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Abstract 
Let G be a nontrivial link-colored connected network. A link-cut R of G is called a rainbow link-cut if 
no two of its links are colored the same. A link-colored network G is rainbow disconnected if for every 
two nodes u and v of G, there exists a u-v rainbow link-cut separating them. Such a link coloring is 
called a rainbow disconnection coloring of G. For a connected network G, the rainbow disconnection 
number of G, denoted by rd(G), is defined as the smallest number of colors that are needed in order to 
make G rainbow disconnected. Similarly, there are some other new concepts of network colorings, such 
as proper disconnection coloring, monochromatic disconnection coloring and rainbow node-
disconnection coloring. 

In this paper, we obtain the exact values of the rainbow (node-)disconnection numbers, proper and 
monochromatic disconnection numbers of cellular networks and grid networks, respectively. 
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1. Introduction 

All networks (also called graphs) considered in this paper are simple, finite and undirected. 
Let G = (V (G), E(G)) be a nontrivial connected network with node set V (G) and link set 
E(G). The order of G is denoted by n = |V (G)|. For a node v ∈ V (G), the open neighborhood 
of v is the set N (v) = {u ∈ V (G)|uv ∈ E(G)} and d(v) = |N (v)| is the degree of v, and the 
closed neighborhood of v is the set N [v] = N (v) ∪ {v}. The minimum and maximum degree 
of G are denoted by δ(G) and ∆(G), respectively. Denote by Pn a path on n nodes. For a subset 
S of V (G), we use G[S] to denote the subnetwork of G induced by S. Let V1, V2 be two 
disjoint node subsets of G. We denote the set of links between V1 and V2 in G by E (V1, V2). 
We follow [7] for network theoretical notation and terminology not defined here. 

The concept of rainbow connection coloring was introduced by Chartrand et al. [10] in 2008. 



A rainbow path is a path whose links are colored pairwise differently. A link-coloring of a 
network G is a rainbow connection coloring if any two nodes of G are connected by a 
rainbow path. The rainbow connection number of a connected network G, denoted by rc(G), 
is the minimum number of colors so  that G has a rainbow connection coloring. Rainbow 
node-connection was proposed by Krivelevich and Yuster [12] in 2010. For more details 
about the rainbow (node-)connection, we refer to [13] and survey papers [14, 16] and book 
[15]. 

As we know that there are two ways to study the connectivity of a network, one way is by 
using paths and the other is by using cuts. The above rainbow connection and rainbow node-
connection use paths. So, it is natural to consider the rainbow link-cuts and rainbow node-cuts 
for the colored connectivity in colored networks. 

In [8], Chartrand et al. first studied the rainbow link-cuts by introducing the concept of 
rainbow disconnection of networks, and later produced some other new concepts of colored 
disconnection colorings, such as proper disconnection coloring and monochromatic 
disconnection coloring. Let G be a nontrivial connected and link-colored network. A link-cut 
of G is a set R of links of G such that G − R is disconnected. If all (adjacent, no two) links in R 
have different colors, then R is called a rainbow (proper, monochromatic) link-cut. Let u and v 
be two nodes. A rainbow (proper, monochromatic) link-cut R is called a u-v rainbow (proper, 
monochromatic) link-cut if the nodes u and v belong to different components of G−R. A link-
coloring of G is called a rainbow (proper, monochromatic) disconnection coloring 
(abbreviated as rd-coloring, pd-coloring and md-coloring) if for every two distinct nodes u 
and v of G, there exists a u-v rainbow (proper, monochromatic) link-cut in G, separating them. 
The rainbow (proper) disconnection number (abbreviated as rd (pd)-number) rd(G) (pd(G)) 
of G is the minimum number of colors required by a rainbow (proper) disconnection coloring 
of G. The monochromatic disconnection number (abbreviated as md-number) md(G) of G is 
the maximum number of colors required by a monochromatic disconnection coloring of G.  

In fact, the rainbow disconnection number has the following application background. In some 
illegal commodity transactions, we hope to stop the transaction in time and send out a signal 
(a certain frequency). On the one hand, we need to block all the roads between the two cities 
and identify the interception locations based on different signals; on the other hand, we want 
to use as few frequencies as possible in order to reduce costs. Therefore, we want to know 
what is the minimum frequency required to meet the above requirements? Treat each city as a 
node. If there is a road between two cities, we add a link between the two nodes, and use G to 
denote the resulting network. Give a link-coloring for G, where the color on the link 
corresponds to the frequency of the road. Therefore, the above problem is equivalent to 
calculating the rainbow disconnection number of the network G. 

