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Abstract. We establish a bijection between the (n− 2)-stack sortable permutations and
the labeled lattice paths. Using this bijection, we directly give combinatorial proof for
the log-concavity of the numbers of (n− 2)-stack sortable permutations with k descents.
Furthermore, we prove the the numbers of (n − 2)-stack sortable permutations with k
descents satisfy interlacing log-concavity. We also consider a conjecture proposed by
Bóna that the sequences of the descents of t-stack sortable permutations of [n] are Hilbert
functions for any t and n. We prove this conjecture for t = n− 2.
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1 Introduction

The objectives of this paper are to prove the interlacing log-concavity of the descent
statistic of the (n− 2)-stack sortable permutations and construct a simplicial complex 4
whose f -vector is the sequences of the descent of the (n− 2)-stack sortable permutations.

Let Sn denote the set of permutations on [n] := {1, 2, . . . , n} and suppose π =
π1π2 · · · πn is a permutation in Sn. The stack-sorting operation s can be defined on
the set of all n-permutations as follows. Let π = LnR be an n-permutation, with L
and R denoting its substring before and after the maximal entry n, respectively. Let
s(π) = s(L)s(R)n, where L and R are defined recursively by the same rule. A permuta-
tion π is called t-stack sortable if st(π) is the identity permutation.

Let Wt(n) denote the number of t-stack sortable permutations of length n. The study
of stack-sorting problem is a major area of research, it began with Knuth’s analysis [22],
who proved that W1(n) is the Catalan number Cn =

(
2n
n

)
/(n + 1). West [25] studied

thoroughly this procedure and conjectured that W2(n) is 2(3n)!/((n+ 1)!(2n+ 1)!). This
conjecture was first proved by Zeilberger [28]. Other proofs can be found in [17], [20]
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and [21]. Duchi, Guerrini, Rinaldi [15] and Fang [16] gave different proofs that new
combinatorial objects called “fighting fish” are counted by the numbers W2(n+1). In 2017,
Defant [10] introduced “valid hook configurations” to count the cardinality of preimages
of permutations under the stack sorting map. This approach further allowed Defant to
generalize existing theorems about the stack-sorting map and prove new results, see [10]
and [11]. Defant, Engen and Miller [12] showed that valid hook configurations of length n
permutations are in bijective correspondence with certain weighted set partitions. Valid
hook configurations and a generalization of stack sorting are also used to prove some
results about free cumulants and classical cumulants involving colored binary plane trees
[13].

There is very little known about t-stack-sortable permutations for t ≥ 3. Úlfarsson [26]
characterized 3-stack-sortable permutations in terms of new “decorated patterns”. Albert,
Bouvel and Féray[1] showed that for every t ≥ 1, the set of t-stack-sortable permutations
can be described by a sentence in a first-order logical theory which was called ToTo.
Recently, Defant [14] gave a new proof of the Zeilberger’s formula for the number W2(n)
and counted 2-stack-sortable permutations according to different statistics. Furthermore,
Defant also obtained a recurrence relation for W3(n).

One of the most important permutation statistics is that of the number of descents.
A descent of a permutation π = π1π2 · · · πn is an index i ∈ {2, 3, . . . , n − 1} such that
πi > πi+1. Let Wt(n, k) be the number of t-stack sortable permutations with k descents,
and let

Wt,n(x) =
n−1∑
k=0

Wt(n, k)xk.

When t = n− 1 and t = 1, Wt,n(x) reduced to the Eulerian polynomial and the Narayana
polynomial, respectively. It is well known that they have only real zeros. Thus Bóna
[3] raised the question if this is true for general t and proved that for any fixed n and t,
the numbers {Wt(n, k)}n−1

k=0 form a unimodal sequence. By using certain real-rootedness
preserving linear operator, Brändén [8] proved the real-rootedness for t = n− 2. Further-
more, Brändén obtained the real-rootedness of the polynomial An(x) + kxAn−2(x), where
An(x) is the Eulerain polynomials and k > −2 is a real number. Zhang [27] gave another
proof of the above result by using the theory of s-Eulerian polynomials.

