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Abstract. Let G be a nontrivial edge-colored connected graph. A rainbow edge-cut is an
edge-cut R of G, and all edges of R have different colors in G. For two different vertices u
and v of G, a u-v-edge-cut is an edge-cut separating them. An edge-colored graph G is called
strong rainbow disconnected if for every two distinct vertices u and v of G, there exists a both
rainbow and minimum u-v-edge-cut in G, and such an edge-coloring is called a strong rainbow
disconnection coloring (srd-coloring for short) of G. For a connected graph G, the strong rainbow
disconnection number (srd-number for short) of G, denoted by srd(G), is the minimum number
of colors required to make G strong rainbow disconnected. In this paper, we first characterize the
graphs with m edges satisfing srd(G) = k for each k ∈ {1, 2,m}, respectively, and we also show
that the srd-number of a nontrivial connected graph G is equal to the maximum srd-number
in the blocks of G. Secondly, we study the srd-numbers for the complete k-partite graphs, k-
edge-connected k-regular graphs and grid graphs. Finally, we prove that for a connected graph
G, computing srd(G) is NP-hard. In particular, we prove that it is NP-complete to decide
if srd(G) = 3 for a connected cubic graph. We also show that the following problem is NP-
complete: given an edge-colored (with an unbounded number of colors) connected graph G,
check whether the given coloring makes G strong rainbow disconnected.

1. Introduction
All graphs considered in this paper are simple, nontrivial, finite and undirected. Let G be
a nontrivial connected graph with vertex-set V (G) and edge-set E(G). For v ∈ V (G), let
dG(v) and NG(v) denote the degree and the neighborhood of v in G (or simply d(v) and N(v),
respectively, when it is clear which G it refers to). We follow the notations and terminology of
Bondy and Murty [1].
An edge-coloring of G is proper if adjacent edges receive different colors. The chromatic index
of G, denoted by χ′(G), is the minimum number of colors required in a proper edge-coloring
of G. An important theorem due to Vizing [2], asserts that for any simple graph G, either
χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1. If χ′(G) = ∆(G), then G is said to belong to Class 1; and
the others to Class 2.
We know that there are two ways to study the connectivity of graphs, one is to use paths, and
the other is to use cuts. The rainbow connection using paths has been studied extensively; see
for examples, papers [3, 4, 5] and book [6] and the references therein. So, it is natural to consider
the rainbow edge-cuts for the colored connectivity in edged-colored graphs. In [7], Chartrand et
al. first discussed the rainbow edge-cut by introducing the concept of rainbow disconnection of
graphs. In [8] we call all of them global colorings of graphs since they relate global structural
property: connectivity of graphs.



An edge-cut of a connected graph G is a subset of edges which separates some pair of vertices.
For distinct vertices u and v of G, we denote by λG(u, v) (or simply λ(u, v) when it is clear
which G it refers to) the minimum cardinality in an edge-cut S such that u and v are in different
components of G − S, and this kind of edge-cut S is called a minimum u-v-edge-cut. The
minimum cardinality of an edge cut of G is the edge-connectivity of G, denoted by λ(G) (i.e.,
λ(G) is the minimum value of λG(u, v) taken over all pairs of distinct vertices u, v); whereas
the maximum value of λG(u, v) taken over all pairs of distinct vertices u, v is the upper edge-
connectivity of G, denoted by λ+(G), which was introduced and studied in [9, 10]. A u-v-path
is a path with ends u and v. The following proposition presents an alternate interpretation of
λ(u, v) (see [11, 12]).

Proposition 1.1 For every two distinct vertices u and v of a graph G, λ(u, v) is equal to the
maximum number of pairwise edge-disjoint u-v-paths in G.

