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Abstract. A graph is edge-transitive if its automorphism group acts transitively on
the edge set. This paper presents a complete classification for connected edge-transitive
cubic graphs of order 2n, where n is even and square-free. In particular, it is shown
that such a graph is either symmetric or isomorphic to one of the following graphs:
a semisymmetric graph of order 420, a semisymmetric graph of order 29260 and five
families of semisymmetric graphs constructed from the simple group PSL2(p).
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1. Introduction

All graphs in this paper are finite, simple and undirected, and have no isolated vertex.
Let Γ = (V,E) be a graph with vertex set V and edge set E, and denote by AutΓ

the automorphism group of Γ. Let G be a subgroup of AutΓ, written as G ⩽ AutΓ.
Then Γ is said to be G-vertex-transitive or G-edge-transitive if G acts transitively on
V or E, respectively. If Γ is G-edge-transitive but not G-vertex-transitive then Γ is a
bipartite graph with a bipartition given by the G-orbits on V ; in this case, Γ is called G-
semisymmetric if further it is a regular graph. Recall that an arc in Γ is an ordered pair
of adjacent vertices. Then Γ is said to be G-symmetric if G acts transitively on the set of
arcs. For a vertex v ∈ V , set Γ(v) = {v′ ∈ V | {v, v′} ∈ E} and Gv = {g ∈ G | vg = v},
called the neighborhood and stabilizer of v in Γ and G, respectively. Clearly, if Γ is
either G-symmetric or G-semisymmetric then Gv acts transitively on Γ(v) for all v ∈ V .

A graph Γ is called vertex-transitive, edge-transitive, symmetric and semisymmet-
ric if it is AutΓ-vertex-transitive, AutΓ-edge-transitive, AutΓ-symmetric and AutΓ-
semisymmetric, respectively. Clearly, symmetric graphs are both edge-transitive and
vertex-transitive, and by [31, p.55, 7.31], the converse is also true for regular graphs of
odd valency. In particular, edge-transitive cubic graphs (regular graphs of valency 3)
are either symmetric or semisymmetric.

In this paper, we focus on connected edge-transitive cubic graphs. Interest in edge-
transitive cubic graphs stems from the classical result on symmetric cubic graphs due to
Tutte. In [29, 30], Tutte considered the automorphism groups of connected symmetric
cubic graphs, and proved that the order of a vertex-stabilizer is a divisor of 24 ·3. Tutte’s
result was generalized by Goldschmidt in [16] where it is proved that the stabilizers of
two adjacent vertices in a connected edge-transitive cubic graph are isomorphic to one of
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fifteen pairs of groups; in particular, the order of a vertex-stabilizer is a divisor of 27 · 3.
Following these two classical results, edge-transitive cubic graphs have been extensively
studied from different perspectives over the decades, see [5, 6, 7, 8, 9, 12, 18, 24, 26, 27, 28]
for example. In recent papers [21] and [23], connedcted edge-transitive cubic graphs of
square-free order were classified. This motivates us to classify connected edge-transitive
cubic graphs of order 2n, where n is even and square-free.

Let Γ be an arbitrary connected edge-transitive cubic graph of order 2n with n even
and square-free. The group-theoretic structure of Γ is investigated in Section 2, where
it is proved that, with four exceptions for Γ, an edge-transitive group of Γ has a unique
insolvable minimal normal subgroup say T , which is isomorphic to J1 or PSL2(p). In
Section 3, we collect two group-theoretic constructions for edge-transitive graphs, and
present some improvements on the automorphisms or isomorphisms of coset graphs and
bi-coset graphs. Then Γ is determined in Section 4 for the case where T = J1, followed
by the classifications for PSL2(p)-symmetric Γ and PSL2(p)-semisymmetric Γ in Sections
5 and 6, respectively. Finally, the case where Γ is not PSL2(p)-edge-transitive is settled
in Section 7, and then our main result stated as follows is proved.

Theorem 1.1. Assume that Γ = (V,E) is a connected edge-transitive cubic graph of
order 2n, where n is even and square-free. Let p be the largest prime divisor of n, and
choose ε, η ∈ {1,−1} for those odd p with p+ε and p+η divisible by 3 and 4, respectively.
Let δ = 1 if p ≡ ±1 (mod 10), or δ = 0 otherwise.

(1) If Γ is not bipartite then Γ is isomorphic to either the complete graph K4 of order
4 or one of the graphs described as Table 1, where v ∈ V , T = PSL2(p) and ω is
the number of non-isomorphic graphs with isomorphic automorphism groups.

(2) If Γ is bipartite then Γ is isomorphic to one of the graphs described as Table 2,
where {u,w} ∈ E, T = PSL2(p) and ν is the number of non-isomorphic graphs
with isomorphic automorphism groups.

2. On the automorphism groups

In this and the following sections, G is a finite group. Denote by Aut(G) the au-
tomorphism group of G. If α is a subset or an element of G, then we write g−1αg
to denote the conjugation of α under some g ∈ G. For subsets X,Y ⊆ G, we write
CX(Y ) = {x ∈ X | x−1yx = y for all y ∈ Y } and NX(Y ) = {x ∈ X | x−1Y x = Y },
called the centralizer and normalizer of Y in X, respectively.

In the following, Γ = (V,E) is assumed to be a connected G-edge-transitive cubic
graph. Note that Γ is either G-symmetric or G-semisymmetric. Let {u,w} ∈ E. If Γ is
G-semisymmetric then Γ is bipartite, and G = 〈Gu, Gv〉. Suppose that Γ is G-symmetric.
Then Γ is 〈Gu, Gv〉-edge-transitive, and |G : 〈Gu, Gv〉| ⩽ 2, where the equality holds if
and only if Γ is bipartite, refer to [32, Exercise 3.8]. Clearly, if |G : 〈Gu, Gv〉| = 2 then
Γ is 〈Gu, Gv〉-semisymmetric. Thus, replacing G by 〈Gu, Gv〉 if necessary, we assume
further that

(C1) Γ is either G-semisymmetric, or non-bipartite and G-symmetric, where G ⩽
AutΓ; and

(C2) |V | = 2n, where n is even and square-free.
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G = AutΓ Gv ω Comments
1 A6 S3 1 F60, cf. [6]
2 PSL2(8) S3 1 F84, cf. [6]
3 J1 S3 10 Example 3.5

4 PGL2(p) S3
p−η−6

4

Theorem 5.7
p≡±3 (mod 8)

5 PSL2(p)× Z2 S3
p+η−2|ε+η|

4
− 2δ

Theorem 5.7
p≡±3 (mod 8)

6 PGL2(p) D12 1− |ε+η|
2

Theorem 5.12
p≡±7 (mod 16)

7 PSL2(p)× Z2 D12 |ε+ η| Theorem 5.12
p≡±7 (mod 16)

8 PSL2(p) S3
p+η−4|ε+η|

8
− 1− δ

Theorem 5.12
p≡±7 (mod 16)

9 PSL2(p) D12 1
Theorem 5.13

p≡±47 (mod 96)

10 PSL2(p) S4 1
Theorem 5.14

p≡±31 (mod 64)

11 (PSL2(p)× Z3):Z2 S3
p−η−6

4

T=PSL2(p), Tv=1

p≡±3 (mod 8)

12 PSL2(p)× S3 S3
p+η−2|ε+η|

4
− 2δ

T=PSL2(p), Tv=1

p≡±3 (mod 8)

Table 1. Non-bipartite symmetric cubic graphs.