In Section 2, we first consider the log-concavity and the interlacing log-concavity of
the descent statistic of the (n − 2)-stack sortable permutations. Recall that a sequence
{an}n≥0 of real positive numbers is said to be log-concave if

a2
n ≥ an+1an−1 (1.1)

holds for all n ≥ 1. If a sequence {an}n≥0 which has a combinatorial meaning is log-
concave, then it would be ideal to provide a combinatorial proof, see [6, 7, 23] for some
techniques that are used to prove the log-concavity of sequences. Chen, Wang and Xia
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[9] gave the definition of interlacing log-concavity as follow. Let {Pm(x)} be a sequence
of polynomials, where

Pm(x) =
m∑
i=0

ai(m)xm

is a polynomial of degree m. Let

ri(m) =
ai(m)

ai+1(m)
.

We say that the polynomials Pm(x) (m ≥ 0) are interlacingly log-concave if the ratios
ri(m) interlace the ratios ri(m+ 1), that is,

r0(m+ 1) ≤ r0(m) ≤ r1(m+ 1) ≤ r1(m) ≤ · · · ≤ rm−1(m+ 1) ≤ rm−1(m) ≤ rm(m+ 1).

Note that interlacing log-concavity is stronger than log-concavity. Chen, Wang and Xia
[9] proved the Boros-Moll polynomials are interlacingly log-concave and gave a criterion
for the interlacing log-concavity of the polynomials whose coefficients satisfying certain
three term recurrence relations. As consequences, the interlacing log-concavity of the
second kind of Stirling numbers, the Narayana numbers and the Whitney numbers are
immediate. In a previous paper, the authors [19] proved the interlacing log-concavity of
the Brenti’s derangement polynomials and the Eulerian polynomials by a directly com-
binatorial injection. By a similar argument, we shall establish a bijection between the
(n−2)-stack sortable permutations and the labeled lattice paths. Applying this construc-
tion, we give a combinatorial proof of the log-concavity and the interlacing log-concavity
of the sequences {Wn−2(n, k)}0≤k≤n−1.

In Section 3, we shall prove that for n ≥ 1, the sequences {Wn−2(n, k)}0≤k≤n−1 are
Hilbert function. Recall that a simplicial complex is a collection of sets 4 with the
property that if A ∈ 4 and B ⊆ A then B ∈ 4. We call the elements of 4 the faces of

4. For S ∈ 4, the dimension of S is |S|− 1. The dimension of 4 is dim(4)
def
= {|A|− 1 :

A ∈ 4}. Given a simplicial complex 4 of dimension d− 1, we define

fi−1(4)
def
= |{A ∈ 4 : |A| = i}|,

for i = 0, 1, . . . , d, and call f(4)
def
= (f0(4), f1(4), . . . , fd−1(4), ) the f-vector of 4.

It is known [24] that if (f0, f1, . . . , fd−1) is the f-vector of a simplicial complex then
{1, f0, . . . , fd−1} is a Hilbert function.

Denote by [n] the set {1, 2, . . . , n}. Gasharov [18] proved that there exists a simplicial
complex whose (k−1)-dimensional faces correspond to permutations of [n] with k descents.
Bóna [4] constructed a simplicial complex whose (k−1)-dimensional faces correspond to t-
stack sortable permutations with k descents for t = 1 and t = 2 and proposed a conjecture
that Wn,t(x) are Hilbert function for all t. In Section 3, we give an affirmative answer to
this question for t = n− 2.
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2 Interlacing log-concavity of Wn−2(n, k)

In this section, we will construct a bijection between the set of (n − 2)-stack sortable
permutations and a set P ′(n, k) of certain labeled lattice paths. Recall that a lattice
path P in the plane Z × Z is a path using only steps (1, 0) and (0, 1). In [5], Bóna
constructed a bijection Υn,k between the set A (n, k) of n-permutations with k descents
and the set P(n, k) of labeled lattice paths with n edges, exactly k of which are vertical.