A rainbow edge-cut is an edge-cut R of an edge-colored connected graph G, and all edges of R
have different colors in G. Let u and v be two vertices of G. A rainbow edge-cut R of G is called
a rainbow u-v-edge-cut if u and v belong to different components of G − R. An edge-colored
graph G is called rainbow disconnected if for each pair of different vertices u and v of G, there
exists a rainbow u-v-edge-cut in G. Such an edge-coloring is called a rainbow disconnection
coloring (abbreviated as rd-coloring) of G. The rainbow disconnection number (abbreviated
as rd-number) of G, denoted by rd(G), is the minimum number of colors required to make G
rainbow disconnected. An optimal rd-coloring of G is an rd-coloring with rd(G) colors.
Remember that in the above Menger’s famous result of Proposition 1.1, only minimum edge-cuts
play a role, however, in the definition of rd-colorings we only requested the existence of a u-v-
edge-cut between vertices u and v, which could be any edge-cut (large or small are both OK).
This may cause the failure of a colored version of such a nice Min-Max result of Proposition 1.1.
In order to overcome this problem, we will introduce the concept of strong rainbow disconnection
in graphs, with a hope to set up the colored version of the so-called Max-Flow Min-Cut Theorem.
An edge-colored graph G is called strong rainbow disconnected if for every two distinct vertices
u and v of G, there exists a both rainbow and minimum u-v-edge-cut (rainbow minimum u-v-
edge-cut for short) in G. Such an edge-coloring is called a strong rainbow disconnection coloring
(abbreviated as srd-coloring) of G. For a connected graph G, similarly, the strong rainbow
disconnection number(abbreviated as srd-number) of G, denoted by srd(G), is the minimum
number of colors required to make G strong rainbow disconnected. An srd(G)-coloring with
srd(G) colors is called an optimal srd-coloring of G.
In the remainder of this paper, we first present some basic results for the srd-numbers of graphs
in Section 2. Then we study the srd-numbers for some special graphs in Section 3. In the last
section, we show that for a connected graph G, computing srd(G) is NP-hard. In particular,
we prove that it is NP-complete to decide if srd(G) = 3 for a connected cubic graph. We also
show that the following problem is NP-complete: given an edge-colored (with an unbounded
number of colors) connected graph G, check whether the given coloring makes G strong rainbow
disconnected.

2. Some basic results
Let G be a connected graph. Suppose that X is a vertex subset of G, and let X = V (G) \X.
Recall that for a pair of distinct vertices x and y of G, we say that an edge-cut ∂(X) separates
x and y if x ∈ X and y ∈ V \X. We denote by CG(x, y) the minimum size of such an edge-cut
in G. The graph G/X is obtained from G by shrinking X to a single vertex. A trivial edge-cut
is an edge-cut associated with a single vertex. We denote by Ev the set of edges incident with
v in G. A block of a graph is a subgraph which contains no cut-vertices and is maximal with
respect to this property. From definitions, the following inequalities are obvious.



Proposition 2.1 If G is a connected graph with edge-connectivity λ(G), upper edge-connectivity
λ+(G) and number e(G) of edges, then

λ(G) ≤ λ+(G) ≤ rd(G) ≤ srd(G) ≤ e(G). (1)

Our first question is that the new parameter srd-number is really something new, different from
rd-number ? However, we have not found any connected graph G with srd(G) 6= rd(G). So, we
pose the following conjecture.

Conjecture 2.2 For any connected graph G, srd(G) = rd(G).

In the rest of the paper we will show that for many classes of graphs the conjecture is true.
In this section, we characterize all nontrivial connected graphs of m edges such that srd(G) = k
for each k ∈ {1, 2,m}, respectively. We first characterize the graphs with srd(G) = m. The
following are two lemmas which we will be used.

Lemma 2.3 [13] Let ∂(X) be a minimum edge-cut in a graph G separating two vertices x and
y, where x ∈ X, and let ∂(Y ) be a minimum edge-cut in G separating two vertices u and v
of X (X), where y ∈ Y . Then every minimum u-v-edge-cut in G/X (G/X) is a minimum
u-v-edge-cut in G.

It follows from Lemma 2.3 that we get the following result.

Lemma 2.4 Let G be a connected graph of order at least 3. Then srd(G) ≤ e(G)− 1.

