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Abstract

The Turdn number of a k-uniform hypergraph H, denoted by exy (n; H),
is the maximum number of edges in any k-uniform hypergraph F' on n ver-
tices which does not contain H as a subgraph. Let Cék) denote the family
of all k-uniform minimal cycles of length ¢, S(¢1,...,¢,) denote the family of
hypergraphs consisting of unions of r vertex disjoint minimal cycles of length
l1,..., 0., respectively, and Cék)
determine precisely exy (n;S(¢1,...,4,)) and exy (n;(Cglf), . ,Cy:)) for suffi-

ciently large n. The results extend recent results of Fiiredi and Jiang [Fiiredi,

denote a k-uniform linear cycle of length ¢. We

Z., Jiang, T. Hypergraph Turdn numbers of linear cycles. J. Combin. The-
ory Ser. A, 123(1): 252-270 (2014)], in which the Turdn numbers for single

k-uniform minimal cycles and linear cycles are determined.
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1 Introduction

In this paper, we employ standard terminology and notation from hypergraph
theory (see e.g.,[1]). A hypergraph is a pair H = (V, E) consisting of a set V of

vertices and a set 2 C P(V) of edges. If every edge contains exactly k vertices, then
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H is a k-uniform hypergraph. A graph homomorphism f from a graph G = (V, E)
to a graph G' = (V' E’) is a mapping f: V — V' from the vertex set of G to the
vertex set of G’ such that uv € E implies f(u)f(v) € E’. For two hypergraphs G
and H, we write G C H if there is an injective homomorphism from G into H. We
use G'U H to denote the disjoint union of (hyper)graphs G and H. By disjoint, we
will always mean vertex disjoint. A Berge path of length ¢ is a family of distinct sets
{F,..., F;} and ¢ + 1 distinct vertices vy, ..., v, such that for each i = 1,2,...,¢,
F; contains v; and v; 1. Let Bék) denote the family of k-uniform Berge paths of length
0. A linear path of length ¢ is a family of sets {F7, ..., Fy} such that |F; N F 4] =1
for each i and F; N F; = () whenever |i — j| > 1. Let Pék) denote the k-uniform linear
path of length ¢. It is unique up to isomorphisms. A k-uniform Berge cycle of length
¢ is a cyclic list of distinct k-sets Aq,..., A, and ¢ distinct vertices vy, ..., v, such
that for each i = 1,2,...,¢, A; contains v; and v;; (where vy 1 = v1). A k-uniform
minimal cycle of length ¢ is a cyclic list of k-sets Ay, ..., A; such that consecutive
sets intersect in at least one element and nonconsecutive sets are disjoint. Denote the
family of all k-uniform minimal cycles of length ¢ by Cék). A k-uniform linear cycle
of length ¢, denoted by Cgk), is a cyclic list of k-sets Ay, ..., A; such that consecutive

sets intersect in exactly one element and nonconsecutive sets are disjoint.

The Turdn number, or extremal number, of a k-uniform hypergraph H, denoted
by exy(n; H), is the maximum number of edges in any k-uniform hypergraph F
on n vertices which does not contain H as a subgraph. This is a natural general-
ization of the classic Turan number for 2-uniform graphs; we restrict ourselves to
the case of k-uniform hypergraphs. Let exy(n; Fy, Fy, ..., F,.) denote the k-uniform
hypergraph Turdn Number of a list of k-uniform hypergraphs Fi, Fs, ..., F,, i.e.,
exy(n; F1, Fy, ..., F,) =exp(n; FUF,U...UF,).

For the family of k-uniform Berge paths of length ¢, Gyori, Katona and Lemons
[5] determined ex(n; Bék)) exactly for infinitely many n. In [2], Fiiredi, Jiang and

Seiver established the following results.

