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Abstract

Let G be a graph of order n, and let ∆(G), δ(G) and d̄ be the maxi-

mum, minimum and average degrees of G, respectively. In 2020, Akbari and

Hosseinzadeh proposed a conjecture that E(G) ≥ ∆(G) + δ(G) for all non-

singular graphs G. Recently, they gave a strengthened version claiming that

E(G) ≥ n− 1 + d̄ for all non-singular graphs G, except two counterexamples of

order 4. They proved this new conjecture for regular graphs, bipartite graphs,

planar graphs and graphs with some other special properties. In this paper, we

continue the study of the conjecture and find that it is true for the family of

threshold graphs of order at least 5.
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1 Introduction

Throughout this paper, all graphs are simple, finite and undirected. Let G be a

graph. We denote the vertex set and the edge set ofG by V (G) and E(G), respectively.

We write |V (G)| = n and |E(G)| = m unless otherwise stated, and call them the order

and the size of G, respectively. The maximum, the minimum and the average degree

of G is denoted by ∆(G), δ(G), and d̄, respectively.

1Supported by NSFC No.12131013 and 11871034.
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Let A(G) be the adjacency matrix of a graph G of order n, and denote the eigen-

values of A(G) by λ1 ≥ λ2 ≥ . . . ≥ λn. G is said to be singular if A(G) is a singular

matrix, i.e., det(A(G)) = 0. The energy of a graph G, denoted by E(G), is defined

as E(G) =
n∑
i=1

|λi|. In 1978, Gutman [13] firstly introduced the concept of the energy

for graphs, on the basis of The total π-electron energy in a conjugated hydrocarbon.

For more knowledge on graph energy, we refer the reader to [16].

Bounds of graph energy have been variously studied. In 2020, Akbari and Hossein-

zadeh [6] found a lower bound using the fact that if x > 0, then x > lnx + 1. From

this inequality, it follows that

E(G) =λ1 +
n∑
i=2

|λi| ≥ n− 1 + λ1 + ln |λ2 · · ·λn|

= n− 1 + λ1 + ln | det(A(G))| − lnλ1.

Since n− 1 ≥ ∆(G) and λ1 ≥ δ(G), they proposed the following conjecture.

Conjecture 1.1. The energy of a non-singular graph G satisfies the following in-

equality

E(G) ≥ ∆(G) + δ(G).

Although the conjecture remains open, there have been some partial positive solu-

tions for the conjecture; see [1], [2], [4] and [5]. Furthermore, on the basis of the facts

that x− lnx is increasing for x > 1 and λ1 ≥ d̄, they introduced a new conjecture in

[3], which is a generalization of Conjecture 1.1.

Conjecture 1.2. Let G be a non-singular graph. Then E(G) ≥ n− 1 + d̄ except for

P4 and the graph on 4 vertices obtained by adding a pendant edge on a vertex of a

triangle.

Notice that n− 1 ≥ ∆(G) and d̄ ≥ δ(G), Conjecture 1.2 is a strengthened version

of Conjecture 1.1.

For the Erdös-Rényi-type random graphs, this Conjecture is true. In fact, recall

that Gn,p consists of all graphs on n vertices in which the edges are chosen indepen-

dently with probability p, where p ∈ (0, 1) is a constant.

Lemma 1.3. (see [9]) Let ε > 0 be fixed, εn−3/2 ≤ p ≤ 1 − εn−3/2. Let q = q(n) be

a natural number and set

µq = nB(q;n− 1, p) and νq = n{1−B(q + 1;n− 1, p)},
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where

B(l;m, p) =
∑
j≥l

b(j;m, p)

in which b(j;m, p) =
(
m
j

)
pj(1 − p)m−j is subject to the binomial distribution. For a

random graph G ∈ Gn,p, denote by Yq(G) the number of vertices of degrees at least q

and Zq(G) the number of vertices of degrees at most q. Then

(i) if µq → 0, P (Yq = 0)→ 0; (ii) if νq → 0, P (Zq = 0)→ 0.

It is not difficult to check that the minimum and maximum degrees δ and ∆ of a

random graph Gp on n vertices satisfy that

np− n
3
4 < δ(Gp) ≤ ∆(Gp) < np+ n

3
4 , a.s.

(i) and (ii) hold by Chernoff’s Inequality.

On the other hand, the asymptotic value of the energy of Gp was calculated in [11]

by Du, Li, and Li, see the following.

Theorem 1.4.

E (Gp) = (
8

3π

√
p(1− p) + o(1)) · n3/2 a.s.

