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Abstract

Chvátal’s conjecture on the intersecting family of the faces of the sim-
plicial complex is a long-standing problem in combinatorics. Snevily gave
an affirmative answer to this conjecture for near-cone complex. Woodroofe
gave Erdős-Ko-Rado type theorem for near-cone complex by using algebra-
ic shift method. Motivated by these results, we concern with the restricted
intersecting family for the simplicial complex. First, we give an upper
bound for the cardinality of the restricted intersecting family of the faces
of the simplicial complex, which is a generalization of Frankl-Wilson theo-
rem. Furthermore, we prove that if L = {l1, l2, . . . , ls} is a set of s positive
integers, suppose that M is a near-cone simplicial complex with an apex
vertex v and F = {F1, . . . , Fm} is a family of the faces of M such that
|Fi ∩ Fj | ∈ L for every 1 ≤ i 6= j ≤ m, then

m ≤
s−1∑
i=−1

fi(link4(v)),

which generalizes Snevily’s two theorems. We also propose a conjecture
that this upper bound holds for all simplicial complexes. Finally, apply-
ing our theorems to certain simplicial complex, we can deduce the upper
bounds for the cardinalities of the restricted intersecting families of the
independent set of the graph, the set partition, the r-separated sets and
the King Arthur and his Knight Table.

Keywords: simplicial complex, Frankl-Wilson theorem, Chvátal’s conjecture,
near-cone complex, Erdős-Ko-Rado theorem
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1 Introduction

The objective of this paper is to give upper bounds for the restricted intersecting
families of the faces of the simplicial complex.
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Let us recall some notions first. Denote X for the set [n] = {1, 2, . . . , n}.
A family F of subsets of X = [n] is called intersecting if every pair of distinct
subsets E,F ∈ F have a nonempty intersection. Let L = {l1, l2, . . . , ls} be a set
of s nonnegative integers. A family F of subsets of [n] is called L-intersecting if
|E ∩F | ∈ L for every pair of distinct subsets E,F ∈ F . A family F is k-uniform
if it is a collection of k-subsets of X. Thus, a k-uniform intersecting family is
L-intersecting for L = {1, 2, . . . , k − 1}.

Erdős-Ko-Rado theorem and Frankl-Wilson theorem are two celebrated theo-
rems in extremal set theory. In 1961, Erdős, Ko and Rado [7] prove that if n ≥ 2k
and F is a k-uniform intersecting family of [n], then

|F| ≤
(
n− 1

k − 1

)
.

A recent work for generalizing the Erdős-Ko- Rado Theorem, due to Holroyd
and Talbot [13], defines the Erdős-Ko-Rado property for a graph in terms of the
graph’s independent sets. Since the family of all independent sets of a graph
forms a simplicial complex, Woodroofe [23] used the algebraic shift method to
generalize Erdős-Ko-Rado property to near-cone complex. Borg [2] gave multi-
level solution of the simplicial complex generalization of the conjecture proposed
by Holroyd and Talbot. Recently, Olarte, Santos, Spreer and Stump [16] proved
the family of facets of a pure simplicial complex of dimension up to three satisfies
the Erdős-Ko-Rado property whenever it is flag and has no boundary ridges.

In 1981, Frankl and Wilson [11] obtained the following tight upper bound for
the restricted intersecting family.

Theorem 1.1 (Theorem 11, [11]) Let L be an ordered set of s distinct non-
negative integers less than n. If F is an L-intersecting family of subsets of [n],
then

|F| ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

0

)
.

In 1991, Alon, Babai, and Suzuki [1] considered the problem of how large a
set system with specific intersection sizes and subset sizes can be.

Theorem 1.2 (Alon-Babai-Suzuki) let L = {l1, l2, . . . , ls} be a set of s non-
negative integers and K = {k1, k2 . . . , kr} be a set of integers satisfying ki > s− r
for every i. Let F be an L-intersecting family of subsets of [n] such that |F | ∈ K
for every F ∈ F . Then

|F| ≤
(
n

s

)
+

(
n

s− 1

)
+ · · ·+

(
n

s− r + 1

)
.