We briefly recall Bóna’s bijection here. For each π ∈ A (n, k), to obtain a path p ∈
P(n, k) that have edges a1, a2, . . . an and that corresponding positive integers e1, e2, . . . , en
as labels, for 2 ≤ i ≤ n, restrict π to the i first entries and relabel the entries to obtain a
permutation γ = γ1γ2 · · · γi of [i].

1. If the position i−1 is a descent of the permutation p (equivalently, of the permutation
γ), then let the edge ai be vertical and the label ei be equal to γi.

2. If the position i − 1 is an ascent of the permutation p, then let the edge ai be
horizontal and the label ei be equal to i+ 1− γi. (See Figure 1 for an example.)

t t
t t t

t t

1

1

1 1
4

5

Figure 1: The path corresponding to π = 314652.

Let S(n, k) be the set of (n−2)-stack sortable permutations of length n with k descents.
It is easy to check that a permutation π ∈ Sn is (n− 2)-stack sortable if and only if it is
not of the form σn1, see [2]. Therefore, the paths corresponding to (n− 2)-stack sortable
permutations of length n with k in P(n, k) can not have the following forms:

• an−1 is horizontal and en−1 = 1;

• an is vertical and en = 1.

Denote by P ′(n, k) the subset of P(n, k) which is the set of labeled lattice paths
corresponding to the permutations in S(n, k). According to the previous argument, we
actually have set up a bijection between S(n, k) and P ′(n, k).
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Theorem 2.1 For any positive n, the sequence Wn−2(n, k){1≤k≤n−1} is log-concave, that
is,

Wn−2(n, k − 1)Wn−2(n, k + 1) ≤ Wn−2(n, k)2. (2.2)

Proof. According to the bijection between the set S(n, k) and the set P ′(n, k), we only
need to construct an injection

Υ : P ′(n, k − 1)×P ′(n, k + 1)→P ′(n, k)×P ′(n, k).

We apply the method given by Bona [5], who gave direct combinatorial proofs for the
log-concavity of the Eulerian numbers, see [5]. Let (P,Q) ∈P ′(n, k − 1)×P ′(n, k + 1).
Place the initial points of P and Q at

u1 = (0, 0), u2 = (1,−1),

respectively. Then the endpoints of P and Q are

v1 = (n− k + 1, k − 1), v2 = (n− k, k),

respectively. Thus P and Q must intersect. Let X be their first intersection point and let

P ′ = u1
P−→ X

Q−→ v2,

Q′ = u2
Q−→ X

P−→ v1.

1. If P ′ and Q′ are valid paths, that is, (P ′, Q′) ∈ P ′(n, k) ×P ′(n, k), then define
Υ(P,Q) = (P ′, Q′).

2. What remains to be done is to define Υ(P,Q) for those (P ′, Q′) which are not in
P ′(n, k)×P ′(n, k). In this case, X must be at their last step, and the corresponding
labels are as (a) in Figure 2. Substitute (b) for (a), then it is clear that (P ′, Q′) ∈
P ′(n, k)×P ′(n, k). Finally, we must show that the image of this case of the domain
is disjoint from that of the previous part. This is true because in this case P ′ and
Q′ must not intersect where all the elements of the image of the previous part do
not have the property.

A B

C

D

1
1

Υ−→

1

1

(a) (b)

X

Figure 2: Labels and the changed labels around the point X.
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Now let us consider the interlacing log-concavity of the sequences {Wn−2(n, k)}0≤k≤n−1.
Notice that the definition of interlacing log-concavity is equal to the following two inequal-
ities

ai(n)ai+1(n+ 1) > ai+1(n)ai(n+ 1) (2.3)

and
ai(n)ai(n+ 1) > ai−1(n)ai+1(n+ 1). (2.4)

Thus we only need to prove the following theorem.

Theorem 2.2 For n ≥ 1 and k ≥ 0, we have

Wn−2(n+ 1, k)Wn−2(n, k + 1)−Wn−2(n, k)Wn−2(n+ 1, k + 1) < 0 (2.5)

and

Wn−2(n, k)Wn−2(n+ 1, k + 2)−Wn−2(n+ 1, k + 1)Wn−2(n, k + 1) < 0. (2.6)

Proof. The proof is simliar with those in the above theorem. We only adjust the initial
and final vertices. To verify (2.5), merely use initial vertex

u1 = (0, 0), u2 = (1,−1),

and the final vertex
v1 = (n− k + 1, k), v2 = (n− k, k).

