
SUMS OF SQUARES AND PARTITION CONGRUENCES

SU-PING CUI AND NANCY S.S. GU

Abstract. For positive integers n and k, let rk(n) denote the number of represen-

tations of n as a sum of k squares, where representations with different orders and

different signs are counted as distinct. For a given positive integer m, by means of

some properties of binomial coefficients, we derive some infinite families of congru-

ences for rk(n) modulo 2m. Furthermore, in view of these arithmetic properties of

rk(n), we establish many infinite families of congruences for the overpartition function

and the overpartition pair function.

1. Introduction

For positive integers n and k, let rk(n) denote the number of representations of n
as a sum of k squares, where representations with different orders and different signs
are counted as distinct. By convention, rk(0) = 1.

The purpose of this paper is to establish some arithmetic properties of rk(n) modulo
powers of 2, and then find some congruences for some partition functions by using these
properties.

The values of rk(n) have been widely studied in the literature. Jacobi [20] derived
the values of rk(n) for k = 2, 4, 6, 8. Then Glaisher [15] obtained the formulas for
k = 10, 12, 14, 16, 18. Moreover, Mordell [26] and Cooper [8] proved a general formula
of rk(n) for arbitrary even values of k which was provided by Ramanujan [28]. In
addition, Newman [27] presented the following recurrence formulas of rk(n). For any
odd prime p,

rk(np
2) =

{
1 + pk−2 − (−1)

(k−1)(p−1)
4 p

k−3
2

(
n

p

)}
rk(n)− pk−2rk

(
n

p2

)
, k = 1, 3, 5, 7,

rk(np
2) =

{
1 + pk−2 + (−1)

k(p−1)
4 p

k−2
2

(
n

p

)2
}
rk(n)− pk−2rk

(
n

p2

)
, k = 2, 4, 6, 8.

For odd k, Hardy [16, 17] studied representations of a number as the sum of five or
seven squares. Then Lomadze [23] discussed the number of representations of natural
numbers by sums of nine squares. Hirschhorn and Sellers [18] obtained some properties
of r3(n). Later, Cooper [9] derived the recurrence formulas of rk(n) for k = 5, 7, 9.
Recently, Berndt et al. [2, 3] studied some transformations involving rk(n) and some
Bessel functions. For more properties of rk(n), see [1, 10,11,29,30].

Date: December 9, 2021.

2010 Mathematics Subject Classification. 11P83, 05A17.

Key words and phrases. sums of squares, congruences, partitions, overpartitions.
1



2 S.-P. CUI AND N.S.S. GU

Using some arithmetic properties of binomial coefficients, we obtain the following
theorems. Notice that all the parameters used in this paper are integers.

Theorem 1.1. If m, k, and the prime p satisfy one of the following conditions:

(1) m ≥ 5, k ≡ 0, 2 (mod 2m−4), and p ≡ 7 (mod 8);
(2) m ≥ 4, k ≡ 1 (mod 2m−3), and p ≡ 7 (mod 8);
(3) m ≥ 4, k ≡ 0, 2 (mod 2m−3), and p ≡ 3 (mod 4);
(4) m ≥ 2, k ≡ 0, 1 (mod 2m−2), and p ≡ 1 (mod 2),

then for α ≥ 0, n ≥ 0, and j = 1, 2 . . . , p− 1,

rk
(
p2α+1 (pn+ j)

)
≡ 0 (mod 2m).

Theorem 1.2. If m, k, and the prime p satisfy one of the following conditions:

(1) m ≥ 3, k ≡ 0, 1 (mod 2m−2), and p ≡ ±1 (mod 8);
(2) m ≥ 2, k ≡ 1 (mod 2m−1), and p ≡ 1 (mod 2),

then for α ≥ 0 and n ≥ 0,

rk
(
p2α (pn+ r)

)
≡ 0 (mod 2m),

where r is a quadratic nonresidue modulo p.

Throughout the paper, we make use of the standard q-series notation [14]

(a; q)∞ =
∞∏
k=0

(1− aqk), |q| < 1.

For convenience, define

fk = (qk; qk)∞.

Let f(a, b) be Ramanujan’s general theta function given by

f(a, b) =
∞∑

n=−∞

a
n(n+1)

2 b
n(n−1)

2 , |ab| < 1. (1.1)

Then Jacobi’s triple product identity can be stated in Ramanujan’s notation as follows

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Thus,

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
f 5
2

f 2
1 f

2
4

.

