Continued Fractions for Rogers-Szegd polynomials
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Abstract

We evaluate different Hankel determinants of Rogers-Szeg6 polyno-
mials, and deduce from it continued fraction expansions for the gener-
ating function of RS polynomials. We also give an explicit expression
of the orthogonal polynomials associated to moments equal to RS poly-
nomials, and a decomposition of the Hankel form with RS polynomials
as coeflicients.

1 Definitions and Notations

Let (a), = (a;q)n = (1—a)(1—aq) - - - (1—aq™ ). The g-binomial coefficient,
or the Gauss polynomial, is

m _ (@@e (@ -D@ -1 (" T
k] (6 @)i(a Dn—k (" =D =1)(¢g—1)
which is equal to the number of k-dimensional vector subspaces of the n-

dimensional vector space V,(q) over the finite field GF(q) if ¢ is a prime
power.




The Rogers-Szego polynomials are defined by

n

n k
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They are some variants of g-Hermite polynomials which play an important
role in the theory of basic hypergeometric series [1]. In fact, we have

H,(x]q) = €™ hn(e’,q), 2 =cosf.

Rogers-Szegd polynomials appear as coefficients in Fine’s transforma-
tion of hypergeometric series|[7, p. 27]. New representations for them have
been recently given by Berkovitch and Warnaar [4]. Distribution of zeros of
Rogers-Szegd polynomials are studied in [6], [13].

For t = 1, Rogers-Szegd polynomials specialize to the Galois numbers of
Goldman and Rota [8, p. 77] (cf. also [11]):

oS
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Let us introduce some notations related to symmetric functions (cf. [12]).
Given two sets of indeterminates A, B (we say alphabets), the complete
symmetric functions S*(A — B), i € Z, of the formal difference A — B are
defined by the following generating function (using another variable z) :

ZZ;SZ (A—B)z % (1.2)

More generally, for any polynomial P = Z(Qu) cu, ¢ € C, v monomial,

and any extra variable g, we define S*(P) and S*(P/(1—q)) by the generating
functions

O’Z< Z cu> = Z Z'SY(P) = H (1—zu)™° (1.3)

(e,u) i (eyu)

az<1—]_3q> = Zz’S’(l_q> HHl—zqu < (1.4)

(c,u) j=0

With these notations, a variable x is identified with the alphabet {z} of
order 1, and (1 — ¢)~! with the infinite alphabet {1,¢,¢?,...}. Any formal



series ano 2"S™, with S® = 1, can be formally factorized, i.e. identified
with o,(A) for some alphabet A such that S™ = S™(A), n € N.

Our basic ring R is the ring of rational functions in two variables ¢,
and some alphabets A, B, .. ..

For any element 6§ € R, any n € N, any I = (i1,...,i,) € N", the Schur
function Sy(0) is defined by the determinant [14] :

51(9) = |Sis+s_r(9)‘lﬁr,s§n'

2 Recursion for Rogers-Szeg6 Polynomials

Taking coefficients of powers of z in (1.2), one gets

"(A+ B) Zs’f ) S F(£B). (2.1)

(From (2.1), we see that the Rogers-Szegé Polynomial h,(t,¢) can be
written as: )
+1
STl ——.
(@n (1 — q)

Lemma 2.1 Let B,C be two alphabets of order less than or equal to m.

Then S, := S" ( qc>, n € N, satisfies the following recurrence:

> (87(—=B) = S"(=C)q"") Snr = 0. (2.2)

r=0

Proof. Writing —B + Ji;_g = —C + ¢B=¢ ==, then from (2.1), together with
the fact that S™(—B) =0 = S"(—C), for > m, we get that

r n—r 7" nrn—r B-C
2.5-B)S <1—Q> 2.5 > (1—61>'

Lemma 2.1 implies the following recursion [16]:



Corollary 2.2 Let hy,(t,q) be the Rogers-Szegi polynomial. Then

ha(t,q) = (14 t)hn-1(t,q) —t(q" " = Dhna(t,q), n>2.  (23)

Proof. Taking B = {1,t},C = () in Lemma 2.1, we have

(1—¢")S" (%) — (1415t (ﬁ) + 15" (%) =0. (24)

Substituting S™ (%2) = hn(t,q)/(q)n in Equation (2.4), we derive the
recursion immediately. O

Remark. Goldman and Rota [8] proved the recursion
Gn+1:2Gn+(qn_1)Gn—l 5 G0:17 G1:27

using vector spaces over finite fields. Nijenhuis, Solow and Wilf [15] gave a
bijective proof for the same recursion. K. Hikami and B. Basu-Mallick [9]
gave also a recursion for generalized Rogers-Szeg6 polynomials.