In order to study the rainbow node-cut, we introduce the concept of rainbow node-
disconnection number in this paper. For a connected and node-colored network G, let x and y 
be two nodes of G. If x and y are nonadjacent, then an x-y node-cut is a subset S of V (G) such 
that x and y belong to different components of G − S. If x and y are adjacent, then an x-y node-
cut is a subset S of V (G) such that x and y belong to different components of (G − xy) − S. A 



node subset S of G is rainbow if no two nodes of S have the same color. An x-y rainbow node-
cut is an x-y node-cut S such that if x and y are nonadjacent, then S is rainbow; if x and y are 
adjacent, then S + x or S + y is rainbow. 

A node-colored network G is called rainbow node-disconnected if for any two nodes x and y 
of G, there exists an x-y rainbow node-cut. In this case, the node-coloring c is called a 
rainbow node-disconnection coloring of G. For a connected network G, the rainbow node-
disconnection number of G, denoted by rnd(G), is the minimum number of colors that are 
needed to make G rainbow node-disconnected. A rainbow node-disconnection coloring with 
rnd(G) colors is called an rnd-coloring of G. 

Remember that in the Menger’s Theorem, only minimum link-cuts play a role, however, in 
the definition of rd-colorings we only requested the existence of a u-v link-cut between nodes 
u and v, which could be any link-cut (large or small are both OK). This may cause the failure 
of a colored version of such a nice Min- Max result. In order to overcome this problem, we 
introduced the concept of strong rainbow disconnection in networks in [5], with a hope to set 
up the colored version of the so-called Max-Flow Min-Cut Theorem. 

A link-colored network G is called strong rainbow disconnected if for every two distinct 
nodes u and v of G, there exists a both rainbow and minimum u-v link-cut (rainbow minimum 
u-v link-cut for short) in G. Such a link-coloring is called a strong rainbow disconnection 
coloring (abbreviated as srd-coloring) of G. For a connected network G, similarly, the strong 
rainbow disconnection number (abb-reviated as srd-number) of G, denoted by srd(G), is the 
minimum number of colors required to make G strong rainbow disconnected. We call the 
colored (dis)connection numbers the global chromatic num-bers, and the classic or traditional 
chromatic numbers the local chromatic numbers [6]. 
 
The rapid development of computer networks and communication technology, and the rise 
and wide application of internet technology have strongly promoted the development of 
commercial applications and scientific applications in the network environment, such as grid 
networks [1, 2, 9] and cellular networks [18, 19]. The cellular network is a mobile 
communication hardware architecture that divides the service of mobile phones into small 
regular hexagonal sub-areas, and each cell has a base station, forming a structure that 
resembles a “cellular” structure. Therefore, this mobile communication method is called 
cellular mobile communication method, and its structure can save equipment construction 
costs. The grid networks were developed to support large-scale scientific collaborative work. 

Based on the importance of cellular networks and grid networks, it is natural to consider the 
disconnection colorings of them. 

Consider a (planar, infinite) lattice of congruent regular hexagons (quadrangle) and a cycle C 
on it.   Then the part of the hexagonal (quadrangle) lattice which lies in the interior of C and 
the cycle C itself, forms a cellular networks (grid networks) G [11]. We call the C the 
boundary of the network G. Denote by E(G) − C the inner links of G. Obviously, the cellular 
networks and grid networks are 2-connected. 



This paper is organized as follows.  In Section 2, we obtain the (strong) rainbow 
disconnection numbers of cellular networks and grid networks. In Section 3, we give the 
rainbow node-disconnection numbers of cellular networks and grid networks. In Section 4, 
we present the proper and monochromatic disconnection numbers of cellular networks and 
grid networks. 

2. Their rd-numbers and srd-numbers 

For two distinct nodes u and v of G, let λG (u, v) (or simply λ (u, v) when the network G is 
clear from the context) denote the minimum number of links in a link-cut F such that u and v 
lie in different components of G − F. The minimum cardinality of a link-cut of G is the link-
connectivity of G, denoted by λ(G). 

