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Abstract. Mock theta functions were first introduced by Ramanujan in his last letter to

Hardy. Moreover, some other mock theta functions were presented in his lost notebook. It

is well known that all the classical mock theta functions can be expressed by the universal

mock theta functions g2(x, q) and g3(x, q). In this paper, we establish some generalized mock

theta functions and express them in terms of Appell–Lerch sums. Meanwhile, we show that

some of Ramanujan’s two-parameter mock theta functions are the special cases of these

functions.

1. Introduction

In this paper, the following standard q-series notation [20] are needed. For positive integers
n and m,

(a; q)0 := 1, (a; q)n :=

n−1∏
k=0

(1− aqk), (a; q)∞ :=

∞∏
k=0

(1− aqk),

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n,

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

Define

j(x; q) := (x; q)∞(q/x; q)∞(q; q)∞,

Ja,m := j(qa; qm), Ja,m := j(−qa; qm), Jm := Jm,3m =
∞∏
i=1

(1− qmi).

In his last letter to Hardy, Ramanujan [33] provided a list of seventeen functions which
were called mock theta functions. This list includes the third, fifth, and seventh order mock
theta functions. Later, more mock theta functions were found in Ramanujan’s lost notebook,
such as the sixth and tenth order mock theta functions. Furthermore, some other mock
theta functions were discovered. In [3], Andrews established some third order mock theta
functions by using q-orthogonal polynomials. Later, Bringmann, Hikami, and Lovejoy [8]
found two new third order mock theta functions. In [6], Berndt and Chan found two new
sixth order mock theta functions and built some linear relations between these two functions
and the other sixth order mock theta functions given by Ramanujan. In 2000, Motivated by
asymptotics of some q-series, Gordon and McIntosh [21] discovered eight eighth order mock
theta functions. Later, some identities relate to the second and eighth order mock theta
functions were established by McIntosh [28]. For the development of the classical mock theta
functions, one can refer to the survey [22] and the book [4]. Generally, mock theta functions
can be expressed in terms of Eulerian forms, Hecke-type double sums, Appell-Lerch sums, and
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Fourier coefficients of meromorphic Jacobi forms. Until now, properties and representations
of mock theta functions have attracted many mathematicians.

In this paper, we mainly focus on multiple parameter mock theta functions. First, we
introduce g2(x, q) and g3(x, q), where

g2(x, q) =
∞∑
n=0

(−q; q)nq(n
2+n)/2

(x, x−1q; q)n+1
, (1.1)

g3(x, q) = x−1

(
−1 +

∞∑
n=0

qn
2

(x; q)n+1(x−1q; q)n

)
=
∞∑
n=0

qn(n+1)

(x, x−1q; q)n+1
.

It is well known that the odd order mock theta functions can be expressed by g3(x, q) and
the even order mock theta functions are related to g2(x, q). In 2012, the fact that g3(x, q)
can be represented in terms of g2(x, q) was provided by Gordon and McIntosh [22, Eq. (6.1)].
Customarily, g2(x, q) and g3(x, q) are called universal mock theta functions. In addition,
some other two-parameter mock theta functions were considered in the literature [19,26,29].
For example,

N(x, q) =

∞∑
n=0

qn
2

(xq, x−1q; q)n
, K(x, q) =

∞∑
n=0

(q; q2)n(−1)nqn
2

(xq2, x−1q2; q2)n
,

K1(x, q) =
∞∑
n=0

(q; q2)n(−1)nq(n+1)2

(xq, x−1q; q2)n+1
, K2(x, q) =

∞∑
n=0

(−1; q)nq
(n2+n)/2

(xq, x−1q; q)n
,

S2(x; q) = (1 + x−1)

∞∑
n=0

(−q; q)2nqn+1

(xq, x−1q; q2)n+1
, S4(x; q) = (1 + x−1)

∞∑
n=0

(q; q2)n(−1)n

(−x; q)n+1(−x−1q; q)n
.

For more properties of these mock theta functions, one can refer to [7, 9–11,18,27,30].

At the beginning of the research on mock theta functions, Hecke-type double sums play a
very important role in the proofs of mock theta function identities. For example, Hickerson
[23,24] proved the mock theta conjectures by using Hecke-type double sums for the fifth and
seventh order mock theta functions given by Andrews [2]. For Hecke-type double sums for
the other mock theta functions, one can see [3, 5, 6, 12–16, 19, 31]. In 2014, Hickerson and
Mortenson [25] provided the following definition of Appell–Lerch sums.

Definition 1.1. Let x, z ∈ C∗ := C\{0} with neither z nor xz an integral power of q. Then

m(x, q, z) =
1

j(z; q)

∞∑
r=−∞

(−1)rq(
r
2)zr

1− qr−1xz
.

Changing r to r + 1 in the above series yields another form of m(x, q, z):

m(x, q, z) =
−z

j(z; q)

∞∑
r=−∞

(−1)rq(
r+1
2 )zr

1− qrxz
. (1.2)

They [25] expressed all the classical mock theta functions and the universal mock theta
functions in terms of Appell–Lerch sums. For example,

g2(x, q) =
1

J1,2

∞∑
n=−∞

(−1)nqn
2+n

1− xqn
= −x−1m(x−2q, q2, x). (1.3)
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From the viewpoint of Appell-Lerch sums, identities for mock theta functions are more easily
obtained than before. Moreover, Hickerson and Mortenson [25] showed some properties of
Appell–Lerch sums.

Proposition 1.2. [25] For generic x, z ∈ C∗,

m(x, q, z) = m(x, q, zq), (1.4)

m(x, q, z) = x−1m(x−1, q, z−1). (1.5)

Following [25], the term “generic” means that the parameters do not cause poles in the
Appell–Lerch sums.