2.1. Preliminaries. Let {u,w} ∈ E. If Γ is G-symmetric then Gu and Gw are conjugate
in G and, by [2, p.147, 18f], Gu

∼= Z3, S3, D12, S4 or Z2×S4; in particular, |Gu| is a divisor
of 48. Suppose that Γ is G-semisymmetric. Then G has exactly two orbits on V , G =
〈Gu, Gw〉, and Guw is a Sylow 2-subgroup of Gu (and Gw). The triple (Gu, Guw, Gw) was
determined by Goldschmidt in [16] where it is shown that (Gu, Guw, Gw) is isomorphic
to one of fifteen triples, see also [28, Table 3]. Then we have the following lemma.

Lemma 2.1. Let {u,w} ∈ E. Then one of the following holds:
(1) Gu

∼= Gw
∼= Z3, S3,D12, S4 or Z2 × S4;

(2) Γ is G-semisymmetric, Gu 6∼= Gw, and either |Gu| = |Gw| = 2i · 3 with i ∈
{5, 6, 7} or (Gu, Gw) is isomorphic to one of (S3,Z6), (D12,A4), (D24, S4), ((Z2

2×
Z3).Z2, S4), (Z2 ×D12,Z2 × A4) and (D8 × S3,Z2 × S4).

In particular,
(i) if |Gu| > 3 then G contains at least two involutions; if |Gu| > 12 then either

(Gu, Gw) ∼= (Z2 ×D12,Z2 × A4), or G contains nonabelian Sylow 2-subgroups;
(ii) if Γ is G-symmetric then |G| is a divisor of 25 · 3n; if Γ is G-semisymmetric then

|G| is a divisor of 28 · 3n.

Let N be a normal subgroup of G, written as N �G. Suppose that N is intransitive
on V . For v ∈ V , denote by v̄ the N -orbit containing v. Put V̄ = {v̄ | v ∈ V }.
The normal quotient graph ΓN of Γ relative to G and N is defined on V̄ with edge set
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G = AutΓ Gu, Gw ν Symmetric? Comments
1 S7 × Z2 S4×Z2, S3×D8 1 No S420, cf. [8]
2 J1 D12, D12 1 No Example 3.11

3 PSL2(p)× Z2 D12, D12
|ε+η|
2

No Theorem 6.5
p≡±3 (mod 8)

4 PGL2(p)× Z2 D12, D12 1 Yes Theorem 6.5
p≡±3 (mod 8)

5 PGL2(p) S3, S3
p+η−4

8
Yes Theorem 6.5

p≡±3 (mod 8)

6 PSL2(p)× Z2 S3, S3
p+η−4

8
− δ Yes Theorem 6.5

p≡±3 (mod 8)

7 PSL2(p)× Z2 D24, S4 1 No Theorem 6.7
p≡±23 (mod 48)

8 PSL2(p)× Z2 D12, D12 1 Yes Theorem 6.7
p≡±23 (mod 48)

9 PSL2(p) D24, S4 1 No Theorem 6.8
p≡±47 (mod 96)

10 PSL2(p)× Z2 S4, S4 1 Yes Theorem 6.8
p≡±15 (mod 32)

11 PSL2(p)× S3 D12, D12 1 No T=PSL2(p), Tu
∼=S3, Tw

∼=Z2

p≡±11 (mod 24)

12 PSL2(p)× S3 D24, S4 1 No T=PSL2(p), Tu
∼=D12, Tw

∼=Z2
2

p≡±23 (mod 48)

Table 2. Bipartite edge-transitive cubic graphs.

Ē := {{ū, w̄} | {u,w} ∈ E}. Denote by GV̄ (by Ḡ for short) the permutation group
induced by G on V̄ . Recall that N is said to be semiregular (on V ) if all its orbits have
length |N |, i.e., Nv = 1 for all v ∈ V . We have the following lemma, see [22, Lemma
2.6] for example.

Lemma 2.2. Let N � G. Assume that N is intransitive on each G-orbit on V . Then
ΓN is cubic and Ḡ-edge-transitive, N is semiregular on V , and Ḡ ∼= G/N .

Lemma 2.3. Let N � G. Assume that N is not semiregular on V . Then either Γ is
N-edge-transitive, or Γ is bipartite and the following hold:

(1) N acts transitively on one part say U of Γ and has three orbits on the other part;
(2) |G : N | is divisible by 3, |N | is indivisible by 9 and, for u ∈ U , the stabilizer Nu

is a 2-group and acts trivially on Γ(u).

Proof. Assume first that N is transitive on each G-orbit on V . Then |N : Nu| = |N :
Nw| = 2n or n, in particular, |Nu| = |Nw|, where u,w ∈ V . Suppose that Nu acts
trivially on Γ(u). Then, letting w ∈ Γ(u), we have Nu = Nw. Since Nw � Gw and Gw

acts transitively on Γ(w), we deduce that Nw acts trivially on Γ(w). It follows from the
connectedness of Γ that Nu fixes V point-wise, and so Nu = 1, a contradiction. Thus
Nu acts transitively on Γ(u) for all u ∈ V , and hence Γ is N -edge-transitive.
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Assume now that Γ is bipartite, and N is not transitive on one part of Γ, say W .
Since N is not semiregular, by Lemma 2.2, N is transitive on U := V \ W . By [15,
Lemma 5.5], N has three orbits on W and, for u ∈ U , the stabilizer Nu is contained
in the kernel of Gu acting on Γ(u). It follows that Nu is a 2-group, and |Gu : Nu| is
divisible by 3. Noting that |G : Gu| = n = |N : Nu|, we have that |G : N | = |Gu : Nu|,
and |N | is indivisible by 9. Then the lemma follows. □
2.2. The solvable case. For a prime divisor p, denote by Op(G) the maximal normal
p-subgroup of G.
Lemma 2.4. Either Γ ∼= K4, or |Op(G)| ∈ {1, p} for every prime divisor p of |G|.
Proof. Assume first that p is an odd prime. Since each G-orbit on V has even length n
or 2n, we know that Op(G) is intransitive on each G-orbit on V . By Lemma 2.2, Op(G)
has order a divisor of 2n, yielding |Op(G)| ∈ {1, p}.

Now consider the case where p = 2. Assume that O2(G) is not transitive on each
G-orbit. By Lemma 2.2, O2(G) is semiregular on V , and so |O2(G)| ∈ {1, 2, 4}. If
|O2(G)| = 4 then we get a cubic graph ΓO2(G) of odd order, which is impossible. Thus
|O2(G)| ∈ {1, 2}. Assume that O2(G) is transitive on one of G-orbits, say U . Then |U |
is a divisor of |O2(G)|, which forces that either |U | = n = 2 or |V | = |U | = 4. It follows
that Γ ∼= K4. This completes the proof. □
Theorem 2.5. Assume that G is solvable. Then Γ ∼= K4.
Proof. Let F be the Fitting subgroup of G, i.e., the direct product of all Op(G), where p
runs over the prime divisors of |G|. Since G is solvable, every minimal normal subgroup
of G has prime power order, and so F 6= 1.

