SYMPLECTIC GRAPHS AND THEIR AUTOMORPHISMS

ZHONGMING TANG AND ZHE-XIAN WAN

ABSTRACT. The general symplectic graph $Sp(2\nu, q)$ is introduced. It is shown that $Sp(2\nu, q)$ is strongly regular. Its parameters are computed, its chromatic number and group of graph automorphisms are also determined.

1. INTRODUCTION

Let \mathbb{F}_q be a finite field of any characteristic and $\nu \geq 1$ an integer. Let

$$
\mathbb{F}_q^{(2\nu)} = \{(a_1, \ldots, a_{2\nu}) : a_i \in \mathbb{F}_q, i = 1, \ldots, 2\nu\}.
$$

be the 2v-dimensional row vector space over \mathbb{F}_q . For any $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q^{(2\nu)}$, we denote the subspace of $\mathbb{F}_q^{(2\nu)}$ generated by α_1,\ldots,α_n by $[\alpha_1,\ldots,\alpha_n]$. Thus, if $\alpha \neq$ $0 \in \mathbb{F}_q^{(2\nu)}$ then $[\alpha]$ is an one dimensional subspace of $\mathbb{F}_q^{(2\nu)}$ and $[\alpha] = [k\alpha]$ for any $k \in \mathbb{F}_q^* = \mathbb{F}_q \setminus \{0\}.$

Let K be a $2\nu \times 2\nu$ nonsingular alternate matrix over \mathbb{F}_q . The *symplectic graph* relative to K over \mathbb{F}_q is the graph with the set of one dimensional subspaces of $\mathbb{F}_q^{(2\nu)}$ as its vertex set and with the adjacency defined by

 $[\alpha] \sim [\beta]$ if and only if $\alpha K^t \beta \neq 0$, for any $\alpha \neq 0, \beta \neq 0 \in \mathbb{F}_q^{(2\nu)}$,

where $[\alpha] \sim [\beta]$ means that $[\alpha]$ and $[\beta]$ are adjacent. Since any two $2\nu \times 2\nu$ nonsingular alternate matrices over \mathbb{F}_q are cogredient, any two symplectic graphs relative to two different $2\nu \times 2\nu$ nonsingular alternate matrices over \mathbb{F}_q are isomorphic. Thus we can assume that

$$
K = \left(\begin{array}{ccccc} 0 & 1 & & & & \\ -1 & 0 & & & & \\ & & 0 & 1 & & \\ & & & \ddots & & \\ & & & & & 0 & 1 \\ & & & & & -1 & 0 \end{array}\right)_{2\nu \times 2\nu}
$$

.

and consider only the symplectic graph relative to the above K over \mathbb{F}_q , which will be denoted by $Sp(2\nu, q)$.

When $q = 2$, the special case $Sp(2\nu, 2)$ of the graph $Sp(2\nu, q)$ was studied previously by Rotman [4], Rotman and Weichsel [5], Godsil and Royle [2, 3], etc. In the present paper we study the general case $Sp(2\nu, q)$. In Section 2, we show that

Key words and phrases. symplectic graphs, chromatic numbers, automorphisms.

Both Authors are Supported by the National Natural Science Foundation of China.

 $Sp(2\nu, q)$ is strongly regular and compute its parameters. We also prove that the chromatic number of $Sp(2\nu, q)$ is $q^{\nu} + 1$. Section 3 is devoted to discuss the group of automorphisms $Aut(Sp(2\nu, q))$ of the graph. The structure of this group depends on q and v. When $q = 2$, Aut $(Sp(2\nu, 2))$ is isomorphic to the symplectic group of degree 2ν over \mathbb{F}_2 . When $q > 2$, $Aut(Sp(2\nu, q))$ is the product of two subgroups which are identified clearly (cf. Theorem 3.4).

2. Strongly Regularity and Chromatic Numbers of Symplectic **GRAPHS**

For any subspace V of $\mathbb{F}_q^{(2\nu)}$, we denote the subspace of $\mathbb{F}_q^{(2\nu)}$ formed by all $\beta \in \mathbb{F}_q^{(2\nu)}$ such that $\alpha K^t \beta = 0$ for all $\alpha \in V$ by V^{\perp} . Then $[\alpha] \sim [\beta]$ if and only if $\beta \notin [\alpha]^{\perp}$.

Denote the vertex set of the graph $Sp(2\nu, q)$ by $V(Sp(2\nu, q))$. We first show that $Sp(2\nu, q)$ is strongly regular.

Theorem 2.1. $Sp(2\nu, q)$ is a strongly regular graph with parameters

$$
\left(\frac{q^{2\nu}-1}{q-1},q^{2\nu-1},q^{2\nu-2}(q-1),q^{2\nu-2}(q-1)\right)
$$

 $2\nu^{-1},q^{\nu-1}$ and $-q^{\nu-1}$.

and eigenvalues $q^{2\nu-1}$ α , $q^{\nu-1}$ and $-q$ $\nu-1$

Proof. As $|\mathbb{F}_q^{(2\nu)}| = q^{2\nu}$, it follows that $|V(Sp(2\nu,q))| = \frac{q^{2\nu}-1}{q-1}$ $\frac{2\nu-1}{q-1}$. For any $[\alpha] \in$ $V(Sp(2\nu, q))$, since $\dim([\alpha]^{\perp}) = 2\nu - 1$, we see that the degree of [α] which is just the number of one dimensional subspaces $[\beta]$ such that $\beta \notin [\alpha]^{\perp}$, is $\frac{q^{2\nu}-q^{2\nu-1}}{q-1}=q^{2\nu-1}$.

Let $[\alpha], [\beta]$ be any two different vertices of $Sp(2\nu, q)$ which are adjacent with each other or not. Then $\dim((\alpha,\beta)^{\perp}) = 2\nu - 2$. Note that a vertex $[\gamma]$ is adjacent with both $[\alpha]$ and $[\beta]$ is equivalent to that $\gamma \notin [\alpha]^{\perp} \cup [\beta]^{\perp}$. But

$$
|[\alpha]^\perp \cup [\beta]^\perp| = |[\alpha]^\perp| + |[\beta]^\perp| - |[\alpha, \beta]^\perp|.
$$

Hence the number of vertices which are adjacent with both $[\alpha]$ and $[\beta]$ is $\frac{q^{2\nu}-2q^{2\nu-1}+q^{2\nu-2}}{q-1}$ $q-1$ $=q^{2\nu-2}(q-1)$. Therefore $Sp(2\nu,q)$ is a strongly regular graph with parameter

$$
\left(\frac{q^{2\nu}-1}{q-1},q^{2\nu-1},q^{2\nu-2}(q-1),q^{2\nu-2}(q-1)\right).
$$

By the same arguments as in [3, Section 10.2], we get that the eigenvalues of $Sp(2\nu, q)$ are $q^{2\nu-1}, q^{\nu-1}$ and $-q^{\nu-1}$. \Box

Let $n \geq 2$. We say that a graph X is *n*-partite if there are subsets X_1, \ldots, X_n of the vertex set $V(X)$ of X such that $V(X) = X_1 \cup \cdots \cup X_n$, where $X_i \cap X_j = \emptyset$ for all $i \neq j$, and that there is no edge of X joining two vertices of the same subset. We are going to show that $Sp(2\nu, q)$ is $(q^{\nu} + 1)$ -partite. We need some results about subspaces of $\mathbb{F}_q^{(2\nu)}$. A subspace V of $\mathbb{F}_q^{(2\nu)}$ is called *totally isotropic* if $V \subseteq V^{\perp}$. Then totally isotropic subspaces of $\mathbb{F}_q^{(2\nu)}$ are of dimension $\leq \nu$ and there exist totally isotropic subspaces of dimension ν which are called *maximal totally* isotropic subspaces, cf. [6, Corollary 3.8].