Proof. We distinguish the following two cases.
Case 1. There is at least one pair of vertices having nontrivial minimum edge-cut.
Let CG(x, y) be a nontrivial minimum u-v-edge-cut of G, where x, y ∈ V (G), and let ∂(X) =
min{CG(x, y)|x, y ∈ V (G)}. Suppose that ∂(X) is a nontrivial minimum x0-y0-edge-cut in graph
G, where x0 ∈ X, and let ∂(Y ) be a minimum u-v-edge-cut in G, where u, v ∈ X and y0 ∈ Y .
By Lemma 2.3, we get that every minimum u-v-edge-cut in G/X is a minimum u-v-edge-cut
in G. Now we give an edge-coloring c for G by assigning different colors for each edge of G[X]
using colors from [e(G[X])] and assigning different colors for each edge of G[X] using colors
from [e(G[X])], respectively, and assigning |∂(X)| new colors for ∂(X). Note that the Ew is
rainbow for each vertex w of G, and |c| = max{e(G[X]), e(G[X])} + |∂(X)| ≤ e(G) − 1 since
e(G[X]), e(G[X]) ≥ 1.
We can verify that the coloring c is an srd-coloring of G. Let p and q be two vertices of G. If
p and q have a nontrivial minimum edge-cut CG(p, q) in G, then |CG(p, q)| ≥ |∂(X)|. Suppose
that p ∈ X and q ∈ X. Without loss of generality, let d(p) ≤ d(q). If d(p) < |∂(X)|, then the
Ep is a rainbow minimum p-q-edge-cut in G under the coloring c; if |∂(X)| ≤ d(p) ≤ d(q), then
the ∂(X) is a rainbow minimum p-q-edge-cut in G under the coloring c. If p, q ∈ X (X), then
the minimum p-q-edge-cut in G/X (G/X) is a rainbow minimum p-q-edge-cut in G since the
colors of the edges in graph G/X (G/X) are different from each other under the restriction of
coloring c.
Case 2. For any two vertices of G, there are only trivial minimum edge-cut.
If G is a tree, then srd(G) = 1. Obviously, srd(G) ≤ e(G)− 1 since G is a connected graph with
n ≥ 3. Otherwise, we give a proper edge-coloring for G using n − 1 colors. Since G is not a
tree, we have n − 1 ≤ e(G) − 1. For any two vertices p, q of G, without loss of generality, let
d(p) ≤ d(q), the Ep is a rainbow minimum p-q-edge-cut in G. �

By Lemma 2.4, we immediately obtain the following result.

Corollary 2.5 Let G be a connected graph. Then srd(G) = e(G) if and only if G = P2.



Next, we further characterize the graphs G with srd(G) = 1 and 2, respectively. We first restate
two results as lemmas.

Lemma 2.6 [7] Let G be a nontrivial connected graph. Then rd(G) = 1 if and only if G is a
tree.

Lemma 2.7 [7] Let G be a nontrivial connected graph. Then rd(G) = 2 if and only if each block
of G is either K2 or a cycle and at least one block of G is a cycle.

Furthermore, we obtain the following two results.

Theorem 2.8 Let G be a nontrivial connected graph. Then srd(G) = 1 if and only if rd(G) = 1.

Proof. First, if srd(G) = 1, then we have 1 ≤ rd(G) ≤ srd(G) by Proposition 2.1. Next, if
rd(G) = 1, then the graph G has no cycle, namely, the G is a tree. We give one color for
all edges of G. Obviously, the coloring is an optimal srd-coloring of G, and so srd(G) = 1 by
Proposition 2.1. �

Theorem 2.9 Let G be a nontrivial connected graph. Then srd(G) = 2 if and only if rd(G) = 2.

Proof. First, if srd(G) = 2, then G has no cycle with a chord by Proposition 2.1. Furthermore,
we know srd(G) = 1 if G is a tree. Therefore, each block of G can only be K2 or cycle, and at
least one of the blocks of G is a cycle. By Lemma 2.7, we get rd(G) = 2.
Conversely, suppose rd(G) = 2. Then each block of G can only be K2 or cycle, and at least one
of the blocks of G is a cycle. We can give a 2-edge-coloring c for G as follows. Choose one edge
from each cycle to give color 1. The remaining edges are assigned color 2. We can verify that
the c is strong rainbow disconnected. Combined with Proposition 2.1, we have srd(G) = 2. �

By Lemmas 2.6 and 2.7, and Theorems 2.8 and 2.9, we immediately get Corollary 2.10.

Corollary 2.10 Let G be a connected graph. Then
(i) srd(G) = 1 if and only if G is a tree.
(ii) srd(G) = 2 if and only if each block of G is either a K2 or a cycle and at least one block of
G is a cycle.

Furthermore, we get srd(G) is equal to the maximum srd-number among all blocks of G. It
implies that we only need to study the srd-numbers of 2-connected graphs.

Lemma 2.11 If H is a block of a graph G, then srd(H) ≤ srd(G).

Proof. Let c be an optimal srd-coloring of G, and let u, v be two vertices of H. Suppose R is a
rainbow minimum u-v-edge-cut in G. Then R∩E(H) is a rainbow minimum u-v-edge-cut in H.
Assume that there exists a smaller u-v-edge-cut R′ in H. Then there is no u-v-path in G \ R′.
This contradicts to the definition of R since |R′| < |R|. Denote by cH the coloring c restricted
to H. So, cH is an srd-coloring of H. Therefore, srd(H) ≤ srd(G). �

Theorem 2.12 Let G be a connected graph with the set of blocks {B1, B2, . . . , Bt}, where t is
a positive integer. Then srd(G) = max{srd(Bi) : i ∈ [t]}.