Suppose that Γ 6∼= K4. Then 2n = |V | > 4 and, by Lemma 2.4, F is cyclic and has
order a divisor of n. In particular, F is intransitive on V as |V | = 2n. Let B be an
arbitrary F -orbit on V , and let K be the kernel of F acting on B. Since F is cyclic, K
is characteristic in G, and so K�G. If G is transitive on V then, since all K-orbits have
equal length, K acts trivially on V , and so K = 1. Assume that G is intransitive on
V . Then G has exactly two orbits on V , say U and W . Without loss of generality, let
B ⊆ U . Then K acts trivially on U . If K 6= 1 then it is easily shown that Γ is isomorphic
to the complete bipartite graph K3,3, and so 2n = 6, which is not the case. Therefore, F
is faithful and hence regular on each of its orbits; in particular, F is semiregular on V .

Assume that F has two orbits on V . Then Γ is bipartite and |F | = n. Let L be the
2′-Hall subgroup of F . Then L is a normal subgroup of G. Clearly, L is intransitive on
both the F -orbits. By Lemma 2.2, the quotient graph ΓL has valency 3. However, ΓL is
a bipartite graph of order 4, a contradiction.

Assume that F has at least three orbits on V . In this case, it is easy to see that F is
intransitive on each G-orbit on V . Then, by Lemma 2.2, the quotient graph ΓF is cubic,
and G induces an edge-transitive subgroup of AutΓF , which is isomorphic to G/F . Since
G is solvable, CG(F ) ≤ F , refer to [1, p.158, (31.10)]. Thus CG(F ) = F . Noting that G
induces a subgroup Aut(F ) by conjugation, we have G/F = NG(F )/CG(F ) ≲ Aut(F ).
Since F is cyclic, Aut(F ) is abelian, and so does G/F . It follows that AutΓF has
an abelian edge-transitive subgroup. Then the only possibility is that ΓF

∼= K3,3 and
G/F ∼= Z2

3. In particular, n = 3|F |, and Γ is bipartite. Let L be the 2′-Hall subgroup
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of F . Then L is normal in G and intransitive on each of F -orbits. By Lemma 2.2, G
induces an edge-transitive subgroup of AutΓL, which is isomorphic to G/L. Noting that
F/L is a normal subgroup of G/L of order 2, we have G/L ∼= Z2×Z2

3. It follows that
AutΓL has an abelian edge-transitive subgroup, and thus ΓL

∼= K3,3, which is impossible
as ΓL has order divisible by 4. Therefore, Γ ∼= K4, and the result follows. □
2.3. The insolvable case. In this subsection, the group G is assumed to be insolvable.
Denote by rad(G) the maximal solvable normal subgroup of G. Then rad(G) is a charac-
teristic subgroup G. If rad(G) is transitive on one of G-orbits on V , then G = rad(G)Gv

for some v ∈ V , which implies that G is solvable, a contradiction. Then Lemma 2.2 is
available for the triple (Γ, G, rad(G)). For v ∈ V , denote by v̄ the rad(G)-orbit containing
v. Put V̄ = {v̄ | v ∈ V }, and Ḡ = GV̄ . We have the following lemma.
Lemma 2.6. Assume that G is insolvable. Then Γrad(G) is a connected Ḡ-edge-transitive
cubic graph, |rad(G)| is a divisor of n, |V̄ | = 2n

|rad(G)| and Ḡ ∼= G/rad(G).

Lemma 2.7. Assume that G is insolvable. Then Ḡ has a unique minimal normal
subgroup say N̄ , Γrad(G) is N̄-edge-transitive, and N̄ is isomorphic to one of the following
simple groups: A6, A7, J1, PSL2(8) and PSL2(p), where p ⩾ 5 is a prime.
Proof. Let N̄ be a minimal normal subgroup of Ḡ. Then N̄ is insolvable, and |N̄ | is
a divisor of 28 · 3n. Note that N̄ is a direct product of isomorphic nonabelian simple
groups. If N̄ is not simple then |N̄ | has a divisor r2 for some prime r > 3, and so n
is divisible by r2, which contradicts the assumption that n is square-free. Thus N̄ is
simple. If |rad(G)| is even then, noting that Γrad(G) has square-free order |V̄ |, our lemma
follows from [21, Lemma 6.3] and [23, Lemma 4.3]; in this case, N̄ ∼= A6, A7 or PSL2(p).
Thus, we assume next that |rad(G)| is an odd divisor of n.

If N̄ is intransitive on each Ḡ-orbit on V̄ then, by Lemma 2.2, the quotient graph of
Γrad(G) with respect to N̄ is cubic and of order |V̄ |/|N̄ |; however, |N̄ | is divisible by 4,
and so |V̄ |/|N̄ | is odd, a contradiction. Thus N̄ is transitive on at least one of Ḡ-orbits,
say Ū . Then Ḡ = N̄Ḡū for some ū ∈ Ū . Let C = CḠ(N̄). We have N̄ ∩ C = 1, and so
C ∼= N̄C/N̄ ⩽ Ḡ/N̄ ∼= Ḡū/N̄ū. It follows that C is solvable, and so C = 1 as rad(Ḡ) = 1
and C � Ḡ. This says that N̄ is the unique minimal normal subgroup of Ḡ.

Note that |N̄ | is not divisible by 210, 33 or r2, where r is an arbitrary prime with
r ⩾ 5. Inspecting the orders of finite simple groups (refer to [19, Tables 5.1.A-C]), we
deduce that N̄ is isomorphic to one of the following groups: A6, A7, A8, M11, M22, M23,
J1, PSL3(4), PSL2(2

f ) and PSL2(p), where 3 ⩽ f ⩽ 8, and p ⩾ 5 is a prime.
Suppose that N̄ is isomorphic to one of A6, A7, PSL2(8), A8, M11, M22, M23, PSL3(4)

and PSL2(2
6). Then |N̄ | is divisible by 9. It follows from Lemma 2.3 that Γrad(G) is

N̄ -edge-transitive. If N̄ ∼= PSL2(2
6) then |N̄v̄| is divisible by 24 · 3, by Lemma 2.1 (i),

N̄ has nonabelian Sylow 2-subgroups, which is impossible. Assume that N̄ ∼= M22 or
M23. Then |N̄ū| is divisible by 25 · 3. By Lemma 2.1, Γrad(G) is N̄ -semisymmetric, and
then |N̄ū| = 26 · 3. Since Γrad(G) is connected, N̄ = 〈L,R〉, where R and L are the
stabilizers of two adjacent vertices. For such a pair (L,R), noting that |L| = |R| = 26 · 3
and |L ∩ R| = 64, computation with GAP [14] shows that either |〈L,R〉| = 1344, or
N̄ ∼= M23 and |〈L,R〉| ∈ {576, 1920, 40320}, and so N̄ 6= 〈L,R〉, a contradiction. Assume
that N̄ ∼= PSL3(4), A8 or M11. Then |V̄ | = 2 n

|rad(G)| = 420, 420 or 660, respectively.
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By [6, 8], up to graph isomorphisms, there exist one connected edge-transitive cubic
graph of order 420, and two connected edge-transitive cubic graphs of order 660, which
have automorphism groups of order 10080, 3960 and 3960 respectively. Then |N̄ | >
|AutΓrad(G)|, a contradiction. Thus, in this case, Γrad(G) is N̄ -edge-transitive, and N̄ is
one of A6, A7 and PSL2(8).

