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Abstract. In this paper, we establish the generating function for cφ6(n), the num-

ber of generalized Frobenius partitions of n with 6 colors whose order is 6 under

cyclic permutation of the 6 colors. Furthermore, we find some congruences for cφ6(n)

modulo 24.

1. Introduction

The concept of generalized Frobenius partitions with k colors was introduced by
Andrews [1]. A generalized Frobenius partition of n with k colors is a two-rowed array(

a1 a2 . . . am
b1 b2 . . . bm

)
,

where
∑m

i=1(ai + bi + 1) = n, and where the integer entries are taken from k distinct
copies of the non-negative integers distinguished by color, and the rows are ordered
first by size and then by color with no two consecutive like entries in any row. The
number of this kind of partitions of n is denoted by cφk(n). Andrews [1] showed that

cφ2(2n+ 1) ≡ 0 (mod 2) and cφ2(5n+ 3) ≡ 0 (mod 5).

Baruah and Sarmah [3] represented the generating function of cφ6(n) in terms of Ra-
manujan’s theta functions and established 2, and 3-dissections of it which imply that
for n ≥ 0,

cφ6(2n+ 1) ≡ 0 (mod 4),

cφ6(3n+ 1) ≡ 0 (mod 9),

cφ6(3n+ 2) ≡ 0 (mod 9).

Xia [25] proved the following conjecture posed in [3]:

cφ6(3n+ 2) ≡ 0 (mod 33).

Later, Gu et al. [11] and Hirschhorn [12] established more congruences for cφ6(n) mod-
ulo powers of 3. For more properties of cφk(n), one could see [2, 7, 9, 13–24, 26]. Then

Date: December 7, 2022.

2010 Mathematics Subject Classification. 11P83, 05A17.
Key words and phrases. generalized Frobenius partitions, integer matrix exact covering system,

congruences, Ramanujan’s theta functions.
1



2 S.-P. CUI AND N.S.S. GU

Kolitsch [13,14] considered the function cφk(n), which denotes the number of general-
ized Frobenius partitions of n with k colors whose order is k under cyclic permutation
of k colors. The generating function of cφk(n) is given by

∞∑
n=0

cφk(n)qn =
k
∑
qQ(m)

(q; q)k∞
, (1.1)

where the sum of the right extends over all vectors m = (m1,m2, · · · ,mk) with∑k
i=1mi = 1, and Q(m) = 1

2

∑k
i=1(mi −mi+1)

2 with mk+1 = m1. Kolitsch [13] found
that for all integers k ≥ 2,

cφk(n) ≡ 0 (mod k2).

Sellers [19, 21] established that

cφk(kn) ≡ 0 (mod k3) for k=2, 3, 5, 7, 11.

For more results of cφk(n), we refer to [22]. In [2, 3], Baruah and Sarmah used the
integer matrix exact covering system which was first introduced by Cao [6] to establish
the generating functions of cφ4(n) and cφ6(n), respectively. In this paper, using the
method of Baruah and Sarmah, we focus on the generating function of cφ6(n). For
more details of the integer matrix exact covering system, one can see [2, p. 1894–1895].

Here and in what follows, we have made use of the standard q-series notation [10]

(a; q)∞ =
∞∏
k=0

(1− aqk), |q| < 1.

For convenience, define fk as

fk := (qk; qk)∞.

Let f(a, b) be Ramanujan’s general theta function given by

f(a, b) =
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 , |ab| < 1.

Jacobi’s triple product identity can be stated in Ramanujan’s notation as follows:

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Thus,

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
f 5
2

f 2
1 f

2
4

,

ψ(q) := f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
f 2
2

f1
, (1.2)

f(−q) := f(−q,−q2) =
∞∑

n=−∞

(−1)nq
n(3n−1)

2 = f1.

In this paper, we obtain the following congruences for cφ6(n).
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Theorem 1.1. We have

cφ6 (2n) ≡ 0 (mod 24),

cφ6 (9n+ 4) ≡ 0 (mod 24). (1.3)

Theorem 1.2. For any prime p ≥ 5,

cφ6

(
9p (pn+ j) +

3p2 + 1

4

)
≡ 0 (mod 24),

where j = 1, 2, · · · , p− 1.

2. Main results

In this section, we first establish the generating function of cφ6(n) by the integer
matrix exact covering system. Then we prove Theorems 1.1 and 1.2.

In order to prove the main results, the following lemmas are needed.