In [32], Mortenson established some two-parameter mock theta functions in terms of
Appell–Lerch sums. Some of the identities were first proved in [1]. For example, Mortenson
showed that

(1 + x−1)

∞∑
n=0

(q; q2)n(−1)nq(n+1)2

(−xq,−x−1q; q2)n+1
= m(x, q,−1)−

J2
1,2

2j(−x; q)
, (1.6)

(1 + x−1)
∞∑
n=0

(−q; q)2nqn+1

(xq, x−1q; q2)n+1
= −m(x, q2, q), (1.7)

∞∑
n=0

(q; q2)n(−1)nqn
2

(−x; q2)n+1(−x−1q2; q2)n
= m(x, q,−1) +

J2
1,2

2j(−x; q)

= 2m(x, q,−1)−m(x, q,
√
−x−1q)

= m(−x2q, q4,−q−1)− xq−1m(−x2q−1, q4,−q),
∞∑
n=0

(q; q2)n(−1)n

(−x; q)n+1(−x−1q; q)n
= m(x, q,−1),

∞∑
n=0

(q2; q4)n(−1)nq2n
2

(−x; q4)n+1(−x−1q4; q4)n
= m(x, q2, q) +

J
2
1,4j(−xq2; q4)

j(−x; q4)j(xq; q2)
.

In this paper, let m, s, and t be integers. In view of some q-series identities and properties
of Appell–Lerch sums, we establish some generalized mock theta functions and express them
in terms of Appell–Lerch sums. The main results are stated as follows.

Theorem 1.3. For m ≥ 1 and s ≤ 1, we have

∞∑
n=0

(−q2; q2)n+s−1qn
2+(2m−2s+1)n

(xqm, x−1qm; q2)n+1

=
m−2s∑
k=0

(−1)
m−s−δ+1

2 q
δ2−(m−s+1)2

2
+(−m+3s+2k−2)δA

(1)
k,m,2sm(q−2m+6s+4k−2δ, q4,−qm−3s−2k−δ+1)

+ (−1)
m−s+δ+1

2 xδq
δ2−(m−s+1)2

2
+(s−2)δB

(1)
m,2sm(x2q2s−2δ, q4, x−1q1−s−δ), (1.8)

and for m ≥ 1 and s ≤ 0, we have

∞∑
n=0

(−q; q2)n+sqn
2+(2m−2s)n

(xqm, x−1qm; q2)n+1
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=
m−2s−1∑
k=0

(−1)
m−s−δ+1

2 q
−(m−s)2−(m−s)

2 A
(1)
k,m,2s+1m(q−2m+6s+4k+3, q4, q1+2δ)

+
m−2s−1∑
k=0

(−1)
m−s+δ−1

2 q
−(m−s)2−3m+7s+4k

2 A
(1)
k,m,2s+1m(q−2m+6s+4k+1, q4, q3−2δ)

+ (−1)
m−s−δ+1

2 q
−(m−s)2−(m−s)

2 B
(1)
m,2s+1m(x2q2s+1, q4, q1+2δ)

+ (−1)
m−s+δ+1

2 xq
−(m−s)2−m+3s−2

2 B
(1)
m,2s+1m(x2q2s−1, q4, q3−2δ), (1.9)

where

δ :=

{
1, m ≡ s (mod 2),
0, m ≡ s+ 1 (mod 2),

A
(1)
k,m,s :=

(−q−s−2k+2; q2)m−1
(q−2k; q2)k(q2; q2)m−s−k(1 + xqm−s−2k)

, (1.10)

B(1)
m,s :=

(x−1q−m+2; q2)m−1
(−x−1q−m+s; q2)m−s+1

. (1.11)

Remark: Notice that here and in what follows, we define
∑j

i=k = 0 if k > j.

Theorem 1.4. For m ≥ max{1, 2s, 2t, 2s+ 2t− 1, s+ t+ 1}, we have

q(m−s−t)
2+(m−s−t)

2(−q2; q2)m−s−t−1

∞∑
n=0

(−q; q2)n+s(q; q2)n+t(−1)nq(2m−2s−2t)n

(xqm, x−1qm; q2)n+1

=
m−2s∑
k=1

A
(2)
k,m,s,tm(q−2m+4s+2t+2k−1, q2,−1) +

m−2t∑
k=1

B
(2)
k,m,s,tm(−q−2m+2s+4t+2k−1, q2,−1)

+ C
(2)
m,s,tm(−xq2s+2t−m, q2,−1),

where

A
(2)
k,m,s,t :=

(−q−2s−2k+3; q2)m−1
(q−2k+2; q2)k−1(q2; q2)m−2s−k(−q−2s+2t−2k+2; q2)m−2t(1 + xqm−2s−2k+1)

, (1.12)

B
(2)
k,m,s,t :=

(q−2t−2k+3; q2)m−1
(q−2k+2; q2)k−1(q2; q2)m−2t−k(−q2s−2t−2k+2; q2)m−2s(1− xqm−2t−2k+1)

, (1.13)

C
(2)
m,s,t :=

(x−1q−m+2; q2)m−1
(−x−1q−m+2s+1; q2)m−2s(x−1q−m+2t+1; q2)m−2t

. (1.14)

Theorem 1.5. For m ≥ max{1, 2s− 1, 2t, 2s+ 2t− 2, s+ t}, we have

(−1)m−s−t+1q(m−s−t)
2+2(m−s−t)+1

(q; q2)m−s−t

∞∑
n=0

(−q2; q2)n+s−1(−q; q2)n+tq(2m−2s−2t+1)n

(xqm, x−1qm; q2)n+1

=
m−2s∑
k=0

A
(3)
k,m,s,tm(−q−2m+4s+2t+2k−1, q2, q) +

m−2t∑
k=1

B
(3)
k,m,s,tm(−q−2m+2s+4t+2k−2, q2, q)

