
Partition Analysis and Symmetrizing Operators

Amy M. Fu

Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, P.R. China

Email: fmu@eyou.com

Alain Lascoux

Nankai University, Tianjin 300071, P.R. China
Email: Alain.Lascoux@univ-mlv.fr

CNRS, IGM Université de Marne-la-Vallée
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Abstract.

Using a symmetrizing operator, we give a new expression for the Omega operator
used by MacMahon in Partition Analysis, and given a new life by Andrews, Paule
and Riese. Our result is stated in terms of Schur functions.

In his book ”Combinatory Analysis”, MacMahon introduced an Omega opera-
tor. This operator has been the subject of many recent articles, among which [1–4].
We show in theorem 4 that the Omega operator can be expressed by a symmetrizing
operator, due in fact to Cauchy and Jacobi [6]. As a consequence, we can formulate:

Ω
≥

λk/
∏

x∈X

(1 − xλ)
∏

y∈Y

(1 −
y

λ
)

in terms of Schur functions of X and Y (and therefore in terms of the elementary
symmetric functions in X and Y).

Recall the definitions of MacMahon’s Omega operator Ω
≥

and of the symmetrizing

operator πω.

Definition 1

Ω
≥

∞
∑

s1=−∞

· · ·

∞
∑

sr=−∞

As1,··· ,sr
λs1

1 · · · λsr
r :=

∞
∑

s1=0

· · ·

∞
∑

sr=0

As1,··· ,sr
,

where the domain of the As1,··· ,sr
is the field of rational functions over C in several

complex variables and the λi are restricted to a neighborhood of the circle |λi| = 1.

By iteration, it is sufficient to treat the case of one variable λ only .
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Definition 2 [6] Given X = {x1, x2, · · · , xn} of cardinality Card(X) = n, the
symmetrizing operator πω is defined by:

∀f(x1, . . . , xn), πωf(x1, · · · , xn) =
∑

σ∈S(X)

σ

(

f(x1, · · · , xn)

∆(X)
xn−1

1 · · · x0
n

)

,

writing ∆(X) for the Vandermonde
∏

1≤i<j≤n(xi − xj), the sum being over all per-
mutations σ in the symmetric group S(X).

Recall that complete symmetric functions Sj(X) are defined by the generating
function:

∞
∑

j=0

Sj(X)λj =
1

∏n
i=1(1 − xiλ)

.

Complete symmetric functions are compatible with union of alphabets (denoted
‘+’). Given Y = {y1, y2, · · · , ym}, we have:

Sn(X + Y) =
n

∑

k=0

Sk(X)Sn−k(Y).

Schur functions have two classical expressions:

Sµ(X) =
∣

∣

∣
x

µj+j−1
i

∣

∣

∣

1≤i,j≤n
/∆(X) =

∣

∣Sµi−i+j(X)
∣

∣

1≤i,j≤n
,

where µ = [µ1, · · · , µn] with µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0. We denote µ → µ′ the
conjugation of partitions.

From the definition of πω, we get [6] :

πω xµ1

1 · · · xµn
n =

∣

∣

∣
x

µj+j−1
i

∣

∣

∣

1≤i,j≤n
/∆(X) = Sµ(X). (1)

This formula is still valid if µ ∈ Z
n, µ1 > −n, . . . , µn > −1 :

πω xµ1

1 · · · xµn
n = Sµ(X), (2)

the Schur function Sµ, still defined as the determinant |Sµi−i+j|1≤i,j≤n, being either
null or equal to ± a Schur function indexed by a partition.

Notice that by convention, Si(X) = 0, i < 0. However, S−1,2(X) = −S1,0(X) 6= 0,
and indeed, in theorem 4, we need to use vector indexing Schur functions with
possibly negative components.

Symmetrizing first in x2, . . . , xn, one also has, with the same hypotheses on µ :

πω xµ1

1 Sµ2,...,µn
(x2, . . . , xn) = Sµ(X) . (3)

Lemma 3 Given X, Y and k such that 0 ≤ k < Card(X), then one has:

πω





∞
∑

j=0

xj−k
1 Sj(Y)



 =

∞
∑

j=0

Sj−k(X)Sj(Y) . (4)
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Proof. Since powers of x1 range from −k to ∞, we can apply (3):

πω





∞
∑

j=0

xj−k
1 Sj(Y)



 =
∞

∑

j=0

Sj−k,0n−1(X)Sj(Y) .

The terms such that j < k are all null, being determinants with two identical rows,
and the sum reduces to the expression stated in the lemma.

Let us remark that the action of the operator Ω
≥

relative to x1, . . . , xn can

be obtained from the action of the operator x1, . . . , xn+r, r ≥ 0 by specializing
xn+1, . . . , xn+r to 0. Therefore we can suppose that n be bigger than any given
integer. This allows us in the following theorem to suppose that n > k.