So, Conjecture 1.2 holds a.s. as n→∞.

In [3], Akbari et al. did some preliminary study and they managed to show that

Conjecture 1.2 holds for regular graphs, bipartite graphs, planar graphs, graphs with

λ1 ≤ 7.11, and graphs with m ≤ 2.574n. In this paper, we consider threshold

graphs, which are not contained in any of the graph families above, and we find that

except the counterexample mentioned in the conjecture, all threshold graphs satisfy

the inequality. So it is impossible to find a similar counterexample in the family of

threshold graphs.

Theorem 1.5. Conjecture 1.2 holds for all non-singular threshold graphs G with

n ≥ 5, and the inequality holds if and only if G ∼= Kn.

The proof will be given in Section 3.

2 Preliminaries

Before giving proof of our main result Theorem 1.5, we need to do some prepara-

tions.
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Recall that a vertex is isolated in a graph G if it has no neighbors in G, and is

dominating if it is adjacent to all other vertices of G. A threshold graph is a graph

that can be constructed from a graph on one vertex by repeated adding a single

isolated vertex or a dominating vertex. Threshold graphs were first introduced by

Henderson and Zalcstein in 1977 [14], which later act as a very important role in

the domain of algebraic graph theory and computer science. A threshold graph has

several equivalent definitions, for example, a graph is a threshold graph if and only

if it contains no P4, C4 or P2 ∪ P2 as induced subgraph. For more knowledge about

threshold graphs, we refer the reader to [12] and [15].

From our definition, we can use a {0, 1}-sequence b = {b1, . . . , bn} to represent a

threshold graph G with V (G) = {v1, . . . , vn}, where b1 = 0, bi = 0 if and only if vi was

added as an isolated vertex, and bi = 1 if and only if vi was added as a dominating

vertex, for i = 2, . . . , n. For example, the counterexample mentioned in Conjecture

1.2 is just the threshold graph {0, 1, 0, 1}.
It is necessary to do some preliminary observation on the objects we are going to

deal with. First, we only need to deal with connected threshold graphs, since any

disconnected threshold graph contains isolated vertices and is therefore singular. A

threshold graph is connected if and only if its {0, 1}-sequence is ended with 1. Second,

if there exist two consecutive 0’s in the sequence, their corresponding row vectors in

A(G) are identical, making G singular, too. Thus, the sequence can be rewritten as

b = {0, 1s1 , . . . , 0, 1sk}. In fact, it was calculated in [8] that the determinant of the

adjacency matrix of threshold graph G of this form is det(A(G) = (−1)

k∑
i=1

si∏
si. So

this is just the sufficient and necessary condition of G being non-singular.

Lou et al. in [17] studied the spectral property of threshold graphs, and gave some

description of the distribution of eigenvalues of threshold graphs; see the following.

Theorem 2.1. Let G be a threshold graph with representation sequence b = {0, 1s1 , . . . ,
0, 1sk}. Then the spectrum of G is

λ1, . . . , λk, [−1]n−2k+1, λn−k+2, . . . , λn,

where

λ1 > · · · > λk >

√
2− 1

2
>
−
√

2− 1

2
> λn−k+2 > · · · > λn.

Suppose that A is a symmetric real matrix whose rows and columns are indexed

by X = {1, . . . , n}. Let {X1, . . . , Xm} be a partition of X, and rewrite A according
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to {X1, . . . , Xm} as follows:

A =

A1,1 . . . A1,m

...
...

Am,1 . . . Am,m


where Ai,j denotes the block of A formed by rows in Xi and columns in Xj. Let bi,j

denote the average row sum of Ai,j. Then the matrix B = [bi,j] is called the quotient

matrix. If the row sum of each block Ai,j is constant, then the partition is called an

equitable partition.

Take the partition π in G: V (G) = {u1, . . . , uk, V1, . . . , Vk}, where ui denotes the

k vertices corresponding to 0 and Vi denotes the si vertices corresponding to the all

1 segment of length si. Then π is an equitable partition of V (G) and the quotient

matrix has the form

B =



0 s1 0 s2 0 · · · 0 sk

1 s1 − 1 0 s2 0 · · · 0 sk

0 0 0 s2 0 · · · 0 sk

1 s1 1 s2 − 1 0 · · · 0 sk

0 0 0 0 0 · · · 0 sk
...

...
...

...
...

...
...

...