To obtain (2.6), use initial vertex

u1 = (0, 0), u2 = (1,−1),

and the final vertex
v1 = (n− k, k), v2 = (n− k, k + 1).

3 Labeled lattic path and (n − 2)-stack sortable per-

mutation

In this section, we will establish a bijection between labeled lattic path and (n− 2)-stack
sortable permutation. Our construction is based on Gasharov’s work [18]. Given a lattice
path P , we say that a horizontal edge in P is on row i if it is i− 1 units above the initial
point of P . Similarly, we say that a vertical edge is on column i, if it is i − 1 units to
the right of the initial point of P . Denote by P(n− 1, k) the set of labeled lattice paths
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P with n − 1 edges, of which exactly k are vertical, such that a horizontal edge on row
i is labeled with an integer between 1 and i, and similarly a vertical edge on column i is
labeled with an integer between 1 and i. Here we do not distinguish between paths that
can be obtained from each other by a translation. Let us recall Gasharov’s bijection Φ
between the sets A (n, k) and P(n− 1, k), where A (n, k) denotes the set of permutations
of [n] with exact k descents.

For π ∈ A (n, k), suppose that σ (τ , respectively) is the permutation of [j]([j + 1],
respectively) with the same order as in π. Gasharov inductively constructed a lattice path
P with n− 1 edges a1, a2, . . . , an−1 of which exactly k are vertical and assigned a label ei
to its i-th edge (1 ≤ i ≤ n− 1) as follow:

(1). If σ ∈ A (j, i) and τ ∈ A (j + 1, i), that is, the number of descents of τ is equal to
that of σ, then there are exactly i positions p1, p2, . . . , pi (ordered from left to right)
to insert j + 1 in σ and obtain a permutation in A (j + 1, i). If j + 1 has to be
inserted in position pv to obtain τ , then let aj be horizontal, and ej = v;

(2). If σ ∈ A (j, i) and τ ∈ A (j + 1, i + 1), that is, when j + 1 is inserted in σ, the
number of descents should be increased by one. There are exactly n − k positions
q1, q2, . . . , qn−k (ordered again from left to right) to insert j + 1 in σ and obtain a
permutation in A (j + 1, i + 1). If j + 1 has to be inserted in position pv to obtain
τ , then let aj be vertical and ej = v.

See Figure 3 for an example.

s s s
s
s s

s s s
s
s s

1 1

2

1

2
4

4 3
5

4

5

Figure 3: The path corresponding to π = 5 1 4 6 2 11 7 10 9 12 3 8.

Applying this bijection, Gasharov [18] obtained a combinatorial proof of the log-
concavity of the Eulerian polynomials An(x). He also proved combinatorially that the
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sequence {A(n, k)}nk=1 of Eulerian numbers is a Hilbert function of a standard graded
algebra over a field.

Now let us consider the set of (n−2)-stack sortable permutations with exact k descents.

Definition 3.1 Let Q(n− 1, k) be the set of labeled lattice paths with n− 1 edges, exactly
k of which are vertical, such that the following conditions hold:

(1) The edge a1 is vertical, then e1 = 1,

(2) For 2 ≤ i ≤ n−2, if ai is a horizontal edge on row j, then 1 ≤ ei ≤ j−1; similarly,
if ai is a vertical edge on column j, then 1 ≤ ei ≤ j,

(3) The edge an−1 is horizontal, and en−1 = k.

It is obvious that Q(n− 1, k) is a subset of P(n− 1, k).

Theorem 3.2 For n ≥ 1 and 0 ≤ k ≤ n − 1, the map Φ defined above restricts a
bijection between Q(n − 1, k) and the set of permutations in Sn of the form σn1, where
σ is a permutation on {2, 3, . . . , n− 1}.

Proof. We first verify the path P corresponding to π of the form σn1 that satisfies the
conditions in Definition 3.1 term by term.