Theorem 1 ([2]) Let k, t be positive integers, where k > 3. For sufficiently large n,

n—1 n—2 n—t
e:vk<n;IP’§21> = (k—1>+<k—1)+'”+<k—1)

The only extremal family consists of all the k-sets in [n] that meet some fixed set S

we have

of t vertices. Also,

n—1 n—2 n—t n—t—2
e:Ek(n;IP’gzzﬂ): (k—1)+(k—1)+”'+(k—1)+( P )



The only extremal family consists of all the k-sets in [n] that meet some fized set S

of t vertices plus all the k-sets in [n] \ S that contain some two fized elements.

For more results we refer to [2, 6].

For the minimal and linear cycles, Fiiredi and Jiang [3] determined the extremal
numbers when the forbidden hypergraph is a single minimal cycle or a single linear
cycle. This confirms, in a stronger form, a conjecture of Mubayi and Verstraéte [6]
for £ > 5 and adds to the limited list of hypergraphs whose Turan numbers have

been known either exactly or asymptotically. Their main results are as follows.

Theorem 2 ([3]) Lett be a positive integer, k > 4. For sufficiently large n, we have

n n—t n n—t
exk<n;C§f}rl>:<k>—< k’ >,and6xk<n;C§32>:<k>—< I )—l—l.

For Céf}rl, the only extremal family consists of all the k-sets in [n] that meet some
fized t-set S. For Céf@, the only extremal family consists of all the k-sets in [n] that

intersect some fized t-set S plus one additional k-set outside S.

Theorem 3 ([3]) Lett be a positive integer, k > 5. For sufficiently large n, we have

n n—1t n n—1t
ea;k<n;Cg§Zrl):<k>—( k ),andewk<n,(cgzlz):<k)—< I >—|—

n—t—2
k—2

that meet some fixed t-set S. For Cgﬁrz, the only extremal family consists of all the

. For (ngrl, the only extremal family consists of all the k-sets in [n]

k-sets in [n] that intersect some fived t-set S plus all the k-sets in [n]\ S that contain

some two fized elements.

From definition, two k-uniform minimal cycles of the same length may not be iso-
morphic. Hence, we define the following family of hypergraphs, where every member

consists of r vertex disjoint cycles:
Sli,....6)={C1U...UC,: C;ec forie[r}.

Apart from the results above, we will need the following result, due to Keevash,
Mubayi and Wilson [4].

Theorem 4 ([4]) Let H be a k-uniform hypergraph on n vertices with no two edges
intersecting in ezactly one vertez, where k > 3. Then |E(H)| < (,",).



Based on earlier work of Fiiredi and Jiang [3], in this paper we will determine
precisely the exact Turdn numbers when the forbidden hypergraphs are r vertex
disjoint minimal cycles or r vertex disjoint linear cycles. Our main results are as
follows.

Theorem 5 Let integers k >4, r > 1, 4y,... 0. >3, t =) VTHJ —1,and I =1
i=1
if all the £y, ..., ¢, are even, and I = 0 otherwise. For sufficiently large n,

exk(n;S(él,...,ﬁT)):(Z)—(n;t)—i—f.

T

Theorem 6 Let integers k > 5, r > 1, {1,....0, > 3, t = > VZ;FIJ — 1, and
i=1

—t—2
J= ( " ) if all the U4, ... L, are even, and J = 0 otherwise. For sufficiently

k—2
—1
emk<n;C§f),...,C§f)) = <Z>_<nk >+J.

Sometimes, we allow the hypergraph to contain less than r minimal or linear

large n,

cycles, consider the Turan number in such cases, we have the following two corollaries.
We use notation r - F' to denote r vertex disjoint copies of a hypergraph F. Let
(1 = ... = [, ={, we can immediately get the following two corollaries from Theorems
5 and 6.

Corollary 1 Let integers k > 4, r > 1, £ >3, t =r L“le —1,and I =1 4f 0 is
even, and I =0 if £ is odd. For sufficiently large n,

exy, <n;r.Cék)> :<Z>—<n2t>—|—l.