Proof. Let k = max{srd(Bi) : i ∈ [t]}. If G is 2-connected, then G = B1 and the result is
obviously true. Thus, suppose that G has at least one cut-vertex. By Lemma 2.11, we have
k ≤ srd(G).
Let ci be an optimal srd-coloring of Bi. We define the edge-coloring c of G by c(e) = ci(e) if
e ∈ E(Bi) using colors from [k]. Let u and v be two vertices of G. If u, v ∈ Bi (i ∈ [t]), let
CG(u, v) = CrBi

(u, v), where CrBi
(u, v) is the rainbow minimum u-v-edge-cut in Bi. Obviously,



CG(u, v) is rainbow under the coloring ci. Moreover, it is minimum u-v-edge-cut inG. Otherwise,
assume that R is a smaller u-v-edge-cut in G. Then R ∩ E(Bi) is also a u-v-edge-cut in Bi,
which contradicts to the definition of CrBi

(u, v) since |R ∩ E(Bi)| < |CBi(u, v)|. Hence, the
CG(u, v) is a rainbow minimum u-v-edge-cut in G. Suppose that u ∈ Bi and v ∈ Bj , where
i < j and i, j ∈ [t]. Let BixiBi+1xi+1 . . . xj−1Bj be a unique Bi-Bj-path in the block-tree
of G, and let xi be the cut-vertex between blocks Bi and Bi+1. If u = xi and v = xj−1,
let CG(u, v) = min{CrBi+1

(xi, xi+1), . . . , CrBj−1
(xj−2, xj−1)}. If u = xi and v 6= xj−1, let

CG(u, v) = min{CrBi+1
(xi, xi+1), . . . , CrBj−1

(xj−2, xj−1), CrBj
(xj−1, v)}. If u 6= xi and v = xj−1,

let CG(u, v) = min{CrBi
(u, xi), C

r
Bi+1

(xi, xi+1), . . . , CrBj−1
(xj−2, xj−1)}. If u 6= xi and v 6= xj−1,

let CG(u, v) = min{CrBi
(u, xi), C

r
Bi+1

(xi, xi+1), . . . , CrBj
(xj−1, v)}. By the connectivity of G, we

know that λG(u, v) = |CG(u, v)|, and CG(u, v) is rainbow. Then CG(u, v) is a rainbow minimum
u-v-edge-cut in G. Hence, srd(G) ≤ k, and so srd(G) = k. �

Remark 2.13 As one has seen that all the above results for the srd-number behave the same
as for the rd-number. This supports Conjecture 2.2.

3. The srd-numbers of some classes of graphs
In this section, we investigate the srd-numbers of complete graphs, complete multipartite graphs,
regular graphs and grid graphs. Again, we will see that the results for srd-number behave the
same as for the rd-number. At first, we restate several results as lemmas which will be used in
the sequel.

Lemma 3.1 [14] Let G be a connected graph. If every connected component of G∆ is a unicyclic
graph or a tree, and G∆ is not a disjoint union of cycles, then G is in Class 1.

Lemma 3.2 [7] For each integer n ≥ 4, rd(Kn) = n− 1.

Lemma 3.3 [15] If G = Kn1,n2,...,nk
is a complete k-partite graph with order n, where k ≥ 2

and n1 ≤ n2 ≤ · · · ≤ nk, then

rd(Kn1,n2,...,nk
) =

{
n− n2, if n1 = 1,

n− n1, if n1 ≥ 2.
(2)

Lemma 3.4 [15] If G is a connected k-regular graph, then k ≤ rd(G) ≤ k + 1.

Lemma 3.5 [14] The rd-number of the grid graph Gm,n is as follows.
(i) For all n ≥ 2, rd(G1,n) = rd(Pn) = 1.
(ii) For all n ≥ 3, rd(G2,n) = 2.
(iii) For all n ≥ 4, rd(G3,n) = 3.
(iv) For all 4 ≥ m ≥ n, rd(Gm,n) = 4.

First, we get the srd-number for complete graphs.

Theorem 3.6 For each integer n ≥ 2, srd(Kn) = n− 1.

Proof. By Proposition 2.1 and Lemma 3.2, n− 1 ≤ rd(Kn) ≤ srd(Kn). It remains to show that
there exists an srd-coloring for Kn using n − 1 colors. Suppose first that n ≥ 2 is even. Let u
and v be two vertices of Kn, and let c be a proper edge-coloring of Kn using n− 1 colors. Since
λ(Kn) = n − 1, the Eu is a rainbow minimum u-v-edge-cut in G. Next suppose n ≥ 3 is odd.
We give the same edge-coloring for graph G as the coloring in Lemma 3.2. We now restate it as
follows. Let x be a vertex of Kn and Kn−1 = Kn − x. Then Kn−1 has a proper edge-coloring
c using n − 2 colors since n − 1 is even. Now we extend an edge-coloring c of Kn−1 to Kn by



assigning color n − 1 for each edge incident with vertex x. Let u and v be two vertices of Kn,
say u 6= x. Then the Eu is a rainbow minimum u-v-edge-cut in G since λ(Kn) = n− 1. �

Then, we give the srd-number for complete multipartite graphs.