For L = {l1, l2, . . . , ls} of s positive integers, Snevily [19] proposed the follow-
ing conjecture and proved it by himself in 2003 [20].
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Theorem 1.3 (Snevily) Let L = {l1, l2, . . . , ls} a set of s positive integers. If
F is an L-intersecting family of subsets of [n], then

|F| ≤
s∑

i=0

(
n− 1

i

)
.

These results have been considered to be extended to simplicial complexes.
Recall that by a simplicial complex we mean a collection of sets M with the
property that if A ∈ 4 and B ⊆ A then B ∈ 4. We call the elements of
4 the faces of 4. For S ∈ 4, the dimension of S is |S| − 1. The dimension

of 4 is dim(4)
def
= max{|A| − 1 : A ∈ 4}. Given a simplicial complex 4 of

dimension d−1 we let fi−1(4)
def
= |{A ∈ 4 : |A| = i}|, for i = 0, 1, . . . , d, and call

f(4)
def
= (f0(4), f1(4), . . . , fd−1(4), ) the f -vector of 4. For all 4, f−1 = 1. We

call the 0-dimensional faces the vertices of 4. We call F is a facet of 4 if there
do not exist F ′ ∈ 4 such that F ( F ′. For a vertex v of 4, denote the link of v
in 4 to be

link4(v) := {E : E ∪ v ∈ 4, v /∈ E},

that is it is the star at v, with v itself removed from each set thereof. Obviously,
link4(v) is also a simplicial complex. A simplicial complex4 is called a near-cone
with respect to an apex vertex v if for every face F , the set (F\{w})∪{v} is also
a face for each vertex w ∈ F .

A long-standing problem in extremal set theory is the following Chvátal’s
conjecture [5].

Conjecture 1.4 (Chvátal’s conjecture, [5]) Let F be any family of subsets
of [n] such that S ∈ F , T ⊂ S implies T ∈ F , then some largest intersecting
subfamily of F has the form

{A ∈ F : x ∈ A} for some x ∈ [n].

Usually, we consider the following version of Chvátal’s conjecture. If F is an
intersecting family of the faces (of possibly differing dimensions), then

|F| ≤ max
v∈V (4)

(∑
r

fr(link4(v))

)
.

Erdős [6] mentioned that this conjecture is one of the combinatorial problems
which he would most like to see solved and remarked “It is surprising that this
attractive conjecture is probably very difficult”. In 1992, Snevily [18] showed the
positivity of Chvátal conjecture when 4 is a near-cone complex, which is the
most exciting improvement for this conjecture.
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Theorem 1.5 (Snevily) If F is an intersecting family of the faces of a near-
cone complex, then

|F| ≤ max
v∈V (4)

(∑
r

fr(link4(v))

)
.

In this paper, we will give the simplicial complex versions of Frankl-Wilson
type theorem and Snevily’s theorem. This paper is organized as follow. In Sec-
tion 2, we shall give simplicial complex version of Frankl-Wilson theorem [11]
and Alon-Suzuki-Babai theorem [1]. In Section 3, we will give an upper bound
for the restricted intersecting family of faces of a near cone complex, which is a
generalization of Snevily’s two theorems. We also propose a general conjecture.
Finally, applying our theorems to some special simplicial complexes, we shall de-
duce some upper bounds for the cardinality of the restricted intersecting families
on independent set of the graph, the set partition, the r-separated sets and the
King Arthur and his Knight Table.

