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Abstract28

Given two non-empty graphs G,H and a positive integer k, the Gallai-29

Ramsey number grk(G : H) is defined as the minimum positive integer N30

such that for all n ≥ N , every k-edge-colored Kn contains either a rainbow31
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subgraph G or a monochromatic subgraph H. In this paper, we get some32

exact values or bounds of grk(K1,3 : H), grk(P5 : H), and grk(P
+
4 : H) for33

k ≥ 3, where H is a complete bipartite graph.34

Keywords: Ramsey theory; Gallai-Ramsey number; Complete bipartite35

graph.36
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1. Introduction38

In this paper, we consider finite, simple, and undirected graphs. Let V (G) and39

E(G) denote the vertex and edge sets of a graph G, respectively. A k-edge-40

coloring of G is a function c : E(G) → {1, 2, . . . , k}, where {1, 2, . . . , k} is a set of41

colors. An edge-coloring of a graph with a given number of colors is exact if each42

color is used at least once, and we only study exact edge-colorings of graphs in this43

paper. A rainbow graph refers to an edge-colored graph whose edges have distinct44

colors, while a monochromatic graph refers to an edge-colored graph whose edges45

have the same color. More commonly used notation and terminology in graph46

theory are not repeated here. For specific notions, we refer to the textbook [2].47

1.1. Ramsey numbers48

Ramsey theory originated in the 1920s and was first proposed by the British49

mathematician F.P. Ramsey. Since 1930, Ramsey problems have been hot topics50

in discrete mathematics. There are many papers on Ramsey theory, including51

the original paper of Ramsey [16].52

For k ≥ 2, given graphs G1, G2, . . . , Gk, the Ramsey number R(G1, G2, . . . , Gk)53

is defined as the minimum positive integer n such that every k-edge-colored54

Kn contains a monochromatic subgraph Gi with color i, where 1 ≤ i ≤ n. If55

G1 = G2 = . . . = Gk = G, then we simply write the Ramsey number as Rk(G).56

If k = 2 and G1 = G2 = G, then we write the Ramsey number as R(G). In [3],57

Burr determined the exact value of R(K2,3). In [10], Harborth and Mengersen58

gave the exact value of R(K1,3,K3,3).59

Theorem 1. [3, 10] R(K2,3) = 10, R(K1,3,K3,3) = 8.60

For more results on Ramsey numbers, we refer to the survey [15].61

1.2. Gallai-Ramsey numbers62

Gallai’s paper [7] was the first to explore the intriguing structure of an edge-63

colored complete graph without rainbow triangles. Consequently, this type of64
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edge-coloring of a complete graph with no rainbow triangles is known as Gallai65

coloring. Gallai’s result was restated in [4, 9]. For the following statement, a66

nontrivial partition means a partition with at least two parts.67

Theorem 2. [4, 7, 9] If G is an edge-colored complete graph without rainbow68

triangles, then there exists a nontrivial partition of V (G) such that the number of69

colors between different parts is at most two, and the edges connecting each pair70

of parts are all the same color.71

In [5], Faudree, Gould, Jacobson, and Magnant defined Gallai-Ramsey num-72

ber grk(G : H).73

Definition 3. [5] Given two non-empty graphs G,H and a positive integer k,74

define the Gallai-Ramsey number grk(G : H) to be the minimum integer N such75

that for all n ≥ N , every k-edge-colored Kn contains either a rainbow subgraph76

G or a monochromatic subgraph H.77

Noticing that Gallai-Ramsey numbers consider only edge-colorings of com-78

plete graphs. So, according to the definitions of Ramsey number and Gallai-79

Ramsey number, we have80

grk(G : H) ≤ Rk(H) < ∞.

Additionally, if 2 ≤ k ≤ |E(G)| − 1, then it is clear that there is no rainbow81

subgraph G in any k-edge-colored complete graph. Therefore, in this case, we82

have83

grk(G : H) = Rk(H).

In the study of k-edge-colorings, in addition to “exact k-edge-coloring”, an-84

other definition is the so-called “at most k-edge-coloring”, which means that the85

actual number of colors used does not exceed k, and it is allowed to be less than86

k. In [11], Li, Besse, Magnant, Wang, and Watts gave a conjecture about the87

Gallai-Ramsey number for rainbow P5 under the at most k-edge-coloring rule.88

Conjecture 4. [11] For any graph H with no isolated vertices, we have89

grk(P5 : H) = R3(H).

For more recent results about Gallai-Ramsey numbers, we refer to the mono-90

graph book [14].91
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1.3. Structural theorems under rainbow-tree-free colorings92

In [18], Thomason and Wagner obtained the following results.93

Theorem 5. [18] For an integer n ≥ 4, let Kn be an edge-colored complete graph94

so that it contains no rainbow P4. Then one of the following statements holds.95

(i) At most two colors are used;96

(ii) n = 4 and three colors are used, each color forming a perfect matching.97

Thomason and Wagner pointed out in the same paper that when the number98

of colors k ≥ 4, the structures of a k-edge-colored complete graph without rainbow99

P5 are relatively clear. They gave several coloring structures, of which only one100

coloring structure (i.e., Theorem 6 (ii)) has more variations. In Theorem 6 (ii),101

there is a special color, which Thomason and Wagner called the dominant color.102

The edges incident with each vertex can only have at most one other color besides103

the dominant color. So in the description of Theorem 6 (ii), we assume that color104

1 is the dominant color.105

Theorem 6. [18] For positive integers k and n, if Kn is a k-edge-colored complete106

graph without rainbow subgraph P5, then one of the following statements holds.107

(i) k ≤ 3 or n ≤ 4;108

(ii) There exists a partition (V2, V3, . . . , Vk) of V (Kn). For any integer i,109

2 ≤ i ≤ k, the color of an edge with any two vertices in Vi is either the dominant110

color (i.e., color 1) or the color i. For any two integers i and j, 2 ≤ i < j ≤ k,111

the color of all edges with one vertex in Vi and the other in Vj have the dominant112

color (i.e., color 1). This coloring structure is shown in Figure 1;113

(iii) Kn − v is monochromatic for some vertex v;114

(iv) There are three vertices a, b, and c such that the edges ab, bc, and ac115

have color 2, 3, and 4, respectively, some edges incident with a have color 3, and116

all the other edges have color 1;117

(v) There are four vertices a, b, c, and d such that the edges ab, ac, ad, bc,118

and bd have color 2, 3, 4, 4, and 3, respectively, the edge cd has color 1 or 2, and119

all the other edges have color 1;120

(vi) n = 5, V (Kn) = {a, b, c, d, e}, the edges ad, ae, and bc have color 1, the121

edges bd, be, and ac have color 2, the edges cd, ce, and ab have color 3, and the122

edge de has color 4.123
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V2 V3 V4

· · ·

Vk
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color 1
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or
color 4

color 1

or
color k

Figure 1. The partition (V2, V3, . . . , Vk) of V (Kn) in Theorem 6 (ii). Each circle in the
figure represents a vertex subset. The lines between the circles represent all edges between
the induced subgraphs by two vertex subsets. The “color 1” on the line indicates that
the edges between the induced subgraphs by these two vertex subsets are all color 1. The
“color 1 or color i” inside the vertex subset Vi (2 ≤ i ≤ k) indicates that the edges of the
induced subgraph by Vi are either color 1 or color i.