3 Determinants of Rogers-Szeg6 Polynomials

Theorem 3.1 Let A be the alphabet defined by S*(A) = h;(t,q), i € N. For
m >0, we have
n+1

Sun(8) = t&)gS) (@)o(@)1 -+ (@)nihalt,a ™), (3.1)
Sn®) = @o@r-+ @t " hntria), 62)

where hy,(t,q) are regarded as 0 for n < 0. In particular,
n+1 n+1
S (A) = (@o(@)1 -+ (a)at"2 ("3, (3.3)

Proof. Denote X = %T‘Fé. By definition,

Spn(A) = |hn+j—i(t7q”1§i7j§n
= [ @n+j=iS" X 1oy <
= (@ @ @ )

1<i,j<n

4



We can write recursion (2.4) as

(qk)msk—i-m—l(X)

(14 (@)1 S 2(X) = 11— ") )m2 S ()
_tqm_l(qk_l)m_15k+m_3(X). (35)

Applying identity (3.5) on columns n,n —1,...,2 of the determinant in
(3.4) successively, it becomes

(_t)n—lqn—2qn—3 L qO
SMX)  STHX) (¢MhSMX)

(4" )n-282"3(X)
Sn—l(X) Sn—2(X) (qn—l)lsn—l(X)

(qn—l)n_252n—4(X)
X)) SHX) (@)nS*(X) o (@)1 S"THX)
sHx)  SUX) (@181 (X) (@28 X))

Repeating the same transformation, we will finally reach

Sn(X) Sn—l(X) Sl(X)
Sn—l(X) S”_2(X) .. SO(X)
(—1)(3) (%) » . — 1(2)g(3) 81 ().
S*(X)  SY(X) 0
SH(X) SY(X) 0
Noting that
Sin (X)

ngn (LAY _d®
(F11°8 ( 1—Q>_(Q)nh"(t’q )

Sun(8) = t(2)("3 ) (g), -

we obtain

cAQn-1ha(t,g ).
For m > n, define

Spn m(A)
Wn m — :
7 (@o(@1 - (@
S"(X) (qn-i-l)lsn-l—l(X)

(qn+1)n_152n—1(X) (qn-l—l)msn-i-m(X)
SHX) (@ SMX) e (@)aa ST THX) (@)mSTTTHX)

(@*)n-15"(X) (@*)mS™TH(X)
(Q)nflsnil(X) (Q)msm(X)



Applying identity (3.5) on the last column of W, ,,,, we transform it into

Wn,m = (1 + t)Wn,m—l - t(l - qm_l)Wn,m—Z

S”(X) <qn+1)n_152n—1(X) (qn)m_15n+m—2(X)

Sn—l(X) . (qn)n_152n—2(X) (qn—l)m_15n+m—3(X)
SHX) e (@) SM(X) (@)m-15""H(X)
SUX) o (@ STTHX) 0

After successive such transformations, one finally obtains

n—1

Wn,m = (1+t)Wn,m—1_t(l_qm_l)Wn,m—2+tnqm_lq( 2 )Wn—l,m—l' (36)

Noting that
0 [ a0

satisfies the recursion (3.6) and coincides with W, ,, for (0,m), (n,0) and
(n,1), we get (3.2). O

4 Continued Fractions for Rogers-Szeg6é Polynomial

There are three main types of continued fraction expressions for formal se-
ries. They are all obtained by evaluating some Hankel determinants, i.e. de-
terminants which are constant along anti-diagonals. What we write Sgn(A)
would usually appear as

Chont1 - Ck Sk(A) oo Skan—1(4)

— 4+

Ck ot Chyno1 Sk—n+1(A) - Sk(A)
the ¢; = S;(A) being the moments.

We refer to Stieltjes [17], Wall [18] and Brezinski [5]. The determinants
given by Theorem 3.1 allow us to write the following three continued frac-
tions. We do not treat questions of convergence, but only expand formally
continued fractions.



Theorem 4.1 The generating function of Rogers-Szego polynomials hy(t,q)
1s equal to each of the three following continued fractions:

> 1
> hal(tig)2" =
n=0 1— 21
1— 272
1-208
_ 1
1—C(oz+ biz 3
z
1—-CGz+ 2 3 3
z
1—(oz+ 3
> 1
S o)t = : |
n=0 z + T i
(o7 2 4 1
1
a2 4.
ag
where
G i (t, g~ Ve (g7
(_1)n—1q2 n(7ql) n—1(7q ), m:2n_1’
Qm = { m 7 @
(_1)n (q)n , m = 2n?

B2 (t,q7")

q"h(t,gh)

Bn—1(t,q7t) '
= { 1(t,q71)

ha-1(t g~
-
Bo = q" (1 —q"),
Cn = q"(l—i—t).