Lemma 2.1 [8] If G is a nontrivial connected network, then 

λ(G) ≤ λ+(G) ≤ rd(G) ≤ χ′(G) ≤ ∆(G) + 1, 

where the upper link-connectivity λ+(G) is defined by λ+(G) = max{λ(u, v) : u, v ∈V (G)}. 

Lemma 2.2 [8] Let G be a nontrivial connected network. Then rd(G) = 2 if and only if each 
block of G is either K2 or a cycle and at least one block of G is a cycle. 

Theorem 2.3 Let G be a cellular network with the number of hexagons h. Then 

 

Proof. If h = 1, then G = C6, so rd(G) = 2 by Lemma 2.2. If h ≥ 2, there exist two nodes u, v 
of G 

satisfying λ(u, v) = 3. Moreover, we have χ′(G) = ∆(G) = 3 since G is a bipartite network. 
Hence, we get rd(G) = 3 by Lemma 2.1.  

Theorem 2.4 Let G be a grid network. Then (see Figure 1) 
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Figure 1: Grid networks in Theorem 2.4. 

Proof. If G = G1, then rd(G) = 2. If G3 ⊆ G, then λ+(G) = 4. Moreover, since G is a bipartite 
network we have rd(G) ≤ χ′(G) = ∆(G) = 4. Hence, rd(G) = 4. 

Suppose that G has a subnetwork that is isomorphic to G2, but no subnetwork that is 
isomorphic to G3. Then we get rd(G) ≥ 3 by Lemma 2.1 since λ+(G) = 3. It remains to prove 
that there exists an rd-coloring of G using 3 colors. First, we give two observations. 

• For any two nodes x and y of G with d(x) = d(y) = 4, if there has no a parallel 2 (3)-link-cut 
between x and y, then we can find a 3-link-cut C(x, y) of x, y in G (see Figure 2). 

• For such two different 3-link-cuts in G, they have at most one common link in G, which 
ensures that there exists a coloring using colors [3] so that each 3-link-cut (like C(x, y) in 
Figure 2) is rainbow. 

We now divide these link-cuts into some families of link-cut: if two link-cuts belong to the 
same family, then one can find the other link-cut by link transitivity. Let G∗ be the network 
obtained by deleting all such 3-link-cuts (like C(x, y) in Figure 2) of G. Note that each 
nontrivial block of G∗ is a subnetwork of G3,i (i ≥ 3). We first assign a coloring c0 for one 
component of G∗, say H0, using colors [3] so that each set of links incident with a node of 
degree less than 4 and parallel 2 (3)-link-cuts in G are rainbow. Then, we color a family of 
link-cuts connected to the network H0 so that each link-cut is a rainbow and each node is 
proper except for the nodes of degree 4 in G, and use H1 to denote the new colored network. 
Furthermore, we colored other component of G∗ connected with network H1 and ensure that 
each node of H1 is proper except the nodes of degree 4 in G and all parallel 2 (3)-link-cuts in 
G are rainbow. Repeatedly, we extent the coloring c0 to a coloring c of G using colors [3] so 
that each parallel 2 (3)-link-cut and each set of links incident with a node of degree less than 4 
in G is rainbow. 

Now we can verify that the c is an rd-coloring of G. For any two nodes u, v of G, if there 
exists a node  

 

Figure 2: A network used in the proof of Theorem 2.4. 

with degree less than 4, without loss of generality, say u, then the set Eu of links incident with 
node u is a u-v rainbow link-cut. If d(u) = d(v) = 4 and there has a parallel u-v 2 (3)-link-cut, 
then it is a u-v rainbow link-cut. If d(u) = d(v) = 4 and there has no parallel u-v 2 (3)-link-cut, 
then the C(u, v) (like C(x, y) in Figure 2) in network G is a u-v rainbow link-cut in G.  

Furthermore, we study the strong rainbow disconnection numbers of cellular networks. 

A trivial link-cut S of G is a link-cut incident with a node. 



Lemma 2.5 [5] If G is a connected network with link-connectivity λ(G), upper link-
connectivity λ+(G) and number e(G) of links, then 

λ(G) ≤ λ+(G) ≤ rd(G) ≤ srd(G) ≤ e(G). (1) 

Lemma 2.6 [17] A 3-connected cubic plane network G is 4-face-colorable if and only it is 3-
link colorable, i.e., χ′(G) = 3. 

