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Abstract

We evaluate some Hankel determinants of Meixner polynomials,
associated to the series exp(

∑
α[i]zi/i), where [1], [2], . . . are the q-

integers.

1. Introduction

Given a nonzero real number α, let
∑

i≥0 aiz
i be the Taylor expansion of

f(z) = exp

(
∑

i≥1

α
1 − qi

1 − q

zi

i

)
= 1 + zα +

z2

2
(q + α + 1)α + · · · . (1.1)

By using symmetric functions, we evaluate two families of Hankel determi-
nants:

H1
n = det(ai+j−1)1≤i,j≤n and H2

n = det(ai+j)0≤i,j≤n . (1.2)
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What is remarkable is that H1
n factors into linear factors of type (α− r + rq)

and that H2
n/H1

n is a polynomial in q and α, though the coefficients of the
Taylor expansion of f(z) are rather complicated.

The explicit forms of H1
n and H2

n are given by the following theorem,
which is our main result.

Theorem 1.1 We have

H1
n = wn

∏

n>|r|

(α − r + rq)n−|r| , (1.3)

and

H2
n/H1

n =

n∑

k=0

(−1)k

(
n

k

) k−1∏

i=0

α + (1 − q)(n − i)

2n − i
, (1.4)

with

wn =
(−1)(

n

2)

1 · 22 · 33 · · ·nn(n + 1)n−1 · · · (2n − 1)1
. (1.5)

2. Symmetric Functions

Many properties of Hankel determinants are better understood when identi-
fying Hankel determinants with Schur functions indexed by rectangular par-
titions [4]. We first shall recall a few facts about symmetric functions. We
follow the convention of [4] rather than [5]. The basic symmetric functions
will be the power sums pi, i = 1, 2, . . ., and the argument of a symmetric
function will be a rational function with coefficients in C, of two types of
variables: variables inside a box and variables without a box. We define

pi(α) = α and pi

(
x
)

= x i,

and require that the pi be C-ring homomorphisms satisfying





pi(αA + βB) = αpi(A) + βpi(B)

pi(AB) = pi(A)pi(B)

pi(pj(A)) = pij(A).
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Notice that
pi

(
3 2

)
= 3 2 i = pi

(
2 + 2 + 2

)
,

but that
pi

(
2
)

= 2 i 6= pi

(
1 + 1

)
= 1 i + 1 i.

One cannot expand the content of a box, inside the argument of a symmetric
function. Symmetric functions are considered here just as a tool to write
algebraic expressions, in a simpler manner than having to manipulate coeffi-
cients of different generating functions. Once they are evaluated in terms of
their arguments, we can, of course, erase boxes.

The usual power sums are recovered when taking as an argument a sum
of letters in boxes:

pi

(
a + b + c + · · ·

)
= a i + b i + c i + · · · .

By abuse of language, we shall still call the argument A of a symmetric
function an alphabet.

The complete symmetric functions of A, Sn(A), are defined with the help
of the following generating function

σz(A) =
∑

n≥0

znSn(A) = exp

(
∞∑

i=1

zipi(A)/i

)
.

This definition implies in particular that

Sn(A + B) =

n∑

i=0

Si(A)Sn−i(B). (2.1)

For any n ∈ N and I = (i1, . . . , in) ∈ Nn, the Schur function SI(A) has a
determinantal expression [5, Section 1.3] :

SI(A) =
∣∣Sis+s−r(A)

∣∣
1≤r,s≤n

.

If I and J are two conjugate partitions, then [4, p. 8]

SI(A) = (−1)|J |SJ(−A).
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The determinantal expressions of Schur functions occur in many fields of
mathematics. For example, the notation Snn(A − x ) encodes the classical
determinantal expressions of orthogonal polynomials in terms of moments
(cf. [1, p. 273], [4, p.117]):

S33

(
A − x

)
=

∣∣∣∣∣∣

S3(A − x ) S4(A − x ) S5(A − x )

S2(A − x ) S3(A − x ) S4(A − x )

S1(A − x ) S2(A − x ) S3(A − x )

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

S3(A) S4(A) S5(A) x3

S2(A) S3(A) S4(A) x2

S1(A) S2(A) S3(A) x1

S0(A) S1(A) S2(A) x0

∣∣∣∣∣∣∣∣
.

