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Abstract

An (n,m)-graph is a graph with n vertices and m edges. The vertex-degree
function-index Hf (G) of a graph G is defined as Hf (G) =

∑
v∈V (G) f(d(v)),

where f is a real function. Recently, Tomescu considered the upper bound
of Hf (G) and got the connected (n,m)-graph G with m ≥ n which maxi-
mizes Hf (G) if f(x) is strictly convex with two special properties. He also
characterized all (n,m)-graphs G with 1 ≤ m ≤ n satisfying that Hf (G) ≤
f(m) +mf(1) + (n−m− 1)f(0) if f(x) is strictly convex and differentiable and
its derivative is strictly convex. In this paper, we will consider the lower bound of
Hf (G) and show that every (n,m)-graph with 1 ≤ m ≤ n(n− 1)/2 satisfies that
Hf (G) ≥ rf(k + 1) + (n − r)f(k) if f(x) is strictly convex, where k = b2m/nc
and r = 2m−nk. Moreover, the equality holds if and only if G ∈ G(n,m), where
G(n,m) is the family of all (n,m)-graphs G satisfying that the vertex-degree
d(v) ∈ {b2mn c, d2mn e} for all v ∈ V (G). Under the same condition on f we also
obtain a result for the minimum of Hf (G) among all connected (n,m)-graphs.
It is easy to see that if f(x) is strictly concave, we can get the maximum case
for Hf (G).

1 Introduction

We only consider simple and finite graphs in this paper. For terminology and nota-

tion not defined here, we refer the reader to [2,20]. We use V (G) and E(G) to denote
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the vertex-set and edge-set of a graph G, respectively. An (n,m)-graph is a graph

G = (V (G), E(G)), where m = |E(G)| and n = |V (G)|. Let G(n,m) represent the

collection of all (n,m)-graphs. For any two vertices u and v, if u is adjacent to v, we

denote it by u ∼ v. A graph G is called k-regular if the degree d(v) = k for every

v ∈ V (G). We denote a complete graph with n vertices by Kn. Moreover, we use Cn

and Pn to denote a cycle and a path on n vertices, respectively.

For two disjoint graphs G and H, the union G∪H of G and H is a new graph with

V (G ∪H) = V (G) ∪ V (H) and E(G ∪H) = E(G) ∪E(H). For two disjoint graphs G

and H, we use G ∨H to denote a new graph obtained by adding edges joining every

vertex of G to every vertex of H. For a subset F of E(G), we use G − F to denote

the subgraph of G obtained by deleting all edges of F from G, whereas for a subset S

of V (G), we use G− S to denote the subgraph of G induced by V \S in G. If M is a

matching of G, we use |M | to denote the number of edges in M .

Denote the degree of a vertex v in G also by dv, and denote the sequence of degrees

of a graph G with n vertices by d = (d1, d2, . . . , dn). In this paper, we will study a kind

of general chemical index, called the vertex-degree function-index Hf (G) of a graph G

with function f(x), which was first introduced by Linial and Rozenman in [14], and is

defined as follows:

Hf (G) =
∑

v∈V (G)

f(dv).

Another topological function-index TI was introduced by Gutman in [5]. For a

symmetric real function f(x, y) and a graph G, the topological index is defined as

TI(G) =
∑

uv∈E(G)

f(du, dv).

This was also called the bond-incident-degree index BID(G) by Vukičević and Durdević

in [21]. Notice that by taking the symmetric real function equals to f(x)/x + f(y)/y

for some function f(x), one could deduce that Hf (G) is a special case of TI(G). For

more knowledge on TI we refer to [4, 5, 10, 16, 21], and we denoted TI(G) by ITf (G)

in [10].

In the past years, many researchers have done a lot of work on chemical indices,



including Zagreb indices; see [3, 6, 8, 9, 11–13, 17] and the references therein. Recently,

Tomescu [18,19] studied Hf (G) for convex function f . He gave some upper bounds for

the function-index Hf (G) and the function f is required to satisfy some other properties

except for the convexity. Their results are stated as follows.

Theorem 1.1. [Lemma 2.2 [18]] If G ∈ G(n,m) maximizes (minimizes) Hf (G) where

f(x) is strictly convex (concave), then G has at most one nontrivial connected compo-

nent C and C has a vertex of degree |V (C)| − 1.

