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Let G = (V (G), E(G)) be a graph and let k be an integer. A vertex subset S ⊆ V (G) is

called a k-extended dominating set if every vertex u of G satisfies one of the following
conditions: the distance between u and S is at most one or there are at least k different

vertices s1, s2, . . . , sk ∈ S such that the distance between u and si (i ∈ [k]) is two.
The k-extended domination number γke (G) of G is the minimum size over all k-extended
dominating sets in G. When k = 2, they are called the extended dominating set and

the extended domination number of G, respectively. In this paper, we mainly study
the bounds of the extended domination numbers of graphs. Firstly, we obtain the exact
values of the extended domination numbers for paths and cycles. And then the Nordhaus-
Gaddum bounds for the extended domination number are provided. Additionally, we
give some bounds of the extended domination numbers for planar graphs with small

diameters. Finally, we consider the behavior of the k-extended domination number of

the Random graph G(n, p).
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1. Introduction

In this paper, only finite, undirected and simple graphs are considered. Let G =

(V (G), E(G)) be a graph. Suppose u and v are two vertices in G. The distance

between u, v denoted by d(u, v) is the length of the shortest path connecting u and

v. A vertex v is called a quasi-neighbour of u if d(u, v) = 2. The distance between

v and S is defined as d(v, S) = min{d(v, u)|u ∈ S}, where S is a vertex subset

of G. Given an integer k, a vertex set S is called as an k-extended dominating set

(abbreviated k-EDS) of G if every vertex u in G satisfies that d(u, S) ≤ 1 or u has k

different quasi-neighbours in S. The smallest cardinality of a k-extended dominating

set of G is the k-extended domination number of G, denoted by γke (G). Expressly,

when k = 2 we call them the extended dominating set (abbreviated EDS) and the

extended domination number of G, respectively.

The extended dominating set was introduced by Wu (2002), which has many

applications in ad hoc networks. A wireless ad hoc network is a decentralized type

of wireless network. The network is ad hoc because it does not rely on a pre-

existing infrastructure, such as routers in wired networks or access points in wireless

networks. Alternatively, each vertex participates in routing by forwarding data to

other vertices. We call a vertex source vertex if it has the whole data, and can

transfer all data to its neighbours, but only partial data to its quasi-neighbors.

Therefore, the determination of which vertices are the source vertices, so that all

vertices can collect all data, is essential. This can be converted as follows. Given a

network (graph) G, how to select the source vertices in G is became how to find an

extended dominating set in G. Wu et al. (2006) showed that the determination of

the extended domination number is NP-hard and they also gave several heuristic

algorithms to compute the extended domination number of a network. Inspired by

this, it is significant to determine the quantum of the extended domination number

of graphs. And there are few results about the bounds of the extended domination

number of graphs. In this paper, we are first to study the bounds of the extended

domination number of graphs.

Actually, the k-extended dominating set is a generalization of the classical dom-

inating set. Given a graph G, a vertex set S is a dominating set if each vertex

u ∈ V (G) such that d(u, S) ≤ 1. The domination number γ(G) of G is the minimum

cardinality of a dominating set in G. Let t be an integer. The k-extended dominat-

ing set is also closed to the distance-t dominating set, which is a domination-type

variable and was introduced by Meir and Moon (1975). A distance-t dominating set

S is a vertex set of V (G) such that for each vertex u outside S satisfying d(u, S) ≤ t.
The minimum size of distance-t dominating set is the distance-t domination number,

denoted by γt(G). From the definition of the k-extended dominating set, we know

that if k = 1, an 1-EDS of G is exactly a distance-2 dominating set; if k ≥ n − 1,

a k-EDS is equivalent to a dominating set of G. It is trivial that any complete

graph and complete multipartite graph have extended domination numbers equal

to their domination numbers. While not every graph has this property, for example,
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Petersen graph has domination number 4, but the extended domination number is

between 2 and 4 depending on k.

Domination and its variations in graphs had been well studied, the more details

refer to the excellent books (Haynes et al. (1998)-1; Haynes et al. (1998)-2; Haynes

et al. (2020); Haynes et al. (2021)). One of the core problems in graph domination

is how to discover the good bounds for the domination numbers of graphs. There

are many results about the bounds of the domination-type numbers (Zverovich and

Poghosyan (2011); Henning and Lichiardopol (2017); Li et al. (2018); Cai et al.

(2019); Henning (2020); Bujtás (2021); Deshpande et al. (2022)). In particular, the

bounds of domination-type numbers of planar graph are rich, the more details refer

to (MacGillivray and Seyffarth (1996); Goddard and Henning (2002); Araki and

Yumoto (2018); Borg and Kaemawichanurat (2020); Zhuang (2021)).

To end this section, we give the structure of this paper. In Section 2, we give

some notations and the exact values of the extended domination number of paths

and cycles. In Section 3, we give the Nordhaus-Gaddum bounds for the extended

domination number of graphs. The bounds of the extended domination number for

planar graphs with small diameters are provided in Section 4. Finally, we study the

behavior of the k-extended domination number in Random graph G(n, p).

2. EDS on cycles and paths

The notations we use are as follows. Let G = (V (G), E(G)) be a graph with order

n = |V (G)| and let u and v be two vertices in G. The eccentricity of a vertex v

in G is defined as ecc(v) = max {d(u, v) : u ∈ V (G)}. The radius of G is defined as

rad(G) = min {e(v) : v ∈ V (G)}, and the diameter of G is defined as diam(G) =

max {e(v) : v ∈ V (G)}. The distance from a vertex v to a vertex set S is defined

as d(v, S) = min {d(v, s) : s ∈ S}. The private neighbours of a vertex v for a given

vertex subset S are the vertices only adjacent to v but not to the other vertices in

S. Let u, v ∈ V (G). The neighbour of v is denoted by N(v). Let N2(v) be the set

of vertex which has distance 2 from v in G. A vertex u is quasi-neighbour of v if

the vertex u belongs to N2(v). Suppose A and B are two vertex subsets in G. We

say A dominates B if for each vertex v in B has a neighbour in A. A vertex u is

distance-k dominated by v if d(u, v) ≤ k. We follow Chartrand and Lesniak (1996)

for notation and terminology not defined here.