The following lemma is due to Dye[1].

Lemma 2.2. There exist maximal totally isotropic subspaces V_i , $i = 1, \ldots, q^{\nu} + 1$, of $\mathbb{F}_q^{(2\nu)}$ such that

$$
\mathbb{F}_q^{(2\nu)} = V_1 \cup \cdots \cup V_{q^{\nu}+1},
$$

where $V_i \cap V_j = \{0\}$ for all $i \neq j$.

Proposition 2.3. $Sp(2\nu, q)$ is $(q^{\nu}+1)$ -partite. That is, there exist subsets $X_1, \ldots,$ $X_{q^{\nu}+1}$ of $V(Sp(2\nu,q))$ such that

$$
V(Sp(2\nu, q)) = X_1 \cup \cdots \cup X_{q^{\nu}+1},
$$

where $X_i \cap X_j = \emptyset$ for all $i \neq j$, and there is no edge of $Sp(2\nu, q)$ joining two vertices of the same subset. Moreover, the subsets $X_1, \ldots, X_{q^{\nu}+1}$ can be so chosen that for any two disinct indices i and j, every $\alpha \in X_i$ is adjacent with exactly $q^{\nu-1}$ vertices in X_i .

Proof. Let $\mathbb{F}_q^{(2\nu)} = V_1 \cup \cdots \cup V_{q^{\nu}+1}$ as in 2.2. Set $X_i = \{[\alpha] : \alpha \neq 0 \in V_i\},\$ $i=1,\ldots,q^{\nu}+1$. Then

$$
V(Sp(2\nu, q)) = X_1 \cup \cdots \cup X_{q^{\nu}+1}, X_i \cap X_j = \emptyset, \text{ for all } i \neq j.
$$

As V_i is totally isotropic, we see that there is no edge joining any two vertices in X_i . Thus $Sp(2\nu, q)$ is $(q^{\nu} + 1)$ -partite. For any $i \neq j$, let $[\alpha] \in X_i$. Since V_j is maximal totally isotropic of dimension ν , it follows that $\alpha \notin V_j = V_j^{\perp}$ and $\dim([\alpha]^{\perp} \cap V_j) = \dim([\alpha , V_j]^{\perp}) = \nu -1.$ Note that, for any $[\beta] \in X_j$, $[\beta]$ is adjacent with $[\alpha]$ if and only if $\beta \in V_j \setminus ([\alpha]^\perp \cap V_j)$. Hence the number of vertices in X_j which is adjacent with $[\alpha]$ is $\frac{q^{\nu}-1}{q-1} - \frac{q^{\nu-1}-1}{q-1} = q^{\nu-1}$.

Now we can compute the chromatic number of $Sp(2\nu, q)$.

Theorem 2.4. $\chi(Sp(2\nu, q)) = q^{\nu} + 1$.

Proof. By 2.3, we see that $\chi(Sp(2\nu, q)) \leq q^{\nu} + 1$. Note that $\chi(Sp(2\nu, q))$ is the minimal n such that $Sp(2\nu, q)$ is n-partite. Suppose that $Sp(2\nu, q)$ is n-partite. Then there exist subsets Y_1, \ldots, Y_n of $V(Sp(2\nu, q))$ such that

$$
V(Sp(2\nu, q)) = Y_1 \cup \cdots \cup Y_n, Y_i \cap Y_j = \emptyset, \text{ for all } i \neq j,
$$

and there is no edge joining any two vertices in the same Y_i for $i = 1, \ldots, n$. We want to show that $n \geq q^{\nu} + 1$. Suppose that $n < q$ \sum $\nu + 1$. From the above equality, we have $\binom{n}{i=1}$ $|Y_i| = \frac{q^{2\nu}-1}{q-1} = \left(\frac{q^{\nu}-1}{q-1}\right)$ $\frac{q^{\nu}-1}{q-1}$)($q^{\nu}+1$). Then there exists some *i* such that $|Y_i| > \frac{q^{\nu}-1}{q-1}$ $rac{q^{\nu}-1}{q-1}$. Let W_i be the subspace of $\mathbb{F}_q^{(2\nu)}$ generated by all α such that $[\alpha] \in Y_i$. Then W_i is a totally isotropic subspace, hence dim $W_i \leq \nu$. This turns out $|Y_i| \leq \frac{q^{\nu}-1}{q-1}$ $\frac{q^{\nu}-1}{q-1}$, a contradiction. Hence $\chi(Sp(2\nu, q)) = q^{\nu} + 1$.

3. Automorphisms of Symplectic Graphs

We recall that a $2\nu \times 2\nu$ matrix T is called a *symplectic matrix* (or *generalized* symplectic matrix) of order 2ν over \mathbb{F}_q if $TK^tT = K$ (or $TK^tT = kK$ for some $k \in \mathbb{F}_q^*$, respectively). The set of symplectic matrices (or generalized symplectic matrices) of order 2ν over \mathbb{F}_q forms a group with respect to the matrix multiplication, which is called the *symplectic group* (or *generalized symplectic group, respectively,*) of degree 2ν over \mathbb{F}_q and denoted by $Sp_{2\nu}(\mathbb{F}_q)$ (or $GSp_{2\nu}(\mathbb{F}_q)$). The center of $Sp_{2\nu}(\mathbb{F}_q)$ consists of the identity matrix E and $-E$, and the factor group $Sp_{2\nu}(\mathbb{F}_q)/\{E, -E\}$ is called the projective symplectic group of degree 2ν over \mathbb{F}_q and denoted by $PSp_{2\nu}(\mathbb{F}_q)$. The center of $GSp_{2\nu}(\mathbb{F}_q)$ consists of all kE , where $k \in \mathbb{F}_q^*$, and the factor group of $GSp_{2\nu}(\mathbb{F}_q)$ with respect to its center is called the projective generalized symplectic group of degree 2ν over \mathbb{F}_q and denoted by $PGSp_{2\nu}(\mathbb{F}_q)$. Clearly, $PGSp_{2\nu}(\mathbb{F}_q) \cong$ $PSp_{2\nu}(\mathbb{F}_q)$, and when $q=2$, $GSp_{2\nu}(\mathbb{F}_2) = Sp_{2\nu}(\mathbb{F}_2)$.