Lemma 2.7 [4] A cube network G is 3-connected if and only if G is 3-link-connected. 

Lemma 2.8 [5] Let G be a nontrivial connected network. Then srd(G) = 2 if and only if rd(G) 
= 2. 

Theorem 2.9 Let G be a cellular network with the number of hexagons h. Then 

 

Proof. If h = 1, then G = C6. By Lemmas 2.2 and 2.8, we have srd(G) = 2. If h ≥ 2, there 
exist two nodes u, v of G satisfying λ(u, v) = 3, so srd(G) ≥ 3 by Lemma 2.5. Now we define 
two operations o and O as follows. 

 

Since the network is split into two pieces when we do the operation, then the operation cannot 
last endlessly. Hence, there exists a integer r such that Or({G}) = Or+1({G}). Finally, we get a 
finite sequence of link-colored cubic networks H = {H1, H2, , , Hq}, where q is a positive 
integer. Note that the operation does not appear multilinks, and each network of {H1, H2, ,Hq} 
is planar. For each planar network H ∈ H, we can construct a 3-link-connected 3-regular 
planar network H′. By the above operation, we know that each 2-link-cut in H is trivial and 
lies on the boundary of network H. Let h be the number of nodes with degree 2. Use h to 
denote the number of trivial 2-link-cuts in network H and give all nodes with degree 2 a 
clockwise label using {vi : i ∈ [h]}. If h ≡ 0 (mod 3), then we add h/3 nodes, and make each 
node connect with 3 adjacent 2-degree nodes in H (starting from the node with degree 2 
labeled 1, connect the links in turn clockwise, the same below); if h ≡ 1 (mod 3), we add 
⌊ h/3⌋  − 1 nodes, and make each node connect to the 3 adjacent nodes with degree 2 in H. 
For the remaining 4 nodes with degree 2, we add two links vh−3vh−2 and vh−1vh; if h ≡ 2 (mod 3), 
we add ⌊ h/3⌋  nodes, and make each node connect to the 3 adjacent nodes with degree 2 in 
H, and then add a link between the remaining two nodes with degree 2. It is easy to verify that 
the network H′ is a 3-link-connected 3-regular plane network. By Lemmas 2.6 and 2.7, it 



implies that H′ is 3-link-colorable.   Then each network H is 3-link-colorable, and we use 
color set [3] to assign a proper link-coloring to each network in H. Then we perform the 
inverse operation of the shrinking operation. Assume that F1 and F2 are two proper link-
colored networks obtained by shrinking the non-trivial 2-link-cut {e1, e2} of network F, and 
let c1 and c2 be colorings of networks F1 and F2 using colors [3], respectively. Obviously,  
and . Now we exchange the colors  and , and colors  and in F1 such that the new coloring  of 
F1 satisfies  and . Obviously, is still a proper link-coloring of the network F1 using the color 
set [3]. Then we can get a link-coloring c0 of network F: let c0(e) = , if e ∈ F1; let c0(e) = c2(e), 
if e ∈ F2. Obviously, the c0 is a proper link-coloring of network F. Continue to do this, and 
finally we get a proper link-coloring c of the network G using the color set [3]. 

Now we verify that the link-coloring c of G is a strong rainbow disconnection coloring of the 
network G. Let u and v be two nodes of G, and assume that d(u) ≤ d(v). If d(u) = 2, then the 
link set Eu is a minimum u-v link-cut of G and rainbow, so the link set Eu is a rainbow 
minimum u-v link-cut of G; if d(u) = d(v) = 3 and λ(u, v) = 3, then the link set Eu is a 
minimum u-v link-cut of G and rainbow, so the link set Eu is a rainbow minimum u-v link-cut 
of G; if d(u) = d(v) = 3 and λ(u, v) = 2. By the contraction operation, we get that u and v 
belong to different connected components in H (otherwise, suppose that both u and v belong 
to a connected component H of H. Since λ(u, v) = 2, and the shrinking operation does not 
change the link connectivity of u, v, there is still a nontrivial 2-link-cut between u and v. This 
is a contradiction with our operation). Therefore, there exists a rainbow 2-link-cut C(u, v) 
between u and v by the process of operation and coloring, and the C(u, v) is a rainbow 
minimum u-v link-cut of G. Hence, srd(G) ≤ 3.  