For an integer n ≥ 4, let G1(n) be a 3-edge-colored Kn that satisfies the fol-124

lowing conditions: The vertices of Kn are partitioned into three pairwise disjoint125

sets V1, V2, and V3 such that for 1 ≤ i ≤ 3 (with indices modulo 3), all the edges126

between Vi and Vi+1 have color i, and all the edges connecting pairs of vertices127

within Vi+1 have color i or i + 1. This coloring structure is shown in Figure 2.128

Noticing that one of V1, V2, and V3 is allowed to be empty, but at least two of129

them are non-empty (otherwise at most only two colors can appear).130

V1

V3V2

color 1

color 2

color 3

color 1

or
color 3

color 1

or
color 2

color 2

or
color 3

Figure 2. The partition (V1, V2, V3) of V (Kn) in Theorem 7 (ii). The drawing method
and its meaning of this figure are the same as Figure 1.

The local k-coloring of a graph G refers to the edge coloring of G, satisfying131

that the colors of the edges incident to each vertex of G are at most k. In [8],132
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Gyárfás, Lehel, Schelp, and Tuza gave the coloring structure of a local 2-colored133

complete graph Kn with k colors. Using the original notation of [8], let Aij be134

a vertex subset of complete graph Kn, and each edge of the induced subgraph135

by Aij has either color i or color j. Then there are only two types of coloring136

structures of the local 2-colored complete graph Kn with k colors. One structure137

is k = 3 and there exists a partition of V (Kn), denoted as (A12, A13, A23). The138

other structure is k ≥ 3 and there exists a dominant color, which may be assumed139

to be color 1. The vertex set of Kn has a partition, denoted as (A12, A13, . . . , A1k).140

In [1], Bass, Magnant, Ozeki, and Pyron studied the edge-colored complete graphs141

without rainbow K1,3 from structural perspectives. Among them, the G1(n) is a142

local 2-colored Kn. In fact, Theorem 6 (ii) is the other structure of local 2-colored143

Kn.144

Theorem 7. [1, 8] For positive integers k and n, if Kn is a k-edge-colored com-145

plete graph without rainbow subgraph K1,3, then one of the following statements146

holds.147

(i) k ≤ 2 or n ≤ 3;148

(ii) k = 3 and Kn = G1(n);149

(iii) k ≥ 4 and Item (ii) in Theorem 6 holds.150

Next we give two types of edge-colored complete graphs without rainbow P+
4 ,151

where P+
4 is the tree consisting of a P4 with one extra pendent edge incident with152

an inner vertex (the vertex with degree 2) of P4. In other words, P+
4 can also153

be seen as adding one extra pendent edge incident with a leaf vertex (the vertex154

with degree 1) of K1,3.155

For an integer n ≥ 4, let G2(n) be a 4-edge-colored Kn in which there is156

exactly one edge, say xy, having color 2. Every edge from x to all the other157

vertices except y has color 3, and every edge from y to all the other vertices158

except x has color 4. All the edges not incident to vertices x, y have color 1. This159

graph contains no rainbow subgraph P+
4 but contains a rainbow subgraph K1,3160

and (if n ≥ 5) a rainbow subgraph P5.161

For an integer n ≥ 4, let G3(n) be a 4-edge-colored Kn in which there exists162

a rainbow subgraph K3 having colors 1, 2, and 3, say V (K3) = {a, b, c}, the edge163

ab has color 1, the edge bc has color 2 and the edge ac has color 3. Let every164

edge incident with at most one vertex in the rainbow subgraph K3 have color 4.165

This graph contains no rainbow subgraphs P+
4 and P5, but contains a rainbow166

subgraph K1,3.167

Theorem 8. [1, 17] For positive integers k and n, if Kn is a k-edge-colored168

complete graph without rainbow subgraph P+
4 , then one of the following statements169

holds.170

(i) k ≤ 3 or n ≤ 4;171

(ii) k = 4 and Kn ∈ {G2(n), G3(n)};172
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(iii) k ≥ 4 and Kn contains no rainbow K1,3. In particular, Item (ii) in173

Theorem 6 holds.174

In [13], Li, Wang, and Liu got some exact values and bounds for grk(P5 : Kt),175

and got the structural theorems for complete bipartite graphs without rainbow176

subgraphs P4 and P5. In [6], Fujita and Magnant obtained the structural theorem177

for G = S+
3 . In [12], Li and Wang studied Gallai-Ramsey numbers for monochro-178

matic stars in the rainbow K3-free and S+
3 -free colorings. In [20], Zou, Wang,179

Lai, and Mao derived results for grk(P5 : H) (k ≥ 3), where H is a general or180

special graph.181

In next section, we will give some propositions and lemmas. In Section 3, we182

determine some exact values or bounds of grk(K1,3 : Km,n) for m ∈ {1, 2, 3, 4}. In183

Section 4, we determine some exact values of grk(P5 : Km,n) and grk(P
+
4 : Km,n)184

for m ∈ {2, 3, 4}. In the last section, some related open problems are proposed.185

2. Preliminaries186

In 2019, Li, Wang, and Liu, in [13], determined the bound of k such that any187

k-edge-colored Kn always has a rainbow subgraph P5. When k ≤ n, we can188

construct a k-edge-colored Kn according to Theorem 6 (iii) such that it contains189

no rainbow subgraph P5. Therefore, the bound of k is sharp.190

Proposition 9. [13] For integers n ≥ 5 and n + 1 ≤ k ≤
(
n
2

)
, there is always191

a rainbow subgraph P5 in any k-edge-colored Kn. In addition, the bound of k is192

sharp.193

We determine the sharp bound of k such that any k-edge-colored Kn always194

has a rainbow subgraph K1,3 or P+
4 .195

Proposition 10. For integers n ≥ 4 and
⌈
n+3
2

⌉
≤ k ≤

(
n
2

)
, there is always a196

rainbow subgraph K1,3 in any k-edge-colored Kn. In addition, the bound of k is197

sharp.198

Proof. Suppose that there is a k-edge-colored Kn containing no rainbow sub-199

graph K1,3. Since k ≥
⌈
n+3
2

⌉
≥ 4, it follows that (i) and (ii) of Theorem 7 do not200

hold. Next, we assume that Theorem 7 (iii) holds. Noticing that every color ap-201

pears, which implies that |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k}. Hence, n ≥ 2(k− 1),202

that is, k ≤
⌊
n+2
2

⌋
, which contradicts the fact that

⌈
n+3
2

⌉
≤ k ≤

(
n
2

)
. Since203 ⌈

n+3
2

⌉
− 1 =

⌊
n+2
2

⌋
, it follows that the bound of k is sharp.204

Similar to the proof of Proposition 10, we can give the following proposition205

directly.206
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Proposition 11. For integers n ≥ 6 and
⌈
n+3
2

⌉
≤ k ≤

(
n
2

)
, there is always a207

rainbow subgraph P+
4 in any k-edge-colored Kn. In particular, for an integer208

5 ≤ k ≤ 10, there is always a rainbow subgraph P+
4 in any k-edge-colored K5. In209

addition, the bound of k is sharp.210

Consider a k-edge-colored Kn. If k = 2, then there is obviously no rainbow211

subgraph K3 or K1,3 in Kn; if 2 ≤ k ≤ 3, then there is obviously no rainbow212

subgraph P5 or P+
4 in Kn. Therefore, the following lemma can be given directly.213

Lemma 12. For graphs G ∈ {K3,K1,3, P5, P
+
4 } and H, we have

gr2(G : H) = R(H).