Proposition 3.1. Let T be a $2\nu \times 2\nu$ nonsingular matrix over \mathbb{F}_q and

$$
\sigma_T: V(Sp(2\nu, q)) \rightarrow V(Sp(2\nu, q))
$$

$$
[\alpha] \rightarrow [\alpha T].
$$

Then

- (1) $T \in GSp_{2\nu}(\mathbb{F}_q)$ if and only if $\sigma_T \in \text{Aut}(Sp(2\nu,q))$. In particular, when $q = 2, T \in Sp_{2\nu}(\mathbb{F}_2)$ if and only if $\sigma_T \in \text{Aut}(Sp(2\nu, 2))$
- (2) For any $T_1, T_2 \in GSp_{2\nu}(\mathbb{F}_q)$, $\sigma_{T_1} = \sigma_{T_2}$ if and only if $T_1 = kT_2$ for some $k \in \mathbb{F}_q$;

Proof. It is clear that σ_T is an one-one correspondence from $V(Sp(2\nu, q))$ to itself.

(1) First assume $T \in GSp_{2\nu}(\mathbb{F}_q)$. Then $TK^tT = kK$ for some $k \in \mathbb{F}_q^*$. For any $[\alpha], [\beta] \in V(Sp(2\nu, q)),$ since $\alpha K^t\beta = k^{-1}(\alpha T)K^t(\beta T), [\alpha] \sim [\beta]$ if and only if $\sigma_T([\alpha]) \sim \sigma_T([\beta]),$ hence $\sigma_T \in \text{Aut}(Sp(2\nu, q)).$

Conversely, assume $\sigma_T \in \text{Aut}(Sp(2\nu, q))$. Then, for any $\alpha, \beta \neq 0 \in \mathbb{F}_q^{(2\nu)}$, $\alpha K^t \beta =$ 0 if and only if $\alpha(TK^tT)^t\beta = 0$. Hence, for any $\alpha \neq 0 \in \mathbb{F}_q^{(2\nu)}$, the two systems of linear equations $(\alpha K)^t X = 0$, $(\alpha T K^t T)^t X = 0$ have the same solutions. But $rank(\alpha K) = rank(\alpha T K^t T) = 1$, we see that $\alpha K = k(\alpha T K^t T)$ for some $k \in \mathbb{F}_q^*$, which depends on α . Take $\alpha = (1, 0, \ldots, 0), (0, 1, \ldots, 0), \ldots, (0, 0, \ldots, 1)$, we get that $K = \text{diag}(k_1, k_2, \dots, k_{2\nu})TK^tT$, for some $k_1, k_2, \dots, k_{2\nu} \in \mathbb{F}_q^*$. Take $\alpha = (1, 1, \dots, 1)$, we see that $k_1 = k_2 = ... = k_{2\nu}$, hence $K = k_1TK^tT$.

(2) It is clear that $\sigma_{T_1} = \sigma_{T_2}$ if $T_1 = kT_2$ for some $k \in \mathbb{F}_q^*$. Conversely, suppose that $\sigma_{T_1} = \sigma_{T_2}$. Then, for any $\alpha \neq 0 \in \mathbb{F}_q^{(2\nu)}$, $\alpha T_1 = k \alpha T_2$ for some $k \in \mathbb{F}_q^*$. Take $\alpha = (1, 0, \ldots, 0), (0, 1, \ldots, 0),$ and so on as above, we see that $T_1 = kT_2$ for some $k\in\mathbb{F}_q^*$. The contract of the contrac

By 3.1, every generalized symplectic matrix in $GSp_{2\nu}(\mathbb{F}_q)$ induces an automorphism of $Sp(2\nu, q)$ and two generalized symplectic matrices T_1 and T_2 induce the same automorphism of $Sp(2\nu, q)$ if and only if $T_1 = kT_2$ for some $k \in \mathbb{F}_q$. Thus $PSp_{2\nu}(\mathbb{F}_q)$ can be regarded as a subgroup of $Aut(Sp(2\nu, q)).$

Proposition 3.2. $Sp(2\nu, q)$ is vertex transitive and edge transitive.

Proof. For any $[\alpha], [\beta] \in V(Sp(2\nu, q))$, there exists $T \in Sp_{2\nu}(\mathbb{F}_q)$ such that $\alpha T = \beta$ by [6, Lemma 3.11]. Then $\sigma_T \in \text{Aut}(Sp(2\nu,q))$ such that $\sigma_T([\alpha]) = [\beta]$. Hence $Sp(2\nu, q)$ is vertex transitive.

Let $[\alpha_1], [\alpha_2], [\beta_1], [\beta_2] \in V(Sp(2\nu, q))$ such that $[\alpha_1] \sim [\alpha_2]$ and $[\beta_1] \sim [\beta_2]$. We may assume that $\alpha_1 K^t \alpha_2 = \beta_1 K^t \beta_2$. Then, by [6, Lemma 3.11] again, there exists $T \in Sp_{2\nu}(\mathbb{F}_q)$ such that $\alpha_1 T = \beta_1$ and $\alpha_2 T = \beta_2$. Then $\sigma_T \in \text{Aut}(Sp(2\nu, q))$ such that $\sigma_T([\alpha_1]) = [\beta_1]$ and $\sigma_T([\alpha_2]) = [\beta_2]$. Hence $Sp(2\nu, q)$ is edge transitive. \Box

When $q = 2$, we have the following

Proposition 3.3. Aut $(Sp(2\nu, 2)) \cong Sp_{2\nu}(\mathbb{F}_2)$.

Proof. Let

$$
\sigma: Sp_{2\nu}(\mathbb{F}_2) \rightarrow \text{Aut}(Sp(2\nu,2))
$$

$$
T \mapsto \sigma_T.
$$

Then, by 3.1, σ is an injection. Clearly, σ preserves the operation. It remains to show that, for any $\tau \in \text{Aut}(Sp(2\nu, 2))$, there exists a $T \in Sp_{2\nu}(\mathbb{F}_2)$ such that $\tau = \sigma_T$.

