ON TINY ZERO-SUM SEQUENCES OVER FINITE
ABELIAN GROUPS
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ABSTRACT. Let G be an additive finite abelian group and S =gy -... g
be a sequence over G. Let k(S) = ord(g;) "' +...+ord(g;) ! be its cross
number. Let t(G) (resp. 7(G)) be the smallest integer ¢ such that every
sequence of ¢ elements (repetition allowed) from G has a non-empty
zero-sum subsequence T with k(7') < 1 (resp. |T| < exp(G)). It is easy
to see that t(G) > n(G). It is known that t(G) = n(G) = |G| when G
is cyclic, and for any integer r > 3, there are infinitely many groups G
of rank r such that t(G) > n(G). It is conjectured in 2012 [G12] that
t(G) = n(Q) for all finite abelian groups of rank two. This conjecture
has been verified only for the groups G = Cpe @ Cpe, G = Cy @ Oy
and G = Cs ® C3p, with p > 5, where p is a prime. In this paper, among
other results, we confirm this conjecture for more groups including the
groups G = C), & C),, with the smallest prime divisor of n not less than
the number of the distinct prime divisors of n.

1. INTRODUCTION AND MAIN RESULTS

Let GG be a finite abelian group, written additively. If G is cyclic of order
n, it will be denoted by C,,. In the general case, we can decompose G as a
direct sum of cyclic groups Cp,, @ ... ® C,, such that 1 <n; |...|n, € N
(if ny = ... = n, = n, it will be abbreviated as C7), where r and n, are
respectively called the rank and exponent of G. Usually, the exponent of G
is simply denoted by exp(G). The order of an element g of G will be written
ord(g).

Given a sequence S = g;-...-g; over GG, we denote by 54y the subsequence
of S consisting of all terms of S of order d and Sy the subsequence of S
consisting of all terms of S belonging to a subgroup H of G. And by k(S5)

the cross number of S, which is defined as follows:
1

1
=3

i=1

The cross number is an important concept in factorization theory. For
more information on the cross number we refer to (|[GG09, GS94, GO09,
G12]).
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Let t(G) denote the smallest integer t € N such that every sequence S
over G of length |S| > ¢ has a non-empty zero-sum subsequence S’ with
k(S") < 1. Such a subsequence will be called a tiny zero-sum subsequence.

The study of t(G) goes back to the late 1980s, Lemke and Kleitman
[LK89| proved that t(C),) = n, which confirmed a conjecture by Erdds
and Lemke. More generally, Lemke and Kleitman [LK89| conjectured that
t(G) < |G| holds for every finite abelian group G. This conjecture was
proved by Geroldinger [G93| in 1993. Furthermore, Elledge and Hurlbert
[EHO5] gave a different proof in 2005.

In 2012, Girard [G12]| proved that, by using a result of Alon and Dubiner
[ADO95], for finite abelian groups of fixed rank, t(G) grows linearly in the
exponent of GG, which gives the correct order of magnitude.

Let n(G) denote the smallest integer ¢t € N such that every sequence S
over G of length |S| > ¢ has a non-empty zero-sum subsequence S’ with
|S"] < exp(G). Such a subsequence is called a short zero-sum subsequence.
The constant 7(G) is one of many classical invariants in so-called zero-sum
theory. For zero-sum theory and its application, the interested reader is
referred to |[GGO06| and [GHO6].

Since k(7') < 1 implies |T'| < exp(G), we know that n(G) < t(G) always
holds. Girard [G12] noticed that if t(G) = n(G) for some finite abelian
group G, then n(H) < n(G) for any subgroup H of G, and then he deduced
that for any positive integer r > 4, there is a finite abelian group of rank
r such that t(G) > n(G). Concerning groups of rank three, the first author
with coauthors [FGPWZ13| found that t(G) > n(G) if G = Cy & Cy & Csy,,
where n > 1 is a positive integer. Girard [G12] also proved that t(CJ.) =
n(C2.) = 3p® — 2 for any prime p and conjectured that t(G) = n(G) for all
finite abelian groups of rank two. Girard also [G12] noticed the easy fact
that t(G) = n(G) for all elementary p-groups G, since all non-zero elements
of G have same order in this case, and conjectured that t(G) = n(G) for
G=Cr.