2 Frankl-Wilson type theorem for simplicial com-

plex

In this section, we will show a Frankl-Wilson type theorem for the simpicial
complex. First, let us introduce some notations which will be used in the proof.
Denote x = (x1, x2, . . . , xn) a vector of n variables with each variable xj taking
values 0 or 1. A polynomial p(x) in variables xi, 1 ≤ i ≤ n, is called multilinear
if the power of each variable xi in each term is at most one. Clearly, if each
variable xi takes only the values 0 and 1, then any polynomial in variables xi,
1 ≤ i ≤ n, is multilinear since xki = xi for k ∈ N+. For a subset F of [n], that
is, let characteristic vector of F to be the vector uF = (u1, u2, . . . , un) ∈ Rn with
uj = 1 if j ∈ F and uj = 0 otherwise.

As warming up, we first state a simplicial complex version of Frankl-Wilson
theorem. Note that we just make some slight changes in the proof due to Frankl
and Wilson [11]. .

Theorem 2.1 Let L be an ordered set of s distinct non-negative integers less
that n. Suppose that 4 is a simplicial complex and F = {F1, . . . , Fm} is a family
of faces of 4 such that |Fi ∩ Fj| ∈ L for every 1 ≤ i, j ≤ m. Then

m ≤
s−1∑
i=−1

fi(4).

Proof. For 1 ≤ i ≤ m, define

φFi
(x) =

∏
lj<|Fi|

(
∑
t∈Fi

xt − lj),
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where x = (x1, x2, . . . , xn) with each xj taking values 0 or 1. Recall that uFj
be

the characteristic vector of Fj. Then we have φFi
(uFj

) 6= 0 if and only if Fi ⊆ Fj

for every pair 1 ≤ i 6= j ≤ m.

Now we proceed to show the polynomials {φF1(x), φF2(x), . . . , φFm(x)} are
linearly independent. Suppose that we have the following linear combination of
these polynomials that equals zero

m∑
i=1

αiφFi
(x) = 0. (2.1)

If α1, α2, . . . , αm are not all zero, then let Fi0 be the minimal face for which
αFi0

6= 0. It means that for each F ( Fi0 , αF = 0. On the other hand, for
each F ∈ F satisfying that Fi0 do not contain F , we have that |F ∩ Fi0| ∈ L
and |F ∩ Fi0| < |F |. It follows that φF (uFi0

) = 0. Thus, from (2.1) we get that
αFi0

φFi0
(uFi0

) = 0. Since φFi0
(uFi0

) 6= 0, we have αFi0 = 0, it is a contradiction.
Hence the polynomials {φF1(x), φF2(x), . . . , φFm(x)} are linearly independent.

By the definition of simplicial complex and the definition of φFi
(x), we see

that the monomial xj1xj2 · · ·xjt appears in φFi
(x) only if {j1, j2, . . . , jt} is a face

of 4. It follows that

m ≤
s−1∑
i=−1

fi(4)

This completes the proof.

In fact, using the same approach, we can also deduce a simpicial complex
version of Alon-Babai-Suzuki-type theorem.

Theorem 2.2 let L = {l1, l2, . . . , ls} be a set of s nonnegative integers and K =
{k1, k2 . . . , kr} be a set of integers satisfying min ki > max lj for 1 ≤ i ≤ r and
1 ≤ j ≤ s. Suppose that 4 is a simplicial complex and F = {F1, . . . , Fm} is a
family of faces of 4 such that |Fi ∩Fj| ∈ L for every 1 ≤ i 6= j ≤ m and |F | ∈ K
for every F ∈ F . Then

m ≤
s−1∑

i=s−r

fi(4).

Proof. For 1 ≤ i ≤ m, define

ϕFi
(x) =

s∏
j=1

(
∑
t∈Fi

xt − lj),

where x = (x1, x2, . . . , xn) with each xj taking values 0 or 1. From the condition
min ki > max lj for 1 ≤ i ≤ r and 1 ≤ j ≤ s, we have L ∩ K = ∅. It implies that
ϕFi

(uFi
) 6= 0 for 1 ≤ i ≤ m and ϕFi

(uFj
) = 0 for every pair 1 ≤ i 6= j ≤ m.
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Let Q be the family of the faces I of 4 with at most s− r vertices, define

xI =
∏
i∈I

xi and pI(x) = xIP (x),

where P (x) is the sum of all the monomials xi1xi2 · · ·xit in the expansion of
r∏

j=1

(
n∑

i=1

xi − kj
)

, such that {xi1 , xi2 , . . . , xit} are the faces of 4. It means that

for each Fi ∈ F , since the intersection of I and Fi is still a face of 4, we have
pI(uFi

) = 0.