For graphs G ∈ {P5, P
+
4 } and H, we have

gr3(G : H) = R3(H).

In [19], Zhou, Li, Mao, and Wei gave some general results between grk(K1,3 :214

H), grk(P5 : H) and grk(P
+
4 : H) (k ≥ 4).215

Lemma 13. [19] gr4(P5 : H) ≥ gr4(K1,3 : H).216

Lemma 14. [19] For integers k ≥ 5 and grk(K1,3 : H) ≥ 5, we have

grk(P5 : H) =

{
max

{
|V (H)|+ 1, grk(K1,3 : H)

}
, 5 ≤ k ≤ |V (H)|;

grk(K1,3 : H), k ≥ |V (H)|+ 1 ≥ 5.

Lemma 15. [19] For integers k ≥ 5 and grk(K1,3 : H) ≥ 5, we have

grk(P
+
4 : H) = grk(K1,3 : H).

Similarly, we can also get the following result.217

Lemma 16. gr4(P
+
4 : H) ≥ gr4(K1,3 : H).218

Remark 17. We must correct a small flaw in Theorems 14 and 15 given in the219

original paper [19], which is that the lack of condition grk(K1,3 : H) ≥ 5 can lead220

to errors. Noticing that if k ≥ 5 and grk(K1,3 : H) = 4, then grk(P5 : H) > 4221

and grk(P
+
4 : H) > 4. This is because for any k-edge-colored K4 with 5 ≤ k ≤ 6,222

there is no rainbow subgraph P5 or P+
4 , and also no monochromatic subgraph H223

(except for the trivial case where H = K2 or H = 2K2).224

When the number of colors k ≥ 4, we know from Theorem 7 (iii) (i.e., The-225

orem 6 (ii)) that if a k-edge-colored complete graph does not contain a rainbow226

subgraph K1,3, then there is only one coloring structure. Conversely, if the col-227

oring structure of a k-edge-colored complete graph satisfies what is described in228
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Theorem 7 (iii), then the complete graph does not contain a rainbow subgraph229

K1,3. In order to describe the edge-coloring structure of lower bounds in the230

following sections more concisely, we construct a family of k-edge-colored com-231

plete graphs based on the coloring structure given in Theorem 7 (iii). Therefore,232

every k-edge-colored complete graph described in Definition 18 does not contain233

a rainbow subgraph K1,3.234

Definition 18. Let integer k ≥ 4 and [Kt1 ,Kt2 , . . . ,Ktk−1
] be a k-edge-colored235

complete graph obtained from k−1 vertex-disjoint complete graphs Kt1 ,Kt2 , . . . ,Ktk−1
236

such that all the edges of Kti are colored by i+1 for each 1 ≤ i ≤ k−1 and all the237

edges between Kti and Ktj are colored by 1 for any two integers 1 ≤ i < j ≤ k−1.238

3. Results involving rainbow K1,3239

For a large integer k, the Gallai-Ramsey number grk(K1,3 : Km,n) is a function240

that depends only on k.241

Theorem 19. Let integers n ≥ m ≥ 1 and n ≥ 3. If k ≥
⌈
m
2

⌉
+
⌈
n
2

⌉
+ 1, then

grk(K1,3 : Km,n) =

⌈
1 +

√
1 + 8k

2

⌉
.

Proof. Let Nk =
⌈
1+

√
1+8k
2

⌉
. For the lower bound, if there is an exact k-242

edge-coloring of a complete graph KNk−1, then k ≤
(
Nk−1

2

)
, contradicting Nk =243 ⌈

1+
√
1+8k
2

⌉
. It follows that grk(K1,3 : Km,n) ≥

⌈
1+

√
1+8k
2

⌉
. For any k-edge-244

colored KN (N ≥ Nk), it follows from n ≥ m ≥ 1 and n ≥ 3 that k ≥
⌈
m
2

⌉
+245 ⌈

n
2

⌉
+ 1 ≥ 4 and Nk < 2k − 2 for all k ≥ 4.246

If Nk ≤ N ≤ 2k−3, then it follows from Proposition 10 that there is always a247

rainbow subgraph K1,3, the result thus follows. Next we assume that N ≥ 2k−2.248

Suppose to the contrary that KN contains neither a rainbow subgraph K1,3 nor249

a monochromatic subgraph Km,n. It follows from the fact that k ≥ 4 that250

Theorem 7 (i) and (ii) do not hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for251

each i ∈ {2, 3, . . . , k}. Let A =
∪⌈m/2⌉+1

i=2 Vi and B =
∪⌈m/2⌉+⌈n/2⌉+1

i=⌈m/2⌉+2 Vi. From252

Theorem 7 (iii), the edges from A and B are colored by the same color. Since253

|A| ≥ m and |B| ≥ n, it follows that there is a monochromatic subgraph Km,n, a254

contradiction. The result thus follows.255

Theorem 20. For integers k ≥ 4 , m ∈ {1, 2} and n ≥ 3, we have

grk(K1,3 : Km,n) =

{⌈
1+

√
1+8k
2

⌉
, 3 ≤ n ≤ 2k − 4;

n+ a, a(k − 2) + 1 ≤ n ≤ (a+ 1)(k − 2) where a ≥ 2 is an integer.
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Proof. Assume that 3 ≤ n ≤ 2k−4. Since
⌈
m
2

⌉
+
⌈
n
2

⌉
+1 ≤

⌈
2
2

⌉
+
⌈
2k−4
2

⌉
+1 = k,256

it follows from Theorem 19 that grk(K1,3 : Km,n) =
⌈
1+

√
1+8k
2

⌉
.257

Assume that a(k − 2) + 1 ≤ n ≤ (a + 1)(k − 2) where a ≥ 2 is an integer.258

Let t1 = n − a(k − 3) − 1 and ti = a for each 2 ≤ i ≤ k − 1. Then Kn+a−1 =259

[Kt1 ,Kt2 , . . . ,Ktk−1
] is a k-edge-colored complete graph and contains neither a260

rainbow subgraph K1,3 nor a monochromatic subgraph Km,n, and so grk(K1,3 :261

Km,n) ≥ n+ a.262

Consider any k-edge-colored KN (N ≥ n + a) and suppose to the contrary263

that KN contains neither a rainbow subgraph K1,3 nor a monochromatic subgraph264

Km,n. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii) do not265

hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and266 ∑k
i=2 |Vi| ≥ n+ a. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥ |Vk| ≥ 2.267

If 2 ≤ |V2| ≤ a, then |V (KN )|− |V2| ≥ n and hence there is a monochromatic268

subgraph K2,n, a contradiction. Next we assume that |V2| ≥ a+ 1. In this case,269

noticing that |V2| ≥ a + 1 > 2 and
∑k

i=3 |Vi| ≥ (a + 1)(k − 2) ≥ n, there is270

a monochromatic subgraph Ka+1,n. Therefore, KN contains a monochromatic271

subgraph K2,n, a contradiction.272

Theorem 21. For integers k ≥ 4 and n ≥ 3, we have

grk(K1,3 : K3,n) =



⌈
1+

√
1+8k
2

⌉
, 3 ≤ n ≤ 2k − 6 (k ≥ 5);

2k − 1, 2k − 5 ≤ n ≤ 2k − 4;

n+ 4, 2k − 3 ≤ n ≤ 4k − 10;(
k−2
k−3

)
(n− 3− a) + a+ 3, n ≥ 4k − 9 and n− 3 ≡ a (mod k − 3)

where a ∈ {0, 1, . . . , k − 4}.