Next, we show the extended domination numbers of cycles and paths. Before

that, we need the following observation.

Observation 1. Let G = (V,E) be a connected graph and G′ be its spanning

subgraph, then γke (G) ≤ γke (G′).

Given a cycle C, we know that for each vertex v satisfies |N2(v)| ≤ 2. If k ≥ 3,

then a k-extended dominating set becomes a dominating set in C. And consequently

we only consider the extended domination number and give the following theorem.
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Theorem 2.1. Let Cn be a cycle. Then

γ2e (Cn) =


1, if n = 3,

2, if n = 4,

dn4 e, if n ≥ 5.

Proof. The conclusion holds when n = 3 or 4 clearly. Now we assume that n ≥ 5.

Labeling all the vertices of Cn from any vertex as v0, v1, v2, v3, . . . , vn−1 clockwise.

Then we chose a vertex subset S = {v4k+1|k ∈ {0, 1, 2, . . . , dn4 e− 1}}, and it is easy

to check that S is an EDS. Thus γ2e (Cn) ≤ dn4 e. On the other hand, we will show

that γ2e (G) ≥ dn4 e. Obviously, each EDS contains at least one vertex in every P4

in Cn. If not, there exists a P4 that contains no vertex for any EDS in Cn, then

the two central vertices of this P4 should not be extended dominated by any vertex

in Cn, a contradiction. So we get that γ2e (Cn) ≥ bn4 c since there are at least bn4 c
vertex-disjoint P4s in Cn.

It is clear that the result holds when n ≡ 0(mod4). Now we only consider n ≡
1(mod4) in the following proof. Since the others are similar to analysis, we omit

the details. Set n = 4k + 1 for some integer k. It is clear that there exist k + 1

consecutive segments Ai (i ∈ [k+1]) in Cn such that Ai is a copy of P4 for 1 ≤ i ≤ k
and Ak+1 is an isolated vertex. Without loss of generality, we can assume that

Ai = v4i−4v4i−3v4i−2v4i−1 for 1 ≤ i ≤ k and Ak+1 = v4k by relabeling the indices

of vertices in Cn. Suppose that the consequence does not hold. That is, γ2e (Cn) = k

by combining the above analysis. Suppose that S is a minimum EDS of Cn. Then

|S| = k and thus each Ai contains only one vertex in S for 1 ≤ i ≤ k. By symmetry,

we know that only one of v0 and v1 is contained in S. If v0 ∈ S, then we get that

S = {v0, v4, . . . , v4k−4} by the definition of EDS. Moreover, the vertex v4k−2 is not

extended dominated by S, a contradiction. If v1 ∈ S, then S = {v1, v5, . . . , v4k−3}
by the same reason. And thus the vertex v4k−1 is not extended dominated by S,

again a contradiction. So we get that γ2e (G) = dn4 e.

For paths, we obtain the exact values of the extended domination number, which

is stated as follows.

Theorem 2.2. Let Pn be a path. Then

γ2e (Pn) =

{
n
4 + 1, if n ≡ 0(mod4),

dn4 e, otherwise.

Proof. The conclusion holds when n = 1 or 2 clearly. We label the vertices of Pn

as Pn = v0v1 . . . vn−1. In order to prove the upper bounds, we construct a vertex

subset S as follows.



August 18, 2022 21:11 ws-apjor

The extended dominating set in graphs 5

S =


{v4k+1|k ∈ {0, 1, 2, . . . , dn4 e − 1} ∪ {vn−2}, if n ≡ 0(mod4),

{v4k+1|k ∈ {0, 1, 2, . . . , bn4 c − 1} ∪ {vn−2}, if n ≡ 1(mod4),

{v4k+1|k ∈ {0, 1, 2, . . . , dn4 e − 1}, otherwise.

Clearly, S is an EDS of Pn. Then the upper bounds hold.

On the other hand, for the lower bound, we know that γ2e (Pn) ≥ γ2e (Cn) ≥ dn4 e
by Observation 1 and Theorem 2.1. Then the theorem holds for n 6≡ 0(mod4).

Now we consider n = 4k for some integer k. As the above theorem, we can take

k consecutive segments Ai = {v4i−4, v4i−3, v4i−2, v4i−1} for 1 ≤ i ≤ k. Conversely,

suppose that γ2e (Pn) = k and S is a minimum EDS in Pn. Since v0 is an end vertex

and the definition of the EDS, then only one of v0 or v1 must be contained in S. If

v0 ∈ S, then S = {v0, v4, . . . , v4k−4} and it can not extended dominate the vertex

vn, a contradiction. Otherwise, if v1 ∈ S, then S = {v1, v5, . . . , v4k−3} and the

vertex vn can not be dominated by S, a contradiction. The result holds.

3. Nordhaus-Gaddum bounds

Many studies have been done on the Nordhaus-Gaddum bounds for the original

domination number, including the sum and product forms. In this section, we give

some such results for the extended domination number of a graph G by using the

fact γ2e (G) ≤ γ(G) and the analysis of the structure of G and its complement.

Firstly, we list some known results which will be used in the following proof.

Lemma 3.1. Let G be a graph with n vertices and G be its complement graph.