Theorem 1.2. [Theorem 2.3 [19]] Let n ≥ 2 and G ∈ G(n,m) such that 1 ≤ m ≤ n−1.

If f(x) is a strictly convex function having property that f(x) is differentiable and its

derivative is strictly convex, then it holds that

Hf (G) ≤ f(m) +mf(1) + (n−m− 1)f(0),

with equality if and only if G = Sm+1 ∪ (n−m− 1)K1.

Theorem 1.3. [Theorem 2.4 [19]] If n ≥ 3, n ≤ m ≤ 2n− 3, f(x) is a strictly convex

function having property that f(x) is differentiable and its derivative is strictly convex,

and G ∈ G(n,m) is connected, then it holds that

Hf (G) ≤ f(n− 1) + f(m− n+ 2) + (m− n+ 1)f(2) + (2n−m− 3)f(1),

with equality if and only if G = K1 ∨ (K1,m−n+1 ∪ (2n−m− 3)K1).

As one can see, Tomescu’s results are all about the upper bound of Hf (G). Ali

et al. in [1] gave the following lower bound for connected (n,m)-graphs under some

constraints on n and m.

Theorem 1.4. [Theorem 1 [1]] If n ≥ 4, 3n/2 ≥ m ≥ n+1 and f(x) is a convex func-

tion, then among all connected (n,m)-graphs, graphs in G(n,m) attain the minimum

value of Hf (G), where the graph family G(n,m) is defined in the following Definition

1.5.

In this paper, we will further study the minimum (maximum) values ofHf (G) among

all (n,m)-graphs with the property that f is strictly convex (concave). Moreover,



we will give a same result among all connected (n,m)-graphs. Note that our result

Theorem 1.7 will cover the result Theorem 1.4. Before proceeding, we give the definition

of our extremal graphs as follows.

Definition 1.5. Given n ≥ 2 and 1 ≤ m ≤ n(n−1)/2, define G(n,m) to be the family

of all (n,m)-graphs G satisfying that d(v) ∈ {b2m
n
c, d2m

n
e} for all v ∈ V (G).

For an (n,m)-graph G, let k = b2m/nc and r = 2m− kn ∈ {0, 1, . . . , n − 1}, then

G belongs to G(n,m) if and only if G has r vetices of degree k and n − r vertices of

degree k + 1. Note that for some given m and n, the graph family G(n,m) contains

both connected and disconnected graphs. We give an example in Figure 1.

v1 v2 v3 . . . vn−1 vn

v1
v2

v3

vn−2

vn−1 vn

Figure 1. Graphs Pn and Cn−2 ∪K2 in G(n,m) for m = n− 1 and n ≥ 5.

Our main results are stated as follows.

Theorem 1.6. Let n ≥ 2 and G be an (n,m)-graph with 1 ≤ m ≤ n(n− 1)/2, and let

k = b2m/nc and r = 2m− kn. If f is a strictly convex function, then it holds that

Hf (G) ≥ rf(k + 1) + (n− r)f(k),

and the equality holds if and only if G ∈ G(n,m).

We will construct some graphs to show that for n ≤ m ≤ n(n − 1)/2, there are

connected graphs G ∈ G(n,m), and for m = n− 1, we have the path Pn ∈ G(n, n− 1).

Therefore, if we consider only connected (n,m)-graphs, we also have the following

result.

Theorem 1.7. Let n ≥ 2 and G be a connected (n,m)-graph with n − 1 ≤ m ≤
n(n− 1)/2, and let k = b2m/nc and r = 2m − kn. If f is a strictly convex function,

then it holds that

Hf (G) ≥ rf(k + 1) + (n− r)f(k),



and the equality holds if and only if G is connected and G ∈ G(n,m).

Our results can cover some previous known results. For example, for the general

zeroth-order Randić index 0Rα(G), the function f(x) = xα is strictly convex for α > 1.

Then we can obtain a lower bound of Randić index 0Rα(G) by Theorem 1.6, and

moreover, 0Rα(G) attains the minimum if and only if G ∈ G(n,m).