Theorem 4 Given two alphabets X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , ym}
of cardinality n and m, let B = 1 + Y = {1} ∪ Y. If 0 ≤ k < n, then we have:

Ω
≥

λk

(1 − x1λ) · · · (1 − xnλ)(1 − y1

λ
) · · · (1 − ym

λ
)

= πω

∞
∑

j=0

xj−k
1 Sj(B) =

∑

µ(−1)|µ|Sµ′(B)S−k, µ(X)

R(1, XB)
, (5)

where R(1, XY) is equal to
∏

x∈X,y∈Y
(1−xy), and where the sum is over all partitions

µ (the sum is in fact finite). The vector [−k, µ1, . . . , µn−1] is denoted −k, µ.

Proof. We first recall Cauchy’s formula [7, p. 65]:

R(1, XY) =
∑

µ

(−1)|µ|Sµ(X)Sµ′(Y),

Ω
≥

∞
∑

i,j=0

Si(X)Sj(Y)λi−j+k = Ω
≥

λk

(1 − x1λ) · · · (1 − xnλ)(1 − y1

λ
) · · · (1 − ym

λ
)

=

∞
∑

i=0

Si(X)

i+k
∑

j=0

Sj(Y) =

∞
∑

i=0

Si(X)Si+k(B)

=
∞
∑

j=0

Sj−k(X)Sj(B) .

On the other hand, lemma 3 allows us to write this last sum as πω

(

∑∞
j=0 xj−k

1 Sj(B)
)

.

We shall now directly compute the action of πω on
∑∞

j=0 xj−k
1 Sj(B), denoting
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X \ x1 = {x2, . . . , xn}.

πω

∞
∑

j=0

xj−k
1 Sj(B) = πω x−k

1

∞
∑

j=0

xj
1S

j(B)

= πω
x−k

1

R(1, x1B)
= πω

x−k
1 R(1, (X \ x1)B)

R(1, XB)

=
πω

(

x−k
1

∑

µ(−1)|µ|Sµ′(B)Sµ(X \ x1)
)

R(1, XB)

=

∑

µ(−1)|µ|Sµ′(B)S−k, µ(X)

R(1, XB)

and the theorem is proved.

The result can be expressed in terms of elementary symmetric functions be-
cause ei(B) = ei(Y) + ei−1(Y) and Schur functions are determinants in elementary
symmetric functions.

Theorem 4 allows us to recover the “fundamental recurrence” given in [4, The-
orem 2.1]. Let us remark that a different algorithm is provided in [1].

In [5, Theorem 1.4], Guo-Niu Han expresses the Omega operator in terms of
Lagrange interpolation:

Ω
≥

λk

A(λ)B(λ−1)
=

n
∑

i=1

xn−1−k
i

(1 − xi)B(xi)
∏

j 6=i(xi − xj)
, (6)

where:

A(λ) =

n
∏

i=1

(1 − xiλ), B(λ) =

m
∏

j=1

(1 − yjλ).

To relate his result to our expression, let us first recall the definition [6] of the
Lagrange operator LX:

Definition 5

∀f ∈ Sym(1|n − 1), LXf(x1, . . . , xn) =
∑

x∈X

f(x, X \ x)

R(x, X \ x)
,

where Sym(1|n − 1) is the space of polynomials in x1, x2, . . . , xn, symmetrical in
x2, . . . , xn, and R(x, X \ x) =

∏

x′∈X\x(x − x′).

We can express the Lagrange operator in terms of πω.

Lemma 6 ∀f ∈ Sym(1|n − 1), we have:

πωf(x1, . . . , xn) = LX

(

f(x1, . . . , xn)xn−1
1

)

. (7)
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Proof. f(x1, x2, . . . , xn) can be written as sums of powers of x1 [6], with coefficients
symmetrical in x1, . . . , xn. Checking now that

LX(xk
1 xn−1

1 ) = πω(xk
1) = Sk(X),

is immediate.

Formula (7) shows that the Lagrange operator in formula (6) can be replaced
by πω, and therefore [5, Theorem 1.4] is a consequence of theorem 4.

One does not need to suppose that all the xi’s be distinct. Indeed, in a Schur
function, one may specialize x1, . . . , xk to the same value a. This is more of a
problem in the Lagrange interpolation formula, where one has in that case to use
derivatives of different orders.

Let us finish with a small explicit example, for X = {x1, x2}, Y = {y}, and
k = 1.

πω





∞
∑

j=0

xj−1
1 Sj(B)



 =

∑

µ(−1)|µ|Sµ′(B)S−1, µ(X)

R(1, XB)

=
−S1(B)S−1, 1(X) + S1,1(B)S−1, 2(X)

R(1, XB)

=
(1 + y) − y(x1 + x2)

(1 − x1)(1 − x2)(1 − x1y)(1 − x2y)

= Ω
≥

λ

(1 − λx1)(1 − λx2)(1 − y/λ)
.
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