
On list 3-dynamic coloring of near-triangulations

Ruijuan Gua, Seog-Jin Kimb, Yulai Mac,∗, Yongtang Shic

aSino-European Institute of Aviation Engineering,
Civil Aviation University of China, Tianjin 300300, China

bDepartment of Mathematics Educations, Konkuk University, Republic of Korea
cCenter for Combinatorics and LPMC, Nankai University, Tianjin 300071, China

Abstract

An r-dynamic k-coloring of a graph G is a proper k-coloring such that for any vertex
v, there are at least min{r, degG(v)} distinct colors in NG(v). The r-dynamic chromatic
number χd

r(G) of a graph G is the least k such that there exists an r-dynamic k-coloring
of G. The list r-dynamic chromatic number of a graph G is denoted by chdr(G). Loeb et
al. [10] showed that chd3(G) ≤ 10 for every planar graph G, and there is a planar graph
G with χd

3(G) = 7.
In this paper, we study a special class of planar graphs which have better upper bounds

of chd3(G). We prove that chd3(G) ≤ 6 if G is a planar graph which is a near-triangulation,
where a near-triangulation is a planar graph whose bounded faces are all 3-cycles.
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1. Introduction

Let k be a positive integer. A proper k-coloring φ : V (G) → {1, 2, . . . , k} of a graph

G is an assignment of colors to the vertices of G so that any two adjacent vertices receive

distinct colors. The chromatic number χ(G) of a graph G is the least k such that there

exists a proper k-coloring of G. An r-dynamic k-coloring of a graph G is a proper k-

coloring φ such that for each vertex v ∈ V (G), either the number of distinct colors in

its neighborhood is at least r or the colors in its neighborhood are all distinct, that is,

|φ(NG(v))| ≥ min{r, degG(v)}. The r-dynamic chromatic number χd
r(G) of a graph G is

the least k such that there exists an r-dynamic k-coloring of G.

A list assignment on a graph G is a function L that assigns each vertex v a set L(v)

which is a list of available colors at v. For a list assignment L of a graph G, we say G is
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L-colorable if there exists a proper coloring φ such that φ(v) ∈ L(v) for every v ∈ V (G).

A graph G is said to be k-choosable if for any list assignment L such that |L(v)| ≥ k for

every vertex v, G is L-colorable.

For a list assignment L of G, we say that G is r-dynamically L-colorable if there exists

an r-dynamic coloring φ such that φ(v) ∈ L(v) for every v ∈ V (G). A graph G is r-

dynamically k-choosable if for any list assignment L with |L(v)| ≥ k for every vertex v,

G is r-dynamically L-colorable. The list r-dynamic chromatic number or the r-dynamic

choice number chdr(G) of a graph G is the least k such that G is r-dynamically k-choosable.

An interesting property of dynamic coloring is as follows.

χ(G) ≤ χd
2(G) ≤ · · · ≤ χd

∆(G) = χ(G2),

where G2 is the square of the graph G.

The dynamic coloring was first introduced in [8, 11]. On the other hand, Wegner [14]

conjectured that if G is a planar graph, then

χd
∆(G) ≤


7, if ∆(G) = 3;
∆(G) + 5, if 4 ≤ ∆(G) ≤ 7;

b3∆(G)
2
c+ 1, if ∆(G) ≥ 8.

Lai et al. [12] posed a similar conjecture about dynamic coloring of planar graphs as

follows.

Conjecture 1.1 Let G be planar graph. Then

χd
r(G) ≤


r + 3, if 1 ≤ r ≤ 2;
r + 5, if 3 ≤ r ≤ 7;
b3r

2
c+ 1, if r ≥ 8.

Lai et al. [13] showed that conjecture 1.1 is true for planar graphs with girth at least

6. For the special case r = 2, Kim et al. [6] proved that χd
2(G) ≤ 4 for every planar

graph except C5 and chd2(G) ≤ 5 for every planar graph. And it was shown in [10] that

chd3(G) ≤ 10 if G is a planar graph. Besides, some special classes of graphs are also

investigated, such as sparse graphs [2], bipartite graphs [3], grids [4, 5], K1,3-free graphs

[9] and K4-minor free graphs [12]. In terms of the maximum average degree, there is also

a result published in [7].

Loeb et al. [10] showed chd3(G) ≤ 10 if G is a planar graph. On the other hand, there

is a planar graph F such that χd
3(F ) = 7. So Loeb et al. [10] proposed the following

problem.
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Problem 1 ([10]) What is χd
3(G) if G is a planar graph? And what is chd3(G) if G is a

planar graph?

Currently, we have the following bounds.