2 Preliminaries

At first we recall an important inequality, the Jensen inequality. which states that

n∑
i=1

f(xi) ≥ nf(

∑n
i=1 xi
n

)

for any x1, x2, . . . , xn ∈ [a, b] if f is a convex function on an interval [a, b]. Using this

inequality, we can get the following lemma.

Lemma 2.1. Let n ≥ 1, m ≥ 0 be integers and f be a strictly convex function. Suppose

that s1, s2, . . . , sn is a sequence of non-negative integers such that
∑n

i=1 si = 2m. Let

k = b2m/nc and r = 2m− nk. Then we have

n∑
i=1

f(si) ≥ rf(k + 1) + (n− r)f(k).

Proof. If r = 0, then by the convexity of f and the Jensen inequality, we have

n∑
i=1

f(si) ≥ nf(

∑n
i=1 si
n

) = nf(
2m

n
) = nf(k).

It remains to show that the result is true for any r ∈ {1, 2, . . . , n − 1}. Suppose

that {si}ni=1 is a sequence of integers such that
∑n

i=1 f(si) is minimal. We claim that

si ∈ {k, k + 1} for all 1 ≤ i ≤ n. If the claim does not hold, without loss of generality,

suppose that s1 ≥ s2 ≥ · · · ≥ sn. Since 1 ≤ r ≤ n− 1, we have s1 ≥ k + 1 and sn ≤ k.

Then, there would be some si /∈ {k, k + 1} such that either s1 ≥ k + 2 or sn ≤ k − 1.

Thus, s1− sn− 1 ≥ 1. Let s′1 = s1− 1, s′i = si for 2 ≤ i ≤ n− 1 and s′n = sn + 1. Since

s1− sn− 1 ≥ 1, s′1 6= sn and s′n 6= s1, it shows that {s′i}ni=1 is a different sequence from



{si}ni=1. Since f is a strictly convex function, then f(x+ 1)− f(x) is strictly monotone

increasing. So, we would obtain that

n∑
i=1

f(s′i)−
n∑
i=1

f(si) = [f(sn + 1)− f(sn)]− [f(s1)− f(s1 − 1)] < 0,

which contradicts the minimality of
∑n

i=1 f(si).

The proof is thus complete.

We prove Theorem 1.7 by constructing a connected (n,m)-graph G such that d(v) ∈
{b2m

n
c, d2m

n
e} for all v ∈ V (G). In order to make our construction more consistent and

reasonable, we need the following two lemmas.

Lemma 2.2. Let b2m/nc = k and r = 2m − nk, where r is even and r 6= 0. Then

there is a k-regular graph with n vertices and m − r/2 edges, and its complement has

a matching with r/2 edges.

Proof. Since r is even, it shows that nk is also even. Note that r 6= 0. Then k < n− 1.

We consider the following three cases.

Case 1. k is even and n is odd.

Consider a graph G1 with vertex-set {v1, v2, . . . vn} and vi ∼ vj if and only if

|i − j| is congruent modulo n with a number belonging to the set {−k/2,−k/2 +

1, . . . ,−1, 1, . . . , k/2}. Then G1 is a k-regular graph with m − r/2 edges. By the

construction of G1, there is a matching M1 in the complement of G1 with edge-set

{vivi+n−1
2

: 1 ≤ i ≤ (n− 1)/2} satisfying |M1| = (n− 1)/2. Note that k/2 < (n− 1)/2.

Then these edges do not appear in G1. That is, M1 is a matching with (n− 1)/2 edges

in the complement of G1. Since r ≤ n− 1, G1 is a required graph.

Case 2. Both k and n are even.

Consider the graph G1 we constructed above. Then there is a matching M2 with

edge-set {vivi+n
2

: 1 ≤ i ≤ n/2} in the complement of G1. Note that |M2| = n/2 and

r ≤ n− 1. Then G1 is also a required graph.

Case 3. k is odd and n is even.
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Figure 2. G1 for k is even.

Consider a graph G3 with vertex-set {v1, v2, . . . vn} and vi ∼ vj if and only if |i− j|
is congruent modulo n with a number belonging to the set {−(k − 1)/2,−(k − 1)/2 +

1, . . . ,−1, 1, . . . , (k − 1)/2} or j = i + n/2, where 1 ≤ i ≤ n/2. By the construction

of G3, we know that G3 is a k-regular graph and G3 ∈ G(n,m − r/2), and there is a

matching M3 with edge-set {vivi+n
2
−1 : 1 ≤ i ≤ n/2 − 1} satisfying |M3| = n/2 − 1.