Finally, suppose that N̄ ∼= J1, PSL2(2
4), PSL2(2

5), PSL2(2
7), PSL2(2

8) or PSL2(p).
Recalling that CḠ(N̄) = 1, we know that Ḡ is almost simple, and Ḡ = N̄ .O, where O is a
subgroup of the outer automorphism group of N̄ . Checking [19, Tables 5.1.A and 5.1.C],
we conclude that |O| is a divisor of 1, 4, 5, 7, 8 or 2, respectively. Then |Ḡ : N̄ | = |O|
is indivisible by 3. Noting that |Ḡv̄ : N̄v̄| = |N̄Gv̄ : N̄ |, it follows that |N̄v̄| is divisible
by 3 for all v̄ ∈ V̄ . By Lemma 2.3, Γrad(G) is N̄ -edge-transitive. If N̄ ∼= PSL2(2

4) then
|V̄ | = 340; however, by [6, 8], there exists no connected edge-transitive cubic graph of
order 340. Suppose that N̄ ∼= PSL2(2

f ), where f ∈ {5, 7, 8}. Then f−2 ⩾ 3, and |N̄v̄| is
divisible by 2f−2 ·3. Noting that PSL2(2

f ) has abelian Sylow 2-subgroups, by Lemma 2.1
(i), we conclude that f = 5, N̄v̄

∼= Z2 ×D12 or Z2 ×A4. This contradicts that PSL2(2
5)

has no subgroup isomorphic to Z2 × D12 or Z2 × A4, see Lemma 5.1. Therefore, Γrad(G)

is N̄ -edge-transitive, and N̄ ∼= J1 or PSL2(p). This completes the proof. □
Denote by G(∞) the intersection of all terms appearing in the derived series of G.

Lemma 2.8. Assume that G is insolvable. Let T = G(∞). Then T ∼= A6, A7, J1,
PSL2(8) or PSL2(p), rad(G) = CG(T ) and Γ is rad(G)T -edge-transitive.
Proof. By Lemma 2.7, Ḡ has a unique minimal normal subgroup N̄ ∼= A6, A7, J1,
PSL2(8) or PSL2(p), and Γrad(G) is N̄ -edge-transitive. By the edge-transitivity of N̄ , we
conclude that N̄ is transitive on each of Ḡ-orbits on V̄ . Then Ḡ = N̄Ḡv̄ for v̄ ∈ V̄ . Since
Ḡv̄ is solvable, we have N̄ = Ḡ(∞). Noting that rad(G)T/rad(G) = (G/rad(G))(∞) ∼=
Ḡ(∞) = N̄ , it follows that rad(G)T is the primage of N̄ in G. Then, considering Γrad(G)

as a normal quotient of Γ with respect rad(G)T and rad(G), it is easily shown that Γ is
rad(G)T -edge-transitive.

Note that T/(rad(G) ∩ T ) ∼= rad(G)T/rad(G) ∼= N̄ . Suppose that rad(G) ∩ T = 1.
Then T ∼= N̄ ∼= A6, A7, J1, PSL2(8) or PSL2(p). In addition, rad(G) ⩽ CG(T ). Since
(CG(T ))

(∞) ⩽ G(∞) = T and CG(T ) ∩ T = 1, we have (CG(T ))
(∞) = 1, and so CG(T )

is a solvable normal subgroup of G. It follows that rad(G) = CG(T ). Thus, to complete
the proof, it suffices to show that rad(G) ∩ T = 1.

Clearly, |rad(G) ∩ T | is square-free, and so Aut(rad(G) ∩ T ) is solvable. Note that T
induces a subgroup of Aut(rad(G)∩T ) by conjugation with kernel equal to CT (rad(G)∩
T ). Since T is simple, CT (rad(G)∩T ) = 1 or T . If CT (rad(G)∩T ) = 1 then Aut(rad(G)∩
T ) has a subgroup isomorphic to T , and so Aut(rad(G)∩T ) is insolvable, a contradiction.
We have T = CT (rad(G) ∩ T ), and thus T is a covering group of the simple group N̄
with center rad(G)∩T . Then rad(G)∩T is a homomorphic image of the Schur multiplier
of N̄ , refer to [1, p.168, (33.8)]. If N̄ ∼= PSL2(8) or J1 then N̄ has Schur multiplier 1
(see [19, p. 173, Theorem 5.14]), and so rad(G) ∩ T = 1.

Next we suppose that rad(G) ∩ T 6= 1, and produce a contradiction. By the above
argument, we have that N̄ ∼= A6, A7 or PSL2(p), and N̄ has Schur multiplier Z6, Z6 or
Z2 respectively, refer to [19, p.173, Theorem 5.14]. For N̄ ∼= A6 or A7, recalling that
|G| is indivisible by 33, we have rad(G) ∩ T ∼= Z2; in this case, computation with GAP
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shows that T contains a unique involution. If N̄ ∼= PSL2(p) then rad(G) ∩ T ∼= Z2 and
T ∼= SL2(p); in this case, T also contains a unique involution.

Let N = rad(G)T , the primage of N̄ in G. Recall that Γ is N -edge-transitive. Since
|rad(G)| is square-free, rad(G) has a unique Hall 2′-subgroup say L. Then L�N , and L
is not transitive on each of N -orbits on V . Then, by Lemma 2.2, ΓL is a cubic graph,
and N induces an edge-transitive subgroup say X of AutΓL with kernel equal to L. By
the choice of L, we have rad(G) = L × (rad(G) ∩ T ), and so X ∼= N/L = TL/L ∼= T .
In particular, |X| is divisible by 8, and so Xα has order divisible by 6, where α is an
L-orbit. By Lemma 2.1 (i), X contains at least two involutions, and hence so does T , a
contradiction. Therefore, rad(G) ∩ T = 1. This completes the proof. □

Assume that G is insolvable. Let M = rad(G) and T = G(∞). For v ∈ V , denote by
v̄ the M -orbit containing v. Put V̄ = {v̄ | v ∈ V }, and T̄ = T V̄ . Then MT = M × T
and T̄ ∼= MT/M ∼= T . Considering the set-wise stabilizers Tv̄ and (MT )v̄ of v̄ in T and
MT respectively, we have M(MT )v = (MT )v̄ = MTv̄, and so

(2.1) Tv̄
∼= (MT )v ∼= (MT )v̄/M ∼= T̄v̄.