Then the generating function of rk(n) is stated as
∞∑
n=0

rk(n)qn = ϕk(q).

This paper is organized as follows. In Section 2, we establish some congruence
properties of binomial coefficients which are used in the proofs of the above theorems.
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In Section 3, in view of the lemmas given in Section 2, we prove Theorems 1.1 and
1.2. In Section 4, applying the main theorems, we derive many infinite families of
congruences for the overpartition function and the overpartition pair function.

2. Preliminaries

In this section, we prove some lemmas which are used in the proofs of Theorems 1.1
and 1.2. Let k, `, and m be positive integers. It is obvious that for ` ≥ m,

2`
(
k

`

)
≡ 0 (mod 2m).

In the proofs of the following lemmas, set

` =

{
2st, if ` is even;
2st+ 1, if ` is odd,

where s is a positive integer and t is an odd positive integer.

Lemma 2.1. For m ≥ 5, even ` ≥ 6, and k ≡ 0 (mod 2m−4), we have

2`
(
k

`

)
≡ 0 (mod 2m).

Proof. For k ≡ 0 (mod 2m−4), let

k = 2m−4g,

where g is a positive integer. Since ` is even, we have ` = 2st. Then

2`
(
k

`

)
= 2`

k

`

`−2
2∏
i=1

k − 2i

2i

`
2∏
j=1

k − 2j + 1

2j − 1

= 2`−s+m−4
g

t

`−2
2∏
i=1

2m−4g − 2i

2i

`
2∏
j=1

k − 2j + 1

2j − 1
.

Notice that the numerator and denominator of
`
2∏
j=1

k − 2j + 1

2j − 1

are odd integers. For 1 ≤ i ≤ `−2
2

, set

2i = 2siti,

where si ≥ 1 and ti ≡ 1 (mod 2). We consider the following two cases (1) and (2).

(1) If si ≤ m− 4 for all 1 ≤ i ≤ `−2
2

, then

2`
(
k

`

)
= 2`−s+m−4

g

t

`−2
2∏
i=1

2m−4g − 2siti
2siti

`
2∏
j=1

k − 2j + 1

2j − 1
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= 2`−s+m−4
g

t

`−2
2∏
i=1

2m−4−sig − ti
ti

`
2∏
j=1

k − 2j + 1

2j − 1
, (2.1)

where t, ti (1 ≤ i ≤ `−2
2

), and 2j − 1 (1 ≤ j ≤ `
2
) in (2.1) are odd integers.

Thus, to prove

2`
(
k

`

)
≡ 0 (mod 2m),

it suffices to show that

2`−s+m−4 ≡ 0 (mod 2m)

which means

`− s+m− 4 ≥ m.

(a) If s = 1, then since ` ≥ 5, we have

`− s+m− 4 = `− 1 +m− 4 ≥ m.

(b) If s ≥ 2, then

`− s+m− 4 = `− log2
`

t
+m− 4 ≥ `− log2`− 4 +m. (2.2)

Notice that the function

y − log2y − 4

is monotonically increasing for y ≥ 4. So, for

` ≥ 7 = min{y | y − log2y − 4 ≥ 0 and y ≥ 4},
we have

`− log2`− 4 ≥ 0.

Hence, based on (2.2) and the above inequality, we obtain

`− s+m− 4 ≥ `− log2`− 4 +m ≥ m.

Therefore, combining the subcases (a) and (b) yields that for s = 1 and ` ≥ 5,
or s ≥ 2 and ` ≥ 7,

2`
(
k

`

)
≡ 0 (mod 2m).

That is to say, in Case (1), for m ≥ 5, even ` ≥ 6, and k ≡ 0 (mod 2m−4),

2`
(
k

`

)
≡ 0 (mod 2m).

(2) If there exists a positive integer d such that

1 ≤ d ≤ `− 2

2
and sd > m− 4,

then since

1 ≤ i ≤ `− 2

2
and 2i = 2siti,

we have

` ≥ 2i+ 2 = 2siti + 2.
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So,

` ≥ 2sdtd + 2 > 2m−4 + 2.

Notice that the function

2x−4 − x+ 3

is monotonically increasing for x ≥ 5. Then for

m ≥ 5 = min{x | 2x−4 − x+ 3 ≥ 0 and x ≥ 5},

we derive

2m−4 −m+ 3 ≥ 0.