Conjecture 1.1. (|G12]) For all positive integers m,n with m | n, we have
t(Cn, ® C,) =n(Cy, & C) =2m +n — 2.
Conjecture 1.2. (|G12|) For all positive integers r,n, we have
t(Cr) = n(Cy).

Conjectures 1.1 and 1.2 have been confirmed only for a few classes of
groups.
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Theorem 1.3. ([FGPWZ13, GHST07, G12, W20|) Let G be a finite abelian
group, and n, v, a, B be positive integers and p be a prime number. Then
t(G) = n(Q) for the following groups.

(1) G=C,,

(2) G= Cpo‘ D Cp";

(3) G = Cy @ Cyy,

(4) G = C5 @ Cs, withp > 5,

(5) G = C? withn =3% orn =5,

(6) G = Cl withn =p orn =2%.

In this paper, we will confirm both Conjecture 1.1 and Conjecture 1.2

for more groups. Now we state our main results.

Theorem 1.4. Let n be a positive integer, and let G = C,®C,. If Y. L <

pln p
1, where p runs over all distinct prime divisors of n, then

t(G) = n(G).

In particular, if p(n) > w(n), then t(G) = n(G), where p(n) denotes the
smallest prime divisor of n and w(n) denotes the number of distinct prime

divisors of n.

Theorem 1.5. Let «, B be positive integers and p be a prime number. Then
t(G) = n(Q) for the following groups.

(CL) G= OQ@CQ&,
(b) G = Oy ® Oy,
(c) G=C3..

The paper is organized as follows. Section 2 provides some notation and
concepts which will be used in the sequel. In Section 3 we prove the main

results.

2. NOTATION AND PRELIMINARIES

Let N denote the set of positive integers, and Ny = NU{0}. For any two
integers a,b € Ny, we set [a,b] = {z € Ny | @ < z < b}. Throughout this
paper, all abelian groups will be written additively.

Let GG be an additive finite abelian group with rank r. An r-tuple (eq, ..., e,)
in G\{0} is called a basis of G if G = (e1)®...®(e,). We denote by F(G) the
free (abelian, multiplicative) monoid with basis G. The elements of F(G)

are called sequences over G. We write sequences S € F(G) in the form
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S = H g with v,(S) € N for all g € G.
9eq@
We call v, (S) the multiplicity of g in S, and we say that S contains ¢ if
vg(S) > 0. A sequence S’ is called a subsequence of S if v (S") < v,(S) for
all g € G, denote by S’ | S, and SS’~! denotes the subsequence obtained
from S by deleting S’, two subsequences S; and Sy of S are called disjoint
if )| SS,". The unit element 1 € F(G) is called the empty sequence.
For a sequence
S=gi-..-g=]] 9" € F(@),
geG

we call

o [S|=1=23,cqV4(S) € Ny the length of S,

e ()= = >gec Vo(S)g € G the sum of S,

o supp(S) = {g € G | v,(S) > 0} C G the support of S,

e S a zero-sum sequence if o(S) =0 € G,

e S a zero-sum free sequence if there is no non-empty zero-sum sub-

sequence of S,
e S a minimal zero-sum sequence if it is a non-empty zero-sum se-
quence and has no proper zero-sum subsequence,
e S a short zero-sum sequence if S is zero-sum and 1 < |S| < exp(G),

e S a tiny zero-sum sequence if S is a non-empty zero-sum sequence
and k(S) < 1.

Let D(G) denote the smallest integer ¢ € N such that every sequence
S over G of length |S| > ¢ has a non-empty zero-sum subsequence. The
invariant D(G) is called the Davenport constant of G.