Proof. Assume that 3 ≤ n ≤ 2k − 6 (k ≥ 5). Since
⌈
3
2

⌉
+

⌈
n
2

⌉
+ 1 ≤

⌈
3
2

⌉
+273 ⌈

2k−6
2

⌉
+ 1 = k, it follows from Theorem 19 that grk(K1,3 : K3,n) =

⌈
1+

√
1+8k
2

⌉
.274

Next, we distinguish the following three cases to prove this theorem.275

Case 1. 2k − 5 ≤ n ≤ 2k − 4.276

Let ti = 2 for each 1 ≤ i ≤ k − 1. Then K2(k−1) = [Kt1 ,Kt2 , . . . ,Ktk−1
] is a277

k-edge-colored complete graph and contains neither a rainbow subgraph K1,3 nor278

a monochromatic subgraph K3,n, and so grk(K1,3 : K3,n) ≥ 2(k−1)+1 = 2k−1.279

Consider any k-edge-colored KN (N ≥ 2k − 1) and suppose to the contrary280

that KN contains neither a rainbow subgraph K1,3 nor a monochromatic subgraph281

K3,n. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii) do not282

hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and283 ∑k
i=2 |Vi| ≥ 2k − 1. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥ |Vk| ≥ 2.284
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If |V2| = 2, then |V2| = |V3| = . . . = |Vk| = 2, and hence
∑k

i=2 |Vi| = 2k − 2,285

which contradicts
∑k

i=2 |Vi| ≥ 2k − 1. If |V2| ≥ 3, then the complete bipartite286

graph with the bipartition
(
V2,

∪k
i=3 Vi

)
contains a monochromatic subgraph287

K3,2k−4, a contradiction.288

Case 2. 2k − 3 ≤ n ≤ 4k − 10.289

Let t1 = n − 2k + 7 and ti = 2 for each 2 ≤ i ≤ k − 1. Then Kn+3 =290

[Kt1 ,Kt2 , . . . ,Ktk−1
] is a k-edge-colored complete graph and contains neither a291

rainbow subgraph K1,3 nor a monochromatic subgraph K3,n, and so grk(K1,3 :292

K3,n) ≥ n+ 4.293

Consider any k-edge-colored KN (N ≥ n+4) and suppose to the contrary that294

KN contains neither a rainbow subgraph K1,3 nor a monochromatic subgraph295

K3,n. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii) do not296

hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and297 ∑k
i=2 |Vi| ≥ n+ 4. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥ |Vk| ≥ 2.298

If |Vk−1| = 2, then |Vk−1| = |Vk| = 2 and hence there is a monochromatic sub-299

graph K4,n, a contradiction. If 3 ≤ |Vk−1| ≤ 4, then |V (KN )|−|Vk| ≥ n and hence300

there is a monochromatic subgraph K3,n, a contradiction. If |Vk−1| ≥ n−2(k−4),301

then the complete bipartite graph with the bipartition
(
V2 ∪ Vk,

∪k−1
i=3 Vi

)
con-302

tains a monochromatic subgraph K4,n, a contradiction. Next we assume that303

5 ≤ |Vk−1| ≤ n − 2k + 7. Recall that k ≥ 4 and 2k − 3 ≤ n ≤ 4k − 10. From304

the above all, we know that |V2| ≥ |V3| ≥ . . . ≥ |Vk−1| ≥ 5 and |Vk| ≥ 2. Since305 ∑k
i=3 |Vi| ≥ 5(k − 3) + 2 > 4k − 10 ≥ n and |V2| ≥ 5, it follows that there is a306

monochromatic subgraph K5,n, a contradiction.307

Case 3. n ≥ 4k − 9 and n− 3 ≡ a (mod k − 3) where a ∈ {0, 1, . . . , k − 4}.308

It follows from n−3 ≡ a (mod k−3) that n−3−a
k−3 is an integer. Let q = n−3−a

k−3 ,309

t1 = q + a, t2 = 2 and ti = q for each 3 ≤ i ≤ k − 1. Then K(k−2)q+a+2 =310

[Kt1 ,Kt2 , . . . ,Ktk−1
] is a k-edge-colored complete graph. Next, we only need to311

verify that this k-edge-colored K(k−2)q+a+2 does not contain a monochromatic312

subgraph K3,n.313

Let the bipartition of the complete bipartite graph K3,n be (X,Y ), where314

|X| = 3 and |Y | = n. Obviously, the monochromatic K3,n cannot be inside any315

of the Kti , where 1 ≤ i ≤ k − 1. Noticing that n−3−a
k−3 ≥ 4k−12−a

k−3 ≥ 3k−8
k−3 > 3. If316

X ⊆ V (Ktj ) for some 3 ≤ j ≤ k − 1, then317

|V (K(k−2)q+a+2)| − |V (Ktj )| = (k − 2)q + a+ 2− q = (k − 3)q + a+ 2 = n− 1.

This means that there is no monochromatic subgraph K3,n in such k-edge-colored318

K(k−2)q+a+2. Similarly, if X ⊆ V (Kt1), there is also no monochromatic subgraph319

K3,n, and so grk(K1,3 : K3,n) ≥ (k − 2)q + a+ 3.320
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Consider any k-edge-colored KN (N ≥ (k − 2)q + a+ 3) and suppose to the321

contrary that KN contains neither a rainbow subgraph K1,3 nor a monochromatic322

subgraph K3,n. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii)323

do not hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and324 ∑k
i=2 |Vi| ≥ (k − 2)q + a + 3. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥325

|Vk| ≥ 2.326

If |Vk−1| = 2, then |Vk−1| = |Vk| = 2 and for n ≥ 4k − 9,327

|V (KN )| − (|Vk−1|+ |Vk|) ≥ (k − 2)q + a− 1 ≥ n,

hence there is a monochromatic subgraph K4,n, a contradiction. If 3 ≤ |Vk−1| ≤328

(k−2)q+a+3−n, then |V (KN )|−|Vk−1| ≥ n, and hence there is a monochromatic329

subgraph K3,n, a contradiction. Next we assume that |Vk−1| ≥ (k−2)q+a+4−n.330

Since331

|V2| ≥ |Vk−1| ≥ (k − 2)q + a+ 4− n ≥ 4k − 9

k − 3
− (3 + a)(k − 2)

k − 3
+ a+ 4

=
k − 3− a

k − 3
+ 4 ≥ 1

k − 3
+ 4 > 4

and332

k∑
i=3

|Vi| ≥
k−1∑
i=3

|Vi|+ 2 ≥ (k − 3)[(k − 2)q + a+ 4− n] + 2

= n− (3 + a)(k − 2) + (4 + a)(k − 3) + 2

= n+ k − 4− a ≥ n+ a+ 4− 4− a = n,

it follows that there is a monochromatic subgraph K4,n with bipartition
(
V2,

∪k
i=3 Vi

)
,333

a contradiction.334

Theorem 22. For integers k ≥ 4 and n ≥ 4, we have

grk(K1,3 : K4,n) =



⌈
1+

√
1+8k
2

⌉
, 4 ≤ n ≤ 2k − 6 (k ≥ 5);

n+ 4, 2k − 5 ≤ n ≤ 2k − 4 (k ≥ 5);

n+ 4, 2k − 3 ≤ n ≤ 3k − 9 (k ≥ 6);