— =9
Corollary 2 Let integersk > 5,7 > 1,0>3,t =r || —1, and J = (nk : )

if € 1s even, and J =0 if £ is odd. For sufficiently large n,

exk<n;r-C§k)>=<Z>—<n;t)+l

We can see that Theorem 2 and Theorem 3 are special cases of Corollary 1 and
Corollary 2 (when r = 1), respectively. However, the methods we used in the proofs

of Theorem 5 and Theorem 6 are quite different from Theorem 2 and Theorem 3.
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2 Proof of Theorem 5

—1
For convenience, we define f(n,k,{¢,...,0.}) = ( Z > " . + I. Note

that the hypergraph on n vertices that has every edge incident to some fixed t-set
S, along with one additional edge disjoint from S when all of ¢,..., ¢, are even,
has exactly f(n,k,{¢,...,¢.}) edges and does not contain a copy of any member of

S(ty,...,0).

Thus, to prove Theorem 5, it suffices to show that exy (n; S(f1,...,4.)) < ( Z ) —

—1
( " ) > +1, i.e., any hypergraph on n vertices with more than f(n,k,{¢1,...,¢.})

edges must contain a member of S(¢y, ..., ¢,.). We use induction on r. From Theorem
2, the case r = 1 has been proved. Assume that » > 2, and Theorem 5 holds for

smaller r.

Let H be a hypergraph on n vertices with m edges and m > f(n,k,{¢1,...,¢,.}).
Since f(n,k,{t1,...,¢.}) > f(n,k, {1) for sufficiently large n, there exists at least one
k-uniform minimal ¢;-cycle in H. Take one of them, denote its vertex set by C so
6, < |C] < (k—=1)¢;. We have |[E(H\C)| < f(n—|C|, k,{{s,...,L.}), since otherwise,
by induction hypothesis, we can find vertex disjoint copies of Céf) u...u Céf) in H,
plus the minimal ¢;-cycle on C', and then there is a copy of a member of S(¢1, ..., ¢,)

in H already.

Let m¢ denote the number of edges in H incident to vertices in C. Then,

mC’Zm_f(n_|O|7k7{€27"'7€r}) (1)

Z f(nuka {gla S 767“}) - f(n - glak7 {627 s 7£T}> (2)
l1+1

- oy 0

We call an edge in H a terminal edge if it contains exactly one vertex in C. Let T
denote the set of all terminal edges in H. For every (k—1)-set Rin V(H)\ C, define

Tp={E€T: RCE}.

According to the size of each set Tg, we divide all the (k — 1)-sets in V/(H) \ C' into

two sets, such that

1
X ={RCV(H)\Cand |R| =k —1:|Tx| < Vl; J_1}

Y ={RCV(H)\Cand |R|=k—1:|Tg| > Vl;lJ}.

5



It is not difficult to give an upper bound of m¢ in terms of | X| and |Y'| as follows:

me < ('g' ) <Z:§>+|X|(Vl;1J —1)+|y|.|0|
(D (2 ) Do

Combine with (3), we have

nk—l

(k—1)¢ (k—1)!

For any (k — 1)-set R € Y, there are at least |“4!| vertices in C' that can form

terminal edges with R. We choose exactly VlHJ of them, and call the vertex set of

51_+1J
2

Y= +0(n7?). (4)

these Vl—HJ vertices terminal set relative to R. Since the number of L -sets in

2

: ¢ :

C' is at most ( [ eJl +|1 J ), we can get that some elements in Y may have the same
T2

terminal set. And it is easy to derive that the number of (k — 1)-sets in Y with the

same terminal set is at least

nt! le] k=1 k-16\"
(k—l)ﬁl(k—l)!<[£17+1j) O 2 (k—l)é(k—l)!( VIT“J> +O(m™).