We aim to prove the polynomials ϕFi
and pI are linearly independent. Assume

that we have a linear combination of these polynomials that equals zero:

m∑
i

αiϕFi
(x) +

∑
I∈Q

βIpI(x) = 0 (2.2)

We need to prove that αi and βI are all zero.

For any 1 ≤ i ≤ m, subscribing x = uFi
in (2.2) leads to pI(uFi

) = 0 for
all I ∈ Q and ϕFj

(uFi
) = 0 for i 6= j. It follows that αiϕFi

(uFi
) = 0. Since

ϕFi
(uFi

) 6= 0, we have αi = 0. Thus (2.2) reduces to
∑
I∈Q

βIpI(x) = 0. It is easily

seen that pI are linearly independent. It implies that βI = 0 for all I ∈ Q. Hence,
we attain

m ≤
s−1∑

i=s−r

fi(4).

3 Near-cone complexes

In this section, we will study the restricted intersecting family on the near-cone
complex and give an upper bound for the cardinality of the L-intersecting family
on the near-cone complex when L is a set of positive integers. Recall that a
simplicial complex 4 is called a near-cone with respect to an apex vertex v if for
every face F , the set (F\{w}) ∪ {v} is also a face for each vertex w ∈ F . Let
X = {x1.x2, . . . , xn} be a collection of n integer variables. Following the notation
in [20], we denote

(
X
k

)
the sum of all k-term multilinear monomials from X and

∑(
X

k

)
=

∑
xi1

xi2
···xik

∈(X
k)

xi1xi2 · · ·xik .

Let
(
X
0

)
= 1. Define

gL(y) =
∏

1≤i≤k

(y − li).
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Since gL(y) is a polynomial in y of degree k, we can rewrite it in the form gL(y) =
k∑

h=0

ch
(
y
h

)
, where c0, c1, . . . , ck are rational numbers independent of y, which we

will call the coefficients of L.

Let

g∗L(x) = ck
∑(

X

k

)
+ ck−1

∑(
X

k − 1

)
+ · · ·+ c0,

where the coefficients ci are the coefficients of L and x = (x1, x2, . . . , xn). With
each set Fi ∈ 4, we associate its characteristic vector vi = (vi1 , vi2 , . . . , vin) ∈ Rn,
where vij = 1 if j ∈ Fi, and vij = 0 otherwise. Note that g∗L(vi) = gL(|Fi|).

For each Fi = (i1, i2, . . . , it) which is a member of F , let F ∗i = {xi1 , xi2 , . . . , xit}
be a collection of |Fi| variables where xij ∈ F ∗i if and only if ij ∈ Fi. Let

(
F ∗i
k

)
(k ≥ 1) denote the set of all k-term multilinear monomials from F ∗i and

(
F ∗i
0

)
= 1.

Using the same coefficients as in g∗L(x) define

g∗Fi
(x) = ck

∑(
F ∗i
k

)
+ ck−1

∑(
F ∗i
k − 1

)
+ · · ·+ c0.

Note that g∗Fi
(vi) = gL(vi) = gL(|Fi|) and that g∗Fi

(vj) = gL(|Fi ∩ Fj|) = 0 for all
i 6= j.

Before the statement of our result, let us recall that fi−1(4) is the number of
i-dimension faces of4 and for vertex v of4, link4(v) := {E : E∪v ∈ 4, v /∈ E}.
Now we proceed to prove our main result.