3k − 2, 3k − 8 ≤ n ≤ 3k − 7;

3k − 1, n = 3k − 6;

n+ 6, 3k − 5 ≤ n ≤ 6k − 16;(
k−2
k−3

)
(n− 3− a) + a+ 3, n ≥ 6k − 15 and n− 3 ≡ a (mod k − 3)

where a ∈ {0, 1, . . . , k − 4}.
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Proof. Assume that 4 ≤ n ≤ 2k − 6 (k ≥ 5). Since
⌈
4
2

⌉
+

⌈
n
2

⌉
+ 1 ≤

⌈
4
2

⌉
+335 ⌈

2k−6
2

⌉
+ 1 = k, it follows from Theorem 19 that grk(K1,3 : K4,n) =

⌈
1+

√
1+8k
2

⌉
.336

Next, we distinguish the following five cases to prove this theorem.337

Case 1. 2k − 5 ≤ n ≤ 2k − 4 (k ≥ 5) or 2k − 3 ≤ n ≤ 3k − 9 (k ≥ 6).338

Let t1 = n − 2k + 7 and ti = 2 for each 2 ≤ i ≤ k − 1. Then Kn+3 =339

[Kt1 ,Kt2 , . . . ,Ktk−1
] is a k-edge-colored complete graph and contains neither a340

rainbow subgraph K1,3 nor a monochromatic subgraph K4,n, and so grk(K1,3 :341

K4,n) ≥ n+ 4.342

Consider any k-edge-colored KN (N ≥ n+4) and suppose to the contrary that343

KN contains neither a rainbow subgraph K1,3 nor a monochromatic subgraph344

K4,n. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii) do not345

hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and346 ∑k
i=2 |Vi| ≥ n+ 4. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥ |Vk| ≥ 2.347

If |Vk−1| = 2, then |Vk−1| = |Vk| = 2, and hence the complete bipartite graph348

with the bipartition
(
Vk−1 ∪ Vk,

∪k−2
i=2 Vi

)
contains a monochromatic subgraph349

K4,n, a contradiction. If |Vk−1| ≥ 3, then |V2| ≥ |V3| ≥ . . . ≥ |Vk−1| ≥ 3. Since350 ∑k−2
i=2 |Vi| ≥ 3 (k − 3) ≥ 2k−4 (k ≥ 5) and |Vk−1|+ |Vk| ≥ 5, it follows that there351

is a monochromatic subgraph K5,n, a contradiction.352

Case 2. 3k − 8 ≤ n ≤ 3k − 7.353

Let ti = 3 for each 1 ≤ i ≤ k − 1. Then K3(k−1) = [Kt1 ,Kt2 , . . . ,Ktk−1
] is a354

k-edge-colored complete graph and contains neither a rainbow subgraph K1,3 nor355

a monochromatic subgraph K4,n, and so grk(K1,3 : K4,n) ≥ 3(k−1)+1 = 3k−2.356

Consider any k-edge-colored KN (N ≥ 3k − 2) and suppose to the contrary357

that KN contains neither a rainbow subgraph K1,3 nor a monochromatic subgraph358

K4,n. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii) do not359

hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and360 ∑k
i=2 |Vi| ≥ 3k − 2. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥ |Vk| ≥ 2.361

If |Vk−1| = 2, then |Vk−1| = |Vk| = 2. Since |V (KN )|−(|Vk−1|+|Vk|) ≥ 3k−6,362

it follows that there is a monochromatic subgraph K4,3k−6, a contradiction. Then363

|Vk−1| ≥ 3. If |V2| ≥ 4, then since
∑k

t=3 |Vt| ≥ 3(k−3)+2 = 3k−7, we have that364

there is a monochromatic subgraph K4,3k−7, a contradiction. Hence, |Vi| = 3365

for all i ∈ {2, 3, . . . , k − 1}. In this case,
∑k−1

i=2 |Vi| = 3(k − 2) = 3k − 6 and366

2 ≤ |Vk| ≤ 3, and hence
∑k

i=2 |Vi| ≤ 3(k − 2) + 3 = 3k − 3, which contradicts367 ∑k
i=2 |Vi| ≥ 3k − 2.368

Case 3. n = 3k − 6.369

Let t1 = 5, t2 = 2 and ti = 3 for each 3 ≤ i ≤ k − 1. Then K3k−2 =370

[Kt1 ,Kt2 , . . . ,Ktk−1
] is a k-edge-colored complete graph and contains neither a371
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rainbow subgraph K1,3 nor a monochromatic subgraph K4,3k−6, and so grk(K1,3 :372

K4,3k−6) ≥ 3k − 1.373

Consider any k-edge-colored KN (N ≥ 3k − 1) and suppose to the contrary374

that KN contains neither a rainbow subgraph K1,3 nor a monochromatic subgraph375

K4,3k−6. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii) do not376

hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and377 ∑k
i=2 |Vi| ≥ 3k − 1. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥ |Vk| ≥ 2.378

If |Vk−1| = 2, then |Vk−1| = |Vk| = 2. Since |V (KN )|−(|Vk−1|+|Vk|) > 3k−6,379

it follows that there is a monochromatic subgraph K4,3k−6, a contradiction. Thus380

|Vk−1| ≥ 3.381

Claim 23. |V2| = 3.382

Proof of Claim 1. Suppose that |V2| ≥ 4. If |Vk| ≥ 3, then
∑k

t=3 |Vt| ≥ 3k−6 = n,383

and hence there is a monochromatic subgraph K4,n, a contradiction. If |Vk| = 2384

and |Vk−1| = 3, then |V (KN )| − (|Vk−1| + |Vk|) ≥ 3k − 6, and hence there is a385

monochromatic subgraph K5,3k−6, a contradiction. If |Vk| = 2 and |Vk−1| ≥ 4,386

then |V2| ≥ |V3| ≥ . . . ≥ |Vk−1| ≥ 4 and
∑k−2

i=2 |Vi| + |Vk| ≥ 4(k − 3) + 2 =387

4k− 10 ≥ 3k− 6 (k ≥ 4), and hence there is a monochromatic subgraph K4,3k−6,388

a contradiction. Thus, Claim 1 is proven.389

Recall that 3 = |V2| ≥ |V3| ≥ . . . ≥ |Vk| ≥ 2 and |Vk−1| ≥ 3. It follows that390

|V2| = |V3| = . . . = |Vk−1| = 3, which implies that
∑k−1

i=2 |Vi| = 3(k − 2) = 3k − 6.391

Noticing that 2 ≤ |Vk| ≤ 3, and hence
∑k

i=2 |Vi| ≤ 3(k − 2) + 3 = 3k − 3, which392

contradicts
∑k

i=2 |Vi| ≥ 3k − 1.393

Case 4. 3k − 5 ≤ n ≤ 6k − 16.394

Let t1 = n − 3k + 11 and ti = 3 for each 2 ≤ i ≤ k − 1. Then Kn+5 =395

[Kt1 ,Kt2 , . . . ,Ktk−1
] is a k-edge-colored complete graph and contains neither a396

rainbow subgraph K1,3 nor a monochromatic subgraph K4,n, and so grk(K1,3 :397

K4,n) ≥ n+ 6.398

Consider any k-edge-colored KN (N ≥ n+6) and suppose to the contrary that399

KN contains neither a rainbow subgraph K1,3 nor a monochromatic subgraph400

K4,n. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii) do not401

hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and402 ∑k
i=2 |Vi| ≥ n+ 6. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥ |Vk| ≥ 2.403