Then

(1) γ(G) + γ(G) ≤ n + 1 and γ(G)γ(G) ≤ n. Moreover, the equalities hold if and

only if G = Kn. (Jaeger and Payan (1972))

(2) If neither G nor G contains an isolated vertex, then γ(G)+γ(G) ≤ n
2 +2.(Joseph

and Arumugam (1995))

(3) If δ(G) ≥ 2 and δ(G) ≥ 2, then γ(G) + γ(G) ≤ 2n
5 + 3, apart some small

exceptions.(Dunbar et al. (2005))

(4) If δ(G) ≥ 3 and δ(G) ≥ 3, then γ(G) + γ(G) ≤ 3n
8 + 2, apart some small

exceptions.(Dunbar et al. (2005))

Lemma 3.2. Let G be a graph with n vertices. Then

(1) If δ(G) = 1, then γ(G) ≤ n
2 .(Ore (1962))

(2) If δ(G) = 2, then γ(G) ≤ 2n
5 , except the graphs as defined in Figure 1.(Ore

(1962))

(3) If δ(G) = 3, then γ(G) ≤ 3n
8 .(Reed (1996))

(4) If δ(G) = 4, then γ(G) ≤ 4n
11 .(Sohn and Yuan (2009))

(5) If δ(G) = 5, then γ(G) ≤ n
3 .(Bujtás (2021))
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The following corollary is obtained by doing some checks on the extended num-

bers of the graphs in Figure 1.

G1 G2 G3 G4

G5 G6 G7

Fig. 1. Exceptions for γ(G) ≤ 2n
5

.

Corollary 3.1. Let G 6= C4 be a graph with n vertices and δ(G) = 2. Then γ2e (G) ≤
2n
5 .

In the following statement, we let δ∗(G) = min{δ(G), δ(G)}. Now we give the

first theorem as follows.

Theorem 3.1. Let G be a graph with n vertices. Then

(1) γ2e (G) + γ2e (G) ≤ n + 1 and γ2e (G)γ2e (G) ≤ n. Moreover, the equalities hold if

and only if G = Kn.

(2) If neither G nor G contains an isolated vertex, then γ2e (G) + γ2e (G) ≤ n
2 + 2

and γ2e (G)γ2e (G) ≤ n.

(3) If δ∗(G) = 2, then γ2e (G) + γ2e (G) ≤ 2
5n+ 2 and γ2e (G)γ2e (G) ≤ 4

5n.

(4) If δ∗(G) = 3, then γ2e (G) + γ2e (G) ≤ 3
8n+ 2 and γ2e (G)γ2e (G) ≤ 3

4n.

(5) If δ∗(G) = 4, then γ2e (G) + γ2e (G) ≤ 4
11n+ 2 and γ2e (G)γ2e (G) ≤ 8

11n.

(6) If δ∗(G) = 5, then γ2e (G) + γ2e (G) ≤ n
3 + 2 and γ2e (G)γ2e (G) ≤ 2

3n.

Proof.

(1) Using the fact γ2e (G) ≤ γ(G), we know that the results hold as an immediate

consequence of Lemma 3.1 (1).

(2) The first inequality holds by using Lemma 3.1 (2) and the fact γ2e (G) ≤ γ(G).

Now we consider the second inequality. Clearly, n ≥ 4. We claim that both

γ2e (G) ≥ 2 and γ2e (G) ≥ 2 hold. Indeed, without loss of generality, suppose

that γ2e (G) = 1. Then we know that G has a vertex v dominating all other

vertices in G, this is, dG(v) = n − 1. However, v is an isolated vertex in G, a

contradiction. By symmetry, assume γ2e (G) ≥ γe(G) ≥ 2. If γ2e (G) = 2, then
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the result holds following directly Lemma 3.2 (1). Now we want to prove that

γ2e (G) ≥ 3 does not exist. Without loss of generality, suppose G is disconnected

or diam(G) ≥ 3, then γ2e (G) = 2, and we are done in the above. So G and G

are connected and diam(G) = diam(G) = 2. This is in contradiction to the fact

that γ2e (G) ≤ 2 for any connected graph G with diameter 2. The result holds.

(3) Since δ∗(G) = 2, we note n ≥ 5. By symmetry, assume γ2e (G) ≥ γ2e (G) ≥ 2. If

γ2e (G) = 2, then the two inequalities hold directly from Lemma 3.2(2). Now we

consider the case γ2e (G) ≥ 3. For the same reason in the above case, we know

that G and G are connected and diam(G) = diam(G) = 2, a contradiction.

Hence the results hold.

(4) Since δ∗(G) = 3, we note n ≥ 7. And further, it is easy to check that there is

no graph with n = 7 such that δ∗(G) = 3, thus n ≥ 8. By symmetry, assume

γ2e (G) ≥ γ2e (G) ≥ 2. If γ2e (G) = 2, then two inequalities hold directly from

Lemma 3.2(3). Thus we only consider γ2e (G) ≥ 3. As mentioned earlier, we can

derive a contradiction to show that this case does not exist. The result holds.

(5) Since δ∗(G) = 4, we note n ≥ 9. By symmetry, assume γ2e (G) ≥ γ2e (G) ≥ 2. If

γ2e (G) = 2, then the two inequalities hold directly from Lemma 3.2 (4). Thus

we assume γ2e (G) ≥ 3, for the same reason as previously stated, we prove that

this is impossible.

(6) Since δ∗(G) = 5, we note n ≥ 11. By symmetry, assume γ2e (G) ≥ γ2e (G) ≥ 2. If

γ2e (G) = 2, then the two inequalities hold directly from Lemma 3.2 (5). As the

same reason, γ2e (G) ≥ γ2e (G) ≥ 3 does not exist.

As we note that the bounds in Theorem 3.1 are sharp as G = n
2K2 for (2) and

G = C5 for (3), there is a natural question to show whether the bounds in (4-6) are

sharp.

And we further consider the bounds in terms of the maximum degree and give

the following theorem.

Theorem 3.2. Let G be a graph with maximum degree ∆. If γ2e (G) = 2, then

γ2e (G) + γ2e (G) ≤ ∆ + 2 and γ2e (G)γ2e (G) ≤ 2∆.

Proof. Since γ2e (G) = 2, then ∆ ≥ 2 and there is an extended dominating set

S = {x, y} in G. Now we wish to prove the theorem by examining the following two

cases.