Every map of abelian groups ¢ : G — H extends to a homomorphism
v : F(G) — F(H), where o(S) = ¢(g1)-...-¢(g). If ¢ is a homomorphism
then ¢(5) is a zero-sum sequence if and only if o(S) € ker(p).

Given a positive integer n, let p(n) denote the smallest prime divisor of
n, by convention p(1) = 1, let w(n) denote the number of distinct prime
divisors of n.

We list some results on 7(G) which will be used frequently in the sequel.

Lemma 2.1. ([EEGKRO07, GHSTO07]) Let m,n be positive integers. Then

(1) n(Cpy ® C) =2m +n — 2 for m | n,
(2) n(C3) =8n — 7 for n = 3*5°, where o, B € N.

Lemma 2.2. (|E04]) If n is an odd integer, then n(C3) > 8n — 7.
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Lemma 2.3. (|GHO06, Proposition 5.7.11|) Let G be a finite abelian group,
and let H be a subgroup of G with exp(G) = exp(H) exp(G/H). Then

N(G) < exp(G/H)(n(H) —1) +n(G/H).

Lemma 2.4. Let m,n be odd integers. Suppose that n(C3) = 8m — T and
n(C3) =8n — 7, then n(C3,) = 8mn — 7.

Proof. By Lemma 2.2 we have n(C2 ) > 8mn — 7. Let G = (2, and
H = C3 be a subgroup of G, then G/H = C3. Tt follows from Lemma 2.3
that
N(G) < exp(G/H)(n(H) — 1) +1(G/H) = 8mn — 7.
Therefore, n(C3, ) = 8mn — 7. O

Lemma 2.5. (|S12, Corollary 3.2|) Let H = C,,, ® Cyy, with integers m > 2
and n > 1. Every sequence S over H of length |S| = n(H) — 1 having not
any short zero-sum subsequence has the following form

S = b?flflbgmfl<_xbl + bZ)(n+1fs)m71’

where {by,ba} is a generating set of H with ord(by) = mn, s € [1,n], © €
[1,m] with ged(z,m) =1 and either

(1) {b1,ba} is an independent generating set of H, or

(2) s=n and r = 1.

Lemma 2.6. (|GH06, Theorem 5.4.5|) Let n > 1 be a positive integer, and
let S € F(C,) be a sequence of length n — 1. If S is zero-sum free then

S = g"! for some generating element g € C,,.

Lemma 2.7. ([FGPWZ13, Lemma 2.3]) Let n > 1 be a positive integer, and
let S € F(C,) be a sequence of length 2n — 1. If S has no two disjoint non-
empty zero-sum subsequences then S = ¢*"~! for some generating element
g€ C,.

3. PROOF OF MAIN RESULTS

In this section we shall prove Theorem 1.4 and Theorem 1.5, and we

begin with some preliminary results.

Lemma 3.1. Let G be a finite abelian group and H be a subgroup of G.
Let S be a sequence over G. Suppose that SSy' has a factorization SS;' =
S1S9-. ..+ SpS" such that o(S;) € H and k(S;) < k(a(S;)) for everyi € [1,k].
If k+ |Sy| > t(H), then S has a tiny zero-sum subsequence.
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Proof. By the hypothesis of this lemma, ¢(S1)0(S2) - ... 0(Sk)Sy is a se-
quence over H of length k + |Sy| > t(H). Therefore, it has a tiny zero-sum
subsequence T'[[,.; 0(S;), where T' | Sy and I C [1,k]. Let W =T[],., S;

Then W is a zero-sum subsequence of S with k(W) = k(T') + >, k( 1) <

K(T) + Y oes k(0(5)) = KT TL,e; o(S0) < 1. O

Lemma 3.2. Let G be a finite abelian group and H be a subgroup of G.
Let S be a sequence over G. Suppose that SSy' has a subsequence L such
that for every T' | L with |T| < exp(G/H) we have k(T') < - If |SH| +