Therefore, we obtain

` > 2m−4 + 2 ≥ m− 3 + 2 = m− 1

which means ` ≥ m. So we have

2`
(
k

`

)
≡ 0 (mod 2m).

In conclusion, combining Cases (1) and (2), we complete the proof. �

Lemma 2.2. For m ≥ 6, odd ` ≥ 5, and k ≡ 0 (mod 2m−4), we have

2`
(
k

`

)
≡ 0 (mod 2m).

Proof. Set k = 2m−4g and ` = 2st+ 1. Then

2`
(
k

`

)
= 2`

k

k − `

`−1
2∏
i=1

k − 2i

2i

`+1
2∏
j=1

k − 2j + 1

2j − 1

= 2`+m−4
g

k − `

`−1
2∏
i=1

2m−4g − 2i

2i

`+1
2∏
j=1

k − 2j + 1

2j − 1
.

For 1 ≤ i ≤ `−1
2

, let

2i = 2siti,

where si ≥ 1 and ti ≡ 1 (mod 2). Next, we consider the following two cases.

(1) If si ≤ m− 4 for all 1 ≤ i ≤ `−1
2

, then

2`
(
k

`

)
= 2`+m−4

g

k − `

`−1
2∏
i=1

2m−4g − 2siti
2siti

`+1
2∏
j=1

k − 2j + 1

2j − 1

= 2`+m−4
g

k − `

`−1
2∏
i=1

2m−4−sig − ti
ti

`+1
2∏
j=1

k − 2j + 1

2j − 1
.

Since k− `, ti (1 ≤ i ≤ `−1
2

), and 2j − 1 (1 ≤ j ≤ `+1
2

) are odd, when ` ≥ 5, we
have

`+m− 4 ≥ m+ 1.
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Then

2`
(
k

`

)
≡ 0 (mod 2m).

(2) If there exists a positive integer d such that

1 ≤ d ≤ `− 1

2
and sd > m− 4,

then from

1 ≤ i ≤ `− 1

2
and 2i = 2siti,

it follows that
` ≥ 2i+ 1 = 2siti + 1.

So we have
` ≥ 2sdtd + 1 > 2m−4 + 1.

The function
2x−4 − x+ 2

is monotonically increasing for x ≥ 5. Hence, for

m ≥ 6 = min{x | 2x−4 − x+ 2 ≥ 0 and x ≥ 5},
we derive

2m−4 −m+ 2 ≥ 0.

Therefore, we obtain

` > 2m−4 + 1 ≥ m− 1

which means

2`
(
k

`

)
≡ 0 (mod 2m).

Based on the above two cases, we complete the proof. �

Lemma 2.3. If m, `, and k satisfy one of the following conditions:

(1) m ≥ 5, ` ≥ 5, and k ≡ 0 (mod 2m−4);
(2) m ≥ 4, ` ≥ 5, and k ≡ 0 (mod 2m−3);
(3) m ≥ 3, ` ≥ 3, and k ≡ 0 (mod 2m−2),

then we have

2`
(
k

`

)
≡ 0 (mod 2m).

Proof. First, we prove the lemma for the condition (1). When m = 5 and ` ≥ 5, it is
obvious that

2`
(
k

`

)
≡ 0 (mod 2m).

Therefore, combining Lemma 2.1, Lemma 2.2, and the above fact, we complete the
proof of the first case.

Since the proofs of the second and third cases are similar to that of the first case,
we omit the details. �
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Lemma 2.4. If m, `, and k satisfy one of the following conditions:

(1) m ≥ 4, ` ≥ 5, and k ≡ 1 (mod 2m−3);
(2) m ≥ 3, ` ≥ 3, and k ≡ 1 (mod 2m−2),

then we have

2`
(
k

`

)
≡ 0 (mod 2m).

Proof. In Case (1), let

k = 2m−3g + 1,

where g is a nonnegative integer. Then for even ` ≥ 6, we have

2`
(
k

`

)
= 2`

k − 1

`

`−2
2∏
i=1

(k − 1)− 2i

2i

`
2∏
j=1

k − 2j + 2

2j − 1

= 2`
2m−3g

2st

`−2
2∏
i=1

2m−3g − 2i

2i

`
2∏
j=1

k − 2j + 2

2j − 1

= 2`−s+m−3
g

t

`−2
2∏
i=1

2m−3g − 2i

2i

`
2∏
j=1

k − 2j + 2

2j − 1
.