Case 1. N(x) ∩N(y) = ∅.
Since N(x) ∩ N(y) = ∅, then in G, we know that the vertices in N(x) are

adjacent to y, and the vertices in N(y) are adjacent to x. Moreover, the vertices in

N2(x) ∪N2(y) are adjacent to both x and y in G. Then {x, y} is also an extended

dominating set, and thus γ2e (G) ≤ 2. So γ2e (G) + γ2e (G) ≤ 4 and γ2e (G)γ2e (G) ≤ 4

hold.

Case 2. |N(x) ∩N(y)| = k for some integer k ≥ 1.

The same as Case 1, we know that every vertices except N(x) ∩ N(y) ∪ {x, y}
are adjacent to x or y in G. It is easy to check that N(x) ∩ N(y) ∪ {x, y} is an
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extended dominating set of G. Then γ2e (G) ≤ 2 + k ≤ 2 + ∆. Moreover, both

γ2e (G) + γ2e (G) ≤ ∆ + 2 and γ2e (G)γ2e (G) ≤ 2∆ hold.

As remark that the bound is sharp by taking G ∈ {P4, P5}. In the next theorem,

we consider the graphs with the extended domination numbers at least 3.

Theorem 3.3. Let G be a graph with γ2e (G) ≥ 3. Then γ2e (G) ≤ 2 with equality

holds when G contains no isolated vertex.

Proof. Let S be a γ2e -set in G. Then |S| ≥ 3 and diam(G) ≥ 3. Then there exist

two vertices x, y such that dG(x, y) ≥ 3. And thus the following results hold in G:

(1)x is adjacent to every vertex w in V (G)\{NG(x)∪{x}}; (2) y is adjacent to each

vertex in NG(x) ∪ {x}. It is easy to check that {x, y} is an extended dominating

set in G. Thus γ2e (G) ≤ 2. It is obvious that the equality holds when G contains no

isolated vertex.

Employing the same idea, we can prove a similar result as follows, in which we

omit the details.

Corollary 3.2. Let G be a graph with γke (G) ≥ k + 1 for some integer k. Then

γke (G) ≤ k with equality holds when G contains no isolated vertex.

4. EDS on planar graphs with small diameter

In this section, we consider the extended domination numbers of planar graphs with

small diameters. One may wonder how larger are the extended domination numbers

of planar graphs with diameter at least 4. However, it is unbounded as follows.

Consider a star graph G′ consist of the central vertex x and leaves {v1, v2, . . . , vt}.
Let G be a graph obtained from G′ by subdividing each edge exactly once, and

denote the middle vertices to be {v′1, v′2, . . . , v′t}. Then it is easy to verify that G is a

planar graph with diameter 4, but γ2e (G) = t. Indeed, let S be a minimum extended

dominating set of G. Then S contains either vi or v′i, and γ2e (G) ≥ t. However,

{v′1, v′2, . . . , v′t} is a dominating set of G′ and thus an EDS of G′, so γ2e (G) = t.

It is trivial that any graph with diameter 2 has a k-extended dominating set. So

the interesting question is what are the extended domination numbers for planar

graphs with diameter 3. Technically, we utilize the methods proposed by Goddard

and Henning (2002). For convenience, we say a vertex u can reach v, if there is a

path of length at most 3 from u to v.

Now we state the main theorem in this section.

Theorem 4.1. Let G be a planar graph with diameter 3 and radius 2. Then γ2e (G) ≤
3.

In order to prove the theorem, we require the following definitions. Let G be

an embedding of a planar graph. Let x ∈ V (G) be the vertex whose eccentricity
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is 2, and defined as the central vertex. A fundamental cycle C := xv1v2 . . . vrx is a

cycle such that on both sides of the cycle there is a vertex whose neighbour on the

cycle is a subset of two vertices except x, see Figure 2 for example. Note that this

vertex is not adjacent to x. A cut cycle is a cycle that partition the space into two

regions which are called inside and outside respectively. It’s straightforward that

the vertices of such a cycle dominate either inside or outside. Otherwise, if there

are two vertices on both sides which have a distance of 2 from the cycle, then the

distance between them is at least 4.

x

v1

v2 v3

v4

w2

w1

Fig. 2. w1, w2’s neighbors on the cycle is a subset of {v1, v4}, thus it’s a fundamental cycle of

length 5.

Lemma 4.1. Let G be a planar graph of diameter 3 and radius 2. If G contains

a fundamental cycle of length at most 5 other than the cycles defined in Figure 3,

then γ2e (G) ≤ 3.

Proof. Let C = xv1v2 . . . vrx be the fundamental cycle for 2 ≤ r ≤ 4. By the

definition, there exist two vertices w1 and w2 which are inside and outside of C

respectively. Without loss of generality, set vi and vj are the neighbours of w1 ∪w2

in C for some 1 ≤ i < j ≤ r. We claim that {vi, vj , x} is an EDS of G. Indeed, we

need only to show that d(v′, {vi, vj}) ≤ 2 for any vertex v′ ∈ V (G), since x is the

central vertex. Suppose to the contrary, there is a vertex u inside the cycle such that

d(u, vi) = d(u, vj) = 3. In order to prove the result, we will show that d(w2, u) ≥ 4

contradicting to diam(G) = 3. In the following, we classify the situations based on

the value of r.

Case 1. r = 2.

Now C = xv1v2x and let i = 1, j = 2. Let Pw2u be the shortest path connecting

w2 to u. Since C separates w2 and u, then Pw2u must use one vertex of {x, v1, v2}.
If v1 or v2 is contained in Pw2u, then d(w2, u) ≥ 4 by d(u, v1) = d(u, v2) = 3,
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x

v1

v2

x

v1

v2

x

v1 v2

Fig. 3. Exceptions of fundamental cycle of length 5 and a fundamental cycle of length 6, where
v1, v2 are the vertices that have private neighbor in both sides.

this is a contradiction. Otherwise, since w2 and u are not dominated by x, then

d(w2, u) ≥ d(w2, x) + d(x, u) ≥ 4, a contradiction.