Choose a G-orbit on V , say W , such that T is transitive on W . For w ∈ W , it is easily
shown that Tw̄ is transitive on w̄. Noting that M is regular on w̄ and centralizes Tw̄, it
follows from [11, p.109, Theorem 4.2A] that

(2.2) Tw � Tw̄, M ∼= Tw̄/Tw.

In particular, since |M | is square-free and |Tw̄| = 2s · 3 for some integer s, we have

(2.3) |M | ∈ {1, 2, 3, 6}.

Lemma 2.9. Assume that G is insolvable. Let M = rad(G) and T = G(∞). Then Γ is
MT -edge-transitive, and either Γ is T -edge-transitive, or |M | ∈ {3, 6} and one of the
following holds:

(1) Γ is bipartite, T ∈ {J1,PSL2(p)}, and T is transitive on one part of Γ and has
three orbits on the other part;

(2) T = PSL2(p) is regular on V , and p ≡ ±3 (mod 8).

Proof. By Lemma 2.8, Γ is MT -edge-transitive. Note that |MT : T | = |M |. If T is not
semiregular on V then, applying Lemmas 2.3 and 2.8 to the triple (Γ,MT, T ), either Γ
is T -edge-transitive, or |M | ∈ {3, 6} and (1) occurs.

Assume that T is semiregular on V . Then T has an odd number of orbits on V . Since
there exists no cubic graph of odd order, by Lemma 2.2, we conclude that T is transitive
on V , and so T is regular on V . In particular, |T | is not divisible by 8 or 9, and so
T = PSL2(p) with p ≡ ±3 (mod 8), desired as in (2). □

Theorem 2.10. Let A = AutΓ, and T = G(∞). Assume that G is insolvable. Then
(1) either T ∈ {J1,PSL2(p)} or one of the following holds:

(i) Γ ∼= F60 and AutΓ = A6;
(ii) Γ ∼= S420 and AutΓ = Z2 × S7;
(iii) Γ ∼= F84 and AutΓ = PSL2(8);

(2) A(∞) = T , and either |rad(G)| = 2 or rad(G)� A.
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Proof. By Lemma 2.8, T ∼= A6, A7, PSL2(8), J1 or PSL2(p), where p ⩾ 5 is a prime.
Suppose that T ∼= A6, A7 or PSL2(8). Then |T | has a divisor 9, and so Γ is T -edge-
transitive by Lemma 2.3. We have |V | = 60, 420 or 84, respectively. Employing [6, 8],
we conclude that Γ is desired as in (i), (ii) or (iii), and part (1) follows.

Let X = 〈Au, Aw〉 for an edge {u,w} ∈ E. Then |A : X| ⩽ 2, where the equality
holds if and only if Γ is bipartite, refer to [32, Exercise 3.8]. In particular, A(∞) = X(∞).
Clearly, G ⩽ X, and Γ is either non-bipartite or X-semisymmetric. Then, by Lemma
2.8, A(∞) = X(∞) ∼= A6, A7, PSL2(8), J1 or PSL2(p). By Lemma 2.3, we may choose a
G-orbit U such that T acts transitively on it. Noting that T = G(∞) ⩽ A(∞), we know
that U is also a A(∞)-orbit. In particular, |T : Tu| = |U | = |A(∞) : (A(∞))u|, where
u ∈ U . Then |T | and |A(∞)| have the same prime divisors no less than 5. It follows that
A(∞) = T , desired as in (2).

Finally, by (2.3), |rad(X)| is a divisor of 6. Noting that rad(G) = CG(T ) ⩽ CX(T ) =
rad(X), if |rad(G)| 6= 2 then |rad(G)| = 1, 3 or 6, and so rad(G) is a characteristic
subgroup of rad(X), yielding rad(G)� A. This completes the proof. □

3. Coset graphs and bi-coset graphs

Let G be a finite group. If G is normal in some group A then each a ∈ A induces an
automorphism conj(a) of G by conjugation:

xconj(a) := a−1xa, ∀x ∈ G.

For X1, . . . , Xm ⊆ G, we write

NG(X1, . . . , Xm) = ∩m
i=1NG(Xi),

NG({X1, . . . , Xm}) = {g ∈ G | {g−1X1g, . . . , g
−1Xmg} = {X1, . . . , Xm}},

Aut(G,X1, . . . , Xm) = {σ ∈ Aut(G) | Xσ
i = Xi, 1 ⩽ i ⩽ m},

Aut(G, {X1, . . . , Xm}) = {σ ∈ Aut(G) | {Xσ
1 , . . . , X

σ
m} = {X1, . . . , Xm}}.

3.1. Coset actions. Assume that H is a core-free subgroup of G, that is, H contains
no nontrivial normal subgroup of G. Then G acts faithfully and transitively on [G :
H] := {Hx | x ∈ G} by right multiplication:

(3.1) (Hx)g := Hxg, ∀x, g ∈ G.

The resulting transitive subgroup of Sym([G : H]) is still denoted by G in the following.
Note that the group Aut(G,H) has a natural action on [G : H] by

(Hx)σ := Hxσ, x ∈ G, σ ∈ Aut(G,H).

For σ ∈ Aut(G,H), we denote by σH the permutation induced by σ on [G : H]. Clearly,

(3.2) conj(h)H = h, ∀h ∈ H.

The next lemma says that σ 7→ σH is an embedding from Aut(G,H) into Sym([G : H]).

Lemma 3.1. Aut(G,H) acts faithfully on [G : H].
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Proof. Clearly, if H = 1 then the action of Aut(G,H) is faithful. Thus let H 6= 1. Pick
σ ∈ Aut(G,H) such that Hxσ = Hx, i.e., xσx−1 ∈ H, for all x ∈ G. For x, y ∈ G,

Hyx = H(yx)σ = Hyσxσ = Hyxσ ⇒ yxσx−1y−1 ∈ H.

Then, for each x ∈ G, the subgroup H contains a normal subgroup 〈yxσx−1y−1 | y ∈ G〉
of G. Since H is core-free, we have xσx−1 = 1, i.e., xσ = x for all x ∈ G. Thus σ = 1,
and the lemma follows. □

If g ∈ NG(H), then g induces a permutation ĝ on [G : H] by
(3.3) (Hx)ĝ := Hg−1x, ∀x ∈ G.

In fact, ĝg = conj(g)H = gĝ, where g acts on [G : H] by the way described as in (3.1).

Lemma 3.2. NG(H)/H ∼= CSym([G:H])(G) = {ĝ | g ∈ NG(H)}, and NSym([G:H])(G) =
G{σH | σ ∈ Aut(G,H)}.