Note that k < n − 1. So we get (k − 1)/2 < n/2 − 1, which means that M3 is a

matching in the complement of G3. Since both r and n are even and r ≤ n − 1, we

have r ≤ n− 2. Therefore, G3 is a required graph.

vi
vi+1

vi+2

vi−1

vi−2

vi−(k−1)/2 vi+(k−1)/2

vi+n/2−1vi+n/2+1

vi+n/2

Figure 3. G3 for k is odd and n is even.

The proof is thus complete.

Lemma 2.3. Let 2m = kn + 1. Then there is a k-regular graph with n − 1 vertices

and m− (k + 1)/2 edges, having a matching with (n− 1)/2 edges.

Proof. Since 2m = nk + 1, both n and k are odd. From k < n − 1, we deduce that

(k + 1)/2 ≤ (n − 1)/2. Consider a k-regular graph G4 with n − 1 vertices as follows:

V (G4) = {v1, v2, . . . vn−1} and vi ∼ vj if and only if |i−j| is congruent modulo n−1 with

a number belonging to the set {−(k−1)/2,−(k−1)/2 + 1, . . . ,−1, 1, . . . , (k−1)/2} or



j = i+(n−1)/2, where 1 ≤ i ≤ (n−1)/2. Since 2m = kn+1, we have 2(m−(k+1)/2) =

k(n−1). That is, G4 is a k-regular graph and G4 ∈ G(n−1,m− (k+ 1)/2). Note that

k−1 < n−1. Then there is a matching M4 with edge-set {vivi+n−1
2

: 1 ≤ i ≤ (n−1)/2}
in G4, such that |M4| = (n− 1)/2. Hence, G4 is a required graph.

3 Proofs of Main Results

Now we are ready to give the proofs of our main results Theorems 1.6 and 1.7.

Proof of Theorem 1.6: Since 2m = kn+ r and k = b2m/nc, noticing that Hf (G) =∑n
i=1 f(dvi) and

∑n
i=1 dvi = 2m, by Lemma 2.1 we have

Hf (G) ≥ rf(k + 1) + (n− r)f(k).

Moreover, Hf (G) = rf(k + 1) + (n − r)f(k) if and only if the (n,m)-graph G has r

vertices of degree k + 1 and n − r vertices of degree k. That is, the equality holds if

and only if G ∈ G(n,m).

Now, we only need to show G(n,m) 6= ∅. That is, there always exist a graph G with

degree sequence d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for 1 ≤ i ≤ r and

r+ 1 ≤ j ≤ n. In fact, it is easy to see that the degree sequence is graphical simply by

verifying the conditions in [7].

Algorithm 1 Find an (n,m)-graph G with degree sequence d = (d1, d2, . . . , dn) where
di = k + 1 and dj = k for 1 ≤ i ≤ r and r + 1 ≤ j ≤ n.

Input: E(0) = ∅, d(0)′ = d and V (0)′ = (v
(0)′

1 , v
(0)′

2 , . . . , v
(0)′
n ).

Output: An (n,m)-graph G = (V (l), E(l−1)) with degree sequence d = (d1, d2, . . . , dn)
where di = k + 1 and dj = k for 1 ≤ i ≤ r and r + 1 ≤ j ≤ n.

1: Set l = 1.
2: Find a permutation σ, such that σd(l−1)′ = (d

(l)
1 , d

(l)
2 , . . . , d

(l)
n ) is non-increasing for

d(l−1)′ = (d
(l−1)′
1 , d

(l−1)′
2 , . . . , d

(l−1)′
n ). Denote σV (l−1)′ = (v

(l)
1 , v

(l)
2 , . . . , v

(l)
n ) = V (l).

3: if d
(l)
1 6= 0 then

4: Set E(l) = E(l−1) ∪ {v(l)1 v
(l)
j |j = 2, 3, . . . , d

(l)
1 + 1} and d(l)′ = (0, d

(l)
2 −

1, . . . , d
(l)

d
(l)
1 +1
− 1, d

(l)

d
(l)
1 +2

, . . . , d
(l)
n ).