Case 2. r = 3.

Now C = xv1v2v3x. Let the neighbours of {w1, w2} on C is {vi, vj}, where

1 ≤ i ≤ j ≤ 3 and the left vertex {v1, v2, v3} \ {vi, vj} is denoted as vk. Since

d(u, vi) = d(u, vj) = 3, so u is not dominated by x or vk, this is, d(u, {x, vk}) ≥ 2.

Again consider the shortest path from w2 to u, then vi and vj can’t belong to

V (Pw2u). However, by the definition of w2, d(w2, {x, vk}) ≥ 2. So we get d(w2, u) ≥
4, a contradiction.

Case 3. r = 4.

Now C = xv1v2v3v4x. If vi, vj are not consecutive vertices as depicted in Figure

3, then the remaining two vertices of {v1, v2, v3, v4} \ {vi, vj} can’t dominate u

because d(u, vi) = d(u, vj) = 3. And the remaining proof is the same as in Case 2.

From the above analysis, the proof is complete. Furthermore, a special funda-

mental cycle of length 6 is also held for the conclusion see Figure 3.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. We prove the theorem by contradiction, that is, γ2e (G) ≥
4. Assume there is no fundamental cycle as stated in Lemma 4.1 in the sequel. Since

the radius is 2, there is a central vertex, denoted as x. Let Y = V (G) − N [x] and

M be a minimal subset of N(x) that dominates Y . Let m := |M |. We claim that

m ≥ 4. Indeed, if 2 ≤ m ≤ 3, then M is an EDS of G; if m = 1, then M ∪ {x} is an
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EDS of G. In the above two cases, we can get an EDS with a size at most 3 in G,

a contradiction.

Let the vertices of M be n0, n1, . . . , nm−1 in the cyclic order (clockwise) around

x in G and Y = Y0 ∪ Y1 ∪ · · · ∪ Ym−1 be a partition of Y , such that Yi ⊂ N(ni) for

each i where 0 ≤ i ≤ m− 1. And further, let Y ′i ⊂ Yi be the private neighbours of

ni for each i. Note that Y ′i is not empty according to the minimality of M for each

i. If there is a vertex of Y ′i adjacent to both a vertex of Yi−1 and a vertex of Yi+1

(where addition is taken modulo m), then this vertex is unique by the planarity

of G and is denoted by yi. Otherwise, we let yi be any vertex of Y ′i . For each i, if

yiyi+1 ∈ E(G), then we define Li as the region inside the 5-cycle xniyiyi+1ni+1x.

Now we first prove the following claims.

Claim 1.

(1) If there is an edge from Yi to Yj, then i and j are consecutive.

(2) If yiyi+1 ∈ E(G), then for each vertex a ∈ Li ∩ Y , either ni dominates a or

ni+1 dominates a.

Proof.

(i) Let u ∈ Yi and v ∈ Yj , where j 6= i ± 1 and j > i. Then there exist

numbers i < k < j and j < l < n − 1 such that ni, nk, nj , nl appear in order as

shown in Figure 4. Assume uv ∈ E(G), then we will show that C = xniuvnjx is

a fundamental cycle of length 5. Indeed, we take a vertex w′k ∈ Y ′k and a vertex

w′l ∈ Y ′l , then w′k is in Li and w′l is out in Li by the planarity of G, and further,

their neighbours on C are a subset of {u, v}. It is clear that C is a fundamental

cycle, a contradiction.

x

ni

u

nk

w′k

nj

v

nl

w′l

Fig. 4. C = xniuvnjx is a fundamental cycle.

(ii) Since M is a minimal vertex set that dominates Y and the definition of Li,

the conclusion holds.

Claim 2. Let i, j ∈ [m− 1] and j 6= i± 1.

(1) If ni, nj ∈M , then they have no common neighbours in Y .

(2) If yi ∈ Yi and yj ∈ Yj, then yi and yj have no common neighbours in N(x).
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Proof. As proof in Claim 1, since i and j are not consecutive, there exist numbers

i < k < j and j < l < n− 1 such that ni, nk, nj , nl appear in order and w′k and w′l
are private neighbours as defined above, respectively.

(i) Let w4 be a common neighbour of ni and nj in Y . Then the neighbours of w′l
and w′k is only w4, thus xniw4njx is a fundamental cycle of length 4, a contradiction.

(ii) Let w5 be a common neighbour of yi and yj in N(x). By the definition of

yi, we know that w5 /∈M . Then either xniyiw5x or xnjyjw5x forms a fundamental

cycle of length 4. This is a contradiction.

Claim 3. Let yi ∈ Yi for each i ∈ [m]. If m ≥ 6, the following conclusions hold.

(1) The shortest yi-yi+3-path is yi, yi+1, yi+2, yi+3, or if m = 6 possibly yi, yi−1,

yi−2, yi+3.

(2) Let P = yiyi+1yi+2yi+3 be a path. Then yi+1 dominates (Li ∩ Y ) ∪ (Li+1 ∩ Y ),

and yi+2 dominates (Li+1 ∩ Y ) ∪ (Li+2 ∩ Y ).

Proof. (i) By Claim 2(ii), the vertices yi and yi+3 have no common neighbors in

N(x). Thus the shortest path between yi and yi+3 has length 3 by the planarity

of G. Suppose that the shortest path between yi and yi+3 is yi, a, b, yi+3. Again

by Claim 2 (i) and (ii), we know that a and b must be in Y . Otherwise, we can

find a path of length at least four by planarity of G, a contradiction. Then Claim 1

implies that a = yi+1 and b = yi+2, this is the path is yi, yi+1, yi+2, yi+3. Moreover,

if m = 6, then it is clear that the path may be yi, yi−1, yi−2, yy+3. The conclusion

holds.

