On list 3-dynamic coloring of near-triangulations
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Abstract

An r-dynamic k-coloring of a graph G is a proper k-coloring such that for any vertex
v, there are at least min{r, deg(v)} distinct colors in Ng(v). The r-dynamic chromatic
number x4(G) of a graph G is the least k such that there exists an r-dynamic k-coloring
of G. The list r-dynamic chromatic number of a graph G is denoted by ch?(G). Loeb et
al. [10] showed that ch$(G) < 10 for every planar graph G, and there is a planar graph
G with x4(G) =17.

In this paper, we study a special class of planar graphs which have better upper bounds
of chd(G). We prove that chd(G) < 6 if G is a planar graph which is a near-triangulation,
where a near-triangulation is a planar graph whose bounded faces are all 3-cycles.
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1. Introduction

Let k be a positive integer. A proper k-coloring ¢ : V(G) — {1,2,...,k} of a graph
G is an assignment of colors to the vertices of G so that any two adjacent vertices receive
distinct colors. The chromatic number x(G) of a graph G is the least k such that there
exists a proper k-coloring of G. An r-dynamic k-coloring of a graph G is a proper k-
coloring ¢ such that for each vertex v € V(G), either the number of distinct colors in
its neighborhood is at least r or the colors in its neighborhood are all distinct, that is,
|6(Ng(v))| > min{r, deg,(v)}. The r-dynamic chromatic number x%(G) of a graph G is
the least k such that there exists an r-dynamic k-coloring of G.

A list assignment on a graph G is a function L that assigns each vertex v a set L(v)

which is a list of available colors at v. For a list assignment L of a graph G, we say G is
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L-colorable if there exists a proper coloring ¢ such that ¢(v) € L(v) for every v € V(G).
A graph G is said to be k-choosable if for any list assignment L such that |L(v)| > k for
every vertex v, GG is L-colorable.

For a list assignment L of GG, we say that G is r-dynamically L-colorable if there exists
an r-dynamic coloring ¢ such that ¢(v) € L(v) for every v € V(G). A graph G is -
dynamically k-choosable if for any list assignment L with |L(v)| > k for every vertex v,
G is r-dynamically L-colorable. The [list r-dynamic chromatic number or the r-dynamic
choice number ch?(G) of a graph G is the least k such that G is r-dynamically k-choosable.

An interesting property of dynamic coloring is as follows.

X(G) < xUG) < -+ < X4 (G) = (G,

where G? is the square of the graph G.
The dynamic coloring was first introduced in [8, 11]. On the other hand, Wegner [14]
conjectured that if GG is a planar graph, then

7, if A(G) =3;
WG <{ A@) +5,  if4<AG) <T
P59 +1, if AG) 2.
Lai et al. [12] posed a similar conjecture about dynamic coloring of planar graphs as

follows.
Conjecture 1.1 Let G be planar graph. Then

r+3, if 1<r<2;
XHG) < T+ 5, if 3<r<T;
[Z]+1,  if r>8.
Lai et al. [13] showed that conjecture 1.1 is true for planar graphs with girth at least
6. For the special case r = 2, Kim et al. [6] proved that x3(G) < 4 for every planar
graph except Cs and chg(G) < 5 for every planar graph. And it was shown in [10] that
chi(G@) < 10 if G is a planar graph. Besides, some special classes of graphs are also
investigated, such as sparse graphs [2], bipartite graphs [3], grids [4, 5], K s-free graphs
[9] and K4-minor free graphs [12]. In terms of the maximum average degree, there is also
a result published in [7].
Loeb et al. [10] showed chg(G) < 10 if G is a planar graph. On the other hand, there
is a planar graph F such that x4(F) = 7. So Loeb et al. [10] proposed the following

problem.



Problem 1 ([10]) What is x4(G) if G is a planar graph? And what is chd(G) if G is a
planar graph?

Currently, we have the following bounds.
7 < max {x%(G) : G is a planar graph } < 10. (1)

It is natural to consider a special class of planar graphs for Problem 1. Recently, Asayama
et al. [1] showed that x4(G) < 5if G is a triangulated planar graph, and the upper bound
is sharp. But, we do not know yet whether chd(G) < 5 or not, if G is a triangulated

planar graph. So the following question is still open and it would be interested to answer.