Proof. The first part of this lemma follows directly from [11, p.108, Lemma 4.2A].
Let N = NSym([G:H])(G), and K be the point-stabilizer of H in N . Then G ⩽ N and,

since G is transitive on [G : H], we have N = GK. Clearly, Aut(G,H) ∼= {σH | σ ∈
Aut(G,H)} ⩽ K. For t ∈ K, considering the point-stabilizers of H t and H in G, we
have t−1Ht = H, and so conj(t) ∈ Aut(G,H). Thus we have a group homomorphism:
K → Aut(G,H), t 7→ conj(t), and the kernel equals to CK(G). Noting that CK(G) is
semiregular on [G : H], we have CK(G) = 1. Thus K is isomorphic to a subgroup of
Aut(G,H), and so |K| ⩽ |Aut(G,H)|. We have K = {σH | σ ∈ Aut(G,H)}, and the
lemma follows. □

3.2. Coset graphs. Let G 6= 1 be a finite group, and let H be a core-free subgroup of
G. Suppose that H has a subgroup K with index k > 1, and

(I) there exists o ∈ NG(K) \H such that o2 ∈ K and H ∩ o−1Ho = K.
The coset graph Cos(G,H,K, o) is defined on [G : H] such that Hx and Hy are adjacent
if and only if yx−1 ∈ HoH. Then Cos(G,H,K, o) is a well-defined G-symmetric graph
of valency k. It is well-known that every connected symmetric graph of valency k is
isomorphic to a coset graph defined as above. The following facts are easily shown, see
also [20] for example.

(II) Cos(G,H,K, o) is connected if and only if G = 〈H, o〉.
(III) If σ ∈ Aut(G) then Hx 7→ Hσxσ defines an isomorphism from Cos(G,H,K, o) to

Cos(G,Hσ, Kσ, oσ). In particular, if σ ∈ Aut(G,H) then σH is an automorphism
of Cos(G,H,K, o) if and only if HoσH = HoH. (Note, for h ∈ H, we have
Cos(G,H,K, o) = Cos(G,H, h−1Kh, h−1oh).)

In view of (III), up to isomorphism of graphs, H, K and o may be chosen up to the
conjugacy under Aut(G), Aut(G,H) and Aut(G,H,K), respectively.

Lemma 3.3. Let Γ = Cos(G,H,K, o) and Σ = Cos(G,H,K, o′). Suppose that both
AutΓ and AutΣ have a unique subgroup isomorphic to G. Then Γ ∼= Σ if and only if
HoσH = Ho′H for some σ ∈ Aut(G,H,K).

Proof. The sufficiency of Γ ∼= Σ is immediate from the above (III). Now let λ be an
isomorphism from Cos(G,H,K, o) to Cos(G,H,K, o′). Then AutΣ = λ−1AutΓλ. It
follows that G = λ−1Gλ. Since G is transitive on the arc sets of Γ and Σ, without
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loss of generality, we choose λ with (H,Ho)λ = (H,Ho′). Considering the stabilizers
of H, (H,Ho) and (H,Ho′) in G, we have H = λ−1Hλ and K = λ−1Kλ. Then
σ := conj(λ) ∈ Aut(G,H,K). For Hx ∈ [G : H], since λ fixes the vertex H, we have

(Hx)λ = Hxλ = Hλ−1xλ = H(λ−1xλ) = Hxσ.

Considering the neighborhoods of H in Γ and Σ, we have

{Ho′h | h ∈ H} = {Hoh | h ∈ H}λ = {Hλ−1ohλ | h ∈ H} = {Hoσhσλ | h ∈ H}.

This implies that Ho′H = HoσH, and the lemma follows. □
Using Lemma 3.2, the following lemma is easily shown.

Lemma 3.4. Let Γ = Cos(G,H,K, o), and view G as a subgroup of AutΓ. Then
CAutΓ(G) = {ĝ | g ∈ NG(H,HoH)}, and NAutΓ(G) = G{σH | σ ∈ Aut(G,H,HoH)}.

Example 3.5. Let T = J1, the first Janko group. Computation with GAP [14] shows
that, up to conjugacy, J1 has two subgroup isomorphic to S3, and only one of them say H
has a subgroup K which has order 2 and satisfies the condition that NT (K)\K contains
elements o with o2 ∈ K and 〈H, o〉 = T . Fix such a pair (H,K). Then NT (K) = Z2×A5,
and thus every desired o should be an involution. Further computation shows that there
exist exactly 20 desired involutions, which are conjugate in pairs under NT (H,K) and
produce 10 distinct double cosets HoH. Thus we get ten connected T -symmetric cubic
graphs of order 4 · 5 · 7 · 11 · 19. It is shown in Section 4 that these graphs are not
isomorphic to each other. □

3.3. Bi-coset graphs. Let G be a finite group, and L,R < G with L 6= R, |L| = |R|
and L ∩ R core-free in G. The bi-coset graph BC(G,L,R) is defined with bipartition
([G : L], [G : R]) such that Lx and Ry are adjacent if and only if yx−1 ∈ RL, i.e.,
xy−1 ∈ LR. Then BC(G,L,R) is a well-defined regular graph of valency |L : (L ∩ R)|,
and BC(G,L,R) = BC(G,R,L). View G as a subgroup of AutBC(G,L,R), where G
acts on [G : L] and [G : R] by right multiplications:

(3.4) (Lx)g := Lxg, (Ry)g := Ryg, ∀g, x, y ∈ G.

Then BC(G,L,R) is G-semisymmetric. It is easily shown that BC(G,L,R) is connected
if and only if G = 〈L,R〉. The reader is referred to [13, 25] for more information about
bi-coset graphs.

Each σ ∈ Aut(G) defines an isomorphism from BC(G,L,R) to BC(G,Lσ, Rσ) by

(3.5) Lx 7→ Lσxσ, Ry 7→ Rσyσ, ∀x, y ∈ G.

Thus, up to isomorphism of graphs, the subgroups L and R may be chosen under Aut(G)-
conjugacy and Aut(G,L)-conjugacy, respectively.

Lemma 3.6. Assume that G = 〈L1, R1〉 = 〈L2, R2〉, and Γi = BC(G,Li, Ri) for i = 1, 2.
(1) If {Lσ

1 , R
σ
1} = {L2, R2} for some σ ∈ Aut(G) then Γ1

∼= Γ2.
(2) Suppose that both AutΓ1 and AutΓ2 have a unique subgroup isomorphic to G. If

Γ1
∼= Γ2 then {Lσ

1 , R
σ
1} = {L2, R2} for some σ ∈ Aut(G), and σ is chosen from

Aut(G,L1) for the case where L1 = L2 and either Γ1 is symmetric or L1 and R1

are not conjugate under Aut(G).
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Proof. Part (1) of the lemma is pretty obvious. Suppose that both AutΓ1 and AutΓ2

have a unique subgroup isomorphic to G, and let λ be an isomorphism from Γ1 to Γ2.
Then AutΓ2 = λ−1AutΓ1λ, and G = λ−1Gλ. Since G acts transitively on the edge sets,
we choose λ such that {L1, R1}λ = {L2, R2}. Let σ be the automorphism of G induced
by λ. Considering the vertex-stabilizers of L1, L2, R1 and R2 in G, we deduce that

{L2, R2} = {λ−1L1λ, λ
−1R1λ} = {Lσ

1 , R
σ
1}.