(ii) Take any vertex y ∈ Li ∩ Y . Since diam(G) = 3, we know that there exists

a path P of length 3 between y and yi+3. By Claim 2 (i) and the planarity of G,

P must contains yi+1, since the distance between ni+1 and yi+3 is 3. Thus yi+1

dominates Li ∩ Y . By the symmetry, we get that yi+1 dominates Li+1 ∩ Y . So

yi+1 dominates (Li ∩ Y ) ∪ (Li+1 ∩ Y ) holds. Similarly, we get that similarly yi+2

dominates (Li+1 ∩ Y ) ∪ (Li+2 ∩ Y ).

If m ≥ 8, then, from the proof of Claim 3, we know that the distance between

yi and yi+4 is 4, a contradiction to diam(G) = 3. Thus we will complete the proof

by discussing the cases according to the value of m.

Case 1. m = 7.

Consider the shortest path from yi to yi+3 for i ∈ [7]. By Claim 3 (i), we have

y0y1y2y3y4y5y6y0 is a cycle. We claim that {x, y0, y3} is an EDS of G. Indeed, for

any vertex v ∈ (L5 ∪ L6 ∪ L0 ∪ L1) ∩ Y , the distance between v and y0 is at most

2 by By Claim 3 (ii), and similarly any vertex u ∈ (L1 ∪ L2 ∪ L3 ∪ L4) ∩ Y has

distance at most 2 from y3. And further, since x is a central vertex, then {x, y0, y3}
is an EDS of G, a contradiction.

Case 2. m = 6.
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Consider the shortest path from yi to yi+3, where i ∈ {0, 1, 2}. From Claim 3

(i), we know that there exists at least five consecutive edges yiyi+1. Without loss of

generality, assume that y0y1y2y3y4y5. Using the similar analysis as in Case 1, again

we get that {x, y1, y4} is an EDS of G, a contradiction.

Case 3. m = 5.

Let Gy be the induced graph G[y0, y1, y2, y3, y4]. And we will complete the proof

by examining the following subcases.

Subcase 3.1. Gy contains a path of length 4.

Without loss of generality, we assume the path is P = y0y1y2y3y4. We will

prove that S = {x, y1, y3} is an EDS of G, which contradicts to γe(G) ≥ 4 and

thus the result holds. Contrarily, suppose that there is a vertex v ∈ V (G) is not

extended dominated by S. This is, d(v, y1) = d(v, y3) = 3 and d(v, x) = 2 since

x is the central vertex. By symmetry between L0,L3 and between L1, L2, we only

consider the conditions that v ∈ L0 or v ∈ L1. Now if v ∈ L0, then we know

that n0 dominates v or n1 dominates v from Claim 1 (ii). Because d(v, y1) = 3,

it means that d(v, n1) = 2 and d(v, n0) = 1. Besides, d(y2, n1) = 2, d(y2, y0) = 2

and d(y2, n0) = 3 hold because y2 is a private neighbour of n2. And further, by

considering the condition that the cycle xn0y0y1n1 is a cut cycle, then we get that

d(v, y2) ≥ 4, a contradiction. Otherwise, again by Claim 1(ii) and d(v, y1) = 3, then

we get that d(v, n2) = 1, d(v, n1) ≥ 2 and d(v, y2) = 2. Since y0 is private neighbour

of n0, then d(y0, n1) ≥ 2, d(y0, n2) = 3, and d(y0, y2) = 2. From the cycle xn1y1y2n2
is cut cycle, we get that d(v, y0) ≥ 4, a contradiction.

Subcase 3.2. Gy contains a path of length 3 and no paths of length 4.

Without loss of generality, assume that P = y0y1y2y3 is a path of length 3. And

then y0y4 /∈ E(G) and y3y4 /∈ E(G). We claim that there exists a path of length

2 between y3 and y4, say y3ay4. Indeed, if d(y3, y3) = 3, then from y2 is a private

neighbour of n2, we know that d(y2, y4) ≥ 4, this is impossible. If a ∈ N(x)\M , then

xn2y2y3ax is fundamental. By Lemma 4.1 we know that γe(G) ≤ 3, a contradiction.

So a ∈ Y3 or a ∈ Y4. Similarly, we get that there exits a path y0by4, where b ∈ Y0 or

b ∈ Y4. Since Gy contains no paths of length 4, then a = y′3 ∈ Y3 and b = y′0 ∈ Y0.

Now we want to show that S = {x, y1, y4} is an EDS of G. Indeed, suppose

that v ∈ V (G) is not extended dominated by S. This is, d(v, y1) = d(v, y4) = 3

and d(v, x) = 2. Now we complete the proof utilizing the same idea as in Subcase

3.1. Now if v ∈ L0, then we get that d(v, n0) = 1 and d(y3, {n1, y0, n0}) = 3 from

Claim 1(ii) and y3 is a private neighbor of n3. Thus d(v, y3) = 4, this is impossible.

If v ∈ L1, then d(v, n2) = 1, d(v, n2) ≥ 2 d(y′0, {y2, n2}) = 3, and d(y′0, y1) = 2 hold

by applying Claim 1(ii) and yi is the private neighbour of ni for i ∈ {0, 1, 2, 3, 4}.
And thus d(v, n2) = 4, this is impossible. The other case is that v ∈ L2. Here we

only consider v ∈ Y2, because v ∈ Y3 is similar. So using the same reason we get that

d(y′0, {y2, n2, y3, n3}) = 3, and thus there is no vertex inside of L2, a contradiction

to v ∈ L2. The last is that v ∈ L3, through using the same analysis as v ∈ L3, we

get that d(v, y′0) = 4, this is impossible.
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Subcase 3.3: Gy contains a path of length 2 and no paths of length at least 3.

