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Abstract.

Using a symmetrizing operator, we give a new expression for the Omega operator
used by MacMahon in Partition Analysis, and given a new life by Andrews, Paule
and Riese. Our result is stated in terms of Schur functions.

In his book ”Combinatory Analysis”, MacMahon introduced an Omega opera-
tor. This operator has been the subject of many recent articles, among which [1-4].
We show in theorem 4 that the Omega operator can be expressed by a symmetrizing
operator, due in fact to Cauchy and Jacobi [6]. As a consequence, we can formulate:
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in terms of Schur functions of X and Y (and therefore in terms of the elementary
symmetric functions in X and Y).
Recall the definitions of MacMahon’s Omega operator §>2 and of the symmetrizing

operator 7.

Definition 1
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where the domain of the Ay, ... ,, is the field of rational functions over C in several
complex variables and the A; are restricted to a neighborhood of the circle |\;| = 1.

By iteration, it is sufficient to treat the case of one variable A only .



Definition 2 [6] Given X = {1,292, -+ ,zn} of cardinality Card(X) = n, the
symmetrizing operator m,, is defined by:

Vi(x1,...,zp), Tof(1, - ,2n) = Z a(%x?—l...gﬁ),
ceB(X)

writing A(X) for the Vandermonde Hl§i<j§n(xi — xj), the sum being over all per-
mutations o in the symmetric group &(X).

Recall that complete symmetric functions S7(X) are defined by the generating
function:
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Complete symmetric functions are compatible with union of alphabets (denoted
+). Given Y = {y1,y2, - ,Ym}, we have:

"(X4Y) = Zs’f )S"R(Y).

Schur functions have two classical expressions:
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where p = [p1, -+, pin] With p1 > pg > -+ > pp > 0. We denote p — p/ the
conjugation of partitions.

From the definition of 7, we get [6] :
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JARX) = 5u(X). (1)
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This formula is still valid if p € Z™, 1 > —n, ..., by > —1:
Tw 33#1 te l'lrtn = S,LL(X)7 (2)
the Schur function S,,, still defined as the determinant |.S pi—it] li<i j<n, being either
null or equal to + a Schur function indexed by a partition.

Notice that by convention, S;(X) = 0, ¢ < 0. However, S_; 2(X) = =51 0(X) # 0,
and indeed, in theorem 4, we need to use vector indexing Schur functions with
possibly negative components.

Symmetrizing first in xo, ..., z,, one also has, with the same hypotheses on y :

T T Sy (T2, ) = S (X) (3)

Lemma 3 Given X, Y and k such that 0 < k < Card(X), then one has:

Z 2RSi(Y) | = i SI7kF(X) 57 (Y) . (4)
§=0



Proof. Since powers of x; range from —k to oo, we can apply (3):

Zm “hSi(y Z yon1 (X) S7(Y) .

The terms such that 7 < k are all null, being determinants with two identical rows,
and the sum reduces to the expression stated in the lemma. |

Let us remark that the action of the operator (>2 relative to x1,...,x, can

be obtained from the action of the operator z1,...,Zn4r, r > 0 by specializing
Tpil,---5Tner to 0. Therefore we can suppose that n be bigger than any given
integer. This allows us in the following theorem to suppose that n > k.

Theorem 4 Given two alphabets X = {x1, 2z, -+ ,xn} and Y = {y1,y2, * ,Ym}
of cardinality n and m, let B=14+Y ={1} UY. If0 < k < n, then we have:
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where R(1,XY) is equal to erX,er(1_$y)’ and where the sum is over all partitions
W (the sum is in fact finite). The vector [—k, u1,..., n—1] is denoted —k, p.

Proof. We first recall Cauchy’s formula [7, p. 65]:

R(LXY) = 3 (-1, (X)S, (Y),

I
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= isj—k(X)SJ B
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On the other hand, lemma 3 allows us to write this last sum as (ZJ —0 331 S]( )) .

We shall now directly compute the action of 7, on Z;io x{_ S7(B), denoting
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B R(1,XB)
and the theorem is proved. |

The result can be expressed in terms of elementary symmetric functions be-
cause ¢;(B) = e;(Y) + ¢;—1(Y) and Schur functions are determinants in elementary
symmetric functions.

Theorem 4 allows us to recover the “fundamental recurrence” given in [4, The-
orem 2.1]. Let us remark that a different algorithm is provided in [1].

In [5, Theorem 1.4], Guo-Niu Han expresses the Omega operator in terms of
Lagrange interpolation:
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where:
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To relate his result to our expression, let us first recall the definition [6] of the
Lagrange operator Lx:

Definition 5

Vfeem(ln—1), Lxf(z1,...,z,) = x%%,
where Gym(1|n — 1) is the space of polynomials in 1,9, ..., x,, symmetrical in
T, ..., Tn, and R(z, X\ z) = [[ex (2 — 7).
We can express the Lagrange operator in terms of 7.
Lemma 6 Vf € Gym(1|n — 1), we have:
Wwf(xl,...,mn):Lx(f(:nl,...,:z:n)zn?_l). (7)



Proof. f(x1,x2,...,xy,) can be written as sums of powers of 1 [6], with coefficients
symmetrical in x1,...,z,. Checking now that

Ly(2f a7™) = mo(a}) = S*(X),

is immediate. |

Formula (7) shows that the Lagrange operator in formula (6) can be replaced
by 7, and therefore [5, Theorem 1.4] is a consequence of theorem 4.

One does not need to suppose that all the x;’s be distinct. Indeed, in a Schur
function, one may specialize x1,...,x; to the same value a. This is more of a
problem in the Lagrange interpolation formula, where one has in that case to use
derivatives of different orders.

Let us finish with a small explicit example, for X = {z1,22}, Y = {y}, and
k=1.
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