0 0 0 0 0 · · · 0 sk

1 s1 1 s2 1 · · · 1 sk − 1


Theorem 2.2. Let G be the threshold graph with form b = {0, 1s1 , . . . , 0, 1sk}. The

spectrum of B is

φ1 > · · · > φk > φk+1 = −1 > φk+2 > · · · > φ2k,

where

φj = λj and φk+j = λn−k+j for j = 1, . . . , k

In the sequel, we also need some lemmas in linear algebra, and the reader can find

them in [10].

Lemma 2.3. (Rayleigh’s quotient) Let A be a real n × n symmetric matrix. The

spectral radius of A satisfies that

ρ(A) ≥ XᵀAX

for all unit vectors X, and the equality holds if and only if X is an eigenvector of

ρ(A).
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Lemma 2.4. (Interlacing theorem) Let A be a real n × n symmetric matrix and let

B be a principal submatrix of A with order m × m. Then, for i = 1, . . . ,m, the

eigenvalues of A and B satisfy that

λn−m+i(A) ≤ λi(B) ≤ λi(A).

3 Proof of Theorem 1.5

Now we are ready to give the proof of our main result Theorem 1.5.

The degree sequence of {0, 1s1 , . . . , 0, 1sk} is

n− 1, . . . , n− 1︸ ︷︷ ︸
sk

, n− 2, . . . , n− 2︸ ︷︷ ︸
sk−1

, . . . , n− k, . . . , n− k︸ ︷︷ ︸
s1

,

n− k =
k∑
i=1

si,
k∑
i=2

si, . . . , sk−1 + sk, sk, and

d̄ =
(n− 1− k)(n− k)

n
+

2

n

k∑
i=1

isi.

The inequality we are going to prove is

E(G) ≥ n− 1 +
(n− 1− k)(n− k)

n
+

2

n

k∑
i=1

isi.

Denote j =
1√
n
1. Notice that n − 1 = jᵀ(J − I)j, and according to Lemma 2.3,

λ1 > jᵀA(G)j if G � Kn. So

n− 1− λ1 <
2

n
[
k∑
i=1

(k − i)si +
k(k − 1)

2
] =

2

n
[k(n− k)−

k∑
i=1

isi +
k(k − 1)

2
].

Denoting S =
k∑
i=2

(|λi|+ |λn−k+i|), we now find a sufficient condition of the conjec-

ture, i.e.,

S + (n− 2k + 1)−(n− 1− k)(n− k)

n
− 2

n

k∑
i=1

isi ≥

2

n
[k(n− k)−

k∑
i=1

isi +
k(k − 1)

2
],

that is,

S − 2k + 2 ≥ 0.
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We first deal with the special case that si = 1 for i = 1, . . . , k. The threshold

graph whose sequence is {0, 1, 0, 1, . . . , 0, 1} is called anti-regular graph. In this case,

n = 2k and we rewrite the anti-regular graph of order 2k as Λk. It is difficult to

calculate the exact eigenvalues of an anti-regular graph, but in [7], Arguila et al.

gave a characterization of the spectrum of anti-regular graphs using the Chebyshev

polynomial of the second kind.

Theorem 3.1. λ 6= −1 is an eigenvalue of Λk if and only if

λ =
sin kθ

sin kθ + sin(k − 1)θ
,

where θ = arccos(
1− 2λ− 2λ2

2λ(λ+ 1)
).

In this theorem, regarding θ as the variable rather than λ, one gets that

λ =
−(cos θ + 1)±

√
(cos θ + 1)(cos θ + 3)

2(cos θ + 1)
,

and the equation is split into two parts:

g+(θ) =
−(cos θ + 1) +

√
(cos θ + 1)(cos θ + 3)

2(cos θ + 1)
=

sin kθ

sin kθ + sin(k − 1)θ

and

g−(θ) =
−(cos θ + 1)−

√
(cos θ + 1)(cos θ + 3)

2(cos θ + 1)
=

sin kθ

sin kθ + sin(k − 1)θ
.