(%1 > t(H), then S has a tiny zero-sum subsequence.

exp

Proof. Let ¢ be the projection from G onto G/H with ker(¢) = H. By
applying 7(¢(G)) = n(G/H) repeatedly on the sequence ¢(L), we can get a
factorization L = Sy -...- SpS” such that ¢(S;) is a short zero-sum sequence
over ¢(G) = G/H for every i € [1,k], and such that ¢(S") has no short
zero-sum subsequence over ¢(G) = G/H. It follows that

5] = 1o(S) < n(G/H) — 1.

Therefore,

L| — H) -1
oo (L= 06/ )~ 1),
eXp(G/ H)
By the hypothesis, k(.5;) < exp(H) < ol (S = k(o (S5;)) for every i € [1, k.
Now the result follows from Lemma 3.1 since k + |Sg| > (%W +
|Su| > t(H). O

Proposition 3.3. Let ¢,n,r be three positive integers such that for every
positive divisor m(> 1) of n, we have n(Cl) = c¢(m —1)+ 1. If Zp‘n% <1,

where p runs over all distinct prime divisors of n, then
t(Cy) = n(Cy).

Proof. Let G = C]. Let pq,...,ps be the all distinct prime divisors of n. By
the hypothesis of this proposition,

S

1
— < 1.

im1 Di

For every positive integer m | n, let G,, = {x € G | mz = 0}. Clearly,
G, is a subgroup of G with G,,, = C7 .

Let d(n) denote the number of positive divisors (> 1) of n. We proceed
by induction on d(n). If d(n) = 1 then n is a prime, therefore t(G) = n(G)
follows from Theorem 1.3(6) and we are done. Suppose that the proposition
is true for d(n) < k (k > 2) and then we want to prove it is true also for

d(n) = k.
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As mentioned in the introduction we always have t(G) > n(G). So, it
suffices to prove that

t(G) <n(G)=c(n—1)+1.

Let S be a sequence of length |S| = ¢(n — 1) + 1 over G. We want to
show that S has a tiny zero-sum subsequence. If 0 | S, then S’ = 0 has the
required property and we are done. Next we suppose that 0t .S. Assume to
the contrary that S has no tiny zero-sum subsequence. Let

S=TW

such that ord(g) = n for all ¢ € supp(T'), and ord(h) < n for all h €
supp(W). If S =T, then it is easy to see that S has a tiny zero-sum sub-
sequence, a contradiction. Next we assume that 7' is a proper subsequence
of S. For every i € [1,s], let W; be the subsequence of W consisting of all
terms of W in Gﬁ' Then,

(WAl + ...+ W, > [WV].
, _ exp(G/Gn )
Slnce for every T' | T with |T"| < exp(G/Gﬁ) we have k(7") < &

exp( )’ by Lemma 3.2 we obtain that
Tl = ((G/G2) - 1)

|WZ| + I_ exp(G/GZ) -I < t(Gﬁ) - L

Therefore, by induction we have

‘Tl_c<p1_1>+|w|< (__1)

[ 7

for every i € [1, 5], or equivalently,
T cn—1

So,
1
\T|§ +|W1\+ +\W5]§c(n—1)§ ;,

it follows that |W1| —{—...+ Wl < (ecn—c—|T)) >, p%-' Since [Wi|+...+
|W,| > |W/], we deduce that

1
c(n—1)+1—|T| = |S|—|T| = |W| < [Wy|+... +|W,| < (cn—c—|T|)Zf.