+ C
(3)
m,s,tm(xq−m+2s+2t−1, q2, q),

where

A
(3)
k,m,s,t :=

(−q−2s−2k+2; q2)m−1
(q−2k; q2)k(q2; q2)m−2s−k(q−2s+2t−2k+1; q2)m−2t(1 + xqm−2s−2k)

, (1.15)
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B
(3)
k,m,s,t :=

(−q−2t−2k+3; q2)m−1
(q−2k+2; q2)k−1(q2; q2)m−2t−k(q2s−2t−2k+1; q2)m−2s+1(1 + xqm−2t−2k+1)

, (1.16)

C
(3)
m,s,t :=

(x−1q−m+2; q2)m−1
(−x−1q−m+2s; q2)m−2s+1(−x−1q−m+2t+1; q2)m−2t

. (1.17)

Notice that the left-hand side of (1.8) generalizes g2(x; q) which is defined in (1.1). Letting

(m, s, q, x) → (1, 1, q1/2, xq−1/2) in (1.8), and then using (1.5), we obtain (1.3). Meanwhile,
another representation of (1.6) can be derived by setting (m, s)→ (1, 0) in (1.9). In Theorem
1.5, we set (m, s, t)→ (1, 1, 0) to obtain (1.7).

In addition, in view of the q-Zeilberger algorithm, Cui, Gu, Hou, and Su [17] derived some
generalizations of mock theta functions. It should be pointed out that the main results in
this paper are the generalizations of Theorems 1.3-1.7 in [17]. For example, by (1.8) with
s = 1, we see that for m ≥ 1,

∞∑
n=0

(−q2; q2)nqn
2+(2m−1)n

(xqm, x−1qm; q2)n+1

=
m−2∑
k=0

(−1)
m−δ

2 q
δ2−m2

2
+(−m+2k+1)δA

(1)
k,m,2m(q−2m+4k−2δ+6, q4,−qm−2k−δ−2)

+ (−1)
m+δ

2 xδq
δ2−m2

2
−δB

(1)
m,2m(x2q2−2δ, q4, x−1q−δ)

=
m−1∑
k=1

(−1)
m−δ

2 q
δ2−m2

2
+(−m+2k−1)δA

(1)
k−1,m,2m(q−2m+4k−2δ+2, q4,−qm−2k−δ)

+ (−1)
m+δ

2 xδq
δ2−m2

2
−δB

(1)
m,2m(x2q2−2δ, q4, x−1q−δ), (1.18)

where we derive the last step by replacing k by k − 1. Then from the definition of δ, we
deduce that

δ =
1− (−1)m

2
. (1.19)

So,

δ2 =
1− (−1)m

2
. (1.20)

Thus, substituting (1.19) and (1.20) into (1.18) yields Theorem 1.4 in [17]. Similarly, setting
s = 0 in (1.9), we derive Theorem 1.3 in [17] for m ≥ 1. Moreover, Theorem 1.4 with
s = t = 0 implies Theorem 1.5 in [17] for m ≥ 1. Furthermore, by setting (s, t) = (1, 0) and
(s, t) = (0, 0) in Theorem 1.5, respectively, we obtain Theorems 1.6 and 1.7 in [17].

This paper is organized as follows. In Section 2, some lemmas are stated. In Section 3,
we prove Theorems 1.3-1.5.

2. Preliminaries

In this section, we provide some preliminary results. In order to prove the main results,
the following identities are needed. Let n and k be integers.

j(x; q) = j(q/x; q), (2.1)

j(qnx; q) = (−1)nq−(n2)x−nj(x; q), (2.2)
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(a; q)−n =
1

(aq−n; q)n
, n > 0, (2.3)

(a; q)n+k = (a; q)n(aqn; q)k, n, k ≥ 0, (2.4)

(aq−n; q)n = (−a/q)nq−(n2)(q/a; q)n, n ≥ 0. (2.5)

The (unilateral) basic hypergeometric series rφs is stated as

rφs

(
a1, a2, . . . , ar
b1, . . . , bs

; q, x

)
=

∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, . . . , bs; q)n

(
(−1)nq(

n
2)
)1+s−r

xn.

Lemma 2.1. [20, p. 185] If abcq2 = efg, then

5φ4

(
q−2N , ρ1, ρ2, b, c;

ρ1ρ2q
−2N/a, e, f, g

; q2, q2
)

=
(aq2/ρ1, aq

2/ρ2; q
2)N

(aq2, aq2/ρ1ρ2; q2)N
×

N∑
n=0

(1− aq4n)(a, ρ1, ρ2, q
−2N ; q2)n

(1− a)(q2, aq2/ρ1, aq2/ρ2, aq2N+2; q2)n

(
aq2N+2

ρ1ρ2

)n
× 4φ3

(
q−2n, aq2n, b, c

e, f, g
; q2, q2

)
.

Lemma 2.2. [20, p. 186] The big q-Jacobi polynomials

Pn(x) = Pn(x; a, b, c; q2) = 3φ2

(
q−2n, abq2n+2, x

aq2, cq2
; q2, q2

)
satisfy the following relation

AnPn+1(x) + (1− x−An − Cn)Pn(x) + CnPn−1(x) = 0

with

An =
(1− aq2n+2)(1− cq2n+2)(1− abq2n+2)

(1− abq4n+2)(1− abq4n+4)
,

Cn = −(1− q2n)(1− bq2n)(1− abc−1q2n)acq2n+2

(1− abq4n)(1− abq4n+2)
.

The following lemma was given in [17]. Here for completeness, we use Lemmas 2.1 and
2.2 to state a little bit different proof.

