}\pi_{2i+2}(a) - \pi_{2i+2}(ab) = 0$, but $\pi_{2i+1}(b)\pi_{2i+1}(1)^{-1} = \pi_{2i+2}(b)\pi_{2i+2}(1)^{-1}$. Thus

$$\pi_{2i+2}(ab) = \pi_{2i+2}(a)\pi_{2i+2}(b)\pi_{2i+2}(1)^{-1}.$$

It follows from $\pi_{2i+1}(1)\pi_{2i+2}(a) = \pi_{2i+2}(1)\pi_{2i+1}(a)$ and $\pi_{2i+1}(1)\pi_{2i+2}(1) = \pi_{2i+2}(1)\pi_{2i+1}(1)$ that the abve equality also holds for 2i + 1. It remains to consider π_2 . We have

$$\pi_2(ab) = \pi_3(1)\pi_4(ab)$$

= $\pi_3(1)\pi_4(1)^{-1}\pi_4(a)\pi_4(b)$
= $\pi_3(1)^{-1}\pi_4(1)^{-1}\pi_2(a)\pi_2(b)$
= $\pi_2(a)\pi_2(b)\pi_2(1)^{-1}$.

Finally, if $a \neq 0$, then from $\pi_i(1) = \pi_i(aa^{-1}) = \pi_i(a)\pi_i(a^{-1})\pi_i(1)^{-1}$ we obtain that $\pi_i(a^{-1}) = \pi_i(a)^{-1}\pi_i(1)^2$, then the proof of lemma is complete.

We continue the proof of the theorem. Let us denote the identity automorphism on \mathbb{F}_q by π_1 . Then when i = 1, (3) reduces to (1) and (4) reduces to (2). Therefore (3) and (4) hold for all i, where $1 \leq i \leq \nu$. By the above lemma, for any $i \geq 1$, we can rewrite (3) in the form of (4) as follows. In (3), for any $j \geq i$, we have

$$\begin{aligned} a'_{2j+1} &= \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+1}^{-1})^{-1} \\ &= \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+1})\pi_{2j+2}(1)^{-2} \\ &= \pi_{2i-1}(1)\pi_{2j+1}(1)^{-1}\pi_{2j+2}(1)^{-1}\pi_{2j+1}(a_{2j+1}) \\ &= \pi_{2i-1}(1)\pi_2(1)^{-1}\pi_{2j+1}(a_{2j+1}) \\ &= \pi_{2i}(1)^{-1}\pi_{2j+1}(a_{2j+1}), \\ & 10 \end{aligned}$$

and

$$\begin{aligned} a_{2j+2}' &= -\pi_{2i-1}(1)\pi_{2j+1}(-a_{2j+2}^{-1})^{-1} \\ &= \pi_{2i-1}(1)\pi_{2j+1}(a_{2j+2}^{-1})^{-1} \\ &= \pi_{2i-1}(1)\pi_{2j+1}(a_{2j+2})\pi_{2j+1}(1)^{-2} \\ &= \pi_{2i-1}(1)\pi_{2j+1}(1)^{-1}\pi_{2j+2}(1)^{-1}\pi_{2j+2}(a_{2j+2}) \\ &= \pi_{2i-1}(1)\pi_{2}(1)^{-1}\pi_{2j+2}(a_{2j+2}) \\ &= \pi_{2i}(1)^{-1}\pi_{2j+2}(a_{2j+2}). \end{aligned}$$

Hence, for any $a_{2i+1}, \ldots, a_{2\nu} \in \mathbb{F}_q$,

(5)
$$\sigma([0,\ldots,0,1,a_{2i+1},\ldots,a_{2\nu}]) = [0,\ldots,0,1,\pi_{2i}(1)^{-1}\pi_{2i+1}(a_{2i+1}),\ldots,\pi_{2i}(1)^{-1}\pi_{2\nu}(a_{2\nu})],$$

which is of the same form as (4).