Lemma 2.1. [4, Eq. (1.2.9)] For any integer n,

f(a, b) = a
n(n+1)

2 b
n(n−1)

2 f(a(ab)n, b(ab)−n).

For any prime p ≥ 5, define

±p− 1

6
:=

{
p−1
6
, p ≡ 1 (mod 6),

−p−1
6
, p ≡ −1 (mod 6).

Lemma 2.2. [8] For any prime p ≥ 5,

f(−q) =

p−1
2∑

k = − p−1
2

k 6= ±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
+ (−1)

±p−1
6 q

p2−1
24 f(−qp2).

Further, we claim that for −(p− 1)/2 ≤ k ≤ (p− 1)/2 and k 6= (±p− 1)/6,

3k2 + k

2
6≡ p2 − 1

24
(mod p).

Lemma 2.3. [8] For any odd prime p,

ψ(q) =

p−3
2∑

k=0

q
k2+k

2 f

(
q

p2+(2k+1)p
2 , q

p2−(2k+1)p
2

)
+ q

p2−1
8 ψ(qp

2

).

Furthermore, we claim that for 0 ≤ k ≤ (p− 3)/2,

k2 + k

2
6≡ p2 − 1

8
(mod p).

Setting p = 3 in Lemma 2.3, we arrive at

ψ(q) = f(q3, q6) + qψ(q9). (2.1)
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Lemma 2.4. We have

f 2
1 ≡ f2 (mod 2),

f 4
1 ≡ f 2

2 (mod 4).

Set

a(q) := ϕ(q)ϕ(q3) + 4qψ(q2)ψ(q6).

Notice that a(q) is one of Borweins’ cubic theta functions which were mentioned in [5].

Theorem 2.5. We have
∞∑
n=0

cφ6(n)qn =
6S

f 6
1

,

where

S =4qψ2(q)ψ(q2)ψ(q3)f(q3, q6) + 4q2ϕ(q2)ψ(q)ψ(q3)ψ(q8)f(q12, q24)

+ 4q3ϕ(q4)ψ(q)ψ(q3)ψ(q4)f(q6, q30) + 2qϕ(q4)ψ(q4)a(q2)f(q12, q24)

+ 2q3ϕ(q2)ψ(q8)a(q2)f(q6, q30).

Proof. Setting k = 6 in (1.1), we have
∞∑
n=0

cφ6(n)qn =
6S

f 6
1

,

where

S =
∞∑

mi=−∞
q3m

2
1+2m2

2+2m2
3+2m2

4+3m2
5+2m1m2+3m1m3+3m1m4+4m1m5+m2m3+2m2m4+3m2m5+m3m4

× q3m3m5+2m4m5−3m1−2m2−2m3−2m4−3m5+1.

We choose

B = 4


1 1 0 1 0
0 −1 0 0 −1
0 0 1 −1 0
0 0 −1 −1 0
0 −1 0 0 1

 .

Then in view of the integer matrix exact covering system in [6] and the procedures for
obtaining S in [2, 3], we can write S as a linear combination of four parts as

S =
∞∑

n1,n2,n3,n4,n5=−∞

q3n
2
1+5n2

2+3n2
3+2n2

4+2n2
5+2n1n5+2n2n4+2n3n5−3n1+2n2+n4−n5+1

+
∞∑

n1,n2,n3,n4,n5=−∞

q3n
2
1+5n2

2+3n2
3+2n2

4+2n2
5+2n1n5+2n2n4+2n3n5+3n2+3n3+3n4+n5+2

+
∞∑

n1,n2,n3,n4,n5=−∞

q3n
2
1+5n2

2+3n2
3+2n2

4+2n2
5+2n1n5+2n2n4+2n3n5+n1+7n2+n3+2n4+2n5+3
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+
∞∑

n1,n2,n3,n4,n5=−∞

q3n
2
1+5n2

2+3n2
3+2n2

4+2n2
5+2n1n5+2n2n4+2n3n5−2n1+8n2+4n3+4n4+2n5+6

= a1(q)b1(q) + a2(q)b2(q) + a3(q)b3(q) + a4(q)b4(q), (2.2)