Moreover, we conjecture that the strong rainbow disconnection numbers of grid networks are 
equal to the rainbow disconnection numbers of grid networks. 

Conjecture 2.10  Let G be a grid network (see Figure 1). Then 

 

 

3. Their rnd-numbers 

Next, we study the node-version of rainbow disconnection coloring. 
Lemma 3.1 [3]  If Cn is a cycle of order n ≥ 3, then rnd(Cn) = 2. 

Lemma 3.2 [3] If G is a nontrivial connected network and H is a connected subnetwork of G, 
then rnd(H) ≤ rnd(G). 

Lemma 3.3 [3] Let G be a nontrivial connected network of order n. Then κ(G) ≤κ+(G) ≤ 



rnd(G) ≤ n. 

Theorem 3.4 Let G be a cellular network with the number of hexagons h. Then 

                                                           

Proof. If h = 1, then we have rnd(G) = 2 by Lemma 3.1. If h ≥ 2, we select the common link 
of some two hexagons, say v1v2. We have rnd(G) ≥ κG(v1, v2) ≥ 3. For the nodes of G, assign 
column numbers according to the order in which they appear from left to right in the lattice 
shown in the figure 3. For example, the nodes in the same column which appear first are 
labeled column 1. Now we give a node- coloring c of G using three colors.  For the nodes in 
the column j of network G, if j ≡ 1 (mod 3), then color them by 1; if j ≡ 2 (mod 3), then 
color them by 2; if j ≡ 0 (mod 3), then color them by 3. Let v be any node of network G. 
Assume that v is in the column i of G. If dG(v) = 2, then the neighbors of v are in columns i − 1, 
i + 1 or i, i + 1 or i − 1, i. Since the column labels of the neighbors are different modulo 3, we 
have NG(v) is rainbow. If dG(v) = 3, then the neighbors of v are in columns i − 1, i, i + 1, 
respectively. Since i − 1, i, i + 1 are pairwise different modulo 3, we have that NG(v) is 
rainbow. 

       

Figure 3: A (planar, infinite) lattice of congruent regular hexagons. 

Let x and y be two nodes of network G. If x, y are adjacent, then NG(x) \ {y} is an x-y rainbow 
node-cut. If x, y are nonadjacent, then NG(x) is an x-y rainbow node-cut. So c is a rainbow 
node-disconnection coloring of network G. We obtain rnd(G) ≤ 3. 

The Cartesian product G口 H of two internal disjoint networks G and H is the network with 
node set V (G) × V (H), where (u, v) is adjacent to (w, x) in G 口 H if and only if either u = w 
and vx ∈ E(H) or uw ∈ E(G) and v = x. The m × n grid network Gm,n = Pm口 Pn consists of 
m horizontal paths Pn and n vertical paths Pm. 

Lemma 3.5 For n ≥ 3, rnd(G3,n) = 3. 

Proof. Define a node-coloring c: V (G3,n) → [3] of G3,n.   Let c(x1,j) = 1 for j ≡1, 2 (mod 4) 
and c(x1,j) = 2 for j ≡ 0, 3 (mod 4). We color the second row using color 3. Let c(x3,j) = 2 for j 
≡ 1, 2 (mod 4) and c(x3,j) = 1 for j ≡ 0, 3 (mod 4). We show that c is a rainbow node-



disconnection coloring of G3,n. Let xp,q and xs,ℓ be two nodes of network G3,n, where p ≤ s. 

If p = 1, then (xp,q) is rainbow. So when  and  are nonadjacent, (xp,q) is an xp,q-xs,ℓ rainbow 

node-cut; when xp,q and xs,ℓ are adjacent, (xp,q)\{xs,ℓ} is an xp,q-xs,ℓ rainbow node-cut. If s = 3, 

then (xs,ℓ) is rainbow. Similarly, there is a rainbow node-cut between xp,q and xs,ℓ. 

Now consider p = s = 2. Suppose that q < ℓ. If xp,q and xs,ℓ are nonadjacent, {xp−1,q, xp,q+1, xp+1,q} 

is an xp,q-xs,ℓ rainbow node-cut. If xp,q and xs,ℓ are adjacent, {xp−1,q, xp+1,q} is an xp,q-xs,ℓ rainbow 

node-cut. 