_ _ -1
Choose one terminal set U in C, such that there are at least W ((Lkéej) +

O(n*=2) (k — 1)-sets in V(H) \ C, every such (k — 1)-set can form a terminal edge
with every vertex in U. Let Ry be the set of all the common (k — 1)-sets associated
with U in V(H) \ C. Then we have

nk-1 (k=1 0\ i
|Ry| > (k_1)£1<k_1)!( s | ) +O0(nF72). (5)

Let my denote the number of edges incident to vertices in U. Then,

my < Vl;lJ (n_ L&THJ) +m

2 kE—1
where m’ is the number of edges which contain at least two vertices in U. With some

calculations, we have

fln k{0, ....0}) — Vl 1J ko {ly, ... 0.}) —my
: <Z:i>+<::i>+--- ()

L))
e[

+

\)




It is not difficult to deduce that the last expression is nonnegative (consider the

combinatorial meaning of that expression). Hence, we can derive
E(H\U> = m-—my > f(n7k7{£17"'7€7“})_mU
l1+1
> fn- { & J Al 0).

Thus by the induction hypothesis, there exists a member of S(/s, ..., ¢,) with vertex
set Win V(H) \ U. Also, we have

W< (k=1)_ (6)

Now we focus on finding a k-uniform minimal ¢;-cycle disjoint from W. Consid-
ering the (k — 1)-uniform hypergraph H, with vertex set V(H) \ U and edge set Ry,
we will prove the following claim:

Claim 1 There are L%J pairs of (k — 1)-edges in Hy, say {a;,b;}, i =1,..., L%J,
such that for every i, a; and b; have exactly one common vertex, and for any j # i,
{ai,b;} and {a;,b;} are vertex disjoint, moreover, all these (k—1)-edges disjoint from

w.

Proof. The number of (k — 1)-edges incident with some vertices in W is at most
(W[ (~)). With the aid of (5) and (6), in Ry the number of (k — 1)-edges disjoint

from W is at least

nk=1 (k—1)6,\" o - n—1 n— |82
) —(k—1 ; 2 .
emaETk ) ree-e-n s ) = (L)
By Theorem 4, we can find a pair {a;,b} of (k — 1)-edges with exactly one com-

_ e —1
mon vertex. Let p = |4 (2k —3). Since %(T&ej) +O(n*2?) — (k —
2

£1+1

1) ;Ei (Z:;) —p(Z:;) > (n—]E;_% J), we can repeat the argument above to find {ag, by},

. {CZLQJ , bLﬁJ} satisfying the properties described in Claim 1. O

Let U = {uy,...,u b1 | }. To form the required minimal ¢;-cycle, we need to
2

consider the following two cases:
Case 1. ¢, is even.

Find £ pairs of (k — 1)-edges in Hy as described in Claim 1, still denote them by

{a;, b}, i=1,..., %. Construct a k-uniform minimal ¢;-cycle in H with edges:
a; U{u}, by U{us}, as U{us},. .. ,b%_l U {u%}, ay U {u%}, b%l U {us}.

7



Case 2. ¢, is odd.

Find 952 pairs of (k — 1)-edges in Hy as described in Claim 1. Similar to the
proof of Claim 1. Let () be the union of W and the set of vertices in all these
83 pairs of (k — 1)-edges. Hence, |Q| = “3%(2k — 3) + |W|. By Theorem 1,

eXTh_1 (n — Vl;qJ ;Pék_l)) = (kiZ)!nk_Q +O(n*=3), for sufficiently large n. In Hy, the

_ s -1
number of (k — 1)-edges disjoint from @ is at least % (T@éj) +O0(n*=2%) —

QI(1-3) > ﬁnk” + O(n*=3). That implies that in Hy we can find a Pék_l) in
the remaining (k — 1)-edges disjoint from ). Let x,y,z be the three consecutive
(k — 1)-edges in Pékil). Then, in H we can form a k-uniform minimal ¢;-cycle with
edges:

a; U{ur}, by U{ug},aa U{ug}, ... ,an-3 U{ue-3},
2 2
beo-s U{ue—1 b, o U{ug-1 b yU{uger b, 2 U {u}.
2 2 2 2