Note that, for any $\alpha \neq 0 \in \mathbb{F}_2^{(2\nu)}$ $\binom{2\nu}{2}$, we have that $[\alpha] = \{0, \alpha\}$. We will denote the uniquely defined element $\tau([\alpha]) \setminus \{0\}$ by $\tau(\alpha)$ and set $\tau(0) = 0$. Then from $\tau \in \text{Aut}(Sp(2\nu,2))$ we see that $\alpha K^t\beta = \tau(\alpha)K^t(\tau(\beta))$ for any $\alpha, \beta \in \mathbb{F}_2^{(2\nu)}$ $2^{(2\nu)}$ (not necessarily non-zero). Fix any $\alpha \in \mathbb{F}_2^{(2\nu)}$ $2^{(2\nu)}$. Let $\beta_1, \beta_2 \in \mathbb{F}_2^{(2\nu)}$ $2^{(2\nu)}$. Then

$$
\alpha K^t \beta_1 = \tau(\alpha) K^t(\tau(\beta_1)),
$$

\n
$$
\alpha K^t \beta_2 = \tau(\alpha) K^t(\tau(\beta_2)).
$$

Thus

$$
\alpha K^t(\beta_1 + \beta_2) = \tau(\alpha) K^t(\tau(\beta_1) + \tau(\beta_2)).
$$

But

$$
\alpha K^t(\beta_1 + \beta_2) = \tau(\alpha) K^t(\tau(\beta_1 + \beta_2)),
$$

hence

$$
\tau(\alpha)K^t(\tau(\beta_1+\beta_2)+\tau(\beta_1)+\tau(\beta_2))=0.
$$

This is true for any $\alpha \in \mathbb{F}_2^{(2\nu)}$ $\mathcal{L}^{(2\nu)}_{2}$, it follows that $\tau(\beta_1 + \beta_2) + \tau(\beta_1) + \tau(\beta_2) = 0$, i.e., $\tau(\beta_1 + \beta_2) = \tau(\beta_1) + \tau(\beta_2)$. Set

$$
T = \begin{pmatrix} \tau(1,0,\ldots,0) \\ \tau(0,1,\ldots,0) \\ \vdots \\ \tau(0,0,\ldots,1) \end{pmatrix}.
$$

Then $\tau(\alpha) = \alpha T$ for any $\alpha \in \mathbb{F}_2^{(2\nu)}$ $2^{(2\nu)}$. Thus T is nonsingular. By 3.1 $T \in Sp_{2\nu}(\mathbb{F}_2)$ and $\tau = \sigma_T$ as required.

From now on, we assume that $q > 2$. In $\mathbb{F}_q^{(2\nu)}$, let us set

 $e_1 = (1, 0, 0, 0, \ldots, 0, 0),$ $f_1 = (0, 1, 0, 0, \ldots, 0, 0),$ $e_2 = (0, 0, 1, 0, \ldots, 0, 0),$ $f_2 = (0, 0, 0, 1, \ldots, 0, 0),$ $e_{\nu} = (0, 0, 0, 0, \ldots, 1, 0),$ $f_{\nu} = (0, 0, 0, 0, \ldots, 0, 1).$

Then $e_i, f_i, i = 1, \ldots, \nu$, form a basis of $\mathbb{F}_q^{(2\nu)}$ and $e_i K^t f_i = 1, e_i K^t e_j = 0, f_i K^t f_j = 0$, $i, j = 1, \ldots, \nu$, and $e_i K^t f_j = 0, i \neq j, i, j = 1, \ldots, \nu$.

In order to describe $\text{Aut}(Sp(2\nu, q))$ for any prime power q, we need some definition from group theory. Let φ be the natural action of $Aut(\mathbb{F}_q)$ on the group $\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*$ $(\nu \text{ in number})$ defined by

$$
\varphi(\pi)((k_1,\ldots,k_\nu))=(\pi(k_1),\ldots,\pi(k_\nu)),\text{ for all }\pi\in \mathrm{Aut}(\mathbb{F}_q)\text{ and }k_1,\ldots,k_\nu\in\mathbb{F}_q^*,
$$

then the semi-direct product of $\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*$ by $\text{Aut}(\mathbb{F}_q)$ corresponding to φ , denoted by $(\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*) \rtimes_{\varphi} \mathrm{Aut}(\mathbb{F}_q)$, is the group consisting of all elements of the form (k_1,\ldots,k_ν,π) , where $k_1,\ldots,k_\nu\in\mathbb{F}_q^*$ and $\pi\in\mathrm{Aut}(\mathbb{F}_q)$, with multiplication defined by

$$
(k_1,\ldots,k_{\nu},\pi)(k'_1,\ldots,k'_{\nu},\pi')=(k_1\pi(k'_1),\ldots,k_{\nu}\pi(k'_{\nu}),\pi\pi').
$$

Then the main result about $Aut(Sp(2\nu, q))$ is as follows.

Theorem 3.4. Regard $PSp_{2\nu}(\mathbb{F}_q)$ as a subgroup of $Aut(Sp(2\nu, q))$ and let E be the subgroup of Aut $(Sp(2\nu, q))$ defined as follows

$$
E = \{ \sigma \in Aut(Sp(2\nu, q)) : \sigma([e_i]) = [e_i], \sigma([f_i]) = [f_i], i = 1, ..., \nu \}.
$$

Then

- (1) $\text{Aut}(Sp(2\nu,q)) = PSp_{2\nu}(\mathbb{F}_q) \cdot E;$
- (2) If $\nu = 1$, then E is isomorphic to the symmetric group on $q 1$ elements;
- (3) If $\nu > 1$, then

$$
E \cong \underbrace{(\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*)}_{\nu} \rtimes_{\varphi} \mathrm{Aut}(\mathbb{F}_q).
$$

Proof. (1) Let $\tau \in \text{Aut}(Sp(2\nu, q))$. Suppose that $\tau([e_i]) = [e'_i], \tau([f_i]) = [f'_i],$ $i = 1, \ldots, \nu$. Then $e'_i K^t f'_i \neq 0$, $e'_i K^t e'_j = 0$, $f'_i K^t f'_j = 0$, $i, j = 1, \ldots, \nu$ and $e'_i K^t f'_j = 0$, $i \neq j$, $i, j = 1, \ldots, \nu$. We may choose $e'_i, f'_i, i = 1, \ldots, \nu$, such that $e'_i K^t f'_i = 1, i =$ $1, \ldots, \nu$. Let

$$
A = \begin{pmatrix} e_1 \\ f_1 \\ e_2 \\ f_2 \\ \vdots \\ e_{\nu} \\ f_{\nu} \end{pmatrix}, A' = \begin{pmatrix} e'_1 \\ f'_1 \\ e'_2 \\ f'_2 \\ \vdots \\ e'_{\nu} \\ f'_{\nu} \end{pmatrix}.
$$

Then $AK^tA = K = A'K^tA'$. Thus, by [6, Lemma 3.11], there exists $T \in Sp_{2\nu}(\mathbb{F}_q)$ such that $A = A'T$, i.e., $e'_iT = e_i$, $f'_iT = f_i$, $i = 1, \ldots, \nu$. Set $\tau_1 = \sigma_T \tau$. Then $\tau_1([e_i]) = [e_i], \tau_1([f_i]) = [f_i], i = 1, \ldots, \nu, \text{ hence } \tau_1 \in E. \text{ Thus } \tau \in PSp_{2\nu}(\mathbb{F}_q) \cdot E.$ It follows that $Aut(Sp(2\nu, q)) = PSp_{2\nu}(\mathbb{F}_q) \cdot E$.

(2) When $\nu = 1$, it is clear that E is isomorphic to the symmetric group on the $q-1$ vertices of $Sp(2,q)$ since $Sp(2,q)$ is a complete graph.