So we have 1 < (en—c—|T|)(>_7_, p —1). It follows from >} 15, <land
IT| <|S] —1=c¢(n—1) that
~ 1
1< (en—c—|THO> —-1)<0,
Di

=1

exp(G)
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a contradiction. O

Proof of Theorem 1.4. Since n(C,,, ® C;,) =3m —2=3(m—1)+1
for every positive integer m, the first part of this theorem follows from

Proposition 3.3. If p(n) > w(n), we clearly have

)
> <

o p(n)
with equality holding if and only if w(n) = 1. Therefore, we have % <1
and the result follows from the first part of this theorem. O

Remark 3.4. Clearly, if w(n) < 2 then Zmn% < 1. If w(n) = 3 and
n # 2%3°57 then we also have me% < 1. It would be interesting to prove

t(C, ® C,) = n(C, ® C,,) for n = 2%3°57.

Lemma 3.5. Let n be a positive even integer and let G = Co@®Cyy,. Let S be
a sequence over G with |S| = 2n+ 1. If ord(x) = 2n for every x € supp(S),

then S has a tiny zero-sum subsequence.

Proof. Let (e1,e2) be a basis of G. If S has a short zero-sum subsequence 5,
then k(S") = ‘2%' < 1 and we are done. Next we assume that S has no short
zero-sum subsequence. Since |S| = 2n + 1 = n(G) — 1, then by Lemma 2.5
we have
S = 0ib3H (=by + b)),

where {b1,by} is a generating set of G with ord(by) = 2n, s € [1,n]. Let
by = x161 + y1ez and by = zaeq + yoeo, where x; € [0,1], y; € [0,2n — 1] for
i € {1,2}. Since ord(b;) = ord(b2) = 2n and since n is assumed to be even,
y1,y2 are odd. It follows that —by + by = (—x1 + x2)e; + (—y1 + y2)ea, since
—1y1 + Yo is even, we have ord(—b; + b2) < n, a contradiction. Il

Lemma 3.6. Let G = C3 be a finite abelian group with n = p{*---p2s,

where pi,...,ps are distinct odd prime numbers and ay,...,as € N. If
> pii <1 and n(C’;’%) = 8p;" — 7, then

t(G) = n(G).
Proof. By Lemma 2.4 we have n(C?3) = 8n — 7. By Proposition 3.3 we have
t(G) = n(G). O

Proof of Theorem 1.5. (a) Let G = Cy & Cyo with a € N and (ey, e2)
be a basis of G. The result follows from Theorem 1.3(3) for o < 2. Next we
may assume that o > 3.

We proceed by induction on a. Suppose that t(Cy @ Cy) = n(Ce & Cy)
for [ < a — 1. Next we need to prove it holds for [ = a.
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As mentioned in the introduction we always have that t(G) > n(G). So,
it suffices to prove that

t(G) < n(G) = 2 + 2.

Let S be a sequence of length |S| = 2% + 2 over G. We want to show
that S has a tiny zero-sum subsequence. If 0 | S, then S’ = 0 has the
required property and we are done. Next we suppose that 0t .S. Assume to
the contrary that S has no tiny zero-sum subsequence.

Let us recall that we denote by S(4) the subsequence of S consisting of all
terms of S of order d. Let H; be a subgroup of G isomorphic to Cy @& Coa-1
such that Hy = G/H; is isomorphic to Cy. Then S = Sy, Sy and

(3.1) |S|:|SH1|_|_‘S(206)|:201+2.
Since for every T' | S(aay with |T'| < exp(G/H;) we have k(1) < %(/GH)” _
exp(lHl_)7 by Lemma 3.2 we obtain that
S| = (n(G/Hy) = 1)
S < t(H) — 1.
’ H1’+( eXp(G/Hl) —‘_ ( 1)
Therefore,

2|SH1| + |S(2a)| <294 3.

Combining equality (3.1), we obtain that |Sg,| < 1. If |Sg,| = 0, then
S = S(ey. Hence S has a short zero-sum subsequence 7" with k(7") < 1, a
contradiction.

Next we assume that |Sy,| = 1, by (3.1) we have [S(2n| = 2% + 1. By
Lemma 3.5 we obtain that Si«) has a tiny zero-sum subsequence, so S has

a tiny zero-sum subsequence, a contradiction again.