Lemma 2.3. [17] For m ≥ 1, we have
∞∑
n=0

(ρ1, ρ2; q
2)n

(xqm, x−1qm; q2)n+1

(
q2m+2

ρ1ρ2

)n
=

(q2m+2/ρ1, q
2m+2/ρ2; q

2)∞
(q2, q2m+2/ρ1ρ2; q2)∞

∞∑
n=−∞

(q2n+2; q2)m−1(ρ1, ρ2; q
2)n(−1)nqn

2+2mn+3n

(q2m+2/ρ1, q2m+2/ρ2; q2)n(1− xq2n+m)

(
1

ρ1ρ2

)n
.

Proof. Setting (a, b, c, e, f, g) → (q2m, q2, 0, xqm+2, x−1qm+2, 0) and N → ∞ in Lemma 2.1,
and then using Lemma 2.2, we obtain

∞∑
n=0

(ρ1, ρ2; q
2)n

(xqm+2, x−1qm+2; q2)n

(
q2m+2

ρ1ρ2

)n
=

(q2m+2/ρ1, q
2m+2/ρ2; q

2)∞
(q2m+2, q2m+2/ρ1ρ2; q2)∞

×
∞∑
n=0

(1− q4n+2m)(q2m, ρ1, ρ2; q
2)n(−1)nqn

2+(2m+1)n

(1− q2m)(q2, q2m+2/ρ1, q2m+2/ρ2; q2)n

(
1

ρ1ρ2

)n
P ′n(q2), (2.6)
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where

P ′n(q2) = Pn(q2;xqm, x−1qm−2, x−1qm; q2)

and

A′nP
′
n+1(q

2) +B′nP
′
n(q2) + C ′nP

′
n−1(q

2) = 0 (2.7)

with

A′n =
(1− q2n+2m)(1− xq2n+m+2)(1− x−1q2n+m+2)

(1− q4n+2m)(1− q4n+2m+2)
,

B′n =
(−q2 + q2n+2m + q2n+2m+2 − q4n+2m+2)(1− xq2n+m)(1− x−1q2n+m)

(1− q4n+2m−2)(1− q4n+2m+2)
,

C ′n =
−(1− q2n)(1− xq2n+m−2)(1− x−1q2n+m−2)q2n+2m+2

(1− q4n+2m)(1− q4n+2m−2)
.

Define

Pn =
(1− xqm)(1− x−1qm)q2n

(1− xq2n+m)(1− x−1q2n+m)
.

We find that P ′n(q2) and Pn satisfy the same recurrence relation (2.7) and have the same
initial values. Thus

P ′n(q2) =
(1− xqm)(1− x−1qm)q2n

(1− xq2n+m)(1− x−1q2n+m)
. (2.8)

So, substituting (2.8) into (2.6) yields that

∞∑
n=0

(ρ1, ρ2; q
2)n

(xqm, x−1qm; q2)n+1

(
q2m+2

ρ1ρ2

)n
=

(q2m+2/ρ1, q
2m+2/ρ2; q

2)∞
(q2, q2m+2/ρ1ρ2; q2)∞

×
∞∑
n=0

(1− q4n+2m)(q2n+2; q2)m−1(ρ1, ρ2; q
2)n(−1)nqn

2+2mn+3n

(q2m+2/ρ1, q2m+2/ρ2; q2)n(1− xq2n+m)(1− x−1q2n+m)

(
1

ρ1ρ2

)n
=

(q2m+2/ρ1, q
2m+2/ρ2; q

2)∞
(q2, q2m+2/ρ1ρ2; q2)∞

∞∑
n=0

(q2n+2; q2)m−1(ρ1, ρ2; q
2)n(−1)nqn

2+2mn+3n

(q2m+2/ρ1, q2m+2/ρ2; q2)n

(
1

ρ1ρ2

)n
×
(

x−1q2n+m

1− x−1q2n+m
+

1

1− xq2n+m

)
=

(q2m+2/ρ1, q
2m+2/ρ2; q

2)∞
(q2, q2m+2/ρ1ρ2; q2)∞

∞∑
n=0

(q2n+2; q2)m−1(ρ1, ρ2; q
2)n(−1)n+1qn

2+2mn+3n

(q2m+2/ρ1, q2m+2/ρ2; q2)n(1− xq−2n−m)

(
1

ρ1ρ2

)n
+

(q2m+2/ρ1, q
2m+2/ρ2; q

2)∞
(q2, q2m+2/ρ1ρ2; q2)∞

∞∑
n=0

(q2n+2; q2)m−1(ρ1, ρ2; q
2)n(−1)nqn

2+2mn+3n

(q2m+2/ρ1, q2m+2/ρ2; q2)n(1− xq2n+m)

(
1

ρ1ρ2

)n
=

(q2m+2/ρ1, q
2m+2/ρ2; q

2)∞
(q2, q2m+2/ρ1ρ2; q2)∞

×

( −m∑
n=−∞

+
∞∑
n=0

)
(q2n+2; q2)m−1(ρ1, ρ2; q

2)n(−1)nqn
2+2mn+3n

(q2m+2/ρ1, q2m+2/ρ2; q2)n(1− xq2n+m)

(
1

ρ1ρ2

)n
=

(q2m+2/ρ1, q
2m+2/ρ2; q

2)∞
(q2, q2m+2/ρ1ρ2; q2)∞
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×

( ∞∑
n=−∞

−
−1∑

n=−m+1

)
(q2n+2; q2)m−1(ρ1, ρ2; q

2)n(−1)nqn
2+2mn+3n

(q2m+2/ρ1, q2m+2/ρ2; q2)n(1− xq2n+m)

(
1

ρ1ρ2

)n
,

where the penultimate equality is obtained by setting n→ −n−m in the first sum, and then
using (2.3), (2.4), and (2.5). Since (q2n+2; q2)m−1 = 0 for m ≥ 2 and −m+ 1 ≤ n ≤ −1, we
complete the proof. �

In the following lemmas, let n be any nonnegative integer.