(3) Suppose that $\nu > 1$. Firstly, let us write out some elements of E. Let $k_1, \ldots, k_{\nu} \in \mathbb{F}_q^*$ and $\pi \in \text{Aut}(\mathbb{F}_q)$. Let $\sigma_{(k_1,\ldots,k_{\nu},\pi)}$ be the map which takes any vertex $[a_1, a_2, a_3, a_4, \ldots, a_{2\nu-1}, a_{2\nu}]$ of $Sp(2\nu, q)$ to the vertex

$$
[\pi(a_1), k_1\pi(a_2), k_2\pi(a_3), k_1k_2^{-1}\pi(a_4), \ldots, k_{\nu}\pi(a_{2\nu-1}), k_1k_{\nu}^{-1}\pi(a_{2\nu})].
$$

Then it is clear that $\sigma_{(k_1,\ldots,k_\nu,\pi)}$ is well-defined. Furthermore, it is easy to see that $\sigma_{(k_1,...,k_\nu,\pi)}$ is injective, but the vertex set of $Sp(2\nu,q)$ is finite, $\sigma_{(k_1,...,k_\nu,\pi)}$ is a bijection from $V(Sp(2\nu, q))$ to itself. Let $\alpha = [a_1, a_2, a_3, a_4, \ldots, a_{2\nu-1}, a_{2\nu}],$ $\beta = [a'_1, a'_2, a'_3, a'_4, \ldots, a'_{2\nu-1}, a'_{2\nu}]$ be two vertices of $Sp(2\nu, q)$. If $\alpha \nsim \beta$, then, by definition,

$$
(a_1a'_2-a_2a'_1)+(a_3a'_4-a_4a'_3)+\ldots+(a_{2\nu-1}a'_{2\nu}-a_{2\nu}a'_{2\nu-1})=0,
$$

which implies that

$$
(\pi(a_1)k_1\pi(a'_2) - \pi(a_2)k_1\pi(a'_1)) + (k_2\pi(a_3)k_1k_2^{-1}\pi(a'_4) - k_1k_2^{-1}\pi(a_4)k_2\pi(a'_3))
$$

+... + $(k_\nu\pi(a_{2\nu-1})k_1k_\nu^{-1}\pi(a'_{2\nu}) - k_1k_\nu^{-1}\pi(a_{2\nu})k_\nu\pi(a'_{2\nu-1})) = 0,$

i.e., $\sigma_{(k_1,...,k_\nu,\pi)}(\alpha) \nsim \sigma_{(k_1,...,k_\nu,\pi)}(\beta)$. Since the edges set of $Sp(2\nu,q)$ is finite, $\alpha \nsim \beta$ if and only if $\sigma_{(k_1,...,k_\nu,\pi)}(\alpha) \not\sim \sigma_{(k_1,...,k_\nu,\pi)}(\beta)$. Hence $\sigma_{(k_1,...,k_\nu,\pi)} \in \text{Aut}(Sp(2\nu, q))$. Note that $\sigma_{(k_1,...,k_\nu,\pi)}([e_i]) = [e_i], \sigma_{(k_1,...,k_\nu,\pi)}([f_i]) = [f_i], i = 1,..., \nu$, hence, $\sigma_{(k_1,...,k_\nu,\pi)} \in$ E.

If we define a map h as $(k_1, \ldots, k_{\nu}, \pi) \mapsto \sigma_{(k_1,\ldots,k_{\nu},\pi)}$, then it is easy to verify that h is a group homomorphism from $(\mathbb{F}_q^* \times \cdots \times \mathbb{F}_q^*) \times_{\varphi} \text{Aut}(\mathbb{F}_q)$ to E. It is also easy to see that if $(k_1, ..., k_{\nu}, \pi) \neq (k'_1, ..., k'_{\nu}, \pi')$ then $\sigma_{(k_1, ..., k_{\nu}, \pi)} \neq \sigma_{(k'_1, ..., k'_{\nu}, \pi')}$. Thus, to show that h is a group isomorphism, it remains to show that every element of E is of the form $\sigma_{(k_1,\ldots,k_\nu,\pi)}$.

Suppose that $\sigma \in E$. Note that if $\sigma([a_1, a_2, \ldots, a_{2\nu}]) = [b_1, b_2, \ldots, b_{2\nu}],$ then $a_{2i-1}\neq 0$ if and only if $[a_1, a_2, \ldots, a_{2\nu}] \sim [f_i]$ and $a_{2i}\neq 0$ if and only if $[a_1, a_2, \ldots, a_{2\nu}]$ $\sim [e_i]$, and similar results are also true for b_i . But $\sigma([e_i]) = [e_i]$ and $\sigma([f_i]) = [f_i]$, it follows that $a_i = 0$ if and only if $b_i = 0$. For any vertex $[a_1, a_2, \ldots, a_{2\nu}]$, if $a_1 = \cdots = a_{i-1} = 0$ and $a_i \neq 0$ then $[a_1, a_2, \ldots, a_{2\nu}]$ can be uniquely written as $[0,\ldots,0,1,a'_{i+1},\ldots,a'_{2\nu}]$ and $\sigma([a_1,a_2,\ldots,a_{2\nu}])$ can be uniquely written as

 $[0, \ldots, 0, 1, b'_{i+1}, \ldots, b'_{2\nu}]$. Let us show how to determine $b'_{i+1}, \ldots, b'_{2\nu}$ from $a'_{i+1}, \ldots, b'_{2\nu}$ $a'_{2\nu}$. We will use frequently the fact that, for any vertices [α], [β], if [α] \neq [β] then $\sigma([\alpha]) \not\sim \sigma([\beta]).$

In the following, we will denote $[a_1, a'_1, a_2, a'_2, \ldots, a_{\nu}, a'_{\nu}]$ by $\sum_{i=1}^{\nu} a_i [e_i] + \sum_{i=1}^{\nu} a'_i [f_i],$ for example, $[a, b, 0, \ldots, 0]$ is denoted by $a[e_1] + b[f_1]$. Since σ is a bijection from $V(Sp(2\nu, q))$ to itself, we have permutations π_i , $i = 2, \ldots, 2\nu$, of \mathbb{F}_q with $\pi(0) = 0$ such that

$$
\sigma([e_1] + a_{2i-1}[e_i]) = [e_1] + \pi_{2i-1}(a_{2i-1})[e_i],
$$

\n
$$
\sigma([e_1] + a_{2i}[f_i]) = [e_1] + \pi_{2i}(a_{2i})[f_i].
$$

We firstly consider the cases $\sigma([0,1,a_3,\ldots,a_{2\nu}])$ and $\sigma([1,a_2,a_3,\ldots,a_{2\nu}])$. Let $\sigma([0, 1, a_3, \ldots, a_{2\nu}]) = [0, 1, a'_3, \ldots, a'_{2\nu}]$ and $j \ge 1$. If $a_{2j+1} \ne 0$, then, from $[0, 1, a_3, \ldots, a_{2\nu}] \nsim [e_1] + a_{2j+1}^{-1}[f_{j+1}]$ we have $[0, 1, a'_3, \ldots, a'_{2\nu}] \nsim [e_1] + \pi_{2j+2}(a_{2j+1}^{-1})[f_{j+1}]$, hence, $a'_{2j+1} = \pi_{2j+2}(a_{2j+1}^{-1})^{-1}$. If $a_{2j+2} \neq 0$, then from $[0, 1, a_3, \ldots, a_{2\nu}] \not\sim [e_1]$ $a_{2j+2}^{-1}[e_{j+1}]$ we have $[0, 1, a'_3, \ldots, a'_{2\nu}] \nsim [e_1] + \pi_{2j+1}(-a_{2j+2}^{-1})[e_{j+1}]$, hence, a'_{2j+2} $-\pi_{2j+1}(-a_{2j+2}^{-1})^{-1}$. Thus

(1)
$$
\sigma([0, 1, a_3, \ldots, a_{2\nu}]) = [0, 1, a'_3, \ldots, a'_{2\nu}],
$$

where $a'_{2j+1} = \pi_{2j+2}(a_{2j+1}^{-1})^{-1}$ if $a_{2j+1} \neq 0$ and $a'_{2j+2} = -\pi_{2j+1}(-a_{2j+2}^{-1})^{-1}$ if $a_{2j+2} \neq 0$.