More generally, given a non negative integer k and a generic alphabet A (by
generic, we mean that for any n ≥ 0, S(n+k−1)n(A) 6= 0), let for any n ∈ N,

Pn (x) := S(n+k)n

(
A − x

)
= S(n+k)n(A) − x Sn+k−1,(n+k)n−1(A)

+ x2S(n+k−1)2,(n+k)n−2(A) + · · ·+ (−1)nxnS(n+k−1)n(A).

Then {P0(x), P1(x), . . .} is a family of orthogonal polynomials associated to
the functional xn →

∫
xn = Sn+k(A).

Notice that we have letters in boxes only as arguments of symmetric
functions.

3. A transformation of alphabets

Given an alphabet A, we define a new alphabet B by the following equality
of generating functions:

σz(B) = σz/(1+z)(A). (3.1)

We have the equivalence

σz(B) = σz/(1+z)(A) ⇐⇒ σz(−B) = σz/(1+z)(−A),
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and, by expansion of the generating functions,





Sn(B) =
∑n−1

i=0 (−1)i
(

n−1
i

)
Sn−i(A) = Sn(A − (n − 1)),

Sn(A) =
∑n−1

i=0

(
n−1

i

)
Sn−i(B) = Sn(B − (n − 1) −1 ).

(3.2)

This transformation has been used by Grothendieck to define Chern classes
in K-theory (cf. [4, Exercise 2.13]).

By row and column manipulations, we can easily transform the determi-
nant Snn(A) into Snn(B), i.e., one has

Snn(A) = Snn(B) = (−1)n2

Snn(−B) = (−1)n2

Snn(−A). (3.3)

Furthermore, we have

Lemma 3.1

S(n+1)n

(
−A − x+1

)
= S(n+1)n

(
−B − x

)
. (3.4)

Proof. Define a linear functional
∫

acting on the ring of polynomials in x by

∫
xn = Sn+1(−B), ∀n ≥ 0. (3.5)

Then ∫
(x + 1)n =

n∑

i=0

(
n

i

)
Sn−i+1(−B) = Sn+1(−A) . (3.6)

From (3.5), we have that S(n+1)n(−B− x ) are orthogonal polynomials asso-

ciated to
∫

. Similarly, (3.6) implies that S(n+1)n(−A− x+1 ) are also orthog-
onal polynomials associated to

∫
. Since their leading coefficients coincide,

(3.4) holds.

Corollary 3.2 Let A and B be alphabets such that σz(B) = σz/(1+z)(A).
Then

S(n+1)n(−A) = Snn+1(A) = Snn+1

(
B + −1

)
=

n∑

i=0

(−1)n−iSi,nn(B).
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4. Evaluation of Hankel Determinants

Given a nonzero real number a, let A be the alphabet defined by the gener-
ating function

σz(A) = exp

(
∑

i≥1

a
1 − qi

1 − q

zi

i

)
. (4.1)

We shall now evaluate the determinants Snn(A) and Snn+1(A) (these are the
determinants which are needed for writing σz(A) as a continued fraction).

Noticing that

∑

i≥1

1 − qi

1 − q

zi

i
=

1

1 − q

∑

i≥1

(
zi

i
−

(qz)i

i

)
=

1

1 − q
log

(
1 − qz

1 − z

)
,

and taking the parameter b = a/(1 − q) instead of a, we derive that

σz(A) =

(
1 − qz

1 − z

)b

= σz

(
b
(
1 − q

))
.

Let B = −b q−1 . Then

σz/(1+z)(A) =
(
1 − (q − 1)z

)b
= σz(B).

and for any partition λ = (λ1, . . . , λ`)

Sλ(B) = (q − 1)
∑

λi

∏

(i,j)∈λ

−b + c(i, j)

h(i, j)
,

where h(i, j) and c(i, j) are respectively the hook length and the content of
the box (i, j) in the diagram of λ (cf. [5, p. 28]).

Hence,

Snn(A) = Snn(B) = (q − 1)nn
∏

(i,j)∈nn

−b + c(i, j)

h(i, j)

=
∏

(i,j)∈nn

a + (q − 1)c(i, j)

h(i, j)
. (4.2)
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For example,

S33(A) = (q − 1)9
−b −b + 1 −b + 2

−b − 1 −b −b + 1
−b − 2 −b − 1 −b

/ 5 4 3
4 3 2
3 2 1

,

(taking the product of all the elements in the arrays).