where

a1(q) =
∞∑

n1,n3,n5=−∞

q3n
2
1+3n2

3+2n2
5+2n1n5+2n3n5−3n1−n5+1,

a2(q) =
∞∑

n1,n3,n5=−∞

q3n
2
1+3n2

3+2n2
5+2n1n5+2n3n5+3n3+n5+2,

a3(q) =
∞∑

n1,n3,n5=−∞

q3n
2
1+3n2

3+2n2
5+2n1n5+2n3n5+n1+n3+2n5+3,

a4(q) =
∞∑

n1,n3,n5=−∞

q3n
2
1+3n2

3+2n2
5+2n1n5+2n3n5−2n1+4n3+2n5+6,

b1(q) =
∞∑

n2,n4=−∞

q5n
2
2+2n2

4+2n2n4+2n2+n4 ,

b2(q) =
∞∑

n2,n4=−∞

q5n
2
2+2n2

4+2n2n4+3n2+3n4 ,

b3(q) =
∞∑

n2,n4=−∞

q5n
2
2+2n2

4+2n2n4+7n2+2n4 ,

b4(q) =
∞∑

n2,n4=−∞

q5n
2
2+2n2

4+2n2n4+8n2+4n4 .

In addition, we find that

qa1(q) = a2(q). (2.3)

Next, For a1(q), a2(q), and a3(q), we apply another transformation of variables by using
the integer matrix exact covering system. We adopt the matrix 1 0 −1

−1 0 −1
0 1 1

 .

Therefore, from this integer matrix exact covering system, we can write a1(q), a2(q), a3(q),
and a4(q) as follows.

a1(q) = qψ(q)ψ(q2)ψ(q3) + q3ψ(q)ψ(q3)f(q−2, q10)

= 2qψ(q)ψ(q2)ψ(q3), (2.4)

where we use Lemma 2.1 with n = 1 to arrive at the last equality. Employing (2.3),
we see that

a2(q) = 2q2ψ(q)ψ(q2)ψ(q3). (2.5)
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Similarly, we obtain

a3(q) = 2q3ϕ(q4)ϕ(q6)ψ(q4) + 4q5ϕ(q2)ψ(q8)ψ(q12), (2.6)

a4(q) = 2q5ϕ(q2)ϕ(q6)ψ(q8) + 4q6ϕ(q4)ψ(q4)ψ(q12). (2.7)

Next, we use the following integer matrix exact covering system{(
2 0
−1 1

)(
x1
x2

)
,

(
2 0
−1 1

)(
x1
x2

)
+

(
1
0

)}
to rewrite b1(q), b2(q), b3(q), and b4(q) as follows.

b1(q) =
∞∑

x1,x2=−∞

q18x
2
1+2x2

2+3x1+x2 +
∞∑

x1,x2=−∞

q18x
2
1+2x2

2+21x1+3x2+7

= f(q15, q21)f(q, q3) + q7f(q−3, q39)f(q−1, q5)

= f(q, q3)
(
f(q15, q21) + q3f(q3, q33)

)
= ψ(q)f(q3, q6), (2.8)

where we use Lemma 2.1 with n = 1 to obtain the penultimate equality, and employ
the following fact to obtain the last equality.

f(q3, q6) =
∞∑

n=−∞

q
9n2+3n

2

=
∞∑

n=−∞

q
9·4n2+3·2n

2 +
∞∑

n=−∞

q
9·(2n+1)2+3·(2n+1)

2

= f(q15, q21) + q6f(q−3, q39)

= f(q15, q21) + q3f(q3, q33) (by Lemma 2.1).

Similarly, we obtain

b2(q) = q−1ψ(q)f(q3, q6), (2.9)

b3(q) = 2ψ(q4)f(q6, q30) + q−2ϕ(q2)f(q12, q24), (2.10)

b4(q) = q−2ϕ(q2)f(q6, q30) + 2q−3ψ(q4)f(q12, q24). (2.11)

Substituting (2.4)-(2.11) into (2.2) yields that

S = 4qψ2(q)ψ(q2)ψ(q3)f(q3, q6)

+ 4q2ϕ(q2)ψ(q8)
(
ϕ(q6)ψ(q4) + qϕ(q2)ψ(q12)

)
f(q12, q24)

+ 4q3ϕ(q4)ψ(q4)
(
ϕ(q6)ψ(q4) + qϕ(q2)ψ(q12)

)
f(q6, q30)

+ 2qϕ(q4)ψ(q4)a(q2)f(q12, q24) + 2q3ϕ(q2)ψ(q8)a(q2)f(q6, q30). (2.12)

In addition, Baruah and Sarmah [3, p. 368] presented that

ϕ(q6)ψ(q4) + qϕ(q2)ψ(q12) = ψ(q)ψ(q3).