Since the proof is similar to that of Lemma 2.1, we derive that

2`
(
k

`

)
≡ 0 (mod 2m), if m ≥ 4 and even ` ≥ 6.

Now we turn to prove

2`
(
k

`

)
≡ 0 (mod 2m), if m ≥ 4 and odd ` ≥ 5.

Since ` is odd, we have `− 1 = 2st. Then

2`
(
k

`

)
= 2`

k − 1

`− 1

`−3
2∏
i=1

(k − 1)− 2i

2i

`+1
2∏
j=1

k − 2j + 2

2j − 1

= 2`
2m−3g

2st

`−3
2∏
i=1

2m−3g − 2i

2i

`+1
2∏
j=1

k − 2j + 2

2j − 1

= 2`−s+m−3
g

t

`−3
2∏
i=1

2m−3g − 2i

2i

`+1
2∏
j=1

k − 2j + 2

2j − 1
.

According to the proof of Lemma 2.1, we complete the proof for odd `. So, we complete
the proof of Case (1).

Similarly, we can prove Case (2). Here we omit the details. �

Lemma 2.5. If m, `, and k satisfy one of the following conditions:
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(1) m ≥ 5, ` ≥ 5, and k ≡ 2 (mod 2m−4);
(2) m ≥ 4, ` ≥ 5, and k ≡ 2 (mod 2m−3),

then we have

2`
(
k

`

)
≡ 0 (mod 2m).

Proof. In Case (1), let

k = 2m−4g + 2,

where g is a nonnegative integer. First, we prove

2`
(
k

`

)
≡ 0 (mod 2m), if m ≥ 5 and even ` ≥ 6.

Since ` is even, we have

2`
(
k

`

)
= 2`

k − 2

`

k

`− 2

`−4
2∏
i=1

(k − 2)− 2i

2i

`
2∏
j=1

k − 2j + 1

2j − 1

= 2`
2m−4g

2st

2m−4g + 2

2st− 2

`−4
2∏
i=1

2m−4g − 2i

2i

`
2∏
j=1

k − 2j + 1

2j − 1

= 2`−s+m−4
g

t

2m−4g + 2

2st− 2

`−4
2∏
i=1

2m−4g − 2i

2i

`
2∏
j=1

k − 2j + 1

2j − 1
.

According to the proof of Lemma 2.1, we complete the proof for even `.

Next, we prove

2`
(
k

`

)
≡ 0 (mod 2m), if m ≥ 5 and odd ` ≥ 5.

Notice that

2`
(
k

`

)
= 2`

k − 2

`− 1

(k − 2) + 2

k − `

`−3
2∏
i=1

(k − 2)− 2i

2i

`+1
2∏
j=1

k − 2j + 1

2j − 1

= 2`
2m−4g

2st

2m−4g + 2

k − `

`−3
2∏
i=1

2m−4g − 2i

2i

`+1
2∏
j=1

k − 2j + 1

2j − 1

= 2`−s+m−4+1 g

t

2m−4−1g + 1

k − `

`−3
2∏
i=1

2m−4g − 2i

2i

`+1
2∏
j=1

k − 2j + 1

2j − 1
.

Then based on the proof of Lemma 2.1, we prove the lemma for odd `. Therefore, we
complete the proof of Case (1).

The proof of Case (2) is similar to that of Case (1). So, we omit it. �
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3. Main results

Lemma 3.1. For any odd prime p,

ϕ(q) = ϕ(qp
2

) + 2

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi).

Proof. We have

ϕ(q) =
∞∑

n=−∞

qn
2

=

p−1
2∑

i=− p−1
2

∞∑
n=−∞

q(pn+i)
2

= ϕ(qp
2

) + 2

p−1
2∑
i=1

qi
2
∞∑

n=−∞

qp
2n2+2pin.

Then in view of (1.1), we arrive at what we need. �

Proof of Theorem 1.1. Based on Lemma 3.1, we have

ϕk(q) =

ϕ(qp
2

) + 2

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi)

k

=
k∑
`=0

∑
`1, `2, . . . , ` p−1

2
≥ 0

`1 + `2 + · · ·+ ` p−1
2

= `

2`
(

k

k − `, `1, `2, . . . , ` p−1
2

)
ϕk−`(qp

2

)

×

p−1
2∏
i=1

(
qi

2

f(qp
2+2pi, qp

2−2pi)
)`i

. (3.1)

Noticing that (
k

k − `, `1, `2, . . . , `t

)
/

(
k

`

)
=

(
`

`1, `2, . . . , `t

)
,

where `1 + `2 + · · · `t = `, we derive(
k

`

)
|
(

k

k − `, `1, `2, . . . , `t

)
.