Lemma 2.4. For m ≥ 1 and s ≤ 2, we have

(q2n+2; q2)m−1
(−q2n+s; q2)m−s+1(1− xq2n+m)

=

m−s∑
k=0

A
(1)
k,m,s

1 + q2n+s+2k
+

B
(1)
m,s

1− xq2n+m
,

where A
(1)
k,m,s and B

(1)
m,s are defined in (1.10) and (1.11), respectively.

Proof. Set

f(y) :=
(yq2; q2)m−1

(−yqs; q2)m−s+1(1− xyqm)
.

Then for m ≥ 1 and s ≤ 2, using partial fractional decomposition, we have

f(y) =
m−s∑
k=0

A
(1)
k,m,s

1 + yqs+2k
+

B
(1)
m,s

1− xyqm
.

Now we compute A
(1)
k,m,s for k = 0, 1, . . . ,m− s and B

(1)
m,s.

A
(1)
k,m,s = lim

y→−q−s−2k
(1 + yqs+2k)f(y)

= lim
y→−q−s−2k

(yq2; q2)m−1
(−yqs; q2)k(−yqs+2k+2; q2)m−s−k(1− xyqm)

=
(−q−s−2k+2; q2)m−1

(q−2k; q2)k(q2; q2)m−s−k(1 + xqm−s−2k)
,

B(1)
m,s = lim

y→x−1q−m
(1− xyqm)f(y) = lim

y→x−1q−m

(yq2; q2)m−1
(−yqs; q2)m−s+1

=
(x−1q−m+2; q2)m−1

(−x−1q−m+s; q2)m−s+1
.

Therefore, we complete the proof. �

Lemma 2.5. For m ≥ max{1, 2s, 2t, 2s+ 2t− 1}, we have

(q2n+2; q2)m−1
(−q2n+2s+1; q2)m−2s(q2n+2t+1; q2)m−2t(1− xq2n+m)

=

m−2s∑
k=1

A
(2)
k,m,s,t

1 + q2n+2s+2k−1 +

m−2t∑
k=1

B
(2)
k,m,,s,t

1− q2n+2t+2k−1 +
C

(2)
m,s,t

1− xq2n+m
,

where A
(2)
k,m,s,t, B

(2)
k,m,s,t, and C

(2)
m,s,t are defined in (1.12), (1.13), and (1.14), respectively.

Proof. First, set

f(y) =
(yq2; q2)m−1

(−yq2s+1; q2)m−2s(yq2t+1; q2)m−2t(1− xyqm)
.
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Then performing partial fraction decomposition on f(y) yields

f(y) =
m−2s∑
k=1

A
(2)
k,m,s,t

1 + yq2s+2k−1 +
m−2t∑
k=1

B
(2)
k,m,s,t

1− yq2t+2k−1 +
C

(2)
m,s,t

1− xyqm
.

Now we compute A
(2)
k,m,s,t for k = 1, 2, . . . ,m−2s, B

(2)
k,m,s,t for k = 1, 2, . . . ,m−2t, and C

(2)
m,s,t.

A
(2)
k,m,s,t = lim

y→−q−2s−2k+1
(1 + yq2s+2k−1)f(y)

= lim
y→−q−2s−2k+1

(yq2; q2)m−1
(−yq2s+1; q2)k−1(−yq2s+2k+1; q2)m−2s−k(yq2t+1; q2)m−2t(1− xyqm)

which implies (1.12).

Similarly, we derive (1.13) and (1.14). So, we complete the proof. �

Lemma 2.6. For m ≥ max{1, 2s− 1, 2t, 2s+ 2t− 2}, we have

(q2n+2; q2)m−1
(−q2n+2s; q2)m−2s+1(−q2n+2t+1; q2)m−2t(1− xq2n+m)

=

m−2s∑
k=0

A
(3)
k,m,s,t

1 + q2n+2s+2k
+

m−2t∑
k=1

B
(3)
k,m,s,t

1 + q2n+2t+2k−1 +
C

(3)
m,s,t

1− xq2n+m
,

where A
(3)
k,m,s,t, B

(3)
k,m,s,t, and C

(3)
m,s,t are defined in (1.15), (1.16), and (1.17), respectively.

Proof. Since the proof is similar to that of Lemma 2.5, we omit it here. �

3. Proofs of Theorems 1.3-1.5

In this section, we prove Theorems 1.3-1.5.

Proofs of Theorems 1.3. Setting ρ1 →∞ and ρ2 = −qs in Lemma 2.3, and then utilizing
Lemma 2.4, we find that

∞∑
n=0

(−qs; q2)nqn
2+(2m−s+1)n

(xqm, x−1qm; q2)n+1
=

(−qs; q2)∞
(q2; q2)∞

∞∑
n=−∞

m−s∑
k=0

(−1)nq2n
2+(2m−s+2)nA

(1)
k,m,s

1 + q2n+s+2k

+
(−qs; q2)∞
(q2; q2)∞

∞∑
n=−∞

(−1)nq2n
2+(2m−s+2)nB

(1)
m,s

1− xq2n+m
. (3.1)

Next, we consider the following two cases for even s and odd s.