So we have rnd(G3,n) ≤ 3. Since κ(x1,2, x2,2) = 3, we have rnd(G) ≥ κ(x1,2, x2,2) = 3 by Lemma 
3.3. 口 

Lemma 3.6 For 4 ≤ m ≤ n, rnd(Gm,n) = 4. 

Proof. Define a node-coloring c of Gm,n: V (Gm,n) → Z4. Let c(xi,1) = i (mod 4), c(xi,2) = c(xi,3) = 
i + 2 (mod 4) and c(xi,4) = i (mod 4). Other remaining columns repeat the coloring of first four 
columns. 

Let u be a node of Gm,n and Nr(u) (Nc(u)) denote the neighbors of u in the same row (column). 
Assume that c(u) = a. If |Nr(u)| = 2, then two nodes of Nr(u) are assigned a and a + 2 
respectively; if |Nr(u)| = 1, then it is assigned a or a + 2. If |Nc(u)| = 2, then two nodes of Nc(u) 
are assigned a − 1 and a + 1 respectively; if |Nr(u)| = 1, then it is assigned a − 1 or a + 1. Thus, 
(u) is rainbow. 

For any two nonadjacent nodes x and y of , (x) is an x-y rainbow node-cut. For any two 
adjacent nodes x and y of , (x) \ {y} is an x-y rainbow node-cut. The coloring c is a rainbow 
node-disconnection coloring of ,. Hence, rnd(G) ≤ 4. On the other hand, κ(, ) = 4. It follows 
by Lemma 3.3 that rnd(,) ≥ κ(, ) = 4. 

For a node-cut S of G, we denote the connected components of G − S by G1, G2, · · · , Gs. 
Then we add S to these components and get networks G[V (G1) + S], G[V (G2) + S], · · · , G[V 
(Gs) + S]. This operation is called that we split the node-cut S. 

 

If the nodes of a 2-node-cut of G are adjacent, then we say the 2-node-cut is an adjacent 2-
node-cut. 

Theorem 3.7 Let G be a grid network. Then (as shown in Figure 4) 



                                           

 

Figure 4: Grid networks in Theorem 3.7. 

Proof. If G = G1, then we have rnd(G) = 2 by Lemma 3.1. If G3 ⊆ G or G4 ⊆ G, then rnd(G) 
≥ κ+(G) ≥ 4 by Lemma 3.3. Since G is the subnetwork of some grid network Gm,n, we have 
rnd(G) ≤ rnd(Gm,n) = 4 by Lemmas 3.2 and 3.6. 

Now consider G2 ⊆ G and G3, G4  G. 

We have rnd(G) ≥ κ+(G) ≥ κ+(G2) ≥ 3. If G = G3,n, then rnd(G) = 3 by Lemma 3.5. 

If G ≠ G3,n, then there exists an adjacent 2-node-cut. We split all adjacent 2-node-cuts. Then 

we can get networks H1, H2, , Hℓ. Obviously, each Hi is a 4-cycle or G3,n. Then we do the 

following operations. 

1. Select the network H1 and color H1 using rnd-coloring c1. Let H = H1 and cH = c1. 

2. Select the network Hi which has a common adjacent 2-node-cut S with network H and color 
Hi using rnd-coloring ci. 

3. Let H = H ∪ Hi and cH = cH + ci.  If H and G are not isomorphic, then return to step 2.  

The rnd-colorings ci (i ∈ [ℓ]) are as follows. 

c1: If H1 is a 4-cycle, then we assign color 1 to two adjacent nodes and assign 2,3 to the 
remaining two nodes. If H1 is G3,n, then we color it using the same coloring as Lemma 3.5. 

ci (i ∈ {2, 3,  , ℓ}): Assume that S = {u, v}. Let ci(u) = cH (u) and ci(v) =cH (v). 

If Hi is a 4-cycle, we denote the 4-cycle containing link uv in H by Ci. We color the neighbors 
of u and v in Hi using the colors different from  and respectively. Obviously, we finish the 
color of Hi. 

Next, consider Hi = G3,n. Obviously, u, v have at least one node with degree four in G and 



degree two in H. Without loss of generality, assume that dG(v) = 4 and dH (v) = 2. Let NH (v) = 
{u, v1}. We use two stages to color Hi.  