It means that if

2`
(
k

`

)
≡ 0 (mod 2m),

then

2`
(

k

k − `, `1, `2, . . . , `t

)
≡ 0 (mod 2m).

Next, with the aid of Lemmas 2.3-2.5, we consider the following four cases for ϕk(q)
modulo 2m when k, `, and m satisfy some conditions.

Case (1): in view of Lemmas 2.3 and 2.5, we obtain that for m ≥ 5, ` ≥ 5, and
k ≡ 0, 2 (mod 2m−4),

2`
(
k

`

)
≡ 0 (mod 2m).
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Furthermore, we observe that if m ≥ 5 and k ≡ 0, 2 (mod 2m−4), then

23

(
k

k − 3, 1, 1, 1

)
≡ 24

(
k

k − 4, 3, 1

)
≡ 24

(
k

k − 4, 2, 1, 1

)
≡ 24

(
k

k − 4, 1, 1, 1, 1

)
≡ 0 (mod 2m).

Thus, from (3.1), it can be seen that for m ≥ 5 and k ≡ 0, 2 (mod 2m−4),

ϕk(q) ≡ ϕk(qp
2

) + 2kϕk−1(qp
2

)

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi)

+ 2k(k − 1)ϕk−2(qp
2

)

p−1
2∑
i=1

q2i
2

f 2(qp
2+2pi, qp

2−2pi)

+ 4k(k − 1)ϕk−2(qp
2

)

p−1
2∑

i,j=1,i<j

qi
2+j2f(qp

2+2pi, qp
2−2pi)f(qp

2+2pj, qp
2−2pj)

+
4k(k − 1)(k − 2)

3
ϕk−3(qp

2

)

p−1
2∑
i=1

q3i
2

f 3(qp
2+2pi, qp

2−2pi)

+ 4k(k − 1)(k − 2)ϕk−3(qp
2

)

p−1
2∑

i,j=1,i 6=j

q2i
2+j2f 2(qp

2+2pi, qp
2−2pi)f(qp

2+2pj, qp
2−2pj)

+
2k(k − 1)(k − 2)(k − 3)

3
ϕk−4(qp

2

)

p−1
2∑
i=1

q4i
2

f 4(qp
2+2pi, qp

2−2pi)

+ 4k(k − 1)(k − 2)(k − 3)ϕk−4(qp
2

)

×

p−1
2∑

i,j=1,i<j

q2i
2+2j2f 2(qp

2+2pi, qp
2−2pi)f 2(qp

2+2pj, qp
2−2pj) (mod 2m). (3.2)

Case (2): with the aid of Lemma 2.4, when m ≥ 4, ` ≥ 5, and k ≡ 1 (mod 2m−3),
we have

2`
(
k

`

)
≡ 0 (mod 2m).

Meanwhile, we point out that for m ≥ 4 and k ≡ 1 (mod 2m−3),

23

(
k

k − 3, 1, 1, 1

)
≡ 24

(
k

k − 4, 3, 1

)
≡ 24

(
k

k − 4, 2, 2

)
≡ 24

(
k

k − 4, 2, 1, 1

)
≡ 24

(
k

k − 4, 1, 1, 1, 1

)
≡ 0 (mod 2m).
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So applying (3.1) yields that for m ≥ 4 and k ≡ 1 (mod 2m−3),

ϕk(q) ≡ ϕk(qp
2

) + 2kϕk−1(qp
2

)

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi)

+ 2k(k − 1)ϕk−2(qp
2

)

p−1
2∑
i=1

q2i
2

f 2(qp
2+2pi, qp

2−2pi)

+ 4k(k − 1)ϕk−2(qp
2

)

p−1
2∑

i,j=1,i<j

qi
2+j2f(qp

2+2pi, qp
2−2pi)f(qp

2+2pj, qp
2−2pj)

+
4k(k − 1)(k − 2)

3
ϕk−3(qp

2

)

p−1
2∑
i=1

q3i
2

f 3(qp
2+2pi, qp

2−2pi)

+ 4k(k − 1)(k − 2)ϕk−3(qp
2

)

p−1
2∑

i,j=1,i 6=j

q2i
2+j2f 2(qp

2+2pi, qp
2−2pi)f(qp

2+2pj, qp
2−2pj)

+
2k(k − 1)(k − 2)(k − 3)

3
ϕk−4(qp

2

)

p−1
2∑
i=1

q4i
2

f 4(qp
2+2pi, qp

2−2pi) (mod 2m).