Define a function f(θ) =
sin kθ

sin kθ + sin(k − 1)θ
on (0, π). Notice that sin kθ+sin(k−

1)θ = 2 sin
2k − 1

2
θ cos

θ

2
. So, { 2jπ

2k − 1
}k−1j=1 are the poles of f(θ). In each od the

segments (
2jπ

2k − 1
,
2(j + 1)π

2k − 1
) (j = 0, . . . , k − 2) and (

2(k − 1)π

2k − 1
, π),

f ′(θ) =
k cos kθ(sin kθ + sin(k − 1)θ)− sin kθ(k cos kθ + (k − 1) cos(k − 1)θ)

[sin kθ + sin(k − 1)θ]2

=
−k sin θ + sin kθ cos(k − 1)θ

[sin kθ + sin(k − 1)θ]2

=
sin θ

[sin kθ + sin(k − 1)θ]2
[
1

2
Dk−1(θ)− (k − 1

2
)],
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where Dk−1(θ) =
sin(2k − 1)θ

sin θ
is the Dirichlet kernel of order k − 1. Remember that

Dk−1 = 1 + 2
k−1∑
l=1

cos 2lθ < 2k− 1. So, f(θ) is strictly decreasing in each segment, and

thus f−(
2jπ

2k − 1
) = −∞ and f+(

2jπ

2k − 1
) = +∞. Also, it is not difficult to obtain

that lim
θ→0

f(θ) =
k

2k − 1
and lim

θ→π
f(θ) = k. Thus, the two values can naturally be

regarded as f(0) and f(π) without breaking continuity.

It is trivial to check that g+(θ) is strictly increasing and g−(θ) is strictly decreasing.

Moreover,

g+(0) =

√
2− 1

2
< f(0), g+(π) = +∞; g(0) =

−
√

2− 1

2
< f(0), g−(π) = −∞.

Combined with the analysis above about f(θ), it is easy to see that both g+(θ) and

g−(θ) intersect with f(θ) at exactly one point in every segment (
2jπ

2k − 1
,
2(j + 1)π

2k − 1
)

(j = 0, . . . , k − 2) and g+(θ) has an intersection point with f(θ) in (
2(k − 1)π

2k − 1
, π),

which indicates the spectral radius φ1 of Λk and we do not need to care about it.

Now we can elaborate a lower bound of S for Λk as follows:

S >
k−2∑
j=0

|g−(
2jπ

2k − 1
)|+ |g+(

2jπ

2k − 1
)| =

k−2∑
j=0

√√√√√√3 + cos
2jπ

2k − 1

1 + cos
2jπ

2k − 1

=
k−2∑
j=0

√√√√1 +
2

1 + cos
2jπ

2k − 1

>
k−2∑
j=0

√√√√1 +
1

(
π

2
· 2j + 3

2k − 1
)2
,

The last sum can be seen as an upper Darboux sum:

1

k − 1

2

k−2∑
j=0

√√√√1 +
1

(
π

2
· 2j + 3

2k − 1
)2
>

∫ 2k − 2

2k − 1
3

2k − 1

√√√√1 +
1

(
πx

2
)2
.

The integral
∫ 1

0

√√√√1 +
1

(
πx

2
)2

is divergent at point 0, and so

lim
k→∞

∫ 2k − 2

2k − 1
3

2k − 1

√√√√1 +
1

(
πx

2
)2

= +∞.
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It can be checked that when k ≥ 23,

∫ 2k − 2

2k − 1
3

2k − 1

√√√√1 +
1

(
πx

2
)2
> 2

with the aid of MATLAB. As for k ≤ 22, we have calculated S − 2k + 2 directly and

made the following list:

k S − 2k + 2 k S − 2k + 2

2 -0.2077 13 7.5720

3 -0.1145 14 8.7176

4 0.1829 15 9.9086

5 0.6357 16 11.1419

6 1.2138 17 12.4150

7 1.8969 18 13.7254

8 2.6702 19 15.0712

9 3.5226 20 16.4504

10 4.4453 21 17.8615

11 5.4315 22 19.3028

12 6.4753

From which it could be seen that if k ≥ 4, S− 2k+ 2 > 0, and thus Conjecture 1.2

holds strictly for Λk.

For general G with k ≥ 4, notice that Λk is an induced subgraph of G, and thus

A(Λk) is a principal submatrix of A(G). According to Lemma 2.4, for i = 2, . . . , k,

λi(G) ≥ φi(Λk) and φk+i(Λk) ≥ λn−k+i.

Then,

k∑
i=2

(|λi(G)|+ |λn−k+i(G)|)− 2k + 2 >
k∑
i=2

|(φi(Λk)|+ |φk+i(Λk)|)− 2k + 2 > 0,

and Conjecture 1.2 also holds strictly for G.

Next we deal with the special cases that k = 2 and k = 3.

Case 1: k = 2.
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The quotient matrix of G is

B2 =


0 s1 0 s2

1 s1 − 1 0 s2

0 0 0 s2

1 s1 1 s2 − 1

 ,
and the inequality of Conjecture 1.2 becomes

E(G) = E(B2) + (n− 4) ≥ (n− 1) +
(n− 2)(n− 3)

n
+

2

n
(s1 + 2s2).