(b) Let G = Cy ® Cyys with € N and p be a prime number and (eq, e3)
be a basis of G. The results follow from Theorem 1.3 and (a) for 5 =1 or
p = 2. Next we may assume that § > 2 and p > 3.

We proceed by induction on §. Suppose that t(Cy @ Caps) = n(Ca® Caps)
for s < 8 — 1. Next we need to prove it holds for s = .

As mentioned in the introduction we always have that t(G) > n(G). So,

it suffices to prove that
tG) <n(G) =" +2

Let S be a sequence of length |S| = 2p” + 2 over G. We want to show
that S has a tiny zero-sum subsequence. If 0 | S, then S’ = 0 has the
required property and we are done. Next we suppose that 0¢.S. Assume to

the contrary that S has no tiny zero-sum subsequence.
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Let H; be a subgroup of G isomorphic to C),s such that G JH; =2 Cy®Ch.
Let also H, be a subgroup of G isomorphic to Cy® Cy,s-1 such that G/ H, =
C,. Let ¢1 and ¢y be projections from G to G/H; and G/H,, respectively,
then ker(¢1) = Hy =2 Cps and ker(py) = Hy = Cy @ Cyys-1. Therefore,

S = Sm, - S@) - Sap) + -+ S(aps-1) - Sap) = SHy * Sps) * S(2ph)
and

(3.2)
S| = 1Sm, |+ 1S +1Sep |+ - A [S@pr-1) [+ [S2pe) | =[S |+1Spe) |41 Sps -
Since for every T | Sppuey with |T| < exp(G/Hy) we have k(T') <

exp(G/H1) __ 1
exp(G)  exp(Hi)’

by Lemma 3.2 we obtain that

|Seepey| — (n(G/Hy) — 1)

‘SH1’+ ( GXP(G/Hl)

1 <t(Hy) -1

Therefore,
2/Sm,| + S < 2p° + 1.
Combining equality (3.2), we obtain that
(3.3)
St | < 20°+1= (IS, [+1S(2p9)|) = [S2)[+1S(p [+ - HS(ps-1)| =1 < [Shy| 1.

Since for every T | S with |T| < exp(G/Hz) we have k(T) <
exp(G/Hz) __ 1

by Lemma 3.2 we obtain that

exp(G) =~ exp(Hz)’
’S(2p5)| — (n(G/Hs) — 1)
4 <t(Hy) — 1.
Therefore,

|S(ape) | + plSH,| < 2p° +2p— 1.
Combining equality (3.2) and inequality (3.3),
p|Sm,| <207 +2p—1— S (2p8)]
=2p" +2p—1—(|S] = [Sm| — |Spm|)
=2p — 3+ [Sm,| + |Spe
<2p—3+4 [Su,| + S|
< 2p — 4+ 2|Sy,|.

Therefore, |Sp,| < 2 and |S,s)| < [Sk,| < [Sk,| —1 < 1. Hence, we have
the following possibilities:

’SHQ‘ =1 and ’S(p,e)’ = O, |SH2’ =2 and ’S(pﬁ)l = 1, ‘SHQ‘ =2 and ‘S(pﬂ)‘ = 0

We proceed case by case.
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Case 1. |[Sp,| = 1 and |Ss)| = 0, then |Spp,s)| = 2p” +1 = D(G) and
S(2p8y is @ minimal zero-sum subsequence.

It follows that we can decompose (9,8 into
S(QPB):‘/lvn

such that o(p9(V;)) = 0 and |V;| < p for every 1 < i < n, then o(V;) €

ker(p2) = Hy and k(V;) = e;!;i/(ilG) < oo = exp(lHQ) <k(o(V;)) for1 <i<n.

s
So we have n > [‘ (Q;B)H = (27’[;*11 = 2p°~! + 1, then

n+ [Su,| > 20"+ 141 =2p""1 + 2 = n(H,) = t(Ha),

a contradiction with Lemma 3.1.