If 2 ≤ |Vk−1| ≤ 3, then 4 ≤ |Vk−1|+|Vk| ≤ 6. Since |V (KN )|−(|Vk−1|+|Vk|) ≥404

n, it follows that there is a monochromatic subgraph K4,n, a contradiction. If405

4 ≤ |Vk−1| ≤ 6, then |V (KN )| − |Vk−1| ≥ n, and hence there is a monochromatic406

subgraph K4,n, a contradiction. If |Vk−1| ≥ 7, then |V2| ≥ |V3| ≥ . . . ≥ |Vk−1| ≥ 7407

and |Vk| ≥ 2. Since
∑k−2

i=2 |Vi|+ |Vk| ≥ 7(k− 3)+ 2 > 6k− 16 ≥ n, it follows that408

there is a monochromatic subgraph K7,n, a contradiction.409

Case 5. n ≥ 6k − 15 and n− 3 ≡ a (mod k − 3) where a ∈ {0, 1, . . . , k − 4}.410
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It follows from n−3 ≡ a (mod k−3) that n−3−a
k−3 is an integer. Let q = n−3−a

k−3 ,411

t1 = q + a, t2 = 2 and ti = q for each 3 ≤ i ≤ k − 1. Then K(k−2)q+a+2 =412

[Kt1 ,Kt2 , . . . ,Ktk−1
] is a k-edge-colored complete graph. Next, we only need to413

verify that this k-edge-colored K(k−2)q+a+2 does not contain a monochromatic414

subgraph K4,n.415

Let the bipartition of the complete bipartite graph K4,n be (X,Y ), where416

|X| = 4 and |Y | = n. Obviously, the monochromatic K4,n cannot be inside any417

of the Kti , where 1 ≤ i ≤ k − 1. Noticing that n−3−a
k−3 ≥ 6k−18−a

k−3 ≥ 5k−14
k−3 > 5. If418

X ⊆ V (Ktj ) for some 3 ≤ j ≤ k − 1, then419

|V (K(k−2)q+a+2)| − |V (Ktj )| = (k − 2)q + a+ 2− q = (k − 3)q + a+ 2 = n− 1.

This means that there is no monochromatic subgraph K4,n in such k-edge-colored420

K(k−2)q+a+2. Similarly, if X ⊆ V (Kt1), there is also no monochromatic subgraph421

K4,n, and so grk(K1,3 : K4,n) ≥ (k − 2)q + a+ 3.422

Consider any k-edge-colored KN (N ≥ (k − 2)q + a+ 3) and suppose to the423

contrary that KN contains neither a rainbow subgraph K1,3 nor a monochromatic424

subgraph K4,n. It follows from the fact that k ≥ 4 that Theorem 7 (i) and (ii)425

do not hold. If Theorem 7 (iii) holds, then |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k} and426 ∑k
i=2 |Vi| ≥ (k − 2)q + a + 3. Without loss of generality, set |V2| ≥ |V3| ≥ . . . ≥427

|Vk| ≥ 2.428

If 2 ≤ |Vk−1| ≤ 3, then 4 ≤ |Vk−1|+ |Vk| ≤ 6 and for n ≥ 6k − 15,429

|V (KN )| − (|Vk−1|+ |Vk|) ≥ (k − 2)q + a− 3 ≥ n,

hence there is a monochromatic subgraph K4,n, a contradiction. If 4 ≤ |Vk−1| ≤430

(k−2)q+a+3−n, then |V (KN )|−|Vk−1| ≥ n, and hence there is a monochromatic431

subgraph K4,n, a contradiction. Next we assume that |Vk−1| ≥ (k−2)q+a+4−n.432

Since433

|V2| ≥ |Vk−1| ≥ (k − 2)q + a+ 4− n ≥ 6k − 15

k − 3
− (a+ 3)(k − 2)

k − 3
+ a+ 4

=
3k − 9− a

k − 3
+ 4 ≥ 2k − 5

k − 3
+ 4 > 6

and434

k∑
i=3

|Vi| ≥
k−1∑
i=3

|Vi|+ 2 ≥ (k − 3)[(k − 2)q + a+ 4− n] + 2

= n− (3 + a)(k − 2) + (4 + a)(k − 3) + 2

= n+ k − 4− a ≥ n+ a+ 4− 4− a = n,

it follows that there is a monochromatic subgraph K6,n with bipartition
(
V2,

∪k
i=3 Vi

)
,435

a contradiction.436



16 L. Li, X. Li, Y. Mao and Y. Si

For k = 3, we have the following results.437

Lemma 24. For an integer n ≥ 3, we have

gr3(K1,3 : Kn,n) ≥ R(Kn−1,n) + 2.

Proof. Let G be an edge-colored complete graph of order R(Kn−1,n) − 1 with438

two colors 1 and 2 such that no monochromatic subgraph Kn−1,n exists. We439

construct KR(Kn−1,n)+1 from G by adding two vertices x1 and x2 such that the440

edge x1x2 is colored by 3 and the edges between xi and G are colored by i for each441

i ∈ {1, 2}. One can easily check that there is neither a rainbow subgraph K1,3442

nor a monochromatic subgraph Kn,n under such a 3-edge-colored KR(Kn−1,n)+1,443

and so gr3(K1,3 : Kn,n) ≥ R(Kn−1,n) + 2.444

Theorem 25. gr3(K1,3 : K3,3) = 12.445

Proof. By Theorem 1, we have R(K2,3) = 10, and it follows from Lemma 24446

that gr3(K1,3 : K3,3) ≥ 12. Consider any 3-edge-colored KN (N ≥ 12) and447

suppose to the contrary that KN contains neither a rainbow subgraph K1,3 nor a448

monochromatic subgraph K3,3. Noticing that the number of colors k = 3, and KN449

does not contain a rainbow subgraph K1,3, so by Theorem 7 (ii), KN = G1(N).450

Recall the definition of G1(N) with partite sets V1, V2, and V3.451

If |Vi|, |Vj | ≥ 3 for i, j ∈ {1, 2, 3}, then there is a monochromatic subgraph452

K3,3, a contradiction. Recall N ≥ 12, without loss of generality, and we assume453

that |V1| ≥ 3 and |V3| ≤ |V2| ≤ 2. Let Gi be the subgraph induced by Vi in KN454

for each i = {1, 2, 3}. If |V2| = 2, then |V3| ≤ 2 and |V1| ≥ 8. It follows from455

Theorem 1 (R(K1,3,K3,3) = 8) that there is either a monochromatic K1,3 with456

color 1 or a monochromatic K3,3 with color 3 in G1. Noticing that the edges from457

G1 to G2 are colored by 1, and the edges from G1 to G3 are colored by 3, there is458

a monochromatic subgraph K3,3, a contradiction. If |V2| = 1, then |V3| = 1 and459

|V1| ≥ 10. Since R(K2,3) = 10, there is either a monochromatic K2,3 with color460

1 or a monochromatic K2,3 with color 3 in G1. Noticing that the edges from G1461

to G2 are colored by 1, and the edges from G1 to G3 are colored by 3, there is a462

monochromatic subgraph K3,3, a contradiction.463

Theorem 26. For an integer n ≥ 3, we have

gr3(K1,3 : K1,n) = 2n.