For the case $\sigma([1, a_2, a_3, \ldots, a_{2\nu}])$. Let $\sigma([1, a_2, a_3, \ldots, a_{2\nu}]) = [1, a_2'', a_3'', \ldots, a_{2\nu}']$. From $[1, a_2, a_3, \ldots, a_{2\nu}] \nsim [e_1] + a_2[f_1]$ we get $[1, a_2'', a_3'', \ldots, a_{2\nu}''] \nsim [e_1] + \pi_2(a_2)[f_1],$ hence, $a''_2 = \pi_2(a_2)$. Let $j \ge 1$. If $a_{2j+1} \ne 0$, then, from $[1, a_2, a_3, \ldots, a_{2\nu}] \not\sim [f_1]$ $a_{2j+1}^{-1}[f_{j+1}]$ and $\sigma([f_1] - a_{2j+1}^{-1}[f_{j+1}]) = [f_1] - a_{2j+1}(a_{2j+1})^{-1}[f_{j+1}]$ as been shown above, we have $[1, a''_2, a''_3, \ldots, a''_{2\nu}] \nsim [f_1] - \pi_{2j+1}(a_{2j+1})^{-1}[f_{j+1}],$ hence, $a''_{2j+1} = \pi_{2j+1}(a_{2j+1})$. Similarly, if $a_{2j+2} \neq 0$, then from $[1, a_2, a_3, \ldots, a_{2\nu}] \not\sim [f_1] + a_{2j+2}^{-1}[e_{j+1}]$ we have $[1, a''_2, a''_3, \ldots, a''_{2\nu}] \nsim [f_1] + \pi_{2j+2}(a_{2j+2})^{-1}[e_{j+1}],$ hence, $a''_{2j+2} = \pi_{2j+2}(a_{2j+2})$. Thus, for any $a_2, a_3, \ldots, a_{2\nu} \in \mathbb{F}_q$,

(2)
$$
\sigma([1, a_2, a_3, \ldots, a_{2\nu}]) = [1, \pi_2(a_2), \pi_3(a_3), \ldots, \pi_{2\nu}(a_{2\nu})].
$$

Then, let $i \geq 2$, we discuss the general cases $\sigma([0,\ldots,0,1,a_{2i+1},\ldots,a_{2\nu}])$ and $\sigma([0,\ldots,0,1,a_{2i},\ldots,a_{2\nu}])$. The above results of case $i=1$ will be used. Let $\sigma([0,\ldots,0,1,a_{2i+1},\ldots,a_{2\nu}]) = [0,\ldots,0,1,a'_{2i+1},\ldots,a'_{2\nu}]$ and $j \geq i$. If $a_{2j+1} \neq 0$, then, from

 $[0, \ldots, 0, 1, a_{2i+1}, \ldots, a_{2\nu}] \not\sim [e_1] + [e_i] + a_{2j+1}^{-1}[f_{j+1}]$

and $\sigma([e_1] + [e_i] + a_{2j+1}^{-1}[f_{j+1}]) = [e_1] + \pi_{2i-1}(1)[e_i] + \pi_{2j+2}(a_{2j+1}^{-1})[f_{j+1}]$ as been shown above, we have

$$
[0, \ldots, 0, 1, a'_{2i+1}, \ldots, a'_{2\nu}] \nsim [e_1] + \pi_{2i-1}(1)[e_i] + \pi_{2j+2}(a_{2j+1}^{-1})[f_{j+1}],
$$

$$
a' = \pi_{2i-1}(1)\pi_{2i+2}(a_{2j-1}^{-1})^{-1} \text{ Similarly if } a_{2i+2} \neq 0 \text{ then from}
$$

hence,
$$
a'_{2j+1} = \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+1}^{-1})^{-1}
$$
. Similarly, if $a_{2j+2} \neq 0$, then from
 $[0, \ldots, 0, 1, a_{2i+1}, \ldots, a_{2\nu}] \nsim [e_1] + [e_i] - a_{2j+2}^{-1}[e_{j+1}]$

we have

$$
[0,\ldots,0,1,a'_{2i+1},\ldots,a'_{2\nu}]\nsim [e_1]+\pi_{2i-1}(1)[e_i]+\pi_{2j+1}(-a_{2j+2}^{-1})[e_{j+1}],
$$

hence, $a'_{2j+2} = -\pi_{2i-1}(1)\pi_{2j+1}(-a_{2j+2}^{-1})^{-1}$. Thus,

(3) $\sigma([0,\ldots,0,1,a_{2i+1},\ldots,a_{2\nu}]) = [0,\ldots,0,1,a'_{2i+1},\ldots,a'_{2\nu}],$

where $a'_{2j+1} = \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+1}^{-1})^{-1}$ if $a_{2j+1} \neq 0$ and $a'_{2j+2} = -\pi_{2i-1}(1)\pi_{2j+1}(-a_{2j+2}^{-1})^{-1}$ if $a_{2j+2} \neq 0$.

Finally, for the case $\sigma([0,\ldots,0,1,a_{2i},\ldots,a_{2\nu}])$. Let $\sigma([0,\ldots,0,1,a_{2i},\ldots,a_{2\nu}])$ = $[0, \ldots, 0, 1, a''_{2i}, \ldots, a''_{2\nu}].$ From

$$
[0,\ldots,0,1,a_{2i},\ldots,a_{2\nu}]\not\sim [e_1]+[e_i]+a_{2i}[f_i]
$$

we get

$$
[0, \ldots, 0, 1, a_{2i}'', \ldots, a_{2\nu}''] \nsim [e_1] + \pi_{2i-1}(1)[e_i] + \pi_{2i}(a_{2i})[f_i],
$$

hence, $a_{2i}'' = \pi_{2i-1}(1)^{-1}\pi_{2i}(a_{2i})$. Let $j \ge i$. If $a_{2j+1} \ne 0$, then from
 $[0, \ldots, 0, 1, a_{2i}, \ldots, a_{2\nu}] \nsim [f_i] - a_{2j+1}^{-1}[f_{j+1}]$