(3.3)

Case (3): by means of Lemmas 2.3 and 2.5, we obtain that for m ≥ 4, ` ≥ 5, and
k ≡ 0, 2 (mod 2m−3),

2`
(
k

`

)
≡ 0 (mod 2m).

Furthermore, we observe that if m ≥ 4 and k ≡ 0, 2 (mod 2m−3), then

23

(
k

k − 3, 3

)
≡ 23

(
k

k − 3, 2, 1

)
≡ 23

(
k

k − 3, 1, 1, 1

)
≡ 24

(
k

k − 4, 3, 1

)
≡ 24

(
k

k − 4, 2, 2

)
≡ 24

(
k

k − 4, 2, 1, 1

)
≡ 24

(
k

k − 4, 1, 1, 1, 1

)
≡ 0 (mod 2m).

So, according to (3.1), we derive that for m ≥ 4 and k ≡ 0, 2 (mod 2m−3),

ϕk(q) ≡ ϕk(qp
2

) + 2kϕk−1(qp
2

)

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi)

+ 2k(k − 1)ϕk−2(qp
2

)

p−1
2∑
i=1

q2i
2

f 2(qp
2+2pi, qp

2−2pi)

+ 4k(k − 1)ϕk−2(qp
2

)

p−1
2∑

i,j=1,i<j

qi
2+j2f(qp

2+2pi, qp
2−2pi)f(qp

2+2pj, qp
2−2pj)
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+
2k(k − 1)(k − 2)(k − 3)

3
ϕk−4(qp

2

)

p−1
2∑
i=1

q4i
2

f 4(qp
2+2pi, qp

2−2pi) (mod 2m).

(3.4)

Case (4): based on Lemmas 2.3 and 2.4, we obtain that for m ≥ 3, ` ≥ 3, and
k ≡ 0, 1 (mod 2m−2),

2`
(
k

`

)
≡ 0 (mod 2m).

In addition, we observe that

22

(
k

k − 2, 1, 1

)
≡ 0 (mod 2m).

Then from (3.1), it can be shown that for m ≥ 3 and k ≡ 0, 1 (mod 2m−2),

ϕk(q) ≡ ϕk(qp
2

) + 2kϕk−1(qp
2

)

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi)

+ 2k(k − 1)ϕk−2(qp
2

)

p−1
2∑
i=1

q2i
2

f 2(qp
2+2pi, qp

2−2pi) (mod 2m). (3.5)

Next, according to (3.2)-(3.5) in the above four cases, we consider the powers of q
on the right-hand sides of these congruences. Notice that for 1 ≤ i, j ≤ p−1

2
,

(1) if p is any odd prime, then i2, 2i2 6≡ 0 (mod p);

(2) if p ≥ 5, then i2, 2i2, 3i2, 4i2 6≡ 0 (mod p);

(3) if
(
−1
p

)
= −1, namely, p ≡ 3 (mod 4), then there is no solution for i2 + j2 ≡ 0

(mod p);

(4) if
(
−2
p

)
= −1, namely, p ≡ 5, 7 (mod 8), then there is no solution for 2i2 +j2 ≡

0 (mod p).

Therefore, according to (3.2)-(3.5), when one of the following conditions holds:

(1) m ≥ 5, k ≡ 0, 2 (mod 2m−4), and p ≡ 7 (mod 8);
(2) m ≥ 4, k ≡ 1 (mod 2m−3), and p ≡ 7 (mod 8);
(3) m ≥ 4, k ≡ 1 (mod 2m−3), and p ≡ 7 (mod 8);
(4) m ≥ 4, k ≡ 0, 2 (mod 2m−3), and p ≡ 3 (mod 4);
(5) m ≥ 3, k ≡ 0, 1 (mod 2m−2), and p ≡ 1 (mod 2),

we establish that
∞∑
n=0

rk(pn)qn ≡ ϕk(qp) (mod 2m). (3.6)
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Then we have
∞∑
n=0

rk(p
2n)qn ≡ ϕk(q) (mod 2m).