Theorem 3.1 Let L = {l1, l2, . . . , ls} be a set of s positive integers. Suppose that
4 is a near-cone simplicial complex with an apex vertex v and F = {F1, . . . , Fm}
is a family of the faces of 4 such that |Fi ∩ Fj| ∈ L for every 1 ≤ i 6= j ≤ m.
Then

m ≤
s−1∑
i=−1

fi(link4(v)).

Proof. Let
F1 = {Fi : Fi ∈ F and v ∈ Fi}

and
F2 = {Fi : Fi ∈ F , v /∈ Fi and Fi ∪ v ∈ 4}.

Then, denote F3 = F\{F1 ∪ F2}, that is,

F3 = {Fi : Fi ∈ F , v /∈ Fi and Fi ∪ v /∈ 4}.

For Fi ∈ F1 or Fi ∈ F3, define

φFi
(x) =

∏
lk<|Fi|

(
∑
t∈Fi

xt − lk),
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and for Fi ∈ F2, define
φFi

(x) = g∗Fi
(x),

where x = (x1, x2, . . . , xn) with each xj taking values 0 or 1. Then we have
φFi

(uFj
) 6= 0 if and only if Fi ⊆ Fj for every pair 1 ≤ i, j ≤ m. By the definition

of φFi
(x), we see that each the monomial xj1xj2 · · · xjt appearing in φFi

(x) satisfies
that (j1, j2, . . . , jt) is a face of 4.

Let Q be the family of the faces of 4 with dimension at most s − 1 which
contain the apex vertex v. For each L ∈ Q, define

qL(x) = (xv − 1)
∏

j∈L\{v}

xj.

Let H be the family of the faces of 4 with dimension at most s− 1 satisfying
that for each R ∈ H, we have that v /∈ R and R ∪ {v} /∈ 4. For each R ∈ H,
define

hR(x) =
∏
j∈R

xj.

We aim to show these three polynomials φFi
, qL, hR are linearly independent.

Suppose that we have a linear combination of these polynomials that equals zero:

m∑
i=1

αFi
φFi

(x) +
∑
L∈Q

βLqL(x) +
∑
R∈H

γRhR(x) = 0. (3.1)

We need to prove that αFi
, βL and γR are all zero.

Claim 1. γR = 0 for R ∈ H.

If not, there exists a face R0 such that γR 6= 0. We consider the coefficient of
the monomial

∏
j∈R0

xj in (3.1). Since 4 is a near-cone complex with apex vertex v

and R0 ∪ {v} is not a face of 4, we claim that R0 is a facet of 4. If not, assume
that there exist F ∈ 4 such that R0 ( F . If v ∈ F , then we find that v∪R0 ∈ 4,
it is a contradiction. If v /∈ F , since 4 is a near cone complex with v, we have
that for any subset S of F , S ∪ {v} is a face of 4. Thus v ∪ R0 ∈ 4. It is a
contradiction. Hence R0 is a facet of 4. By the definition of φFi

(x) and qL(x),
it is easily seen that the monomial

∏
j∈R0

xj do not appear in φFi
(x) and qL(x). It

follows that the monomial
∏

j∈R0

xj only appear in hR0(x). Thus the coefficient of∏
j∈R0

xj in (3.1) is γR. It implies that γR0 = 0, it is a contradiction. Hence γR = 0

for R ∈ H.

Claim 2. αFi
= 0 for Fi ∈ F1.

If not, let Fi0 be the minimal face for which αFi0
6= 0. It means that for each

F ( Fi0 and F ∈ F1, αF = 0. On the other hand, for each F ∈ F1 satisfying that
Fi0 do not contain F , we have that |F ∩ Fi0| ∈ L and |F ∩ Fi0| < F . It follows
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that φF (uFi0
) = 0 for F ∈ F1. For Fi ∈ F2, by the definition of g∗Fi

(x), we have
φFi

(uFi0
) = 0. For Fi ∈ F3, it follows from the definition of F3 that Fi0 does not

contain Fi. Thus φFi
(uFi0

) = 0. At last, since v ∈ Fi0 , we have qL(x) = 0 for
each L ∈ G. Summing up, we deduce from (3.1) that αFi0

φFi0
(uFi0

) = 0. In view
of φFi0

(uFi0
) 6= 0, we arrive at that αFi0

= 0, it is a contradiction. Hence αFi
= 0

for Fi ∈ F1.