Case 2. |Sp,| = 2 and |S(,s)| = 1. Recall that |Sp,| = 1, then [Spys| =
2p8 — 1. Let

Sepey =Ur ... - UpU' =Vy-...- V',

where o(1(U;)) =0 € G/H; and |U;] = 2 for 1 <7 < m and ¢;(U’) has no
short zero-sum subsequence over G/Hy, o(p2(V;)) =0 € G/Hy and |V;| <p
for 1 < j <mn and ¢y(V’) has no short zero-sum subsequence over G/Hs.

By Lemmas 3.1 and 3.2 we have

(’S(Zpﬁ)| — (n(G/H>) — 1)
exp(G/ H>)

therefore n = 2p°~! — 1, and every subsequence of ©2(Sapsy) of length

1+ 1S, <n+[Sk,| < t(Hz) -1,

p — 1 is zero-sum free. Otherwise, suppose that there exists a subsequence
Siapsy | S(apsy of length [S(, 51| < p—1 such that ©2(5(,,s)) is zero-sum, then
|g02(5(2p5)55p1/a))’ > 2p% — p, we can find at least 2p°~! — 1 disjoint zero-sum

subsequences of length at most p of @2(5(2],3)52 ) by Lemma 3.2, so we

-1
2pP)
can find at least 2p°~! disjoint zero-sum subsequences of length at most p
of ©2(Sapey), a contradiction with n = 2p°~! — 1. Therefore,

(,OQ(S(QPB)) — h2pﬂ—1

for some h € po(G) = G/Hy by Lemma 2.7.
By Lemmas 3.1 and 3.2 we have

1Sy | = (0(G/Hy) — 1)

< <t(H;) -1
[ eXp(G/H1> —‘ +‘SH1| —m+|SH1’ —t( 1) >
therefore m = p® — 2.
Let S(QP'B) =U;-...- Upﬁ_Q . U'()7 where Uy = S(gp6)<U1 L Upﬁ_g)_l.

Since ¢1(Up) has no short zero-sum subsequence over G/H; and |U| =
3 = D(G/H), o(¢1(Uy)) = 0 € G/Hy and supp(p1(Uo)) = G/Hi \ {0} =
{h1, ha, hs}. Since |Syey - o(Up) - o(Ur) - ... - 0(Ups_o)| = p° = t(Hr), Sipey -
o(Up)-o(Uy)-...-o(U,

,6_2) has a tiny zero-sum subsequence Wy. If || <
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p? — 1, suppose that W, = Sépﬁ)Higa(Ui), where Sgpﬁ) | Sey, 1 € [0,p® —
2] and S5 + 1] < p? — 1, then W} = SpnHierUi is a tiny zero-sum
subsequence of S, a contradiction. Therefore S,sy-0(Up)-0(U1)-. . .-0(Ups_s)

is a minimal zero-sum sequence over C,s. So we have S5 = o(Up) =
o(Ui) =...=0(Ups_3). Then
r(S) = BB

where I; € [0,p° — 2] and I} + 1y + 13 = p° — 2.

Claim. Let h; € supp(p1(S(2p8))) With vp, (01(S(9pey)) > 3 andlet g1, g €
supp(S(gpey)- If w1(g1) = ¢1(92) = hi, then g1 = go.

Proof of the Claim. Assume to the contrary that ¢g; # go. Without loss of
generality we may assume that g; | Uy and go | Up. Let U] = U,g; *go. Thus,
both S(sy-o(Ur)-...-0(Uys_s) and S(ey-o(U7)-...-o(U,
free of length p® — 1. It follows from Lemma 2.6 that o(U;) = o(U]) and
hence g; = g9, a contradiction. O

Since ¢1(S(gpe)) = by hy T2yt where l; € [0,p°—2] and [ +1lo+13 =
p?—2.Fori e [1,3],if l; > 1, then vy, (01(S(eps))) = 3, by the Claim we have
S(2p#y such that @1 (gt = it
if [; = 0, then there exists a subsequence g; | S(ps) such that ¢1(g;) = hs.