Question 1 Ts it true that chd(G) < 5 if G is a triangulated planar graph?

Since there is a gap (1) for the general case of planar graphs, it would be interesting
to study list 3-dynamic chromatic number chg(G) for a special class of planar graphs. In
this paper, we consider a near-triangulation where a near-triangulation is a planar graph
whose bounded faces are all 3-cycles and outer face is bounded by a cycle. Note that a
triangulated planar graph is a special case of a near-triangulation. First, we show the

following theorem.

Theorem 1.2 If G is a near-triangulation, then chi(G) < 6.

And we obtain the following corollary.

Corollary 1.3 If G is a triangulated planar graph, then chd(G) < 6.

Let W,, be the wheel with n + 1 vertices such that W,, is obtained from an n-cycle by
adding a new vertex u and joining u and every vertex on the n-cycle. The following can

be easily checked.

Proposition 1.4 chd(W,) < 6 for every positive integer n > 3 and chd(Ws) = 6.

Note that Proposition 1.4 and Theorem 1.2 imply that the upper bound of list 3-
dynamic chromatic number of near triangulations is tight. And Corollary 1.3 and [1]

imply that

5 < max {ch4(G) : G is a triangulated planar graph } < 6.



2. Proof of Theorem 1.2

Suppose that Theorem 1.2 does not hold, and let G be a minimal counterexample in
terms of the number o(G) = |[V(G)| + |E(G)| to Theorem 1.2. Let C : vgvy - - - v4_10g
in counter-clockwise order be the boundary of the outer face of a plane graph G. If
|[V(G)| < 6, then it is easy to obtain chd(G) < 6, a contradiction. Hence we have
V(G)| >7.

First, we prove the following Claim.

Claim 1 For any v € V(C), we have that dg(v) > 4.

Proof.  Suppose that there is a vertex v, € V(C) with dg(vg) < 3. Let ug, ug, ..., us_1
denote the neighbors of vy in counter-clockwise order such that viu;u; 1 is a 3-face for
each i € {0,1,...,s —2}. And let ug = vg41 (k + 1 are computed by modulo ).

If dg(vr) = 2 or dg(vg) = 3 with ugus € E(G), then we remove vy from G and call
the resulting graph by G’. If dg(vy) = 3 and wpuy ¢ E(G), then we remove vy, from G
and add the edge ugus in the outer face, and call the resulting graph by G’. Clearly, for
all cases above, G’ is a near-triangulation.

Let L'(v) = L(v) for every v € V(G'). Since G is a minimal counterexample, G’ has
a 3-dynamic L’-coloring ¢.

If dg(vg) = 2, then there exists a vertex wuy such that uj € (Ng(uo) N Ng(up)) \ {ve}
since |V(G)| > 7. Then we color vy by a color ¢ € L(vg) \ {o(ug), ¢(ug), #(u1)}, and we
obtain that G has a 3-dynamic coloring from the list assignment L, a contradiction.

If dg(vx) = 3, then the vertices ug, u; and uy receive distinct colors under the coloring
¢. Suppose ugus € FE(G). Then we color vy by a color ¢ € L(vg) \ {&(uo), p(u1), p(us)},
and we obtain that G has a 3-dynamic coloring from the list assignment L. This is a
contradiction. Hence suppose that ugus ¢ E(G). If there is a vertex w; for i € {0,2}
such that ¢(Ng(u;)) has at most two different colors, then we must color vy by a color
c € L(vg) \ (¢(Ng(vg)) Ud(Ng(u;))) so that vertex u; satisfies the conditions of 3-dynamic
coloring. Then one can easily check that the number of forbidden colors at v, is at most
5 as follows.

Let S be the set consisting of the forbidden colors at vy. If |¢(Ng(up))| > 3 and
6(Na(ua))] = 3, then S = {§(uo), dlur), d(us)}. 1 |6(Na(w))] < 2 and [¢(Na(u;))| > 3
for {i,j} = {0,2}, then S = {¢(uo), p(ur), (uz)} U d(Ne(ui)). 1t |$(Ne(uo))| < 2
and |¢(Ng(uz))| < 2, then S = {p(ug), ¢(u1), p(uz)} U ¢(Ng(ug)) U ¢(Ng(ug)). Since
uy € Ng(up) N Ng(uz), we can easily obtain |S| < 5 for all cases above.