While E(B2) = tr(B2) + 2 + 2|λn| = n− 2 + 2|λn|, the inequality is equivalent to

|λn| ≥ 1 +
1 + s2
n

.

Denote the characteristic polynomial of B2 by P2(λ). By calculating,
P2(λ)

λ+ 1
=

λ(λ + 1)(λ − n + 2) − s2(λ − s1). Writing x = −1 − 1 + s2
n

, we just need to verify

that
P2(x)

x+ 1
≥ 0.

Taking s1 = n− 2− s2 into the expression of
P2(x)

x+ 1
, we get

h(s2) = −1 + s2
n

(1 +
1 + s2
n

)(n− 1 +
1 + s2
n

) + s2(n− 1− s2 +
1 + s2
n

).

Differentiating it

h′(s2) = − 3

n3
s22 − 2(

3

n3
+ 1)s2 + (n− 3

n3
− 2),

we see that h′(s2) is strictly decreasing in s2. Since h′(1) = n − 12

n3
− 4 > 0, and

h′(n− 3) = − 3

n
+

12

n2
− 12

n3
+ 4− n < 0, we have that h(s2) is strictly increasing and

then strictly decreasing on (1, n− 3). Since h(1) = n − 8

n3
− 4 > 0, and h(n − 3) =

n − 5 +
6

n
− 12

n2
+

8

n3
> 0, we have

P2(x)

x+ 1
> 0, and Conjecture 1.2 holds strictly for

threshold graphs with n ≥ 5 and k = 2.

Case 2: k = 3.

The quotient matrix of G is

B3 =



0 s1 0 s2 0 s3

1 s1 − 1 0 s2 0 s3

0 0 0 s2 0 s3

1 s1 1 s2 − 1 0 s3

0 0 0 0 0 s3

1 s1 1 s2 1 s3 − 1


10



and the inequality of Conjecture 1.2 becomes

E(G) = E(B3) + (n− 6) ≥ (n− 1) +
(n− 3)(n− 4)

n
+

2

n
(n− 3 + s2 + 2s3).

While E(B3) = tr(B3) + 2 + 2(|λn−1|+ |λn|), the inequality is equivalent to

|λn−1|+ |λn| ≥ 2 +
3

n
+

1

n
(s2 + 2s3). (*)

Denote the characteristic polynomial of B3 by P3(λ). By calculating,

P3(λ)

λ+ 1
= λ(λ+1)[λ(λ+1)(λ−n+3)−(s2+s3)(λ−s1)]−s3[λ(λ+1)(λ−s1−s2)−s2(λ−s1)].

Since the roots of a general polynomial of degree ≥ 5 cannot be expressed by a

formula, it is not wise to deal with
P3(λ)

λ+ 1
directly, as we have done in Case 1. Let

us make some observations. Notice that the expression 2 +
3

n
+

1

n
(s2 + 2s3) does

not contain s1, and it is decreasing in n. For any fixed pair (s2, s3), we just need to

solve the subcase s1 = 1, since if this subcase satisfies (∗), then all threshold graphs

{0, 1s1 , 0, 1s2 , 0, 1s3} satisfy (∗∗), according to Lemma 1.2, the interlacing theorem.

Now take s1 = 1, and the inequality (∗) becomes

|λn−1|+ |λn| ≥ 3 +
s3 − 1

n
. (**)

For the same reason, we just need to solve the subcase s2 = 1, and the inequality

(∗∗) becomes

|λn−1|+ |λn| ≥ 4− 6

n
,

and

P3(λ)

λ+ 1
= λ(λ+1)[λ(λ+1)(λ−n+3)−(n−4)(λ−1)]−(n−5)[λ(λ+1)(λ−2)−(λ−1)].

Taking y = −2.8, we have used MATLAB to obtain that when n ≥ 13,
P3(y)

y + 1
> 0,

implying that λn < −2.8. By Theorem 2.1, |λn−1|+ |λn| > 2.8 +
1 +
√

2

2
> 4.

As for 6 ≤ n ≤ 12, we have calculated the energies of {0, 1, 0, 1, 0, 1s3} directly and

verified the validity of Conjecture 1.2. Now we make a table of the results as follows:
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n E n− 1 + d̄

6 8.2892 8

7 10.9185 10.2857

8 13.3330 12.5

9 15.6367 14.6667

10 17.8722 16.8

11 20.0620 18.9091

12 22.2189 21

The proof of Theorem 1.5 is finally complete.
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