5: else go to 7.

6: Set l = l + 1 and go to 2.
7: return G = (V (l), E(l−1)).



By choosing different permutations σ in Algorithm 1, we can obtain some (n,m)-

graphs G ∈ G(n,m) which minimize the value of Hf (G). However, from [15] we can

get the following algorithm, which can generate all graphs of G(n,m).

Algorithm 2 Find all (n,m)-graphs with degree sequence d = (d1, d2, . . . , dn) where
di = k + 1 and dj = k for 1 ≤ i ≤ r and r + 1 ≤ j ≤ n.

Input: n, m and d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for 1 ≤ i ≤ r and
r + 1 ≤ j ≤ n.
Output: G(n,m) for any given n and m.

1: Construct a complete n-partite graph H = (P1, P2, . . . , Pn), such that each Pi for
1 ≤ i ≤ r has k + 1 vertices and each Pj for r + 1 ≤ j ≤ n has k vertices.

2: Find all perfect matchings in H, denoted by {M1,M2, . . . ,Ml}.
3: Set G(n,m) = ∅ and s = 1.
4: while s ≤ l do
5: Construct a new graph Gs with vertex-set {p1, p2, . . . , pn} and pi ∼ pj if and

only if there is an edge between Pi and Pj in Ms.
6: if Gs does not have multiple edges and Gs � G for any G ∈ G(n,m) then
7: Set G(n,m) = G(n,m)

⋃{Gs}.
8: else G(n,m) = G(n,m).

9: Set s = s+ 1 and go to 4.

10: return G(n,m).

Note that to check that Gs � G for any G ∈ G(n,m) is a very hard nut to crack.

Although this algorithm can be used to generate all graphs of G(n,m), it cannot guar-

antee the existence of any graph in G(n,m).

Proof of Theorem 1.7: By the proof of Theorem 1.6, we only need to show that

there is a connected (n,m)-graph belonging to G(n,m) for any given n and m such

that n− 1 ≤ m ≤ n(n− 1)/2.

If m = n− 1 we have the path Pn ∈ G(n, n− 1), which is connected, as required.

If n ≤ m ≤ n(n − 1)/2, then k = b2m
n
c ≥ 2. Noticing that 2m = kn + r, we

distinguish the following three cases to discuss.

Case 1. r = 0, i.e., 2m = nk.

In this case, we need to find a connected k-regular (n,m)-graph. From the condition



[2] for a sequence to be graphical, we know that a k-regular graph with n vertices exists

if and only if n ≥ k + 1 and nk is even. Noticing that m ≤ n(n− 1)/2, there must be

a k-regular (n,m)-graph which satisfies 2m = nk. Moreover, it is easy to know that

there also exists a connected k-regular (n,m)-graph G which satisfies 2m = nk. That

is, G ∈ G(n,m) and G is connected.

Case 2. r is even and r 6= 0.

From 2m = nk + r, we obtain 2(m − r/2) = kn. By Lemma 2.2, there is a

k-regular graph H∗ with n vertices and m − r/2 edges, and its complement has a

matching M∗ with r/2 edges. Adding all r/2 edges that appear in M∗ to the graph

H∗, we then get a new graph, called G. One can see that G ∈ G(n,m) and Hf (G) =

rf(k + 1) + (n − r)f(k). That is, G ∈ G(n,m). From our construction, there is an

n-cycle v1v2 . . . vnv1 in G, and so G is also connected.

Case 3. r is odd.

Note that k < n− 1. First, we show that it is true for r = 1. By Lemma 2.3, there

is a k-regular graph H∗∗ ∈ G(n − 1,m − (k + 1)/2), which contains a matching M∗∗

with (k + 1)/2 edges. Deleting all (k + 1)/2 edges in M∗∗ from H∗∗ and adding a new

vertex such that this vertex is adjacent to all k + 1 vertices of M∗∗, we get a graph

G ∈ G(n,m), which satisfies Hf (G) = f(k + 1) + (n − 1)f(k). By our construction,

the graph G is also connected.

v3+(n−1)/2

v(k+n−2)/2

v2+(n−1)/2
v1+(n−1)/2

v(k−1)/2

v3 v3

v(k−1)/2v(k+n−2)/2 vn

v1+(n−1)/2
v2+(n−1)/2

v3+(n−1)/2

v4 v4

v1 v1

Figure 4. H∗∗ and G for r = 1.