Theorem 3.7 If G = Kn1,n2,...,nk
is a complete k-partite graph with order n, where k ≥ 2 and

n1 ≤ n2 ≤ · · · ≤ nk, then

srd(Kn1,n2,...,nk
) =

{
n− n2, if n1 = 1,

n− n1, if n1 ≥ 2.
(3)

Proof. It remains to prove that srd(G) ≤ n− n2 for n1 = 1, and srd(G) ≤ n− n1 for n1 ≥ 2 by
Proposition 2.1 and Lemma 3.3. Let V1, V2, . . . Vk be the k-partition of the vertices of G, and
Vi = {vi,1, vi,2, . . . , vi,ni} for each i ∈ [k]. We consider two cases.
Case 1. n1 = 1.
First, we have V1 = {v1,1} and d(v1,1) = n− 1. Let H = G− {v1,1}. Then ∆(H) = n− n2 − 1.
Then, we construct a proper edge-coloring c0 of H using colors from [∆(H) + 1]. For each
vertex x ∈ V (H), since dH(x) ≤ ∆(H), there is an ax ∈ [∆(H) + 1] which does not appear
on any edge incident with x in H. Since E(G) = E(H) ∪ {v1,1x | x ∈ NG(v1,1)}, we now
extend the edge-coloring c0 of H to an edge-coloring c of G by assigning c(v1,1x) = ax for
every vertex x ∈ NG(v1,1). Note that the Ex is a rainbow set for each vertex x ∈ V (G) \ v1,1

in G. Suppose p and q are two vertices of G. If p ∈ Vi and q ∈ Vj (1 ≤ i < j ≤ t), then
the Eq is a rainbow minimum p-q-edge-cut in G since λG(p, q) = n − nj . If p, q ∈ Vi, then
the Eq is a rainbow minimum p-q-edge-cut in G since λG(p, q) = n − ni. Hence, we obtain
srd(G) ≤ ∆(H) + 1 = n− n2.
Case 2. n1 ≥ 2.
Pick a vertex u of V1 and let F = G−u. Then ∆(F ) = n−n1 since n1 ≥ 2 and F∆ = G[V1−u].
By Lemma 3.1, F belongs to Class 1, and so χ′(F ) = n − n1. Furthermore, for each vertex
x ∈ NG(u), we know dF (x) ≤ ∆(F )− 1 = n−n1− 1. Similar to the argument of Case 1, we can
construct an edge-coloring c for G such that the Ex is a rainbow set for each vertex x ∈ V (G)\u
using n−n1 colors. Suppose p and q are two vertices of G. If p ∈ Vi and q ∈ Vj (1 ≤ i < j ≤ t),
then the Eq is a rainbow minimum p-q-edge-cut in G since λG(p, q) = n−nj . If p, q ∈ Vi (i ∈ [t]),
say q 6= u, then the Eq is a rainbow minimum p-q-edge-cut in G since λG(p, q) = n− ni. Hence,
srd(G) ≤ n− n1. �

For regular graphs, we only study the srd-number of k-edge-connected k-regular graphs.
Moreover, for a k-edge-connected k-regular graph G, where k is odd, we obtain that srd(G) = k
if and only if χ′(G) = k .

Lemma 3.8 [16] Let k be an odd integer, and G a k-edge-connected k-regular graph of order n.
Then χ′(G) = k if and only if rd(G) = k.

Theorem 3.9 Let G be a k-edge-connected k-regular graph. Then k ≤ srd(G) ≤ χ′(G).

Proof. It follows from Proposition 2.1 that srd(G) ≥ k. Let u, v be two vertices of G. Using
the fact that G is a k-edge-connected k-regular graph, one may verify that the Ev is a rainbow
minimum u-v-edge-cut under a proper edge-coloring of G. �

Theorem 3.10 Let k be an odd integer, G a k-edge-connected k-regular graph. Then srd(G) = k
if and only if rd(G) = k.



Proof. First, assume that srd(G) = k. Since λ(G) = k, we have rd(G) = k by Proposition
2.1. Conversely, if rd(G) = k, then we have srd(G) = k by Proposition 2.1 and Lemma 3.8 and
Theorem 3.9. �

By Lemma 3.8 and Theorem 3.10, we immediately get Corollary 3.11.