(1) First, since 1 is in the last position, when we insert 2 as the same order in π, it must
increase a descent in p1. The permutation on {1, 2} is 21, thus a1 is vertical and
e1 = 1.

(2) Suppose we have to insert j + 1 into the permutation γ in [j] with the same order
as in π. If the number of descents increases by one, then the number of positions
which j + 1 can be inserted is the same argument in Gasharov’s construction. On
the other hand, if the number of descents will not change after we insert j + 1 into
γ, then we cannot put j + 1 at the end of γ since 1 must be in the last position.
Thus, P satisfies the condition (2) in Definition 3.1.

(3) Suppose the last three elements of π are tn1, where 1 < t < n. Note that when
we insert n to obtain π, the number of descents does not change. Thus an−1 is
horizontal. Moreover, n must be inserted in position pk since π has k descents,
en−1 = k.

To see that Φ is a bijection, let P ∈ Q(n − 1, k) be a path satisfies the condition in
Definition 3.1. Since the edge a1 is vertical with label 1, then the permutation on {1, 2}
must be 21. In general, if the ith edge ai is a horizontal edge on row j with the condition
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1 ≤ ei ≤ j − 1, then when we insert i + 1 into the permutation on [i], i + 1 must be
inserted before 1 since 1 is in the last position and the number of descents stays the same.
Otherwise, if the ith edge ai is a vertical edge on column j with 1 ≤ ei ≤ j, i + 1 could
not be inserted after 1 since the number of descents should be increased by one. Thus
whenever ai(1 ≤ i ≤ n− 2) is horizontal or vertical, 1 always in the last position. Finally,
when we insert n into the permutation, n must be inserted right in front of 1 since an−1

is a horizontal edge with label k. Therefore, the permutation corresponding P has the
form of σn1, where σ is a permutation on {2, 3, . . . , n− 1}.

Let R(n − 1, k) = P(n − 1, k)\Q(n − 1, k). The above theorem actually leads to a
bijection between S(n, k) and R(n− 1, k).

4 Simplicial complex

In this section, we will construct a simplicial complex 4 whose (k− 1)-dimensional faces
correspond to (n − 2)-stack sortable permutations on [n] with k descents for 1 ≤ k ≤ n.
Here we borrow the idea from Gasharov [18].

We will identify the elements of S(n, k) with the elements of R(n − 1, k) via the
bijection Φ. Let P be a lattice path. Denote h(P ) the number of horizontal edges in P .
If P ∈ R(n−1, k), then for 1 ≤ i ≤ k, we denote by hi(P ) the number of horizontal edges
in P whose horizontal edges are at most on row i. Let V = Q(n− 1, 1) be the vertex set
of 4. Let P ∈ Q(n − 1, k), we will associate to P a k-element subset {P1, P2, . . . , Pk}
of 4. For a labeled path P , denote by P the path obtained from P by deleting the
labels. For 1 ≤ i ≤ k, let P i be the unlabeled lattice path with one vertical edge,
h1(P i) = hi(P ) + i − 1, and h(P i) = h(P ) + k − 1. Place the initial point of P at (0, 0)
and for 1 ≤ i ≤ k, place the initial point of P i at (−i + 1, i − 1). See Figure 4 for an
example.

P 1
u u u

P 2
u
u uP 3

u u uP 4

u
u u

P 5

1 1

2

1

2
4

4 3
5

4

5

u u u u u u u u
u u u u

u u u
u u u u u u u u u

u u u
u u u u u u

u u u u u u
u u

Figure 4: The subset {P 1, P 2, . . . , P 5} corresponding to π = 5 1 4 6 2 11 7 10 9 12 3 8.
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In this construction, the only vertical edge of P i, 1 ≤ i ≤ k, coincides with the i-th
vertical edge of P and the range of labels we can assign to the vertical edge of P i is not
less than the range of labels we can assign to the i-th vertical edge of P . In fact, if the
i-th vertical edge of P is t units to the right of the initial point of P , then the vertical
edge of P i is (t+ i− 1) units to the right of the initial point of P i.