Combining Claim 1 and Claim 2 reduces (3.1) to∑
Fi∈F2∪F3

αFi
φFi

(x) +
∑
L∈Q

βLqL(x) = 0 (3.2)

Claim 3. βL = 0 for L ∈ Q.

Rewrite (3.2) as[ ∑
Fi∈F2∪F3

αFi
φFi

(x) +
∑
L∈Q

βLq
′
L(x)

]
+ xv

(∑
L∈Q

βLq
′
L(x)

)
= 0, (3.3)

where
q′L(x) =

∏
j∈L, j 6=v

xj.

Notice that xv does not appear in the first parentheses of equation (3.2). It follows
that ∑

L∈Q

βLq
′
L(x) = 0.

It is easily checked that the polynomials q′L(x) for L ∈ Q are linearly independent.
Therefore, we conclude that βL = 0 for L ∈ Q.

The above claims lead to the conclusion that we need only to show that φFi
(x)

are linearly independent for Fi ∈ F2 ∪ F3.

Claim 4. αFi
= 0 for Fi ∈ F3.

If not, let Fi0 be the minimal face for which αFi0
6= 0. Note that for each

F ∈ F3 satisfying that Fi0 do not contain F , we have φF (uFi0
) = 0. For Fi ∈ F2,

by the definition of g∗Fi
(x), we have φFi

(uFi0
) = 0. Summing up, we obtain

that αFi0
φFi0

(uFi0
) = 0 and φFi0

(uFi0
) 6= 0. It follows that αFi0

= 0, it is a
contradiction. Hence αFi

= 0 for Fi ∈ F3.

By the above argument, in order to prove the polynomials φFi
(x), qL(x) and

hR(x) are linearly independent, we aim to show that φFi
(x) are linearly indepen-

dent for Fi ∈ F2. In [20], the polynomials g∗Fi
(x) have been proven to be linearly

independent. Hence we conclude that the polynomials φFi
(x), qL(x) and hR(x)

are linearly independent.

By the definition of simplicial complex and the definitions of the polynomials
φFi

(x), qL(x) and hR(x), each monomial xi1xi2 · · ·xit appearing in the above
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polynomials satisfies that {i1, i2, . . . , it} is a face of 4. Thus we have

m+ |Q|+ |H| ≤
s−1∑
i=−1

fi.

By the definition of Q and H, we have |Q| =
s−1∑
i=−1

f ′i and |H| =
s−1∑
i=−1

f ′′i , where

f ′i and f ′′i denote the number of the i-dimensional faces which contain v and the
number of the i-dimensional faces which do not contain v and unite v is not a
face, respectively. Hence, we get

m ≤
s−1∑
i=−1

fi −
s−1∑
i=−1

f ′i −
s−1∑
i=−1

f ′′i

=
s−1∑
i=−1

fi(link4(v)).

This completes the proof.

Remark that the above theorem implies Theorem 1.3 when 4 is the family of
all subsets of [n] and Theorem 1.5 when L = {1, 2, . . . , d(4)}.

Moreover, we propose a conjecture that Theorem 3.1 holds for all simplicial
complexes.

Conjecture 3.2 let L = {l1, l2, . . . , ls}. If F = {F1, . . . , Fm} is a family of the
faces of 4 such that |Fi ∩ Fj| ∈ L for every 1 ≤ i, j ≤ m. Then

|F| ≤ max
v∈V (4)

(
s−1∑
i=−1

fi(link4(v))

)
.

Note that Conjecture 3.2 implies Chvátal’s conjecture when L = {1, 2, . . . , d(4)}.