5_o) are zero-sum

that there exists a subsequence gl.1+2li

Therefore, we have

Siopiy = gl gLtz g Lt2ls.
where ¢1(g;) = h; for i € [1,3]. If there exist 7,5 € [1,3] and ¢ # j such that
l; > 1 and [; > 1. Without loss of generality, we assume that {7, j} = {1, 2}.
Since S8y = 0(Up) = o(U1) = ... = 0(Ups_3), we have g1 + g2 + g3 = 201
and g1 + g2 + g3 = 2¢9, it deduces that 2g; = 0, a contradiction. Therefore,
there at least exist two zeros among lq, [, [3 and without loss of generality,

we assume that [, = [3 = 0. Then

B_
Septy = 017 ga(—g2 + g1,

and S(pﬁ) = 291
Let h | Sp,, then ord(h) = 2p', 1 € [0, B—1]. We write h = aye;+p°~y1g1,

where a; € [0,1] and (y1,p) = 1. Let Uy = ... = Ups_o = g7 and Ups_; =
Sy = 2g1. Without loss of generality, we assume that ¢;(h) = ¢1(g1).

Let Th = hg1, To = hga(—g2 + 1), T5 = ¢192(—92 + ¢1). Then o(T;) €
ker(yq) for i € [1,3]. So, for every i € [1,3], the sequence o(Uy) -
o(Ups_1) - 0(T;) has a zero-sum subsequence X; over ker(yq), i.e., there
exists a subset J; C [1,p? — 1] such that X; = o(T;)ILe;,0(U;) for each
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i €[1,3]. Let Y; = T;11;c,U; for each i € [1,3]. Then Y}, Y5 and Y are zero-

sum subsequences of S. Let t; = |J;| for i € [1,3]. Then X; = (2¢1)" (h+ 1),

X = (291)"2(h+ g2+ (=92 + 91)), X5 = (201)" (g1 + g2 + (=92 + 91))-
Since k(Y;) > 1 for every i € [1, 3], we have

1 1 2t PP 2t + 1
k(Y;) = = >1
(1) ord(h) * ord(g1) * ord(g1) 2p° 7
1 1 1 2t PPt 2ty + 2
k(Ya) = - + + = > 1
(¥2) ord(h)  ord(gs) ord(—g2+¢1) ord(g:) 2pP
1 1 1 2t 2t3 + 3

ord(g1) ord(ga) ord(—g2+g1) ord(gi) 2p?
Combining ¢; < p® — 1, by a straightforward computation we obtain that

<ty <pf—1,p° - <ty <p’—1,t3=p" - 1.

From Xj; is zero-sum over ker(y;) we infer that

2t1g1+h+g1 = 2691 +h+ga+(—got+g1) = 2(0°—1) g1+ g1+g2+(—g2+1) = 0.

Therefore,

2t191+h+g1+2tag1 +h+g2+(—92+01) —2(}95 —1)g1—91—92—(—g2+g1) = 0.

This deduces that (2¢; + 2t5 4+ 2)g; + 2h = 0. Therefore (2t; + 2t5 + 2)gy +
2p°~lyg, = 0, then (t; +t2 + 1+ ply) =0 (mod p?), but 2p° —p*~ 1+ 1+
PPy <ty +to+ 14 pPly <208 — 1+ p®~ly, a contradiction.
Case 3. [Sy,| = 2 and |S,s)| = 0, then |S(g,s)| = 2p°. Therefore,
|S(2pﬁ)| — (n(G/Hz) — 1)
exp(G/H,)

a contradiction with inequality (3.4).

|Sm,| + [ 1 =2+2p"" =n(Hy),

(¢) The result follows from Lemma 2.1 and Lemma 3.6. O
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