Corollary 3.11 Let k be an odd integer, G a k-edge-connected k-regular graph. Then srd(G) =
k if and only if χ′(G) = k.

The cartesian product of graphs G and H is the graph G�H whose vertex-set is V (G)× V (H)
and whose edge set is the set of all pairs (u1, v1)(u2, v2) such that either u1u2 ∈ E(G) and
v1 = v2, or v1v2 ∈ E(H) and u1 = u2. We consider the m× n grid graph Gm,n = Pm�Pn. Now
we determine the srd-number for grid graphs.

Theorem 3.12 The srd-number of the grid graph Gm,n is as follows.
(i) For n ≥ 2, srd(G1,n) = srd(Pn) = 1.
(ii) For n ≥ 3, srd(G2,n) = 2.
(iii) For n ≥ 4, srd(G3,n) = 3.
(iv) For 4 ≥ m ≥ n, srd(Gm,n) = 4.

Proof. First, it follows from Proposition 2.1 and Lemma 3.5 that the lower bounds on srd(Gm,n)
in (i)-(iv) hold. It remains to show that the upper bound on srd(Gm,n) in each of (i)-(iv) also
holds.
(i) We get srd(G1,n) = srd(Pn) = 1 by Corollary 2.10.
Similar to the proof of Lemma 3.5, we regard the vertices of Gm,n as a matrix. Let xi,j be the
vertex of the i row and j column, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
(ii) We give the same edge-coloring c for G2,n (n ≥ 3) using colors from the elements of Z3 of
the integer modulo 3 as in Lemma 3.5 (ii). We now restate it as follows.
? c(xi,jxi,j+1) = i+ j + 1 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ n− 1;
? c(x1,jx2,j) = j for 1 ≤ j ≤ n− 1.
One can verify that the c is an srd-coloring for G2,n. Let u and v be two vertices of G2,n. If u
and v are not in the same column, then two parallel edges between u and v which join vertices in
the same two columns form a rainbow minimum u-v-edge-cut in G2,n since λ(u, v) = 2. Suppose
u and v are in the same column. Because the Eu is rainbow and λ(u, v) = d(u) = d(v), the Eu
is a rainbow minimum u-v-edge-cut in G2,n.
(iii) Give the same edge-coloring c as for G3,n (n ≥ 3) in Lemma 3.5 (iii). Again we use the
elements of Z3 as the colors here. It can be restated as follows.
? c(xi,jxi,j+1) = i+ j + 1 for 1 ≤ i ≤ 3 and 1 ≤ j ≤ n− 1;
? c(x1,jx2,j) = j for 1 ≤ j ≤ n− 1;
? c(x2,jx3,j) = j + 2 for 1 ≤ j ≤ n− 1.
Now we show that the coloring c is an srd-coloring of G3,n. Observe that the Ex is rainbow
for each vertex x with d(x) ≤ 3 in G3,n under the coloring c. Let u and v be two vertices
of G3,n. When u and v have at most one vertex with degree 4, without loss of generality,
2 ≤ d(u) ≤ d(v) ≤ 4, the Eu is a rainbow minimum u-v-edge-cut in G3,n since λ(u, v) = d(u). If
d(u) = d(v) = 4, then three parallel edges between u and v which join vertices in the same two
columns form a rainbow minimum u-v-edge-cut in G3,n since λ(u, v) = 3.
(iv) For the graph Gm,n (4 ≤ m ≤ n), because Gm,n is bipartite and ∆(Gm,n) = 4, there exists
a proper edge-coloring c using 4 colors. Now we prove that the c is an srd-coloring of Gm,n. Let
u and v be two vertices of Gm,n. Suppose d(u) ≤ d(v). Then the Eu is a rainbow minimum
u-v-edge-cut in Gm,n (4 ≤ m ≤ n) since λ(u, v) = d(u). �



4. Hardness results
First, we show that our problem is in NP for any fixed integer k.

Lemma 4.1 For a fixed positive integer k, given a k-edge-colored graph G, deciding whether G
is a strong rainbow disconnected under the coloring is in P .