(1) First, replacing s by 2s in (3.1), and then multiplying (−q2; q2)s−1 on both sides, we
derive that

∞∑
n=0

(−q2; q2)n+s−1qn
2+(2m−2s+1)n

(xqm, x−1qm; q2)n+1
=

1

J2,4

∞∑
n=−∞

m−2s∑
k=0

(−1)nq2n
2+(2m−2s+2)nA

(1)
k,m,2s

1 + q2n+2s+2k

+
B

(1)
m,2s

J2,4

∞∑
n=−∞

(−1)nq2n
2+(2m−2s+2)n

1− xq2n+m
. (3.2)
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If m ≡ s (mod 2), then we set n→ n− (m−s)/2 on the right-hand side of (3.2) to obtain

∞∑
n=0

(−q2; q2)n+s−1qn
2+(2m−2s+1)n

(xqm, x−1qm; q2)n+1

=
1

J2,4

∞∑
n=−∞

m−2s∑
k=0

(−1)n−(m−s)/2q2n
2+2n−(m−s)(m−s+2)/2A

(1)
k,m,2s

1 + q2n−m+3s+2k

+
B

(1)
m,2s

J2,4

∞∑
n=−∞

(−1)n−(m−s)/2q2n
2+2n−(m−s)(m−s+2)/2

1− xq2n+s

=
m−2s∑
k=0

(−1)
m−s

2 q−
(m−s)(m−s+2)

2
+m−3s−2kA

(1)
k,m,2sm(q2m−6s−4k+2, q4,−q−m+3s+2k)

+ (−1)
m−s+2

2 x−1q−
(m−s)(m−s+2)

2
−sB

(1)
m,2sm(x−2q2−2s, q4, xqs)

=
m−2s∑
k=0

(−1)
m−s

2 q−
(m−s)(m−s+2)

2
−m+3s+2k−2A

(1)
k,m,2sm(q−2m+6s+4k−2, q4,−qm−3s−2k)

+ (−1)
m−s+2

2 xq−
(m−s)(m−s+2)

2
+s−2B

(1)
m,2sm(x2q2s−2, q4, x−1q−s), (3.3)

where the penultimate step follows from (1.3), and we use (1.5) to obtain the last step.

Next, if m ≡ s+ 1 (mod 2), then letting n→ n− (m− s+ 1)/2 on the right-hand side of
(3.2), we find that

∞∑
n=0

(−q2; q2)n+s−1qn
2+(2m−2s+1)n

(xqm, x−1qm; q2)n+1

=
1

J2,4

∞∑
n=−∞

m−2s∑
k=0

(−1)n−(m−s+1)/2q2n
2−(m−s+1)2/2A

(1)
k,m,2s

1 + q2n−m+3s+2k−1

+
B

(1)
m,2s

J2,4

∞∑
n=−∞

(−1)n−(m−s+1)/2q2n
2−(m−s+1)2/2

1− xq2n+s−1
. (3.4)

By changing n→ −n, x→ x−1, and q → q2 in (1.3), we have

1

J2,4

∞∑
n=−∞

(−1)nq2n
2

1− xq2n
= m(x2q2, q4, x−1). (3.5)

Then substituting (3.5) into (3.4) yields that

∞∑
n=0

(−q2; q2)n+s−1qn
2+(2m−2s+1)n

(xqm, x−1qm; q2)n+1

=

m−2s∑
k=0

(−1)
m−s+1

2 q−
(m−s+1)2

2 A
(1)
k,m,2sm(q−2m+6s+4k, q4,−qm−3s−2k+1)

+ (−1)
m−s+1

2 q−
(m−s+1)2

2 B
(1)
m,2sm(x2q2s, q4, x−1q1−s). (3.6)

Hence, combining (3.3) and (3.6), we prove (1.8).
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(2) Setting s→ 2s+ 1 in (3.1), and then multiplying (−q; q2)s on both sides, we derive that

∞∑
n=0

(−q; q2)n+sqn
2+(2m−2s)n

(xqm, x−1qm; q2)n+1

=
1

J1,4

∞∑
n=−∞

m−2s−1∑
k=0

(−1)nq2n
2+(2m−2s+1)n(1− q2n+2s+2k+1)A

(1)
k,m,2s+1

1− q4n+4s+4k+2

+
B

(1)
m,2s+1

J1,4

∞∑
n=−∞

(−1)nq2n
2+(2m−2s+1)n(1 + xq2n+m)

1− x2q4n+2m

= − 1

J1,4

m−2s−1∑
k=0

q−2m+2s+1j(q2m−2s−1; q4)A
(1)
k,m,2s+1m(q−2m+6s+4k+3, q4, q2m−2s−1)

+
1

J1,4

m−2s−1∑
k=0

q−2m+4s+2kj(q2m−2s+1; q4)A
(1)
k,m,2s+1m(q−2m+6s+4k+1, q4, q2m−2s+1)

− 1

J1,4
q−2m+2s+1j(q2m−2s−1; q4)B

(1)
m,2s+1m(x2q2s+1, q4, q2m−2s−1)

− 1

J1,4
xq−m+2s−1j(q2m−2s+1; q4)B

(1)
m,2s+1m(x2q2s−1, q4, q2m−2s+1), (3.7)

where the last step follows from (1.2).

If m ≡ s (mod 2), then using (2.1) and (2.2), we have

j(q2m−2s−1; q4) = j(q3 · q2m−2s−4; q4) = (−1)
m−s

2
−1q

−(m−s)2+3(m−s)−2
2 J1,4,

j(q2m−2s+1; q4) = j(q · q2m−2s; q4) = (−1)
m−s

2 q
−(m−s)2+(m−s)

2 J1,4.

Then using (1.4) and the above two identities, we rewrite (3.7) as

∞∑
n=0

(−q; q2)n+sqn
2+(2m−2s)n

(xqm, x−1qm; q2)n+1

=

m−2s−1∑
k=0

(−1)
m−s

2 q
−(m−s)2−(m−s)

2 A
(1)
k,m,2s+1m(q−2m+6s+4k+3, q4, q3)

+
m−2s−1∑
k=0

(−1)
m−s

2 q
−(m−s)2−3m+7s+4k

2 A
(1)
k,m,2s+1m(q−2m+6s+4k+1, q4, q)

+ (−1)
m−s

2 q
−(m−s)2−(m−s)