Then substituting the above equation into (2.12), we arrive at the theorem. �
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Proof of Theorem 1.1. To prove the theorem, we need the following properties.

f(q, q2) ≡ f(−q,−q2) = f1 (mod 2), (2.13)

f(q, q5) ≡ f(−q,−q5) = ψ(q3)
f1
f2
≡ ψ(q3)

f1
(mod 2), (2.14)

f 3
1 =

f 4
1

f1
≡ f 2

2

f1
= ψ(q) (mod 2), (2.15)

ϕ(q) =
f 5
2

f 2
1 f

2
4

≡ f 10
1

f 2
1 f

8
1

= 1 (mod 2). (2.16)

First, from Theorem 2.5, it can be seen that∑∞
n=0 cφ6(n)qn

6

≡ 2q
ϕ(q2)ϕ(q4)ϕ(q6)ψ(q4)f(q12, q24)

f 6
1

+ 2q3
ϕ2(q2)ϕ(q6)ψ(q8)f(q6, q30)

f 6
1

(mod 22)

≡ 2q
ψ(q4)f(q12, q24)

f 6
1

+ 2q3
ψ(q8)f(q6, q30)

f 6
1

(mod 22)

≡ 2q
f 2
8

f4

f12
f 6
1

+ 2q3
f 2
16

f8

ψ(q18)

f 6
1 f6

(mod 22)

≡ 2q
f 3
4 f12
f 6
1

+ 2q3
f 3
8ψ(q18)

f 6
1 f6

(mod 22)

≡ 2q
f 12
1 f12
f 6
1

+ 2q3
f 24
1 ψ(q18)

f 6
1 f6

(mod 22)

= 2qf 6
1 f12 + 2q3

f 18
1 ψ(q18)

f6

≡ 2qf 3
2 f12 + 2q3f 9

2

ψ(q18)

f6
(mod 22)

≡ 2qψ(q2)f12 + 2q3ψ3(q2)
ψ(q18)

f6
(mod 22)

= 2q
(
f(q6, q12) + q2ψ(q18)

)
f12 + 2q3

(
f(q6, q12) + q2ψ(q18)

)3 ψ(q18)

f6
, (2.17)

where we apply (1.2), (2.1), Lemma 2.4, and (2.13)-(2.16) in the above congruences.
Then we find that

cφ6 (2n)

6
≡ 0 (mod 22).

Therefore, we prove the first congruence. Moreover, in view of (2.17), we obtain∑∞
n=0 cφ6(3n+ 1)qn

6
≡ 2f(q2, q4)f4 + 2q2f(q2, q4)ψ2(q6)

ψ(q6)

f2
(mod 22)

≡ 2f2f4 + 2q2f2ψ
2(q6)

ψ(q6)

f2
(mod 22)

≡ 2f 3
2 + 2q2ψ3(q6) (mod 22)
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≡ 2ψ(q2) + 2q2ψ3(q6) (mod 22)

= 2
(
f(q6, q12) + q2ψ(q18)

)
+ 2q2ψ3(q6), (2.18)

where we derive the above relations by using (2.1), Lemma 2.4, (2.13), and (2.15).
Since there are no terms on the right-hand side of (2.18) in which the powers of q are
congruent to 1 modulo 3, we arrive at

cφ6 (3 (3n+ 1) + 1)

6
=
cφ6 (9n+ 4)

6
≡ 0 (mod 22).

Hence, we complete the proof of (1.3). �

Proof of Theorem 1.2. Based on (2.13) and (2.18), we find that∑∞
n=0 cφ6 (3 (3n) + 1) qn

6
=

∑∞
n=0 cφ6 (9n+ 1) qn

6
≡ 2f(q2, q4) ≡ 2f2 (mod 22).

Then in view of Lemma 2.2 and the above relation, we deduce that for any prime p ≥ 5,∑∞
n=0 cφ6

(
9
(
pn+ p2−1

12

)
+ 1
)
qn

6
=

∑∞
n=0 cφ6

(
9pn+ 3p2+1

4

)
qn

6
≡ 2f(−q2p) (mod 22).

Thus, it can be seen that for j = 1, 2, · · · , p− 1,

cφ6

(
9p (pn+ j) +

3p2 + 1

4

)
≡ 0 (mod 24).

Therefore, we complete the proof. �
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