Proof. Let n, m be the number of the vertices and edges of G, respectively. Let u, v be two
vertices of G. Because G has at most k colors, we have at most

∑k
l=1

(
m
l

)
rainbow edge subsets

in G, denoted the set of the subsets by S. One can see that this number is upper bounded by a
polynomial in m when k is a fixed integer (say kmk, roughly speaking). Given a rainbow subset
of edges S ∈ S, it is checkable in polynomial time to decide whether S is a u-v-edge-cut of G, just
to see whether u and v are not in the same component of G \S, and the number of components
is a polynomial in n. If each rainbow subset in S is not a u-v-edge-cut in G, then the coloring
is not an srd-coloring of G, which can be checked in polynomial time since the number of such
subsets is polynomial many in m. Otherwise, let the integer l0(≤ k) be the minimum size of a
u-v-edge-cut in G, and this l0 can be computed in polynomial time. Then, if one of the rainbow
subsets of S is a u-v-edge-cut of G with size l0, then it is a rainbow minimum u-v-edge-cut of
G, which can be done in polynomial time since the number of such subsets is polynomial many
in m. Otherwise, the coloring is not an srd-coloring. Moreover, there are at most

(
n
2

)
pairs of

vertices in G. Since k is an integer, we can deduce that deciding wether a k-edge-colored graph
G is strong rainbow disconnected can be checked in polynomial time. �

In particular, it is NP -complete to determine whether srd(G) = 3 for a cubic graph. We first
restate the following result as a lemma.

Lemma 4.2 [15] It is NP -complete to determine whether the rd-number of a cubic is 3 or 4.

Theorem 4.3 It is NP -complete to determine whether the srd-number of a cubic is 3 or 4.

Proof. The problem is in NP from Lemma 4.1. Furthermore, we get that it is NP-hard to
determine whether the srd-number of a 3-edge-connected cubic is 3 or 4 by Theorem 3.10 and
the proof of Lemma 4.2. �

Lemma 4.1 tells us that deciding whether a given k-edge-colored graph G is strong rainbow
disconnected for a fixed integer k is in P. However, the following problem is NP-complete: given
an edge-colored connected graph G, check whether the given coloring makes G strong rainbow
disconnected.

Theorem 4.4 Given an edge-colored graph G and two vertices s, t of G, deciding whether there
is a rainbow minimum s-t-edge-cut is NP-complete.

Proof. We know the problem is in NP, since for a graph G checking whether a given set of edges
is a rainbow minimum s-t-edge-cut in G can be done in polynomial time, just to see whether it
is an s-t-edge-cut and it has the minimum size λG(s, t) by solving the maximum flow problem.
We exhibit a polynomial reduction from the problem 3SAT. Given a 3CNF for φ = ∧mi=1ci over
variables x1, x2, . . . , xn, we construct a graph Gφ with two vertices s, t and give an edge-coloring
f such that Gφ has a rainbow minimum s-t-edge-cut if and only if φ is satisfiable.
The Gφ is defined as follows:

V (Gφ) = {s, t} ∪ {xi,0, xi,1|i ∈ [n]} ∪ {ci,j |i ∈ [m], j ∈ {0, 1, 2, 3}}
∪ {pi,j , qi,j |i ∈ [n], j ∈ [`i]} ∪ {yi|i ∈ [5m+ 1]},



where `i is the number of times of each variable xi appearing among the clauses of φ.

E(Gφ) =
{
spi,l, sqi,l | i ∈ [n], l ∈ [`i]

}
∪
{
pi,lxi,0, qi,lxi,1 | i ∈ [n], l ∈ [`i]

}
∪
{
xj,0ci,0, ci,0ci,k, ci,kxj,1 |

if variable xj is positive in the k-th literal of clause ci,

i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}
}
.

∪
{
xj,1ci,0, ci,0ci,k, ci,kxj,0 |

if variable xj is negative in the k-th literal of clause ci,

i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}
}
.

∪
{
E(K6m+2) | V (K6m+2) = {c1,0, . . . , cm,0, y1, . . . , y5m+1, t}

}
.

The edge-coloring f is defined as follows (see Figure 1):

• The edges
{
spi,l, pi,lxi,0, sqi,l, qi,lxi,1 | i ∈ [n], l ∈ [`i]

}
are colored with a special color r0

i,l.

• The edge xj,0ci,0 or xj,1ci,0 is colored with a special color ri,k when xj is the k-th literal of
clause ci, i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}.
• The edge ci,kxj,0 or ci,kxj,1 is colored with a special color ri,4, i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}.
• The edge ci,kci,0 is colored with a special color ri,5, i ∈ [m], k ∈ {1, 2, 3}.
• The remaining edges are colored with a special color r0.

s t

x1,0

x1,1

c1,0

p1,1
r1,4

c2,0

x2,0

x2,1

x3,0

q3,2
x3,1

q1,1

p2,1

p3,1

q3,1

p3,2

q2,1

K6m+2

r1,5
r1,4 r1,5

r1,4

r1,5

c1,1

c1,2

c1,3

r1,1

r1,3

r1,2

r01,1

r01,1
r01,1

r01,1

r03,1
r03,1r03,2

r03,2
r03,2

r03,2

r03,1

r03,1

r0

r0

r0

Figure 1: The clause c1 = (x1, x2, x3) and the variable x3 is in clause c1 and c2.