Proof. In our notations, Stieltjes’ parameters, for the series ) 2"S"(A), are



[12]
Snn(A)S(n_1)n-1(A)

(-1t , m=2n—1,
o — S n—1)" (A)2
" n Spn+1 (ASS(n—l)" (A)
(_1) S n(A)2 ) m = 2n,
" S(n—l)"(A)2 e
Tn = QnQlp-1,
I Sn",n—l—l(A) _ S(n—l)("*l),n(A)
" Spn+1 (A) S(n—l)" (A) '

O

Remark. Note that the usual generating function considered for the Rogers-
Szegd polynomials is

Z hn(t;Q) Zn — 1

n>0 (QQ Q)n (Z§ Q)oo(Zt; Q)oo ’

which is different from the one in Theorem 4.1.

5 Hankel Forms

To any alphabet A is associated a Hankel form
H(A,:L’) = Z Si+j(A) Ty .
i,j=0

The problem of decomposing Hankel forms into sums of squares has also
been solved by Stieltjes [3]. He found the coefficients, that we denote by ,
such that

H(A;x) = (wo+*x1 + - )2+ *(w1 +4zo + - )2+ *(wp +Hwg+--- )2+

Theorem 5.1 (Stieltjes) Let A be a generic alphabet. With A° = A, de-
fine the alphabets A', A%, ... by the generating series

O'Z(Ak) = Skk+1(A)_1 ZSkk,kH(A)zj .
7=0
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Then the form K(A; x,y) = Y. Sitj(A)z'y’ decomposes as
i,j=0
K(4izy) = oi(@+y)a’) —aySu(h)oi(@+y)al) + -

St (A)

R =)

01<($+y)A"> +--e

Substituting Equation (3.2) into the above identity, we instantly derive
that

Corollary 5.2 For Rogers-Szegd polynomials hy(t,q), we have

3 bt @)aiy = S () (@)ng()
i,7=0 n=0

(g Tl (e )

Comparing the coefficients of t™s™ of both sides, we get the following
formula due to Askey and Ismail [2]:

min{m,n}

it = Y (][4 0¥ @naO st haos0)

k=0
6 Orthogonal Polynomials

Let [ be a linear functional on polynomials in z such that there exists a
family of orthogonal polynomials { P, (x)}:

/Pm(w)Pn(ac) =0if m#n, /Pn(ac)Pn(ac) =c, #0.

¢p, is called the normalization constant.

Identifying the moments [ z™ to the complete functions S™(A) of some
alphabet A, we can rewrite the classical expressions of orthogonal polyno-
mials in term of symmetric functions:

Po(r) = Spn (A — 2), cn = (=1)"S(—1)n(A) Spnta(4), n>0.  (6.1)

9



In the case where we take as moments the Rogers-Szegd polynomials,
the corresponding orthogonal polynomials have a simple expression which
is a corollary of combinatorial properties of Al-Salam-Chihara polynomials
obtained by Ismail and Stanton[10, Th. 6, Cor. 1]. We give a direct algebraic
proof in the following theorem.

Theorem 6.1 Let fA be the linear functional with moments equal to the
Rogers-Szego polynomials: [, & = hy(t,q). Then

n| (k _ _ r—1—1
Poo) = S0 [ |a® it e = @5 ().
k=0
are its associated orthogonal polynomials, with normalization constant

n
2

en =" (g = 1)(=1)-- (¢" - 1).

Proof. Start with

Sn (A) Sn—i—l (A) S2n—1 (A "
Sn—l (A) Sn (A) S2n—2(A) :En—l
Sn” (A — QZ) = R ,
SUA)  S%(A) Sh(A) ot
SO(A) SH(A) Sn=L(A) 1

and write X = %T‘Fé. The same kind of transformation as for Theorem 3.1

10



allows us to write the preceding determinant as

Sn(X) s (qn+1)n—152n_1(X) xn/(Q)n
STHX) o (@M)1ST2X) 2" (g)n
(q)o(q)l- (Q)n
SUX) o (@)1 SM(X) o
SUX) - (@ STTHX) 1
— (@)o(@)1 -+ (@a(—1)B)g(5)
SMX)  STTHX) SUX) 2/ (@)
LX) S"(X) SOX) 2"/ (@)ns
SYX)  SOX) 0 2 /(q)
SY(X) 0 0 1
n xn—k
= ()1 (@)@ gB) ST (=1)nk Spr(X)
k=0 (Q)n—k

After normalization, we finally get the polynomials
_ k(T k —1\,.n—k __ n r—1-1
Pao) = S0 1 Oate et = s (T
k=0
with normalization constant
en = "¢ (g = 1)(¢* = 1)+ (" — 1).

O
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