4 Applications

In this section, we will apply our results to some special simplicial complexes and
give upper bounds on cardinalities of certain intersecting families of independent
sets of graphs.

4.1 Independece Complex

Hurlbert and Kamat [14] considered the Erdős-Ko-Rado type property of the
independent set of the chordal and the bipartite graph. As known, the indepen-
dent sets of a graph can be considered as a simplicial complex. Given a graph
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G = (V,E), follow Hurlbert and Kamat’s notions, we denote the family of in-
dependent r-sets of V by J (r)(G) and the subfamily {A ∈ J (r)(G), v ∈ A} by

J
(r)
v (G). Applying Theorem 2.1, we get the Frankl-Wilson type theorem for the

independent sets of a graph.

Theorem 4.1 Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers. Sup-
pose that 4 is a simplicial complex and F = {F1, . . . , Fm} is a family of the
independent sets of G such that |Fi ∩ Fj| ∈ L for every 1 ≤ i 6= j ≤ m. Then

m ≤
s−1∑
i=−1

|J (i)(G)|.

It is easily seen that if graph G has an isolated vertex v, then the independence
complex of G is a near cone complex with apex vertex v. Note that |J (r)

v (G)|
also enumerates the number of (r − 2)-dimensional faces F of the independence
complex of G satisfying that v /∈ F and v ∪ F is a face of the independence
complex of G. Thus, by Theorem 3.1, we obtain the following theorem.

Theorem 4.2 Let L = {l1, l2, . . . , ls} be a set of s positive integers. Suppose
that F = {F1, . . . , Fm} is a family of the independent sets of a graph G with an
isolated vertex v such that |Fi ∩ Fj| ∈ L for every 1 ≤ i 6= j ≤ m. Then

m ≤
s∑

i=1

J (i)
v (G).

4.2 Set Partition

Intersecting problems for the set partition have also received some attention.
Recall that a set partition of [n] is a collection of pairwise disjoint non-empty
subsets (called blocks) of [n] whose union is [n]. Let B(n) denote the set of all
set partitions of [n]. Then |B(n)| is the nth Bell number Bn. A family F ⊂ B(n)
is said to be L -intersecting if any two elements of A have exactly l blocks in
common, where l ∈ L.

Denote P n
k the set of all set partitions of [n] with k blocks. Then |P n

k | is the
Stirling number of the second kind, denoted by S(n, k). Erdős and Székely [8]
gave the following theorem.

Theorem 4.3 (Erdős and Székely) Let n ≥ k ≥ t ≥ 1. Suppose that F ⊂ P n
k

is {1, 2, . . . , t}-intersecting. If n ≥ n0(k, t), then |F| ≤ |P|, where P = {P ∈
P n
k : {1}, . . . , {t} ∈ P}.

In 2008, Ku and Renshaw [15] obtained EKR type theorem for set partition.
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Theorem 4.4 (Ku and Renshaw) Let n ≥ 2. Suppose F ⊂ Bn is intersect-
ing. Then |F| ≤ Bn−1 with equality if and only if F consists of all set partitions
with a fixed singleton.

Theorem 4.5 (Ku and Renshaw) Let t ≥ 2. Suppose F ⊂ Bn is t-intersecting.
Then there exists a positive number n0(t) such that |F| ≤ Bn,t with equality if
and only if F consists of all set partitions with t fixed singletons.

From the structure of set partition, Brenti [4] constructed the following sim-
plicial complex

4p = {F ⊂ V : S∩T = ∅ for all S, T ∈ F such that S 6= T, and
∑
S∈F

|S| ≤ n−1},

where V = {S ⊂ [n − 1] : 1 ≤ |S| ≤ n − 1}. Note that each k − 1-dimensional
face of 4p is a set partition of [n] with k+ 1 blocks. From the definition of 4p, it
is easy to see that if two partition F1 and F2 share s blocks, then the faces of 4p

corresponding to F1 and F2 have s or s − 1 same vertices. Hence, by Theorem
2.1 we get the following theorem.