Assume further that L1 = L2, and either Γ1 is symmetric or L1 and R1 are not conjugate
under Aut(G). It is easily shown that λ may be chosen such that (L1, R1)

λ = (L1, R2).
This implies that Lσ

1 = L1 and R2 = Rσ
1 , and so part (2) of the lemma follows. □

Note that Aut(G, {L,R}) induces a subgroup of AutBC(G,L,R), see (3.5). Denote
σ{L,R} the graph automorphism induced by σ ∈ Aut(G, {L,R}). Clearly,

conj(h){L,R} = h, ∀h ∈ L ∩R.

Lemma 3.7. Aut(G, {L,R}) acts faithfully on [G : L] ∪ [G : R].
Proof. Let K be the kernel of Aut(G, {L,R}) acting on [G : L] ∪ [G : R]. Then K ⩽
Aut(G,L,R). Let σ ∈ K and x ∈ G. It is easily shown that both L and R contains a
normal subgroup 〈yxσx−1y−1 | y ∈ G〉 of G, see the proof of Lemma 3.1. Since L ∩R is
core-free in G, we have xσx−1 = 1. Thus xσ = x for all x ∈ G and σ ∈ K. Then K = 1,
and the lemma follows. □
Lemma 3.8. Let Γ = BC(G,L,R) and N = NAutΓ(G). Then N = G{σ{L,R} | σ ∈
Aut(G, {L,R})}.
Proof. Let H be the edge-stabilizer of {L,R} in N . We have H ⩾ {σ{L,R} | σ ∈
Aut(G, {L,R})} ∼= Aut(G, {L,R}) and, since Γ is G-edge-transitive, N = GH. Con-
sidering the conjugation of H on G, we have a homomorphism ρ : H → Aut(G) with
kernel equal to CH(G). Note that Γ has valency |L : (L ∩ R)| > 1. It follows that N
acts faithfully on the edge set of Γ. Then CH(G) is faithful and semiregular on the edge
set of Γ. Thus CH(G) = 1, and ρ is injective. In particular, |H| = |ρ(H)|.

Let t ∈ H. Then either Lt = L and Rt = R, or Lt = R and Rt = L. Now
consider the vertex-stabilizers of L, R, Lt and Rt in G. If Lt = L and Rt = R, then
Lρ(t) = t−1Lt = L and Rρ(t) = t−1Rt = R; if Lt = R and Rt = L then Lρ(t) =
t−1Lt = R and Rρ(t) = t−1Rt = L. For both cases, ρ(t) ∈ Aut(G, {L,R}). Thus
|H| = |ρ(H)| ⩽ |Aut(G, {L,R})| = |{σ{L,R} | σ ∈ Aut(G, {L,R})}|. Recalling that
{σ{L,R} | σ ∈ Aut(G, {L,R})} ⩽ H, it follows that {σ{L,R} | σ ∈ Aut(G, {L,R})} = H.
Then the lemma follows. □

For g1 ∈ NG(L) and g2 ∈ NG(R), define
g̃1 : [G : L] ∪ [G : R] → Lx 7→ Lg−1

1 x,Ry 7→ Ry;
ĝ2 : [G : L] ∪ [G : R] → Lx 7→ Lx,Ry 7→ Rg−1

2 y.

Then
CSym([G:L])×Sym([G:R])(G) = {g̃1ĝ2 | g1 ∈ NG(L), g2 ∈ NG(R)}.

Further, we have the following lemma.

Lemma 3.9. Let Γ = BC(G,L,R). If g1 ∈ NG(L) and g2 ∈ NG(R), then g̃1ĝ2 ∈
CAutΓ(G) if and only if Rg−1

2 g1L = RL, and g̃1ĝ2 = 1 if and only if g1 ∈ L and g2 ∈ R.
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Lemma 3.10. Let Γ = (V,E) be a connected G-semisymmetric graph of valency k > 1.
Then Γ ∼= BC(G,L,R) for some L,R < G with |L| = |R|, k = |L : (L∩R)|, G = 〈L,R〉
and L ∩R core-free in G.
Proof. Clearly, for v ∈ V , the stabilizer Gv acts transitively Γ(v), and so k = |Gv :
(Gv∩Gv′)| for v′ ∈ Γ(v). Let U and W be the G-orbits on V , and fix an edge {u,w} ∈ E
with u ∈ U and w ∈ W . Since Γ is regular, we have |G : Gu| = |U | = |W | = |G : Gw|,
and so |Gu| = |Gw|. Since Γ is connected, G = 〈Gu, Gw〉. Since Γ has valency k > 1, it
is easily shown that G acts faithfully on E. If Gu ∩ Gw contains a normal subgroup N
of G then N fixes E point-wise, and so N = 1. Thus Gu ∩ Gw is core-free in G. Put
L = Gu and R = Gw. Noting that U = {ux | x ∈ G} and W = {wy | y ∈ G}, define

ρ : U ∪W → [G : L] ∪ [G : R], ux 7→ Lx, wy 7→ Ry.

Then ρ is a bijection and, for ux ∈ U and wy ∈ W ,
{ux, wy} ∈ E ⇔ wyx−1 ∈ Γ(u) ⇔ yx−1 ∈ GwGu = RL.

Thus ρ is an isomorphism from Γ to BC(G,L,R), and the lemma follows. □
Example 3.11. Let T = J1. Computation with GAP [14] shows that

(i) T has a unique conjugacy class of subgroups isomorphic to D12, and each sub-
group D12 is self-normalized in T ; and

(ii) fixing a subgroup L ∼= D12, there exist exactly 6 subgroups R ∼= D12 with |L∩R| =
4 and 〈L,R〉 = G, which form two classes under the conjugation of L.

Thus, up to isomorphism of graphs, we get two connected T -semisymmetric cubic graphs,
say Γ1 = BC(T, L,R1) and Γ2 = BC(T, L,R2) with the stabilizers of two adjacent vertices
isomorphic to D12. We next show that Γ1

∼= Γ2.
Since NT (L) = L, there is a unique o ∈ G with R1 = o−1Lo. Set R = oLo−1.

Then 〈L,R〉 = T and |L ∩ R| = 4. Suppose that R = x−1R1x for some x ∈ L. We
have oLo−1 = x−1o−1Lox, yielding o−1 = ox, and so o2 = x−1 ∈ L. Then there exists
a connected T -symmetric cubic graph Cos(T, L, L ∩ Lo, o), which is impossible by [21,
Lemma 6.3]. Therefore, R and R1 are not conjugate under L, and so we may choose
R2 = oLo−1. Noting that {L,R2}conj(o) = {L,R1}, we have Γ1

∼= Γ2 by Lemma 3.6. □

4. The graphs arising from J1

In this section, we assume that Γ = (V,E) is a connected edge-transitive cubic graph
of order 2n with n even and square-free. Assume further that J1 ⩽ AutΓ.
Lemma 4.1. Suppose that Γ is J1-edge-transitive. Then AutΓ = J1, and either

(1) Γ is isomorphic to one of ten non-isomorphic graphs in Example 3.5; or
(2) Γ is semisymmetric and isomorphic to the graph constructed in Example 3.11.