Proof. Let G1 be a monochromatic copy of Kn−1 with color 3, and G2 be a464

monochromatic copy of Kn−1 with color 2, and G3 be a copy of K1. We construct465

a 3-edge-colored K2n−1 by considering G1, G2, and G3, and adding all the edges466

between vertices of Gi and Gj for all i ≠ j. We color these added edges as467

follows: For Gi and Gi+1 (with indices modulo 3), we color all the edges with468
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color i. One can easily check that there is neither a rainbow subgraph K1,3469

nor a monochromatic subgraph K1,n under such a 3-edge-colored K2n−1, and so470

gr3(K1,3 : K1,n) ≥ 2n.471

Consider any 3-edge-colored KN (N ≥ 2n) and suppose to the contrary that472

KN contains neither a rainbow subgraph K1,3 nor a monochromatic subgraph473

K1,n. By Theorem 7 (ii), there is a partition (V1, V2, V3) of V (KN ) such that474

KN = G1(N) when k = 3. For each vertex v ∈ V1, from the coloring structure475

of G1(N), the color of all edges connecting v to all vertices in V2 is color 1.476

Therefore, to avoid a monochromatic (with color 1) subgraph K1,n, the vertex477

v can have at most n − |V2| − 1 edges of color 1 in the induced subgraph by478

V1. Similarly, the color of all edges connecting v to all vertices in V3 is color 3.479

Therefore, to avoid a monochromatic (with color 3) subgraph K1,n, the vertex v480

can have at most n − |V3| − 1 edges of color 3 in the induced subgraph by V1.481

Noticing that each edge of the induced subgraph by V1 can only have color 1 or482

color 3, the degree of v in the induced subgraph by V1 is at most n− |V2| − 1 +483

n − |V3| − 1, which implies |V1| − 1 ≤ 2n − (|V2| + |V3|) − 2. Similarly, we have484

|V2| − 1 ≤ 2n− (|V1|+ |V3|)− 2 and |V3| − 1 ≤ 2n− (|V1|+ |V2|)− 2. Therefore,485

|V1|+ |V2|+ |V3| ≤ 6n− 2(|V1|+ |V2|+ |V3|)− 3, that is |V1|+ |V2|+ |V3| ≤ 2n− 1,486

a contradiction.487

4. Results involving rainbow P5 or P+
4488

In this section, we give the Gallai-Ramsey numbers for complete bipartite graphs489

involving rainbow P5 or P+
4 . In proving gr4(P5 : H), we need to use the results490

of gr4(K1,3 : H) in Section 3. Next, we briefly describe the proof technique.491

According to the definition of Gallai-Ramsey number, if we know that grk(K1,3 :492

H) = N , then for all integers n ≥ N , if Kn does not contain the rainbow493

subgraph K1,3, then Kn must contain the monochromatic subgraph H. According494

to Theorem 7 (iii), it is uniquely determined that when k ≥ 4, the coloring495

structure of Kn does not contain a rainbow subgraph K1,3, which is the structure496

described in Theorem 6 (ii). Therefore, if Theorem 6 (ii) holds, then Kn indeed497

has neither a rainbow subgraph K1,3 nor a rainbow subgraph P5, but it must498

have a monochromatic subgraph H, which contradicts the contradiction method499

we use in the following proofs. So we will not repeat this basic technique in the500

following proofs.501

Theorem 27. For an integer n ≥ 3, we have

gr4(P5 : K2,n) =

{
n+ 3, 3 ≤ n ≤ 8;

n+ a, 2a+ 1 ≤ n ≤ 2(a+ 1) where a ≥ 4 is an integer.

Proof. We distinguish the following two cases to proceed with our proof.502



18 L. Li, X. Li, Y. Mao and Y. Si

Case 1. 3 ≤ n ≤ 8.503

Let G1 be a monochromatic copy of Kn+1 with color 1, and G2 be a copy of504

K1. We construct a Kn+2 by making use of G1, G2 by inserting all edges between505

these copies such that the edges from G1 to G2 are colored by 2, 3, and 4. One506

can easily check that there is neither a rainbow subgraph P5 nor a monochromatic507

subgraph K2,n under such a 4-edge-colored Kn+2, and so gr4(P5 : K2,n) ≥ n+ 3.508

Consider any 4-edge-colored KN where N ≥ n+3 and suppose to the contrary509

that KN contains neither a rainbow subgraph P5 nor a monochromatic subgraph510

K2,n. It follows from the fact that k = 4 and Theorem 20 that Theorem 6 (i),511

(ii), and (vi) do not hold.512

Suppose that Theorem 6 (iii) holds. Noticing that KN − v is monochro-513

matic for some vertex v, there is a monochromatic subgraph K2,n, a contradic-514

tion. Suppose that Theorem 6 (iv) holds. Noticing that {a, b, c, v1, v2, . . . , vn} ⊆515

V (KN ), there is a monochromatic subgraph K2,n with bipartition {b, c} and516

{v1, v2, . . . , vn} of V (KN ) with color 1, a contradiction. Suppose that Theo-517

rem 6 (v) holds. Noticing that {a, b, c, d, v1, v2, . . . , vn−1} ⊆ V (KN ), there is a518

monochromatic subgraph K2,n with bipartition {v1, v2} and {a, b, c, d, v3, v4, . . . , vn−2}519

with color 1, a contradiction.520

Case 2. 2a+ 1 ≤ n ≤ 2(a+ 1) where a ≥ 4 is an integer.521

From Lemma 13 and Theorem 20, we have gr4(P5 : K2,n) ≥ n + a. Con-522

sider any 4-edge-colored KN where N ≥ n + a (a ∈ {4, 5, . . .}) and suppose to523

the contrary that KN contains neither a rainbow subgraph P5 nor a monochro-524

matic subgraph K2,n. It follows from the fact that k = 4 and Theorem 20 that525

Theorem 6 (i), (ii), and (vi) do not hold.526

Suppose that Theorem 6 (iii) holds. Noticing that KN −v is monochromatic527

for some vertex v, there is a monochromatic subgraph K2,n, a contradiction.528

Suppose that Theorem 6 (iv) holds. Noticing that {a, b, c, v1, v2, . . . , vn+a−3} ⊆529

V (KN ), then there is a monochromatic subgraph K2,n with bipartition {b, c} and530

{v1, v2, . . . , vn} with color 1, a contradiction. Suppose that Theorem 6 (v) holds.531

Noticing that {a, b, c, d, v1, v2, . . . , vn+a−4} ⊆ V (KN ), then there is a monochro-532

matic subgraph K2,n with bipartition {a, b} and {v1, v2, . . . , vn} with color 1, a533

contradiction.534

Theorem 28. For an integer n ≥ 9, we have

gr4(P5 : K3,n) = gr4(P5 : K4,n) = 2n− 3.