Theorem 4.6 Let L = {l1, l2, . . . , ls} be a set of s nonnegative integers. Suppose
that F = {F1, . . . , Fm} is a family of the set partitions of [n] such that any two
elements of F share li blocks, 1 ≤ i ≤ s. Then

m ≤
s′∑
i=0

S(n, i),

where s′ denotes the cardinality of the set {l1, . . . , ls} ∪ {l1 − 1, . . . , ls − 1}.

Furthermore, if L consists of consecutive integers, Theorem 4.6 leads to the
following two corollaries.

Corollary 4.7 For l ≥ 1, let L = {l, l + 1, . . . , l + s − 1} be a set of s positive
integers. Suppose that F = {F1, . . . , Fm} is a family of the set partitions of [n]
such that any two elements of F have l + i− 1 same blocks, 1 ≤ i ≤ s. Then

m ≤
s+1∑
i=0

S(n, i).

Corollary 4.8 Suppose that F = {F1, . . . , Fm} is a family of the set partitions
of [n] such that |Fi ∩ Fj| ≤ t for every 1 ≤ i 6= j ≤ m. Then

m ≤
t∑

i=0

S(n, i).
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4.3 r-separated sets

For the circle, F ⊆ {1, 2, . . . , n} is said to be k-separated if any two elements
of F are separated by a gap of size at least k. Let 4sp be the collection of all
k-separated set of [n], it is obvious that 4sp is a simplicial complex. It is known
[12] that the number of the (i− 1)-dimensional faces is

(
n−ki

i

)
.

In 1997, Holroyd [12] posed the following question about King Arthur and the
Knights of the Round Table. There were altogether n knights and they each had
their own place at the Round Table. King Arthur needed to send out excursion
parties r(≤ n/2) to each party, on different days, but he did not wish to invite
trouble by sending out the same party more than once, nor did he wish to send
out two knights in the same party who occupied adjacent seats. King Arthur also
wished the information found by different parties to be correlated, and to aid in
this he required that any two parties should have at least one knight in common.
Holroyd’s question was: how long could this go on for, in other words, how many
different parties could be made up? It seemed likely that the number of different
parties would be

(
n−r−1
r−1

)
.

This problem can be restated as follow. Let G be a graph with vertex set V
where |V | = n, and there exist edge between v1, v2 ∈ V if the distance between
v1 and v2 is no more than k − 1. Let A be an intersecting family of independent
r-subsets of V . Thus the above problem can be represented as follow.

If 1 ≤ r ≤ n/2 and G is a cycle with n vertices, and A is an intersecting
family of independent r-subsets of V (G), then

|A| ≤
(
n− r − 1

r − 1

)
.

In [22], Talbot proved a more general result as follow.

Theorem 4.9 (Talbot) Let 1 ≤ r ≤ n/2 and G be the kth power of a cycle Ck
n.

(The power of a graph G is the graph obtained from G by adding an extra edge
joining two vertices u and w whenever u and w are a distance ≤ k apart in G.).
If A is an intersecting family of independent r-subsets of V (G), then

|A| ≤
(
n− kr − 1

r − 1

)
.

From Theorem 2.2, we can deduce the following result.

Theorem 4.10 Let L = {l1, l2, . . . , ls} and K = {k1, k2 . . . , kr} satisfying min ki >
max lj for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Let G be the kth power of a cycle Ck

n. If F is
a family of independent ki-subsets of V (G) for 1 ≤ i ≤ r such that |Fi ∩ Fj| ∈ L
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for every 1 ≤ i, j ≤ m. Then

|F| ≤
s−1∑

i=s−r

(
n− ki
i

)
.
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[23] R. Woodroofe, Erdős-Ko-Rado theorems for simplicial complexes, J. Combin.
Theory Ser. A, 118 (2011), 1218–1227.

15