2 B
(1)
m,2s+1m(x2q2s+1, q4, q3)

+ (−1)
m−s+2

2 xq
−(m−s)2−m+3s−2

2 B
(1)
m,2s+1m(x2q2s−1, q4, q). (3.8)

If m ≡ s+ 1 (mod 2), then in view of (2.1) and (2.2), we have

j(q2m−2s−1; q4) = j(q · q2m−2s−2; q4) = (−1)
m−s−1

2 q
−(m−s)2+3(m−s)−2

2 J1,4,

j(q2m−2s+1; q4) = j(q3 · q2m−2s−2; q4) = (−1)
m−s−1

2 q
−(m−s)2+(m−s)

2 J1,4.
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Utilizing (1.4) and the above two identities, we rewrite (3.7) as

∞∑
n=0

(−q; q2)n+sqn
2+(2m−2s)n

(xqm, x−1qm; q2)n+1

=
m−2s−1∑
k=0

(−1)
m−s+1

2 q
−(m−s)2−(m−s)

2 A
(1)
k,m,2s+1m(q−2m+6s+4k+3, q4, q)

+

m−2s−1∑
k=0

(−1)
m−s−1

2 q
−(m−s)2−3m+7s+4k

2 A
(1)
k,m,2s+1m(q−2m+6s+4k+1, q4, q3)

+ (−1)
m−s+1

2 q
−(m−s)2−(m−s)

2 B
(1)
m,2s+1m(x2q2s+1, q4, q)

+ (−1)
m−s+1

2 xq
−(m−s)2−m+3s−2

2 B
(1)
m,2s+1m(x2q2s−1, q4, q3). (3.9)

Therefore, according to (3.8) and (3.9), we prove (1.9). �

Proof of Theorem 1.4. Setting (ρ1, ρ2) → (−q2s+1, q2t+1) in Lemma 2.3, multiplying
(−q; q2)s(q; q2)t/(−q2; q2)m−s−t−1 on both sides, and then applying Lemma 2.5, we deduce
that

∞∑
n=0

(−q; q2)n+s(q; q2)n+t(−1)nq(2m−2s−2t)n

(xqm, x−1qm; q2)n+1(−q2; q2)m−s−t−1

=
2

J0,2

m−2s∑
k=1

∞∑
n=−∞

qn
2+(2m−2s−2t+1)nA

(2)
k,m,s,t

1 + q2n+2s+2k−1 +
m−2t∑
k=1

∞∑
n=−∞

qn
2+(2m−2s−2t+1)nB

(2)
k,m,s,t

1− q2n+2t+2k−1

+
∞∑

n=−∞

qn
2+(2m−2s−2t+1)nC

(2)
m,s,t

1− xq2n+m

)

=
2

J0,2

(
m−2s∑
k=1

q−2m+2s+2tj(−q2m−2s−2t; q2)A(2)
k,m,s,tm(q−2m+4s+2t+2k−1, q2,−q2m−2s−2t)

+

m−2t∑
k=1

q−2m+2s+2tj(−q2m−2s−2t; q2)B(2)
k,m,s,tm(−q−2m+2s+4t+2k−1, q2,−q2m−2s−2t)

+ q−2m+2s+2tj(−q2m−2s−2t; q2)C(2)
m,s,tm(−xq−m+2s+2t, q2,−q2m−2s−2t)

)
. (3.10)

Notice that except for the condition for m in Lemma 2.5, we add the further condition
2m− 2s− 2t ≥ 1 to ensure the convergence of (3.10).

Then according to (2.2), we derive that

j(−q2m−2s−2t; q2) = q−(m−s−t)
2+(m−s−t)J0,2. (3.11)

So, combining (1.4), (3.10), and (3.11) yields that

∞∑
n=0

(−q; q2)n+s(q; q2)n+t(−1)nq(2m−2s−2t)n

(xqm, x−1qm; q2)n+1(−q2; q2)m−s−t−1

= 2q−(m−s−t)
2−(m−s−t)

(
m−2s∑
k=1

A
(2)
k,m,s,tm(q−2m+4s+2t+2k−1, q2,−1)
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+
m−2t∑
k=1

B
(2)
k,m,s,tm(−q−2m+2s+4t+2k−1, q2,−1) + C

(2)
m,s,tm(−xq−m+2s+2t, q2,−1)

)
.

Hence, we complete the proof. �

Proof of Theorem 1.5. Setting (ρ1, ρ2) → (−q2s,−q2t+1) in Lemma 2.3, multiplying
(−q2; q2)s−1(−q; q2)t/(q; q2)m−s−t, and then applying Lemma 2.6, we deduce that

∞∑
n=0

(−q2; q2)n+s−1(−q; q2)n+tq(2m−2s−2t+1)n

(xqm, x−1qm; q2)n+1(q; q2)m−s−t

=
1

J1,2

m−2s∑
k=0

∞∑
n=−∞

(−1)nqn
2+(2m−2s−2t+2)nA

(3)
k,m,s,t

1 + q2n+2s+2k

+
m−2t∑
k=1

∞∑
n=−∞

(−1)nqn
2+(2m−2s−2t+2)nB

(3)
k,m,s,t

1 + q2n+2t+2k−1 +

∞∑
n=−∞

(−1)nqn
2+(2m−2s−2t+2)nC

(3)
m,s,t

1− xq2n+m


= (−1)m−s−t+1q−(m−s−t)

2−2(m−s−t)−1

(
m−2s∑
k=0

A
(3)
k,m,s,tm(−q−2m+4s+2t+2k−1, q2, q)

+

m−2t∑
k=1

B
(3)
k,m,s,tm(−q−2m+2s+4t+2k−2, q2, q) + C

(3)
m,s,tm(xq−m+2s+2t−1, q2, q)

)
,

where we obtain the last step by utilizing (1.2), (1.4), and (2.2). Here we add another
condition 2m − 2s − 2t ≥ 0 due to convergence problems. Therefore, we complete the
proof. �

Acknowledgements: This work was supported by the National Natural Science Foundation
of China (Grant Nos. 12171255, 12001309, and 12271403) and the Natural Science Foundation
Youth Fund of Qinghai (Grant No. 2022-ZJ-972Q).