It remains to show that the result is true for r ≥ 3 and r is odd. The equality can

be written as 2(m − (r − 1)/2) = nk + 1. By Lemma 2.3, there is a k-regular graph

D1 ∈ G(n − 1,m − (k + r)/2), which contains a matching N1 with (k + 1)/2 edges.



Deleting all (k+1)/2 edges in N1 from D1 and adding a new vertex such that this vertex

is adjacent to all k + 1 vertices of N1, we get a graph D2 ∈ G(n,m − (r − 1)/2) and

Hf (D2) = f(k+1)+(n−1)f(k). If r−1 ≤ k+1, we can add any (r−1)/2 edges in N1

to D2. Thus, we find a graph G ∈ G(n,m) satisfying Hf (G) = rf(k+ 1) + (n− r)f(k).

If r− 1 > k+ 1, we denote s = r− k− 2. Notice that 2(m− (r− 1)/2) = nk+ 1. Since

r is odd, then both n and k are odd. That is, both n − 1 and k + r are even. From

the construction we give above, in fact, by the proof of Case 3 in Lemma 2.2, there is

a k-regular graph D3 ∈ G(n − 1,m − (k + r)/2), whose complement has a matching

N2 with (n − 3)/2 edges. Note that s = r − k − 2 ≤ n − 3 − 2 = n − 5 < n − 3.

So we can add any s/2 edges in matching N2 to D3. In this way, we obtain a graph

D4 with n − 1 vertices and m − (k + 1) edges. Moreover, it has s vertices of degree

k + 1 and n − 1 − s vertices of degree k. Add a new vertex to D4 such that the new

vertex is adjacent to any k+ 1 of the remaining n− 1− s vertices. It does works since

n − 1 − s = n − 1 − (r − k − 2) ≥ n − 1 − (n − 2 − k − 2) = k + 3. Hence, we get

a graph G ∈ G(n,m) satisfying Hf (G) = rf(k + 1) + (n − r)f(k). It is easy to see

from our construction that G is also connected. That is, there is a connected graph

G ∈ G(n,m) when r is odd.

v1

vs/2

v1+(n−3)/2

v(s+n−3)/2

v1

vs/2

v1+(n−3)/2

v(s+n−3)/2

vn

v1

vs/2

v1+(n−3)/2

v(s+n−3)/2

vn

Figure 5. Graphs for r ≥ 3 and r − 1 > k + 1.

The above proof can guarantee the existence of connected graphs in G(n,m). The

following Algorithm 3 (similar to Algorithm 2) can be used to find all connected graphs

in G(n,m).



Algorithm 3 Find all connected (n,m)-graphs with degree sequence d =
(d1, d2, . . . , dn) where di = k + 1 and dj = k for 1 ≤ i ≤ r and r + 1 ≤ j ≤ n.

Input: n, m and d = (d1, d2, . . . , dn) where di = k + 1 and dj = k for 1 ≤ i ≤ r and
r + 1 ≤ j ≤ n.
Output: All connected graphs in G(n,m) for any given n and m, denoted by G∗(n,m).

1: Construct a complete n-partite graph H = (P1, P2, . . . , Pn), such that each Pi for
1 ≤ i ≤ r has k + 1 vertices and each Pj for r + 1 ≤ j ≤ n has k vertices.

2: Find all perfect matchings in H, denoted by {M1,M2, . . . ,Ml}.
3: Set G∗(n,m) = ∅ and s = 1.
4: while s ≤ l do
5: Construct a new graph Gs with vertex-set {p1, p2, . . . , pn} and pi ∼ pj if and

only if there is an edge between Pi and Pj in Ms.
6: if Gs is connected with no multiple edges and Gs � G for any G ∈ G∗(n,m)

then
7: Set G∗(n,m) = G∗(n,m)

⋃{Gs}.
8: else G∗(n,m) = G∗(n,m).

9: Set s = s+ 1 and go to 4.

10: return G∗(n,m).

Note that although this algorithm can be used to generate all connected graphs of

G(n,m), it cannot guarantee the existence of any connected graph in G(n,m).
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