we have

$$
[0, \ldots, 0, 1, a''_{2i}, \ldots, a''_{2\nu}] \nsim [f_i] - \pi_{2i-1}(1)^{-1} \pi_{2j+1}(a_{2j+1})^{-1} [f_{j+1}],
$$

hence, $a''_{2j+1} = \pi_{2i-1}(1)^{-1} \pi_{2j+1}(a_{2j+1})$. If $a_{2j+2} \neq 0$, then from

$$
[0, \ldots, 0, 1, a_{2i}, \ldots, a_{2\nu}] \nsim [f_i] + a_{2j+2}^{-1} [e_{j+1}]
$$

we have

$$
[0, \ldots, 0, 1, a_{2i}'', \ldots, a_{2\nu}''] \nsim [f_i] + \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+2})^{-1}[e_{j+1}],
$$

hence, $a_{2j+2}'' = \pi_{2i-1}(1)^{-1}\pi_{2j+2}(a_{2j+2})$. Thus, for any $a_{2i}, a_{2i+1}, \ldots, a_{2\nu} \in \mathbb{F}_q$,
(4) $\sigma([0, \ldots, 0, 1, a_{2i}, a_{2i+1}, \ldots, a_{2\nu}])$

$$
= [0, \ldots, 0, 1, \pi_{2i-1}(1)^{-1}\pi_{2i}(a_{2i}), \pi_{2i-1}(1)^{-1}\pi_{2i+1}(a_{2i+1}), \ldots, \pi_{2i-1}(1)^{-1}\pi_{2\nu}(a_{2\nu})].
$$

Having represented σ by π_i , $i = 2, \ldots, 2\nu$, let us discuss some properties of π_i .

Lemma 3.5. (1) For any
$$
i \ge 1
$$
 and $a \in \mathbb{F}_q$,
\n
$$
\pi_{2i+1}(1)\pi_{2i+2}(a) = \pi_{2i+2}(1)\pi_{2i+1}(a) = \pi_2(a);
$$
\n(2) For any $i \ge 2$ and $a, b \in \mathbb{F}_q$,
\n
$$
\pi_i(a+b) = \pi_i(a) + \pi_i(b);
$$
\n
$$
\pi_i(-a) = -\pi_i(a);
$$
\n
$$
\pi_i(ab) = \pi_i(a)\pi_i(b)\pi_i(1)^{-1};
$$
\n
$$
\pi_i(a^{-1}) = \pi_i(a)^{-1}\pi_i(1)^2 \text{ if } a \ne 0.
$$

Proof. (1) We may assume that $a \neq 0$. Since $[e_1]+a[e_{i+1}]+a[f_{i+1}] \nsim [e_{i+1}]+[f_{i+1}],$ it follows that $\sigma([e_1] + a[e_{i+1}] + a[f_{i+1}]) \nsim \sigma([e_{i+1}] + [f_{i+1}]),$ but

$$
\sigma([e_1] + a[e_{i+1}] + a[f_{i+1}]) = [e_1] + \pi_{2i+1}(a)[e_{i+1}] + \pi_{2i+2}(a)[f_{i+1}],
$$

$$
\sigma([e_{i+1}] + [f_{i+1}]) = [e_{i+1}] + \pi_{2i+1}(1)^{-1}\pi_{2i+2}(1)[f_{i+1}],
$$

we have that

$$
\pi_{2i+1}(1)^{-1}\pi_{2i+2}(1)\pi_{2i+1}(a) - \pi_{2i+2}(a) = 0,
$$

i.e.,

$$
\pi_{2i+1}(1)\pi_{2i+2}(a) = \pi_{2i+2}(1)\pi_{2i+1}(a).
$$

Similarly, since $[e_1] + a[f_1] + [e_{i+1}] \nsim [e_1] + a[f_{i+1}]$, we have that $[e_1] + \pi_2(a)[f_1] +$ $\pi_{2i+1}(1)[e_{i+1}] \nsim [e_1] + \pi_{2i+2}(a)[f_{i+1}]$, hence, $\pi_{2i+1}(1)\pi_{2i+2}(a) = \pi_2(a)$. (2) From $[e_1] + (a + b)[f_1] + [e_2] \nsim [e_1] + a[f_1] + b[f_2]$ we have that

$$
[e_1] + \pi_2(a+b)[f_1] + \pi_3(1)[e_2] \nsim [e_1] + \pi_2(a)[f_1] + \pi_4(b)[f_2].
$$

Then $\pi_2(a) - \pi_2(a+b) + \pi_3(1)\pi_4(b) = 0$, but $\pi_3(1)\pi_4(b) = \pi_2(b)$, hence, $\pi_2(a+b) =$ $\pi_2(a) + \pi_2(b)$. It turns out from (1) that this equality holds for all $i \geq 2$. Thus $\pi_i(-a) = -\pi_i(a)$ as $\pi_i(0) = 0$.

For multiplication, let $i \geq 1$, from $[e_1] + b[e_{i+1}] + ab[f_{i+1}] \nsim [e_{i+1}] + a[f_{i+1}]$ we get that

$$
[e_1] + \pi_{2i+1}(b)[e_{i+1}] + \pi_{2i+2}(ab)[f_{i+1}] \n\sim [e_{i+1}] + \pi_{2i+1}(1)^{-1}\pi_{2i+2}(a)[f_{i+1}],
$$

hence, $\pi_{2i+1}(b)\pi_{2i+1}(1)^{-1}\pi_{2i+2}(a) - \pi_{2i+2}(ab) = 0$, but $\pi_{2i+1}(b)\pi_{2i+1}(1)^{-1} = \pi_{2i+2}(b)\pi_{2i+2}(1)^{-1}$. Thus

$$
\pi_{2i+2}(ab) = \pi_{2i+2}(a)\pi_{2i+2}(b)\pi_{2i+2}(1)^{-1}.
$$

It follows from $\pi_{2i+1}(1)\pi_{2i+2}(a) = \pi_{2i+2}(1)\pi_{2i+1}(a)$ and $\pi_{2i+1}(1)\pi_{2i+2}(1) = \pi_{2i+2}(1)\pi_{2i+1}(1)$ that the abve equality also holds for $2i + 1$. It remains to consider π_2 . We have

$$
\pi_2(ab) = \pi_3(1)\pi_4(ab)
$$

= $\pi_3(1)\pi_4(1)^{-1}\pi_4(a)\pi_4(b)$
= $\pi_3(1)^{-1}\pi_4(1)^{-1}\pi_2(a)\pi_2(b)$
= $\pi_2(a)\pi_2(b)\pi_2(1)^{-1}$.

Finally, if $a \neq 0$, then from $\pi_i(1) = \pi_i(aa^{-1}) = \pi_i(a)\pi_i(a^{-1})\pi_i(1)^{-1}$ we obtain that $\pi_i(a^{-1}) = \pi_i(a)^{-1}\pi_i(1)^2$, then the proof of lemma is complete.