Proof. It follows from Lemma 13, Theorems 21 and 22 that gr4(P5 : K3,n) ≥535

2n−3 and gr4(P5 : K4,n) ≥ 2n−3. Consider any 4-edge-colored KN (N ≥ 2n−3)536

and suppose to the contrary that KN contains neither a rainbow subgraph P5537
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nor a monochromatic subgraph K3,n or K4,n. It follows from the fact that k = 4538

and Theorem 21 that Theorem 6 (i), (ii), and (vi) do not hold.539

Suppose that Theorem 6 (iii) holds. Noticing that 2n−3−1 > n+4 (n ≥ 9),540

KN − v is monochromatic for some vertex v, there is a monochromatic subgraph541

K4,n, a contradiction. Suppose that Theorem 6 (iv) holds. Noticing that 2n−3 >542

n + 5 (n ≥ 9), {a, b, c, v1, v2, . . . , vn+2} ⊆ V (KN ), there is a monochromatic543

subgraph K4,n with bipartition {v1, v2, b, c} and {v3, v4, . . . , vn+2} with color 1,544

a contradiction. Suppose that Theorem 6 (v) holds. Noticing that 2n − 3 >545

n + 5 (n ≥ 9), {a, b, c, d, v1, v2, . . . , vn+1} ⊆ V (KN ), there is a monochromatic546

subgraph K4,n with bipartition {a, b, c, d} and {v1, v2, . . . , vn} with color 1, a547

contradiction.548

Lemma 29. For integers n ≥ m ≥ 2, we have

gr4(P
+
4 : Km,n) ≥ m+ n+ 2.

Proof. Let Km+n+1 = G2(m+n+1). It follows from Theorem 8 (ii) that there549

is neither a rainbow subgraph P+
4 nor a monochromatic subgraph Km,n under550

such a 4-edge-colored Km+n+1, and so gr4(P
+
4 : Km,n) ≥ m+ n+ 2.551

Theorem 30. For an integer n ≥ 3, we have

gr4(P
+
4 : K2,n) =

{
n+ 4, 3 ≤ n ≤ 8;

n+ a, 2a+ 1 ≤ n ≤ 2(a+ 1) where a ≥ 4 is an integer.

Proof. We distinguish the following two cases to proceed with our proof.552

Case 1. 3 ≤ n ≤ 8.553

It follows from Lemma 29 that gr4(P+
4 : K2,n) ≥ n+4. Consider any 4-edge-554

colored KN (N ≥ n+4) and suppose to the contrary that KN contains neither a555

rainbow subgraph P+
4 nor a monochromatic subgraph K2,n. It follows from the556

fact that k = 4 and Theorem 20 that Theorem 8 (i) and (iii) do not hold.557

Next, suppose that Theorem 8 (ii) holds. If KN = G2(N), then KN −x−y is558

monochromatic with color 1, and hence there is a monochromatic subgraph K2,n,559

a contradiction. Suppose that KN = G3(N). Noticing that {a, b, c, v1, v2, . . . , vn+1} ⊆560

V (KN ), there is a monochromatic K2,n with bipartition {a, b} and {v1, v2, . . . , vn}561

with color 4, a contradiction.562

Case 2. 2a+ 1 ≤ n ≤ 2(a+ 1) where a ≥ 4 is an integer.563

It follows from Lemma 16 and Theorem 20 that gr4(P
+
4 : K2,n) ≥ n + a.564

Consider any 4-edge-colored KN (N ≥ n + a) and suppose to the contrary that565

KN contains neither a rainbow subgraph P+
4 nor a monochromatic subgraph566
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K2,n. It follows from the fact that k = 4 and Theorem 20 that Theorem 8 (i)567

and (iii) do not hold.568

Next, suppose that Theorem 8 (ii) holds. Assume that KN = G2(N). Since569

n+a ≥ n+4 (n ≥ 9), it follows that KN−x−y is monochromatic with color 1, and570

hence there is a monochromatic subgraph K2,n, a contradiction. Suppose that571

KN = G3(N). Noticing that n + a ≥ n + 4 (n ≥ 9), {a, b, c, v1, v2, . . . , vn+1} ⊆572

V (KN ), there is a monochromatic subgraph K2,n with bipartition {a, b} and573

{v1, v2, . . . , vn} with color 4, a contradiction.574

Theorem 31. For an integer n ≥ 10, we have

gr4(P
+
4 : K3,n) = gr4(P

+
4 : K4,n) = 2n− 3.

Proof. It follows from Lemma 16, Theorems 21 and 22 that gr4(P
+
4 : K3,n) ≥575

2n−3 and gr4(P
+
4 : K4,n) ≥ 2n−3. Consider any 4-edge-colored KN (N ≥ 2n−3)576

and suppose to the contrary that KN contains neither a rainbow subgraph P+
4577

nor a monochromatic subgraph K3,n or K4,n. It follows from the fact that k = 4578

and Theorem 21 that Theorem 8 (i) and (iii) do not hold.579

Next, suppose that Theorem 8 (ii) holds. Assume that KN = G2(N). Since580

2n − 3 > n + 6 (n ≥ 10), it follows that KN − x − y is monochromatic with581

color 1, and hence there is a monochromatic subgraph K4,n, a contradiction.582

Suppose that KN = G3(N). Noticing that 2n − 3 > n + 6 (n ≥ 10) and583

{a, b, c, v1, v2, . . . , vn+3} ⊆ V (KN ). Then there is a monochromatic subgraph584

K4,n with bipartition {a, b, c, v1} and {v2, v3, . . . , vn+1} with color 4, a contradic-585

tion.586

Remark 32. For integers k ≥ 5, 1 ≤ m ≤ 4 and n ≥ 3, we can get grk(P5 : Km,n)587

directly from Lemma 14, and we can get grk(P+
4 : Km,n) directly from Lemma 15.588

For a small integer n ≤ 9, the method for proving the exact value of Gallai-589

Ramsey number for rainbow P5 or P+
4 and monochromatic K1,n, K3,n or K4,n is590

very trivial. So this paper will not give these results.591

5. Conclusion592

Gallai-Ramsey number involving rainbow K1,3 plays a very significant role in593

Gallai-Ramsey number involving rainbow P5 or P+
4 . That is, if one can determine594

the exact value of grk(K1,3 : H) for an integer k ≥ 4 and a graph H, then one595

can easily determine the exact value of grk(P5 : H) and grk(P
+
4 : H). However,596

we have not completely solved all the exact values of Gallai-Ramsey number for597

rainbow trees and monochromatic complete bipartite graphs. We end this section598

with two open problems.599
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Problem 33. For integers n ≥ m ≥ 2, determine the exact value of gr3(K1,3 :600

Km,n).601

Problem 34. For integers n ≥ m ≥ 5 and k ≥ 4, determine the exact value of602

grk(K1,3 : Km,n).603
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