7 ≤ max {χd
3(G) : G is a planar graph } ≤ 10. (1)

It is natural to consider a special class of planar graphs for Problem 1. Recently, Asayama

et al. [1] showed that χd
3(G) ≤ 5 if G is a triangulated planar graph, and the upper bound

is sharp. But, we do not know yet whether chd3(G) ≤ 5 or not, if G is a triangulated

planar graph. So the following question is still open and it would be interested to answer.

Question 1 Is it true that chd3(G) ≤ 5 if G is a triangulated planar graph?

Since there is a gap (1) for the general case of planar graphs, it would be interesting

to study list 3-dynamic chromatic number chd3(G) for a special class of planar graphs. In

this paper, we consider a near-triangulation where a near-triangulation is a planar graph

whose bounded faces are all 3-cycles and outer face is bounded by a cycle. Note that a

triangulated planar graph is a special case of a near-triangulation. First, we show the

following theorem.

Theorem 1.2 If G is a near-triangulation, then chd3(G) ≤ 6.

And we obtain the following corollary.

Corollary 1.3 If G is a triangulated planar graph, then chd3(G) ≤ 6.

Let Wn be the wheel with n+ 1 vertices such that Wn is obtained from an n-cycle by

adding a new vertex u and joining u and every vertex on the n-cycle. The following can

be easily checked.

Proposition 1.4 chd3(Wn) ≤ 6 for every positive integer n ≥ 3 and chd3(W5) = 6.

Note that Proposition 1.4 and Theorem 1.2 imply that the upper bound of list 3-

dynamic chromatic number of near triangulations is tight. And Corollary 1.3 and [1]

imply that

5 ≤ max {chd3(G) : G is a triangulated planar graph } ≤ 6.

3



2. Proof of Theorem 1.2

Suppose that Theorem 1.2 does not hold, and let G be a minimal counterexample in

terms of the number σ(G) = |V (G)| + |E(G)| to Theorem 1.2. Let C : v0v1 · · · vt−1v0

in counter-clockwise order be the boundary of the outer face of a plane graph G. If

|V (G)| ≤ 6, then it is easy to obtain chd3(G) ≤ 6, a contradiction. Hence we have

|V (G)| ≥ 7.

First, we prove the following Claim.

Claim 1 For any v ∈ V (C), we have that dG(v) ≥ 4.

Proof. Suppose that there is a vertex vk ∈ V (C) with dG(vk) ≤ 3. Let u0, u1, . . . , us−1

denote the neighbors of vk in counter-clockwise order such that vkuiui+1 is a 3-face for

each i ∈ {0, 1, . . . , s− 2}. And let u0 = vk+1 (k + 1 are computed by modulo t).

If dG(vk) = 2 or dG(vk) = 3 with u0u2 ∈ E(G), then we remove vk from G and call

the resulting graph by G′. If dG(vk) = 3 and u0u2 /∈ E(G), then we remove vk from G

and add the edge u0u2 in the outer face, and call the resulting graph by G′. Clearly, for

all cases above, G′ is a near-triangulation.

Let L′(v) = L(v) for every v ∈ V (G′). Since G is a minimal counterexample, G′ has

a 3-dynamic L′-coloring φ.

If dG(vk) = 2, then there exists a vertex u′0 such that u′0 ∈ (NG(u0) ∩ NG(u1)) \ {vk}
since |V (G)| ≥ 7. Then we color vk by a color c ∈ L(vk) \ {φ(u′0), φ(u0), φ(u1)}, and we

obtain that G has a 3-dynamic coloring from the list assignment L, a contradiction.

If dG(vk) = 3, then the vertices u0, u1 and u2 receive distinct colors under the coloring

φ. Suppose u0u2 ∈ E(G). Then we color vk by a color c ∈ L(vk) \ {φ(u0), φ(u1), φ(u2)},
and we obtain that G has a 3-dynamic coloring from the list assignment L. This is a

contradiction. Hence suppose that u0u2 /∈ E(G). If there is a vertex ui for i ∈ {0, 2}
such that φ(NG(ui)) has at most two different colors, then we must color vk by a color

c ∈ L(vk)\ (φ(NG(vk))∪φ(NG(ui))) so that vertex ui satisfies the conditions of 3-dynamic

coloring. Then one can easily check that the number of forbidden colors at vk is at most

5 as follows.

Let S be the set consisting of the forbidden colors at vk. If |φ(NG(u0))| ≥ 3 and

|φ(NG(u2))| ≥ 3, then S = {φ(u0), φ(u1), φ(u2)}. If |φ(NG(ui))| ≤ 2 and |φ(NG(uj))| ≥ 3

for {i, j} = {0, 2}, then S = {φ(u0), φ(u1), φ(u2)} ∪ φ(NG(ui)). If |φ(NG(u0))| ≤ 2

and |φ(NG(u2))| ≤ 2, then S = {φ(u0), φ(u1), φ(u2)} ∪ φ(NG(u0)) ∪ φ(NG(u2)). Since

u1 ∈ NG(u0) ∩NG(u2), we can easily obtain |S| ≤ 5 for all cases above.
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Thus we can color vk by a color c ∈ L(vk) \ S so that G has a 3-dynamic coloring

from the list assignment L, and it implies that G is 3-dynamically L-colorable. This is a

contradiction, which completes the proof of Claim 1. 2

Next, we prove the following Claim.