Now let $k_1 = \pi_2(1), \pi = k_1^{-1}\pi_2, k_2 = \pi_3(1), k_3 = \pi_5(1), \dots, k_{\nu} = \pi_{2\nu-1}(1)$. Then $\pi \in \operatorname{Aut}(\mathbb{F}_q), \pi_2 = k_1\pi, \pi_3 = k_2\pi, \pi_4 = k_1k_2^{-1}\pi, \dots, \pi_{2\nu-1} = k_{\nu}\pi, \pi_{2\nu} = k_1k_{\nu}^{-1}\pi$. Assembling (4) and (5), we obtain

$$\sigma([a_1, a_2, a_3, a_4, \dots, a_{2\nu-1}, a_{2\nu}]) = [\pi(a_1), k_1 \pi(a_2), k_2 \pi(a_3), k_1 k_2^{-1} \pi(a_4), \dots, k_{\nu} \pi(a_{2\nu-1}), k_1 k_{\nu}^{-1} \pi(a_{2\nu})].$$

Hence $\sigma = h(k_1, \ldots, k_{\nu}, \pi)$, as required.

Corollary 3.6. When $\nu = 1$,

$$|\operatorname{Aut}(Sp(2,q))| = q(q^2 - 1) \cdot (q - 2)!,$$

and when $\nu \geq 2$,

$$|\operatorname{Aut}(Sp(2\nu,q))| = q^{\nu^2} \prod_{i=1}^{\nu} (q^{2i} - 1) \cdot [\mathbb{F}_q : \mathbb{F}_p].$$

Proof. Note that $PSp_{2\nu}(\mathbb{F}_q) \cap E$ consists of σ which is reduced from some matrix of the form diag $(k_1, l_1, k_2, l_2, \ldots, k_{\nu}, l_{\nu})$, with $k_i l_i = 1, i = 1, \ldots, \nu$. Thus $|PSp_{2\nu}(\mathbb{F}_q) \cap E| = \frac{1}{2}(q-1)^{\nu}$. Hence

$$|\operatorname{Aut}(Sp(2\nu, q))| = \frac{|PSp_{2\nu}(\mathbb{F}_q)||E|}{|PSp_{2\nu}(\mathbb{F}_q) \cap E|} \\ = \frac{\frac{1}{2}q^{\nu^2}\prod_{i=1}^{\nu}(q^{2i}-1) \cdot |E|}{\frac{1}{2}(q-1)^{\nu}}$$

г	-	-		I
L				
L			1	

Thus, when $\nu = 1$, $|\operatorname{Aut}(Sp(2,q))| = q(q^2 - 1) \cdot (q - 2)!$, and when $\nu \ge 2$, $\begin{aligned} |\operatorname{Aut}(Sp(2\nu,q))| \\ &= \frac{\frac{1}{2}q^{\nu^2}\prod_{i=1}^{\nu}(q^{2i} - 1) \cdot (q - 1)^{\nu} \cdot |\operatorname{Aut}(\mathbb{F}_q)|}{\frac{1}{2}(q - 1)^{\nu}} \\ &= q^{\nu^2}\prod_{i=1}^{\nu}(q^{2i} - 1) \cdot |\operatorname{Aut}(\mathbb{F}_q)| \\ &= q^{\nu^2}\prod_{i=1}^{\nu}(q^{2i} - 1) \cdot [\mathbb{F}_q : \mathbb{F}_p], \end{aligned}$

as is well-known that $|\operatorname{Aut}(\mathbb{F}_q)| = [\mathbb{F}_q : \mathbb{F}_p]$ where $p = \operatorname{char}(\mathbb{F}_q)$.

References

- R. H. Dye, Partitions and their stabilizers for line complexes and quadrics, Annali di Matematica Pura ed Applicata 114(1977), 173-194.
- [2] C. Godsil and G. Royle, Chromatic number and the 2-rank of a graph, J. Combin. Theory Ser.B 81(2001), 142-149.
- [3] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics Vol. 207, Springer-Verlag, 2001.
- [4] J.J. Rotman, Projective planes, graphs, and simple algebras, J. Algebra 155(1993), 267-289.
- [5] J.J. Rotman and P.M. Weichsel, Simple Lie algebras and graphs, J. Algebra 169(1994), 775-790.
- [6] Z. Wan, Geometry of Classical Groups over Finite Fields, 2nd edition, Science Press, Beijing/New York, 2002.

Zhongming Tang Department of Mathematics Suzhou University Suzhou 215006 P. R. China E-mail: zmtang@suda.edu.cn

Zhe-xian Wan Academy of Mathematics and System Sciences Chinese Academy of Science Beijing 100080 P. R. China E-mail: wan@amss.ac.cn