We continue the proof of the theorem. Let us denote the identity automorphism on \mathbb{F}_q by π_1 . Then when $i = 1$, (3) reduces to (1) and (4) reduces to (2). Therefore (3) and (4) hold for all i, where $1 \leq i \leq \nu$. By the above lemma, for any $i \geq 1$, we can rewrite (3) in the form of (4) as follows. In (3), for any $j \geq i$, we have

$$
a'_{2j+1} = \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+1}^{-1})^{-1}
$$

\n
$$
= \pi_{2i-1}(1)\pi_{2j+2}(a_{2j+1})\pi_{2j+2}(1)^{-2}
$$

\n
$$
= \pi_{2i-1}(1)\pi_{2j+1}(1)^{-1}\pi_{2j+2}(1)^{-1}\pi_{2j+1}(a_{2j+1})
$$

\n
$$
= \pi_{2i-1}(1)\pi_2(1)^{-1}\pi_{2j+1}(a_{2j+1})
$$

\n
$$
= \pi_{2i}(1)^{-1}\pi_{2j+1}(a_{2j+1}),
$$

\n10

and

$$
a'_{2j+2} = -\pi_{2i-1}(1)\pi_{2j+1}(-a_{2j+2}^{-1})^{-1}
$$

\n
$$
= \pi_{2i-1}(1)\pi_{2j+1}(a_{2j+2}^{-1})^{-1}
$$

\n
$$
= \pi_{2i-1}(1)\pi_{2j+1}(a_{2j+2})\pi_{2j+1}(1)^{-2}
$$

\n
$$
= \pi_{2i-1}(1)\pi_{2j+1}(1)^{-1}\pi_{2j+2}(1)^{-1}\pi_{2j+2}(a_{2j+2})
$$

\n
$$
= \pi_{2i-1}(1)\pi_2(1)^{-1}\pi_{2j+2}(a_{2j+2})
$$

\n
$$
= \pi_{2i}(1)^{-1}\pi_{2j+2}(a_{2j+2}).
$$

Hence, for any $a_{2i+1}, \ldots, a_{2\nu} \in \mathbb{F}_q$,

$$
(5) \sigma([0,\ldots,0,1,a_{2i+1},\ldots,a_{2\nu}]) = [0,\ldots,0,1,\pi_{2i}(1)^{-1}\pi_{2i+1}(a_{2i+1}),\ldots,\pi_{2i}(1)^{-1}\pi_{2\nu}(a_{2\nu})],
$$

which is of the same form as (4).

Now let $k_1 = \pi_2(1)$, $\pi = k_1^{-1}\pi_2$, $k_2 = \pi_3(1)$, $k_3 = \pi_5(1)$, ..., $k_\nu = \pi_{2\nu-1}(1)$. Then $\pi \in \text{Aut}(\mathbb{F}_q), \ \pi_2 = k_1\pi, \ \pi_3 = k_2\pi, \pi_4 = k_1k_2^{-1}\pi, \dots, \pi_{2\nu-1} = k_\nu\pi, \pi_{2\nu} = k_1k_\nu^{-1}\pi.$ Assembling (4) and (5), we obtain

$$
\sigma([a_1, a_2, a_3, a_4, \ldots, a_{2\nu-1}, a_{2\nu}])
$$
\n
$$
= [\pi(a_1), k_1 \pi(a_2), k_2 \pi(a_3), k_1 k_2^{-1} \pi(a_4), \ldots, k_{\nu} \pi(a_{2\nu-1}), k_1 k_{\nu}^{-1} \pi(a_{2\nu})].
$$

Hence $\sigma = h(k_1, \ldots, k_{\nu}, \pi)$, as required.

Corollary 3.6. When $\nu = 1$,

$$
|\text{Aut}(Sp(2,q))| = q(q^2 - 1) \cdot (q - 2)!,
$$

and when $\nu \geq 2$,

$$
|\text{Aut}(Sp(2\nu,q))| = q^{\nu^2} \prod_{i=1}^{\nu} (q^{2i} - 1) \cdot [\mathbb{F}_q : \mathbb{F}_p].
$$

Proof. Note that $PSp_{2\nu}(\mathbb{F}_q) \cap E$ consists of σ which is reduced from some matrix of the form $diag(k_1, l_1, k_2, l_2, \ldots, k_{\nu}, l_{\nu})$, with $k_i l_i = 1, i = 1, \ldots, \nu$. Thus $|PSp_{2\nu}(\mathbb{F}_q) \cap E| = \frac{1}{2}$ $\frac{1}{2}(q-1)^{\nu}$. Hence

$$
|\text{Aut}(Sp(2\nu, q))| = \frac{|PSp_{2\nu}(\mathbb{F}_q)||E|}{|PSp_{2\nu}(\mathbb{F}_q) \cap E|}
$$

=
$$
\frac{\frac{1}{2}q^{\nu^2} \prod_{i=1}^{\nu} (q^{2i} - 1) \cdot |E|}{\frac{1}{2}(q - 1)^{\nu}}.
$$

Thus, when $\nu = 1$, $|\text{Aut}(Sp(2,q))| = q(q^2 - 1) \cdot (q - 2)!$, and when $\nu \geq 2$, $|\text{Aut}(Sp(2\nu,q))|$ = 1 $\frac{1}{2}q^{\nu^2}\prod_{i=1}^{\nu}(q^{2i}-1)\cdot(q-1)^{\nu}\cdot|\text{Aut}(\mathbb{F}_q)|$ 1 $rac{1}{2}(q-1)^{\nu}$ $= q^{\nu^2} \prod^{\nu}$ $i=1$ $(q^{2i}-1)\cdot|\mathrm{Aut}(\mathbb{F}_q)|$ $= q^{\nu^2} \prod^{\nu} (q^{2i} - 1) \cdot [\mathbb{F}_q : \mathbb{F}_p],$ $i=1$

as is well-known that $|\text{Aut}(\mathbb{F}_q)| = [\mathbb{F}_q : \mathbb{F}_p]$ where $p = \text{char}(\mathbb{F}_q)$.

REFERENCES

- [1] R. H. Dye, Partitions and their stabilizers for line complexes and quadrics, Annali di Matematica Pura ed Applicata 114(1977), 173-194.
- [2] C. Godsil and G. Royle, Chromatic number and the 2-rank of a graph, J. Combin. Theory Ser.B 81(2001), 142-149.
- [3] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics Vol. 207, Springer-Verlag, 2001.
- [4] J.J. Rotman, Projective planes, graphs, and simple algebras, J. Algebra 155(1993), 267-289.
- [5] J.J. Rotman and P.M. Weichsel, Simple Lie algebras and graphs, *J. Algebra* 169(1994), 775-790.
- [6] Z. Wan, Geometry of Classical Groups over Finite Fields, 2nd edition, Science Press, Beijing/New York, 2002.

Zhongming Tang Department of Mathematics Suzhou University Suzhou 215006 P. R. China E-mail: zmtang@suda.edu.cn Zhe-xian Wan

Academy of Mathematics and System Sciences Chinese Academy of Science Beijing 100080 P. R. China E-mail: wan@amss.ac.cn