Now we proceed to label the edges of P i to make them the vertices in V . Label the
vertical edge of P i, 1 ≤ i ≤ k, by the label of the i-th vertical edge of P . Label the level-1
horizontal edges in P 1, . . . , P k by 1. Label the level-2 horizontal edges in P 1 which are
also edges in P by their labels as edges in P . To label the level-2 horizontal edges in
P 2, . . . , P k, first draw the northwest strips bounded by P 1 and P . The northeast border
of each such strip is either a vertical or a horizontal edge. If it is a vertical edge, label all
horizontal edges in the strip 1. Now suppose the northwest border of a strip is a horizontal
edge whose level and label in P are i and j, respectively. Then j ≤ i and the strip has
exactly i − 1 horizontal edges. Order these edges from southeast to northwest and label
the first i− j horizontal edges 1 and the remaining j − 1 horizontal edges 2. In this way
we obtain paths P1, . . . , Pk in V .

Definition 4.1 Define 4stack to be the collection of subsets {P1, . . . , Pk} in V satisfy the
following conditions,

(1) P i 6= P j for 1 ≤ i 6= j ≤ k.

(2) Suppose P1, . . . , Pk are ordered such that for 1 ≤ i ≤ k − 1, Pi has fewer level 1
horizontal edges than Pi+1. (This can be done in view of (1).) Then if we draw
P1, . . . , Pk such that the initial point of Pi+1 is one unit up and to the left of the
initial point of Pi for 1 ≤ i ≤ k−1, the labels of their level-2 horizontal edges weakly
increase in each northwest strip bounded by P1 and P . See as Figure 5. When a
northwest strip ends with a vertical edge, then all horizontal edges in it are labeled
1. If the vertical edge of Pi is t units to the right of the initial point of Pi, then the
range of labels of the vertical edge of Pi is not more than t− i+ 1.

(3) The following k-element sets should not be included: The first edge of P1 is vertical
and all level-2 horizontal edges of P1 labeled 1.

(4) The last horizontal edges of P2, . . . , Pk are labeled 2.

Now we are in a position to prove our main theorem.

Theorem 4.2 4stack is a simplicial complex whose (k− 1)-dimensional faces correspond
to (n− 2)-stack sortable permutations with k descents.
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Proof. First we aim to prove 4stack is a simplicial complex. A set of k paths from V
satisfying the above conditions determines a path from Q(n, k). Also, given a subset of
the set satisfy the above four conditions, one can see that the subset also satisfies the
conditions (1), (2), (3) and(4). The above discussion shows that 4 is a simplicial complex
with the desired properties.

Now we proceed to prove (k − 1)-dimensional face of 4stack correpsond to (n − 2)-
stack sortable permutations with k descents. It is easily seen that the first two conditions
correspond to permutations in S with k descents. Thus we just need to verify that the
last two conditions correspond the permutations on the form σn1 with k descents. By
the Definition 3.1, if the northwest border of a strip is a horizontal edge (not the last
edge) whose level is i and label is j, then j ≤ i− 1. Thus the number of edges which are
labeled 1 is i − j ≥ 1, that is, whatever the northwest border of each strip is horizontal
or vertical, the labels in the 2-level horizontal edges of P1 are always 1. Moreover, since
both of the level and label of the last horizontal edge is k, the number of edges which are
labeled by 1 in the last strip is i− j = 0, then all the 2-level horizontal edges of the last
strip labeled 2. Thus the k-element subset P1, . . . , Pk associated to a permutation not of
the form σn1 must satisfy the above condition.

P1
u u u

P2
u
u uP3

u u uP4

u
u u

P5

u u u u u u u u
u u u u

u u u
u u u u u u u u u

u u u
u u u u u u

u u u u u u
u u

1 1
2

1

2

5

4

1 1 1

1 1 1 2 1 1 1 1

2 1 2 2 1 1 2

2 2 1 1 2

1 2

2

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

q q q q q q q q q q
q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

Figure 5:The simplicial complex corresponding to π = 5 1 4 6 2 11 7 10 9 12 3 8.
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