▪  If dG(u) = 3, then color the neighbor of u in Hi such that NG(u) is rainbow. 

If dG(u) = 4, then  .  Let . When {u, v, v1} is rainbow, let ci(u1) = ci(u); otherwise, color u1 
such that {u1, v1, u} is rainbow. 

▪  Color the remaining nodes of Hi according to Figure 5. 

In first stage, we color three nodes of Hi. No matter how we color it, the colors of three nodes 
have three cases as shown in Figure 5, where the three nodes are marked by stars and {a, b, c} 
= {1, 2, 3} are three different colors. 

In second stage, for the networks in Figure 5, other columns of H′, H′′ and H′′′ repeat the colors 

of columns 1-4.  

Similar to the proof of Lemma 3.5, we can get that ci is an rnd-coloring of Hi for i ∈ [ℓ]. 

 

Figure 5: Three node-colorings of  G3,n. 

Now we claim that the node-coloring of H ∪ Hi is an rnd-coloring. Based on the process of 
coloring, the neighborhoods of nodes with degree less than four are rainbow. So we only need 
to consider two nodes with degree four. 

Let x, y be two nodes of H ∪ Hi with degree four. Assume that RH is an x-y rainbow node-cut 
of H under cH . Let Ri be an x-y rainbow node-cut of Hi under ci. Consider {x, y} = {u, v}. 
Then {u1, v1, v} or {u1, v1, u} is an x-y rainbow node-cut of H ∪ Hi. 

Consider {x, y}≠{u, v}. If x, y ∈ V (H), then RH is an x-y rainbow node-cut of H ∪ Hi. If x, 
y ∈ V(Hi), then Ri is an x-y rainbow node-cut of H ∪ Hi. If x ∈ V (H) \ {u, v}, y ∈ V (Hi) \ 
{u, v} or x ∈ V (Hi) \ {u, v}, y ∈ V (H) \ {u, v}, then {v, u1} is an x-y rainbow node-cut of H 
∪ Hi.  

So the above operations keep new network H = H ∪Hi rainbow node-disconnected. 
Therefore, rnd(G) = 3.  



4. Their pd-numbers and md-numbers 

Furthermore, we obtain the proper and monochromatic disconnection numbers of cellular 
networks and grid networks. 

Observation 4.1 Let G be a cellular network. Then pd(G) = 1. 

Observation 4.2 Let G be a grid network. Then pd(G) = 1. 

Theorem 4.3 Let G be a cellular network with the number of hexagons h, the number of inner 
links m and the boundary C. Then md(G) = 3h − m = |C|/2. 

Proof. Observe that each color appears at least 2 times in an md-coloring, so one hexagon has 
at most 3 colors. If two hexagons have a common link, then the two hexagon use at most 5 
colors under an md-coloring in G. Then an md-coloring of G has at most 3h − m colors since 
G has m pairs of hexagons with a common link. Namely, md(G) ≤ 3h − m. 

Now we give a coloring f of G. First, we give a link partition for G. For two adjacent 
hexagons H1, H2, let e be the common link of H1, H2. Then there are opposite links e1 and e2 
of e in H1 and H2, respectively. If e1 or e2 is not a bounded link, then we continue to find the 
opposite link of e1 or e2 in other hexagon, and call all these opposite links a relative link set, 
denoted by Mi, (i ∈ [t]). Observe that and t = |C|/2. Next, for each i ∈ [t], we assign color i to 
all links of Mi, therefore |f | = t. Moreover, we get |f | = 3h − m since |C| + m = 6h − m. It is 
easy to verify that the coloring f is an md-coloring of G. Hence, md(G) = 3h − m. 

Theorem 4.4 Let G be a grid network with the number of quadrangle h, the number of inner 
links m and the boundary C. Then md(G) = 2h − m = |C|/2. 

The proof of Theorem 4.4 is similar to the argument of Theorem 4.3. 

5. Conclusions 

In this paper, we get the exact values of the rainbow (node-)disconnection numbers, proper 
and monochromatic disconnection numbers of cellular networks and grid networks, 
respectively, and we conjecture that the strong rainbow disconnection numbers of grid 
networks are equal to the rainbow disconnection numbers of grid networks. 
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