By induction on α, we derive that for α ≥ 0,
∞∑
n=0

rk(p
2αn)qn ≡ ϕk(q) (mod 2m). (3.7)

Combining this with (3.6) yields that

∞∑
n=0

rk(p
2α+1n)qn ≡ ϕk(qp) (mod 2m).

Hence, it can be seen that for α ≥ 0, n ≥ 0, and j = 1, 2, · · · , p− 1,

rk(p
2α+1(pn+ j)) ≡ 0 (mod 2m). (3.8)

Moreover, Letting k be any positive integer and m = 2 in (3.1), we have

ϕk(q) ≡ ϕk(qp
2

) + 2kϕk−1(qp
2

)

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi) (mod 2m).

So, for any odd prime p, we obtain (3.8) in this case. Therefore, we complete the
proof. �

Proof of Theorem 1.2. When m ≥ 3 and k ≡ 0, 1 (mod 2m−2), we have (3.5).
Notice that i2 and 2i2 are quadratic residues modulo p when p ≡ ±1 (mod 8). Let r
be a quadratic nonresidue modulo p. Then using (3.5), we derive

rk(pn+ r) ≡ 0 (mod 2m). (3.9)

Applying (3.7) and the above relation yields that for α ≥ 0,

rk(p
2α(pn+ r)) ≡ 0 (mod 2m). (3.10)

In addition, by induction and the binomial theorem, we deduce that for k ≥ 1,

f 2k

1 ≡ f 2k−1

2 (mod 2k). (3.11)

Then with the help of (3.11), we have that for m ≥ 1,

ϕ2m−1

(q) =

(
f 5
2

f 2
1 f

2
4

)2m−1

=
f 5·2m−1

2

f 2m
1 f 2m

4

≡ f 5·2m−1

2

f 2m−1

2 f 2m+1

2

= 1 (mod 2m). (3.12)

Therefore, by means of Lemma 3.1 and (3.12), we find that when m ≥ 2, k ≡ 1
(mod 2m−1), and p ≡ 1 (mod 2),

ϕk(q) ≡ ϕ(q) = ϕ(qp
2

) + 2

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi) (mod 2m)

which implies (3.9). Then according to (3.7), we derive (3.10). This completes the
proof. �
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4. Congruences for some partition functions

In this section, in light of the main theorems, we establish many infinite families of
congruences for the overpartition function and the overpartition pair function.

4.1. Overpartitions. A partition of a positive integer n is any non-increasing se-
quence of positive integers whose sum is n. An overpartition of n is a partition of
n where we may overline the first occurrence of a part. We denote the number of
overpartitions of n by p(n). The generating function of p(n) is

∞∑
n=0

p(n)qn =
1

ϕ(−q)
.

Overpartitions have been used by Corteel and Lovejoy [12] in combinatorial proofs of
q-series identities. Some properties of p(n) have been established. See [7, 13,22,24,25,
31,32] for examples.

Applying Theorems 1.1 and 1.2, we generalize some known results for p(n). In
particular, we provide another proof of a conjecture given by Hirschhorn and Sellers
[19].

Theorem 4.1. For any odd prime p, α ≥ 0, n ≥ 0, and j = 1, 2, . . . , p− 1,

p
(
p2α+1(pn+ j)

)
≡


0 (mod 8), p ≡ 1,±3 (mod 8),

0 (mod 16), p ≡ 7 (mod 8).
(4.1)

Proof. First, according to (3.12), we have

∞∑
n=0

p(n)(−1)nqn =
1

ϕ(q)
=
ϕ2m−1−1(q)

ϕ2m−1(q)
≡ ϕ2m−1−1(q) =

∞∑
n=0

r2m−1−1(n)qn (mod 2m).

(4.2)
When m = 3 in (4.2), based on the condition (4) with m = k = 3 and p ≡ 1 (mod 2)
in Theorem 1.1, we find that for any odd prime p, α ≥ 0, and n ≥ 0,

p
(
p2α+1(pn+ j)

)
≡ 0 (mod 8).