Moreover, it is easy to see that this k-uniform minimal ¢;-cycle is not only minimal,
but also linear, no matter when ¢; is even or odd. Thus, we have constructed r
disjoint k-uniform minimal cycles. So, the hypergraph which contains no member of
S(ly,...,¢,) can not have more than f(n,k,{¢,...,¢}) edges. The proof is thus

complete. ]

3 Proof of Theorem 6

n n—t
= L] . ) + J. Firstly, we point out that the

hypergraph on n vertices that has every edge incident to some fixed t-set S, along

Let g(n, k,{l1,...,0.})

with all the k-edges disjoint from .S containing some two fixed elements not in S when
all of ¢1,..., (. are even, has exactly g(n, k,{(1,...,¢.}) edges and does not contain

a copy of any member of Cgf) Uu...u (Cé]:).
Hence, it suffices to show that ez, (n; (Cg’f), o ,(Cgf)) < g(n,k,{t,...,0.}). We

proceed by induction on r again since the case r = 1 is provided by Theorem 3.
Let H be a hypergraph on n vertices with m > g(n, k,{¢1,...,¢.}) edges. If one of
l1,...,¢, is even, rearrange the sequence to make sure ¢ is even.

As in the proof of Theorem 5, since g(n, k, {{1,...,¢.}) > g(n, k, 1) for sufficiently
large n, there exists at least one k-uniform linear ¢;-cycle in H. Take one of them,
denote its vertex set by C. Similarly, we have |E(H\C)| < g(n—|C|, k,{la,...,¢,}).

Still let me denote the number of edges in H incident to some vertices in C'. With



some calculations, we can get

|25
me > G _2 1)!nk_1 + O (nk_Q) .

Again we define terminal edges, Tg, X, Y as before, we then can find the L&Tﬂj-set
U, too. Then by induction hypothesis, we can find a copy of Cég) U.. .U(Cé]:) on vertex
set Win V(H)\U. Now we focus on finding a k-uniform linear ¢;-cycle disjoint from
W. Again considering the (k — 1)-uniform hypergraph Hy with vertex set V(H) \ U
and edge set Ry, it is easy to see that the Claim 1 still holds. Thus, like Theorem 5,
we have the terminal set U = {uy, ... U a1 | }. To form the required linear ¢;-cycle,
we also need to consider the following two cases:

Case 1. /; is even.

Find % pairs of (k — 1)-edges in Hy as described in Claim 1, still denote them by

{a;, b}, i=1,..., %1. Construct a k-uniform linear ¢;-cycle in H with edges:
a; U{u}, by U{us}, as U{us}, ... ,b%_l U {u%}, ay U {u%}, b%l U {u1}.

Case 2. /; is odd.

Find 22 pairs of (k — 1)-edges in Hy as described in Claim 1. Similar to the

proof of Claim 1. Let ) be the union of W and the set of vertices in all these
852 pairs of (k — 1)-edges. Hence, |Q| = 832(2k — 3) + [W|. By Theorem 1,

eTh_1 <n — |8 ;Pék71)> = (k_12)!nk_2 +O(n*=3), for sufficiently large n. In Hy, the

_ e —1
number of (k — 1)-edges disjoint from @) is at least #1(;_1), ((fézj) +0(nk=2) —

QI(3-)) > (kiQ)!nk_Q + O(n*=3). That implies that in Hy we can find a P¥™ in

the remaining (k — 1)-edges disjoint from ). Let x,y,z be the three consecutive

(k — 1)-edges in ng_l). Then, in H we can form a k-uniform linear ¢;-cycle with
edges:
a; U {u1}7 by U {u2}7 ag U {u2}7 S an-3 U {u@}u
2 2

bo—s Ufug1 bz U{ug-1 b yU{ugat 20U {u}
2 2 2 2

Since we construct this k-uniform linear ¢;-cycle avoiding the vertices in W, we
know that the hypergraph containing no (Célf) Uu...U (Cy:) can not have more than
g(n,k,{t1,...,¢.}) edges. The proof is then complete. |
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