References

[1] G.E. Andrews, Mordell integrals and Ramanujan’s “lost” notebook, Analytic number theory (Philadel-

phia, Pa., 1980), 10–18, Lecture Notes in Math., 899, Springer, Berlin-New York, 1981.

[2] G.E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc. 293 (1986)

113–134.

[3] G.E. Andrews, q-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions, Proc.

Steklov Inst. Math. 276 (2012) 21–32.

[4] G.E. Andrews, B.C. Berndt, Ramanujan’s Lost Notebook, Part V, Springer, Cham, 2018.

[5] G.E. Andrews, D. Hickerson, Ramanujan’s “lost” notebook VII: The sixth order mock theta functions,

Adv. Math. 89 (1991) 60–105.

[6] B.C. Berndt, S.H. Chan, Sixth order mock theta functions, Adv. Math. 216 (2007) 771–786.

[7] K. Bringmann, A. Folsom, R.C. Rhoades, Partial theta functions and mock modular forms as q-

hypergeometric series, Ramanujan J. 29 (2012) 295–310.

[8] K. Bringmann, K. Hikami, J. Lovejoy, On the modularity of the unified WRT invariants of certain Seifert

manifolds, Adv. in Appl. Math. 46 (2011) 86–93.

[9] K. Bringamann, J. Lovejoy, K. Mahlburg, A partition identity and the universal mock theta function g2,

Math. Res. Lett. 23 (2016) 67–80.

[10] K. Bringmann, K. Ono, Some characters of Kac and Wakimoto and nonholomorphic modular functions,

Math. Ann. 345 (2009) 547–558.

[11] G. Carroll, J. Corbett, A. Folsom, E. Thieu, Universal mock theta functions as quantum Jacobi forms,

Res. Math. Sci. 6 (2019), Paper No. 6, 15 pp.

[12] D. Chen, L. Wang, Representations of mock theta functions, Adv. Math. 365 (2020), 107037, 72 pp.



14 S.-P. CUI, N.S.S. GU, C.-Y. SU, AND M.H.Y. XIE

[13] Y.-S. Choi, Tenth order mock theta functions in Ramanujan’s lost notebook, Invent. Math. 136 (1999)

497–569.

[14] Y.-S. Choi, Tenth order mock theta functions in Ramanujan’s lost notebook. II, Adv. Math. 156 (2000)

180–285.

[15] S.-P. Cui, N.S.S. Gu, Some new mock theta functions, Adv. in Appl. Math. 131 (2021) 102267.

[16] S.-P. Cui, N.S.S. Gu, L.-J. Hao, On second and eighth order mock theta functions, Ramanujan J. 50

(2019) 393–422.

[17] S.-P. Cui, N.S.S. Gu, Q.-H. Hou, C.-Y. Su, Three-parameter mock theta functions, J. Math. Anal. Appl.

515 (2022) 126459.

[18] A. Folsom, Kac-Wakimoto characters and universal mock theta functions, Trans. Amer. Math. Soc. 363

(2011) 439–455.

[19] F.G. Garvan, Universal mock theta functions and two-variable Hecke-Rogers identities, Ramanujan J. 36

(2015) 267–296.

[20] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.

[21] B. Gordon, R.J. McIntosh, Some eighth order mock theta functions, J. London Math. Soc. (2) 62 (2000)

321–335.

[22] B. Gordon, R.J. McIntosh, A survey of classical mock theta functions, in “Partitions, q-series, and modular

forms”, Dev. Math. 23 (2012) 95–144.

[23] D. Hickerson, On the seventh order mock theta functions, Invent. Math. 94 (1988) 661–677.

[24] D. Hickerson, A proof of the mock theta conjectures, Invent. Math. 94 (1988) 639–660.

[25] D.R. Hickerson, E.T. Mortenson, Hecke-type double sums, Appell–Lerch sums, and mock theta functions,

I, Proc. Lond. Math. Soc. (3) 109 (2014) 382–422.

[26] K.Q. Ji, A.X.H. Zhao, The Bailey transform and Hecke-Rogers identities for the universal mock theta

functions, Adv. in Appl. Math. 65 (2015) 65–86.

[27] S.-Y. Kang, Mock Jacobi forms in basic hypergeometric series, Compos. Math. 145 (2009) 553–565.

[28] R.J. McIntosh, Second order mock theta functions, Canad. Math. Bull. 50 (2007) 284–290.

[29] R.J. McIntosh, The H and K family of mock theta functions, Canad. J. Math. 64 (2012) 935–960.

[30] R.J. McIntosh, Some identities for Appell–Lerch sums and a universal mock theta function, Ramanujan

J. 45 (2018) 767–779.

[31] E. Mortenson, On three third order mock theta functions and Hecke-type double sums, Ramanujan J. 30

(2013) 279–308.

[32] E.T. Mortenson, On the dual nature of partial theta functions and Appell–Lerch sums, Adv. Math. 264

(2014) 236–260.

[33] S. Ramanujan, Collected Papers, Cambridge Univ. Press, 1927; Reprinted, Chelsea, New York, 1962.

(S.-P. Cui) School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai

810008, P.R. China; Academy of Plateau Science and Sustainability, Xining, Qinghai 810008, P.R.

China

E-mail address: jiayoucui@163.com

(N.S.S. Gu) Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P.R. China

E-mail address: gu@nankai.edu.cn

(C.-Y. Su) College of Mathematical Science, Tianjin Normal University, Tianjin 300387, P.R.

China

E-mail address: cyangsu@163.com

(M.H.Y. Xie) College of Science, Tianjin University of Technology, Tianjin 300384, P.R.

China

E-mail address: xie@email.tjut.edu.cn