To evaluate Snn+1(A), we apply Corollary 3.2 and get

Snn+1(A) =

n∑

k=0

(−1)n−kSk,nn(B)

=

n∑

k=0

(−1)n−k(q − 1)nn+k
∏

(i,j)∈(k, nn)

−b + c(i, j)

h(i, j)
.

Therefore,

Snn+1(A)/Snn(A) = (−1)n
n∑

k=0

(1 − q)k
k∏

i=1

−b + (−n + i − 1)

i
·

n − k + i

2n − k + i

= (−1)n (n!)2

(2n)!

n∑

k=0

(−1)k(1 − q)k

(
b + n

k

)(
2n − k

n − k

)
.

Hence,

Snn+1(A)/Snn(A) = (−1)n

n∑

k=0

(−1)k

(
n

k

) k−1∏

i=0

a + (1 − q)(n − i)

2n − i
(4.3)

= (−1)n (n!)2

(2n)!
Sn
(
(n + 1) − (b + n) 1−q

)
. (4.4)

One can write other expressions for (4.4). In terms of hypergeometric
function, it reads

(−1)n
2F1

(
−b − n,−n

−2n
; 1 − q

)
. (4.5)
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By (3.1) and (3.2), we have

Sn
(
(n + 1) − (b + n) 1−q

)
= Sn

(
(b − n) −1 − (b + n) −q

)

= (−1)nSn
(
(b − n) − (b + n) q

)
. (4.6)

For example,

S2
(
3 − (b + 2) 1−q

)
= S2(3) − 3(b + 2) 1−q +

(
b + 2

2

)
1−q 2

= S2
(
(b − 2) − (b + 2) q

)
=

(
b − 1

2

)
− (b − 2)(b + 2) q +

(
b + 2

2

)
q 2,

and thus

(
4

2

)
− 3(b + 2)(1 − q) +

(
b + 2

2

)
(1 − q)2

=

(
b − 1

2

)
− (b − 2)(b + 2)q +

(
b + 2

2

)
q2.

The referee has given a third expression

n∑

k=0

(−1)k b · · · (b+n)

(b + k)k!(n − k)!

(n + k)!

k!

n−k∑

i=0

(
n
i

)(
n−k

i

)
qi

(
i+k
k

) , (4.7)

which is no other than the expression of

f(b) = (−1)nn! Sn
(
(b − n) − (b + n) q

)

in terms of its values at b = 0,−1, . . . ,−n.

Recall (cf. [2], see also [1, 3]) that the Meixner polynomials Mk(x; β, c)
have generating function

∞∑

k=0

Mk(x; β, c)

k!
zk = (1 − z)−x−β(1 − z/c)x.

That is,

Mn(x; β, c) = n! Sn
(
x + β − x 1/c

)
. (4.8)
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The referee pointed out that our coefficients Sn(A) are equal to

a

n!
Mn−1

(
a

1 − q
− 1; 2, 1/q

)
=

a

n
Sn−1

(
(b + 1) − (b − 1) q

)
,

and that the value of Snn(A) results from the fact that Meixner polynomials
are moments associated to Jacobi polynomials (cf. [2, 3]).

But from (4.8), we recognize that (4.4) and (4.6) themselves can be seen
as specialization of Meixner polynomials:

Sn
(
(n + 1) − (b + n) 1−q

)
=

1

n!
Mn(n + b; 1 − b, 1/(1 − q)),

Sn
(
(b − n) − (b + n) q

)
=

1

n!
Mn(n + b;−2n, 1/q).

In fact, one can also obtain (4.6) as a specialization of a Jacobi polyno-

mial. The homogeneous version P̂ α,β(ξ1, ξ2) of a Jacobi polynomial is (with
ξ1 = (x + 1)/2 and ξ2 = (x − 1)/2 we get the usual Jacobi polynomial):

P̂ α,β(ξ1, ξ2) = (−1)nSn
(
−(n+α) ξ1 − (n+β) ξ2

)
.

Therefore, (4.6) can be written as P̂ −b,b(1, q).
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