Now we verify that Gφ has a rainbow minimum s-t-edge-cut under the f if and only if φ is
satisfiable.
Assume that there exists a rainbow minimum s-t-edge-cut S in Gφ under the coloring f , and let
us show that φ is satisfiable. Note that for each j ∈ [n], l ∈ lj , if S has an edge in {spj,l, pj,lxj,0}
(or {sqj,l, qj,lxj,0}), then a rainbow s-xj,0(or s-xj,1)-edge-cut in G[s ∪ xj,0 ∪ {pj,l|l ∈ lj}] is in S,
and no edge of {sqj,l, qj,lxj,1|l ∈ [lj ]} (or {spj,l, pj,lxj,0|l ∈ [lj ]}) is in S. Otherwise, it contradicts
to the assumption that S is a rainbow minimum s-t-edge-cut in Gφ. For each j ∈ [n], if a
rainbow s-xj,0-edge-cut in G[s∪ xj,0 ∪ {pj,l|l ∈ lj}] is in S under the coloring f , then set xj = 0;
if a rainbow s-xj,1-edge-cut in G[s ∪ xj,1 ∪ {qj,l|l ∈ lj}] is in S under the coloring f , then set



xj = 1. First, we have |S| = 6m and S ⊆ G[V (Gφ) \ {y1, . . . , y5m+1, t}]. Moreover, for given
ci,0 (i ∈ [m]), we know that S has at most two edges from three paths of length two between
ci,0 and {xj,0, xj,1|xj in ci and j ∈ [n]} under the coloring f of Gφ. Suppose, without loss of
generality, that the path of length two between xj,0 (or xj,1) and ci,0 has no edge belonging to
S for some j ∈ [n]. If xj in ci is positive, then there exists a rainbow s-xj,1-edge-cut with size
`j in G[s ∪ xj,1 ∪ {qj,l|l ∈ lj}] belonging to S, where i ∈ [m], j ∈ [n]. Then xj = 1 and ci is
satisfiable. If xj in ci is negative, then there exists a rainbow s-xj,0-edge-cut with size `j in
G[s∪xj,1 ∪{pj,l|l ∈ lj}] belonging to S, where i ∈ [m], j ∈ [n]. Then xj = 0 and ci is satisfiable.
Since this is true for each ci (i ∈ [m]), we imply that φ is a YES instance of the 3-SAT.
Now suppose φ is a YES instance of the 3-SAT, and let us construct a rainbow minimum
s-t-edge-cut in Gφ under the coloring f . First, there exists a satisfiable assignment of φ.
If xj = 0, we put the rainbow s-xj,0-edge-cut in G[s ∪ xj,0 ∪ {pj,l|l ∈ lj}] into S for each
j ∈ [n]. If the vertex xj,0 is adjacent to ci,0, then let one edge of ci,kxj,1, ci,kci,0 be in S for each
i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. If the vertex xj,0 is adjacent to ci,k, then let the edge xj,1ci,0 be
in S for each i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. If xj = 1, we put the rainbow s-xj,1-edge-cut in
G[s ∪ xj,1 ∪ {qj,l|l ∈ lj}] into S for each j ∈ [n]. If the vertex xj,1 is adjacent to ci,0, then let
one edge of ci,kxj,0, ci,kci,0 be in S for each i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. If the vertex xj,1 is
adjacent to ci,k, then let the edge xj,0ci,0 be in S for each i ∈ [m], j ∈ [n], k ∈ {1, 2, 3}. Now we
verify that S is indeed a rainbow minimum s-t-edge-cut. First, we can verify that |S| = 6m and
it is a minimum s-t-edge-cut. In fact, if a literal of ci is false, then one edge colored with r4

i or
r5
i is in S. Since the three literals of ci cannot be false at the same time, we can find a rainbow

minimum s-t-edge-cut in Gφ under the coloring f . �

5. Concluding remarks
In this paper we defined a new colored connection parameter srd-number for connected graphs.
We hope that with this new parameter, avoiding the drawback of the parameter rd-number,
one could get a colored version of the famous Menger’s Min-Max Theorem. We do not know if
this srd-number is actually equal to the rd-number for every connected graph, and then posed a
conjecture to further study on the two parameters. The results in the last sections fully support
the conjecture.
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