Without loss of generality, let P = y0y1y2 be the path (see Figure 5). Indeed,

y0y4 /∈ E(G), y2y3 /∈ E(G). We get that d(y2, y3) = 2, otherwise, it is easy to

check that d(y0, y3) ≥ 4, a contradiction. Now we assume that y2ay3 is a path of

length 2. Now if a ∈ N(x) \M , then the cycle xn1y1y2ax is a fundamental, this is

impossible following Lemma 4.1. Now by the choice of yi, it follows that a ∈ Y2,

say a = y′2 ∈ Y2. Moreover, we know that y3y4 is an edge. Otherwise, it is easy to

check that d(y0, y3) ≥ 3, a contradiction. Now there exits a vertex y′4 ∈ Y4 such that

y0y
′
4y4 is a path of length 2 with the same reason as in the above. Using the same

analysis as in Subcase 3.2, we get that {x, y1, y4} is an EDS of G, a contradiction.

L0 L1 L2 L3

Subcase 3.1. y0y1y2y3y4 is a path.

x

n0

y0

n1

y1

n2

y2

n3

y3

n4

y4

L0 L1 L2 L3

Subcase 3.2. y0y1y2y3 is a path.

y′3y′0

x

n0

y0

n1

y1

n2

y2

n3

y3

n4

y4

L0 L1 L2 L3

y′2 y′4

Subcase 3.3. y0y1y2 is a path.

x

n0

y0

n1

y1

n2

y2

n3

y3

n4

y4

Fig. 5. Case 3. m = 5.

Subcase 3.4: Gy contains no paths of length of at least 2.

If there is an edge in Gy, say y0y1 ∈ E(G), then y0y4 and y1y2 are not edges in

G, since Gy contains no paths of length 2. If y2y3 ∈ E(G), then y3y4 6∈ E(G). By

the choice of yi and y1y2, y3y4 6∈ E(G), then it is easy to check that d(y0, y3) ≥ 4,

a contradiction. If y3y4 ∈ E(G), then y2y3 6∈ E(G). For the same reason, we check

that d(y1, y3) ≥ 4, a contradiction. Otherwise, it is easy to check that d(y0, y3) ≥ 4,

a contradiction.

Case 4. m = 4.

Subcase 4.1: Gy contains a path of length 3.

Without loss of generality, assume that P = y0y1y2y3 is a path of length 3. Then

we show that {x, y1, y2} is an EDS of G. Every vertex in L0 ∩ Y has a distance at

most 2 from y1. Otherwise, assume v ∈ L0 ∩ Y and d(v, y1) = 3, then v can’t reach

y2. By a similar proof as before, we obtain ∀u ∈ L2 ∩ Y , d(u, y2) ≤ 2. It’s easy to

check {y1, y2, x} extended dominates L2. Thus {x, y1, y3} is an EDS of G.
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Subcase 4.2: Gy contains a path of length 2 and no paths of length 3.

Without loss of generality, assume that P = y0y1y2y3 is a path of length 3 as

shown in Figure 6.

L0 L1 L2

Subcase 4.1. y0y1y2y3 is a path.

x

n0

y0

n1

y1

n2

y2

n3

y3

L0 L1

Subcase 4.2. y0y1y2 is a path.

y′0 y′2

x

n0

y0

n1

y1

n2

y2

n3

y3

L0 L1 L2

y′1 y′2 y′3

Subcase 4.3. y0y1 is an edge.

x

n0

y0 y1

n1 n2

y2 y′3

Fig. 6. Case 4. m = 4.

So y2y3 /∈ E(G) and y0y3 /∈ E(G), because y1 and y3 have no common neighbor

by Claim 2 (ii), d(y1y3) = 3. For any vertex v in L0 ∩ Y , v is dominated by y0,

or otherwise, v can’t reach y3. And by the similar proof, y2 dominates all vertices

in L1 ∩ Y , so we have ∀v ∈ L0 ∪ L1 ∩ Y , d(v, y1) ≤ 2. Thus x and y1 2-extended

dominate L0 ∪L1. If there is y′2 ∈ N(n2), then either d(y′2, y3) ≤ 2 or d(y′2, y1) ≤ 2,

or otherwise, d(y′2, y0) ≥ 4. In a word, {y1, y3, x} is an EDS of G.

Subcase 4.3: Gy contains no paths of length at least 2, and contains an edge.

Assume that y0y1 ∈ E(G). The only possible structure is as shown in Figure

6. Indeed, Claim 1 (i) and the fact d(yi, yi+2) ≤ 3 together guarantee there has

to be a vertex a adjacent to both y1 and y2, if a ∈ N(x) \ M , then xn0y0y1ax

form a fundamental cycle. So a ∈ Y1 or a ∈ Y2, we may assume a = y′1 ∈ Y1, and

another case has a similar proof. So the other edges appear for the same reason. We

deduce that {x, y1, y2} is an EDS. Or otherwise, there is a vertex v ∈ V (G) such that

d(v, y1) = d(v, y2) = 3 and v can’t be dominated by x. We subsequently demonstrate

that there can’t be such a vertex. First, if v ∈ L1, v is of distance 2 from x, then

v is dominated by either n1 or n2, by the choice of M , thus d(v, {y1, y2}) = 2,

a contradiction. Second, if v ∈ L0, then v is dominated by n0 and d(v, n1) ≥
2, moreover, d(y2, {n0, y0}) = 3, and d(y2, n1) ≥ 2, which together imply that

d(v, y2) ≥ 4, disobeying the assumption. Third, if v ∈ L2, then v is dominated by

n3 and d(v, n2) ≥ 2 for the same reason, d(y1, n2) ≥ 2, and d(y1, {n3, y′2, y3}) = 3
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together imply that d(v, y1) ≥ 4, disobeying the assumption.

Subcase 4.4: Gy contains no edges between different Yi and Yi±1.

Consider the distance between y0 and y2. Claim 1 (i) implies y0y2 /∈ E(G). If

d(y0, y2) = 2, let the path be y0ay2. So a ∈ N(x)\M , which induces a fundamental

cycle xn0y0ay2x, a contradiction. Thus d(y0, y2) = 3, and let the path is y0aby2,

by a similar proof, either a or b belongs to N(x) \ M , and a fundamental cycle

xn0y0abx appears, a contradiction.