Thus we can color vy by a color ¢ € L(vg) \ S so that G has a 3-dynamic coloring
from the list assignment L, and it implies that G is 3-dynamically L-colorable. This is a

contradiction, which completes the proof of Claim 1. O
Next, we prove the following Claim.

Claim 2 For any w € V(G) \ V(C), we have that dg(w) > 6.

Proof.  Suppose that there is a vertex w with dg(w) < 5. Let wg, wy, ..., ws_1 denote
the neighbors of w in counter-clockwise order.

Suppose dg(w) = 3. We remove w from G and call the resulting graph by G’. Let
L'(v) = L(v) for every v € V(G’). Since G is a minimal counterexample, G’ has a 3-
dynamic L'-coloring ¢. So, we can color w by a color ¢ € L(w) \ ¢(Ng(w)) so that G has
a 3-dynamic coloring from the list assignment L since |L(v)| > 6 for each v € V(G), a
contradiction.

Now we suppose 4 < dg(w) < 5. With Claim 1 and the preceding paragraph, we
suppose dg(v) > 4 for each v € V(G). Then we remove w from G and add edges
in the face formed by {wp,wy,...,ws_1} so that the resulting graph, denoted by G’, is
a near-triangulation. Let L'(v) = L(v) for every v € V(G'). Since G is a minimal
counterexample, G has a 3-dynamic L’-coloring ¢. Clearly, we have that |¢(Ng(w))| > 3.
If Ng(w) = {wp,wn,...,ws_1} has all different colors in the coloring ¢, then we color w
by a color ¢ € L(w) \ {¢(w;) : 0 <i < s—1}. Then this gives a 3-dynamic coloring from
its list assignment L, a contradiction.

Next, we consider the case when Ng(w) = {wq,wy,...,ws_1} has less than s colors.
Let S = {w; € Ng(w)|p(w;—1) = ¢p(wi1)}. Since 4 < dg(w) < 5 and |p(Ng(w))| < s,
we have that S # () in this case. Note that G is a near-triangulation and dg(v) > 4
for each v € V(G). So for each w; € S, we can select a vertex w, such that w} €
(Ng(w;) N (Ne(wi—1) U Ne(wig1))) \ {w, w1, wip1} (i — 1 and i 4+ 1 are computed by
modulo s). Clearly, ¢p(w}) # ¢(w;_1) or ¢p(w)) # ¢(w;y1) since ¢ is a proper coloring. Now
let S" = {w}|w; € S}.

Since S # 0, we have that [S'| > 1. And it is easy to check that |S| < 2 and |S] < 2
since 4 < dg(w) < 5 and |p(Ng(w))| > 3. Moreover, if |S| = 1, then |S’| = 1 and
|p(Ng(w))| < 4. If |S] = 2, then |S’| < 2 and |¢(Ng(w))| < 3. So for both cases above,
we obtain that L(w) \ ({¢(w)) : w}, € S’} U ¢p(Ng(w)) # 0 since |L(w)| > 6. Then we
color w by a color ¢ € L(w) \ ({o(w}) : w; € S’} Up(Ng(w)). Clearly, there are at least 3



distinct colors in Ng(w) and at least 3 distinct colors in Ng(w;) for each w; € Ng(w) \ S.
For each vertex w; € S, we have that ¢(w;—1) = ¢(w;11) and then ¢(w!)) # p(w;—1) # c.
So each w; € S also satisfies the conditions of 3-dynamic coloring. Thus we obtain that
G has a 3-dynamic coloring from the list assignment L, which is a contradiction since G

is a counterexample. This completes the proof of Claim 2. O

Let k& be the number of vertices in V(G) \ V(C). Then n(G) =t + k since |V (C)| = t.

Now from Claim 1 and Claim 2, we have

2(G)= > do(v)= > de(w)+ Y da(v) >4t + 6k (2)

veV(Q) veV(C) veV(G)\V(C)

And since G is a near-triangulation, we have

e(G) = 3n(G) — 6 — ([V(C)| —3) = 3n(G) —t — 3 = 2t + 3k — 3. (3)

4t + 6k — 6 = 2¢(G) > 4t + 6k — —6 > 0,
which is a contradiction. This completes the proof of Theorem 1.2. O
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