Claim 2 For any w ∈ V (G) \ V (C), we have that dG(w) ≥ 6.

Proof. Suppose that there is a vertex w with dG(w) ≤ 5. Let w0, w1, . . . , ws−1 denote

the neighbors of w in counter-clockwise order.

Suppose dG(w) = 3. We remove w from G and call the resulting graph by G′. Let

L′(v) = L(v) for every v ∈ V (G′). Since G is a minimal counterexample, G′ has a 3-

dynamic L′-coloring φ. So, we can color w by a color c ∈ L(w) \ φ(NG(w)) so that G has

a 3-dynamic coloring from the list assignment L since |L(v)| ≥ 6 for each v ∈ V (G), a

contradiction.

Now we suppose 4 ≤ dG(w) ≤ 5. With Claim 1 and the preceding paragraph, we

suppose dG(v) ≥ 4 for each v ∈ V (G). Then we remove w from G and add edges

in the face formed by {w0, w1, . . . , ws−1} so that the resulting graph, denoted by G′, is

a near-triangulation. Let L′(v) = L(v) for every v ∈ V (G′). Since G is a minimal

counterexample, G′ has a 3-dynamic L′-coloring φ. Clearly, we have that |φ(NG(w))| ≥ 3.

If NG(w) = {w0, w1, . . . , ws−1} has all different colors in the coloring φ, then we color w

by a color c ∈ L(w) \ {φ(wi) : 0 ≤ i ≤ s− 1}. Then this gives a 3-dynamic coloring from

its list assignment L, a contradiction.

Next, we consider the case when NG(w) = {w0, w1, . . . , ws−1} has less than s colors.

Let S = {wi ∈ NG(w)|φ(wi−1) = φ(wi+1)}. Since 4 ≤ dG(w) ≤ 5 and |φ(NG(w))| < s,

we have that S 6= ∅ in this case. Note that G is a near-triangulation and dG(v) ≥ 4

for each v ∈ V (G). So for each wi ∈ S, we can select a vertex w′i such that w′i ∈(
NG(wi) ∩ (NG(wi−1) ∪ NG(wi+1))

)
\ {w,wi−1, wi+1} (i − 1 and i + 1 are computed by

modulo s). Clearly, φ(w′i) 6= φ(wi−1) or φ(w′i) 6= φ(wi+1) since φ is a proper coloring. Now

let S ′ = {w′i|wi ∈ S}.
Since S 6= ∅, we have that |S ′| ≥ 1. And it is easy to check that |S| ≤ 2 and |S ′| ≤ 2

since 4 ≤ dG(w) ≤ 5 and |φ(NG(w))| ≥ 3. Moreover, if |S| = 1, then |S ′| = 1 and

|φ(NG(w))| ≤ 4. If |S| = 2, then |S ′| ≤ 2 and |φ(NG(w))| ≤ 3. So for both cases above,

we obtain that L(w) \ ({φ(w′i) : w′i ∈ S ′} ∪ φ(NG(w)) 6= ∅ since |L(w)| ≥ 6. Then we

color w by a color c ∈ L(w) \ ({φ(w′i) : w′i ∈ S ′} ∪ φ(NG(w)). Clearly, there are at least 3
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distinct colors in NG(w) and at least 3 distinct colors in NG(wi) for each wi ∈ NG(w) \S.

For each vertex wi ∈ S, we have that φ(wi−1) = φ(wi+1) and then φ(w′i) 6= φ(wi−1) 6= c.

So each wi ∈ S also satisfies the conditions of 3-dynamic coloring. Thus we obtain that

G has a 3-dynamic coloring from the list assignment L, which is a contradiction since G

is a counterexample. This completes the proof of Claim 2. 2

Let k be the number of vertices in V (G) \ V (C). Then n(G) = t+ k since |V (C)| = t.

Now from Claim 1 and Claim 2, we have

2e(G) =
∑

v∈V (G)

dG(v) =
∑

v∈V (C)

dG(v) +
∑

v∈V (G)\V (C)

dG(v) ≥ 4t+ 6k. (2)

And since G is a near-triangulation, we have

e(G) = 3n(G)− 6− (|V (C)| − 3) = 3n(G)− t− 3 = 2t+ 3k − 3. (3)

So, by (2) and (3)

4t+ 6k − 6 = 2e(G) ≥ 4t+ 6k =⇒ −6 ≥ 0,

which is a contradiction. This completes the proof of Theorem 1.2. 2
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