In all cases, we can get an EDS of size 3 including x, hence the conclusion holds.

When the radius of the graph is 3, we utilize the lemma proposed by Goddard

and Henning (2002), where they showed a method to describe such graphs. Let us

recall a family of graphs known as theta graph. For s ≥ 3, an s-theta graph (s-TG)

is a graph obtained by joining two vertices by s internally disjoint paths, we call

these paths axes for convenience see Figure 7 for example. A region of a theta graph

is a portion of the plane bounded by two consecutive axes in the theta graph. In

Goddard and Henning (2002), they gave the following useful lemma.

x y

Fig. 7. A 5-theta graph with endvertices x and y.

Lemma 4.2. (Goddard and Henning (2002)) Let d be a positive integer. There

exists an arbitrarily large theta graph in a sufficiently large graph of diameter d and

radius d.

Theorem 4.2. Let G be a sufficiently large planar graph with diameter 3 and radius

d. Then

γ2e (G) ≤ 4.

Proof. Suppose that there is an 8-theta graph H as the subgraph of G from Lemma

4.2. Fix a planar embedding of H, then there exists 8 axis as A1, . . . , A8 and 7

regions, named by Li formed by Ai and Ai+1 for i ∈ {1, . . . , 7}. Let x and y

be the two end vertices of H, respectively. Let S be a subset of vertices which

are not extended dominated by {x, y}. Take any vertex v ∈ S. Then v lies in
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some region Li0 of H. Set x′ is a internal vertex in the farthermost axis A from

v. Note that if A = xy, we take x′ in the farthermost axis except A. From this

it follows that the distance between v and x′ not using {x, y} is at least 4. If

d(v, x) = d(v, y) = 3, then we get that the distance between v and x′ is at least

d(v, x) + d(x, x′) ≥ 4 or d(v, y) + d(y, x′) ≥ 4, a contradiction. Now the following

two cases hold: d(v, x) = 2, d(v, y) = 3 or d(v, y) = 3, d(v, x) = 2. In the following

proof, we only consider that d(v, x) = 2, d(v, y) = 3, since d(v, y) = 3, d(v, x) = 2

is similar. Since G is a planar a graph with diameter of 3, then there exists a path

between x and y of length 2, say xay. Let G′ be the graph obtained by contracting

xay (including the vertices x and y) to a single vertex vxy. Clearly G′ is planar

with diameter at most 3. Moreover, every vertex is within distance 2 from vxy in

G′. Thus, G′ has radius at most 2 and vxy is a center vertex. And thus γ2e (G′) ≤ 3

from Theorem 4.1, and further every extended dominating set contains vxy. So

γ2e (G) ≤ 4.

5. k-EDS on Random graphs

Several authors studied domination parameters in Random graphs (Joel (1992);

Bollobás (1998); Zverovich and Poghosyan (2011)). In this section, we study the

k-extended domination number on Random graphs. The Random graph G(n, p) is a

probability space over the set of graphs on the vertex set {v1, v2, . . . , vn} determined

by Pr(vivj ∈ E(G)) = p with these events mutually independent. We say that an

event holds asymptotically almost surely (a.a.s.) if the probability that it holds

tends to 1 as n tends to infinity. So we wonder how large p should be to guarantee

the k-extended domination number is k for given integer k. The following theorem

provides a specific answer.

Theorem 5.1. Let G ∈ G(n, p), where p > c
√

lnn
2n with a constant c >

√
2. Then

a.a.s. γke (G(n, p)) = k.

Proof. Let S be a vertex set of size k, and label the vertices as {v1, v2, . . . , vk}.
Fix a vertex vi for i ∈ [k]. The probability that a vertex w is in N2(vi) is given

by Pr(w ∈ N2(vi)) = (1 − p)[1 − (1 − p)(1 − p2)n−2], denoted by p1. While the

probability that a vertex w is of distance at least 3 from vi is given by Pr(w /∈
(N2(vi)∪N(vi))) = (1− p)(1− p2)n−2, denoted by p2. Let X be a random variable

that denotes the number of vertices that are not extended dominated by S. We

want to show that Pr(X > 0) → 0 as n → 0. We say a vertex u bad if it is not

extended dominated by S. This means that u either has distance at least 3 from

S, or belongs to N2(S) and has less than k quasi-neighbours in S. So we give the
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following expression of Pr(u is bad) for some u.

Pr(u is bad) ≤
k∑

i=1

(
k

i

)
pi2p

k−i
1

= (p1 + p2)k − pk1
= (A− p1)(Ak−1 +Ak−2p1 + · · ·+ pk−11 )

≤ p2kAk−1

= p2k[(1− p)
(
p
(
1− p2

)n−2
+ 1
)

]k−1

≤ (1− p)
(
1− p2

)n−2
k(1− p2)k−1

≤ ke−p
2(n+k−3).

Let A := p1 + p2 for the sake of calculation and the last inequality holds because

1− x ≤ e−x. Then by the linearity of the expectation we have

E(X) = (n− k)Pr(fixed u is bad)

≤ (n− k)ke−p
2(n+k−3).

Now we need to determine the probability of p to satisfy e−p
2(n+k−3) > nk >

(n−k)k, which implies that p >
√

lnnk
n+k−3 >

√
lnnk
2n . We take p > c

√
lnn
2n is enough,

since k is a constant, and n is sufficiently large, where c >
√

2 is a constant. So by

Markov’s inequality, when n is sufficiently large,

Pr(X > 0) ≤ E(x) ≤ (n− k)ke−p
2(n+k−3)

<
nk

e(c
√

lnn
2n )2(n+k−3)

=
nk

nc
2( 1

2+
k−3
2n )
→ 0.

Obviously, it tends to 0 when n tends to infinity.
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