Then when m = 4 in (4.2), using the condition (2) with m = 4, k = 7, and p ≡ 7
(mod 8) in Theorem 1.1, we obtain that for p ≡ 7 (mod 8), α ≥ 0, and n ≥ 0,

p
(
p2α+1(pn+ j)

)
≡ 0 (mod 16).

Hence, we derive (4.1). �

Notice that setting α = 0 for the congruences modulo 16 in (4.1) yields the result
given by Chen et al. [4].

Corollary 4.2. For α ≥ 1 and n ≥ 0,

p
(
52α+1(5n± 1)

)
≡ 0 (mod 40).
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Proof. Chen et al. [6] presented that for α ≥ 1,

p
(
52α+1(5n± 1)

)
≡ 0 (mod 5). (4.3)

Then setting p = 5 in Theorem 4.1 yields that

p
(
52α+1(5n± 1)

)
≡ 0 (mod 8). (4.4)

Combining (4.3) with (4.4), we establish what we need. �

Theorem 4.3. If p is an odd prime and r is a quadratic nonresidue modulo p, then
for α ≥ 0 and n ≥ 0,

p
(
p2α(pn+ r)

)
≡


0 (mod 4), p ≡ ±3 (mod 8),

0 (mod 8), p ≡ ±1 (mod 8).
(4.5)

Proof. When m = 2 in (4.2), applying the condition (2) with m = 2, k = 1, and p ≡ 1
(mod 2) in Theorem 1.2, we deduce the first congruence. Similarly, when m = 3 in
(4.2), applying the condition (1) with m = k = 3 and p ≡ ±1 (mod 8) in Theorem
1.2, we derive the second congruence. �

Kim [21] proved the case for α = 0 in (4.5) which was conjectured by Hirschhorn
and Sellers [19]. Furthermore, setting k = 3 in (3.1) implies that for any odd prime p,

ϕ3(q) ≡ ϕ3(qp
2

) + 6ϕ2(qp
2

)

p−1
2∑
i=1

qi
2

f(qp
2+2pi, qp

2−2pi)

+ 12ϕ(qp
2

)

p−1
2∑
i=1

q2i
2

f 2(qp
2+2pi, qp

2−2pi) (mod 8).

Combining this with (4.2) yields the following result given by Kim [21]: if n is neither
a square nor twice a square, then p(n) ≡ 0 (mod 8).

4.2. Overpartition pairs. An overpartition pair π of n is a pair of overpartitions
(λ, µ) such that the sum of all of the parts is n. Note that we allow λ and µ to be an
overpartition of zero. Let pp(n) denote the number of overpartition pairs of n. Then
the generating function of pp(n) is stated as follows.

∞∑
n=0

pp(n)qn =
1

ϕ2(−q)
. (4.6)

Chen and Lin [5] established some congruences for pp(n) modulo 3 and 5. Using
Theorems 1.1 and 1.2, we derive the following congruences for pp(n).

Theorem 4.4. For n ≥ 1,

pp(n) ≡ 0 (mod 4).
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Proof. Based on (3.12) and (4.6), we obtain
∞∑
n=0

pp(n)(−1)nqn =
1

ϕ2(q)
≡ 1 (mod 4).

This completes the proof. �

Theorem 4.5. For α ≥ 0, n ≥ 0, and j = 1, 2, · · · , p− 1,

pp
(
p2α+1(pn+ j)

)
≡


0 (mod 23), p ≡ 1, 5 (mod 8),

0 (mod 25), p ≡ 3 (mod 8),

0 (mod 26), p ≡ 7 (mod 8).

Proof. First, with the aid of (3.12), we derive that
∞∑
n=0

pp(n)(−1)nqn =
1

ϕ2(q)
=
ϕ2m−1−2(q)

ϕ2m−1(q)
≡ ϕ2m−1−2(q) =

∞∑
n=0

r2m−1−2(n)qn (mod 2m).

(4.7)
When m = 3, m = 5, and m = 6 in (4.7), in view of the conditions (4), (3), and (1) of
Theorem 1.1, respectively, we prove the theorem. �

Theorem 4.6. Let p ≡ ±1 (mod 8) and r be a quadratic nonresidue modulo p. For
α ≥ 0 and n ≥ 0,

pp
(
p2α(pn+ r)

)
≡ 0 (mod 8).

Proof. When m = 3 in (4.7), based on the condition (1) with m = 3, k = 2, and
p ≡ ±1 (mod 8) in Theorem 1.2, we obtain the required result. �
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