Proof. Let T = J1. We discuss in two cases according whether Γ is bipartite or not.
Case 1. Assume that Γ is not bipartite. Then Γ is T -symmetric, and 2n = |V | =

|T : Tu| for u ∈ V . We have |Tu| = 6, and so Tu
∼= S3 by Lemma 2.1. Then Γ is

isomorphic one of the ten coset graphs Cos(T,H,K, o) given as in Example 3.5. Let
A = AutCos(T,H,K, o). Then T = A(∞) by Theorem 2.10. In particular, NA(T ) =
AutCos(T,H,K, o). Note that every automorphism of T is induced by the conjugation
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of some element in T . Computation with GAP shows that Aut(T,H) ∼= D12, and if
σ ∈ Aut(T,H) such that HoσH = HoH then σ = conj(h) for some h ∈ H. We deduce
from Lemma 3.4 that AutCos(T,H,K, o) = T . Thus every graph in Example 3.5 has
automorphism group T . By Lemma 3.3, these coset graphs are not isomorphic to each
other, and part (1) if the lemma follows.

Case 2. Assume that Γ is bipartite. Then T is intransitive on V ; otherwise, T has a
subgroup of index 2, and so T is not simple, a contradiction. Thus Γ is T -semisymmetric,
and n = |T : Tu| for u ∈ V . We have |Tu| = 12. By Lemma 2.1, we assume that Tu

∼= D12

and Tw
∼= D12 or A4, where w ∈ Γ(u). If Tu 6∼= Tw then computation with GAP shows

that |〈Tu, Tw〉| = 660 6= |T |, which contradicts the fact that Γ is connected. We have
Tu

∼= Tw
∼= D12. By Lemma 3.10, Γ is isomorphic to the bi-coset graph BC(T, L,R1)

given in Example 3.11. By Theorem 2.10, we have T � AutBC(T, L,R1). Computation
with GAP shows that Aut(T, {L,R1}) = {conj(h) | h ∈ L∩R1}. It follows from Lemma
3.8 that AutBC(T, L,R1) = T . Then Γ is semisymmetric, and part (2) of the lemma
follows. □

Theorem 4.2. Let A = AutΓ. Assume that A(∞) = J1. Then Γ is J1-edge-transitive,
and Γ is described as in Lemma 4.1.

Proof. By Lemma 4.1, it suffices to show that Γ is J1-edge-transitive. We next suppose
that Γ is not J1-edge-transitive, and produce a contradiction. By Lemma 2.9, Γ is
bipartite, and T := J1 is transitive on one part of Γ say W and has three orbits on
the other part U . Let {u,w} ∈ E with u ∈ U and w ∈ W . Then n = |T : Tw| and
n = 3|T : Tu|. It follows that |Tw| = 4 and |Tu| = 12.

Let G = 〈Au, Aw〉 and M = rad(G). By Lemma 2.9, |M | = 3 or 6. Clearly, the
quotient graph ΓM is bipartite. Then, by Lemma 2.7, ΓM is T̄ -semisymmetric. In
addition, |T̄ : T̄v̄| = n

|M | is square-free, where v ∈ V . By Lemma 2.1 and inspecting the
subgroups of J1, we conclude that T̄ū and T̄w̄ are isomorphic to D12 or A4. In particular,
n

|M | is even, and so |M | is odd. We have |M | = 3. Recall that T̄w̄
∼= Tw̄ and M ∼= Tw̄/Tw,

see (2.1) and (2.2). This implies that T̄w̄
∼= A4, and so T̄ū

∼= D12 by Lemma 2.1. However,
since |T̄ : T̄v̄| is even and square-free, (2) of Lemma 4.1 is available for the pair (T̄ ,ΓM),
which leads to T̄w̄

∼= T̄ū
∼= D12, a contradiction. This completes the proof. □

5. PSL2(p)-symmetric graphs

In this section, Γ = (V,E) is a connected T -symmetric cubic graph of order 2n, where
T = PSL2(p) for some prime p ⩾ 5, and n is even and square-free. Choose ε, η ∈ {1,−1}
with p + ε and p + η divisible by 3 and 4, respectively. Our discussion is based on the
subgroup structure of PSL2(p) and PGL2(p). The reader is referred to [17, II.8.27] and
[3, Theorem 3] for the subgroups of PSL2(p), and to [4, Theorem 2] for the subgroups
of PGL2(p). For convenience, we list the subgroups of PSL2(p) and PGL2(p) in the
following two lemmas.

Lemma 5.1. Let p ⩾ 5 be a prime. Then the subgroups of PSL2(p) are listed as follows.
(1) One conjugacy class of p(p−η)

2
cyclic subgroups Z2.

(2) One conjugacy class of p(p∓1)
2

cyclic subgroups Zd, where d
∣∣ p±1

2
and d > 2.
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(3) p(p2−1)
24

elementary abelian subgroups Z2
2.

(4) p(p2−1)
4d

dihedral subgroups D2d, where d
∣∣ p±1

2
and d > 2.

(5) One conjugacy class of p+ 1 subgroups Zp:Zd, where d
∣∣ p−1

2
and d ⩾ 1.

(6) p(p2−1)
24

subgroups A4.
(7) Two conjugacy classes of subgroups S4, each consists of p(p2−1)

48
subgroups, where

p ≡ ±1 (mod 8).
(8) Two conjugacy classes of subgroups A5, each consists of p(p2−1)

120
subgroups, where

p ≡ ±1 (mod 10).
Moreover, isomorphic subgroups of PSL2(p) are conjugate in PGL2(p).

Lemma 5.2. Let p ⩾ 5 be a prime. Then the subgroups of PGL2(p) are listed as follows.
(1) The subgroup PSL2(p).
(2) Two conjugacy classes of cyclic subgroup Z2, one class consists of p(p−η)

2
subgroups

which lie in PSL2(p), and the other one consists of p(p+η)
2

subgroups.
(3) One conjugacy class of p(p∓1)

2
cyclic subgroups Zd, where d

∣∣ p± 1 and d > 2.
(4) Two conjugacy classes of subgroups Z2

2, one class consists of p(p2−1)
24

subgroups
which lie in PSL2(p), and the other one consists of p(p2−1)

8
subgroups.

(5) Two conjugacy classes of subgroups D2d, one class consists of p(p2−1)
4d

subgroups
which lie in PSL2(p), and the other one consists of p(p2−1)

4d
subgroups, where d

∣∣ p±1
2

and d > 2.
(6) One conjugacy class of p(p2−1)

2d
subgroups D2d, where d > 2 and p±1

d
is an odd

integer.
(7) One conjugacy class of p+ 1 subgroups Zp:Zd, where d

∣∣ (p− 1) and d ⩾ 1.
(8) One conjugacy class of p(p2−1)

24
subgroups A4.

(9) One conjugacy class of p(p2−1)
24

subgroups S4.
(10) One conjugacy classes of p(p2−1)

60
subgroups A5, where p ≡ ±1 (mod 10).

By Lemma 2.1 and inspecting the subgroups of PSL2(p), we have Tv
∼= Z3, S3, D12 or

S4, where v ∈ V . Then

(5.1) p ≡ 2i+2 ± 1 (mod 2i+3) and |Tv| = 2i · 3 for 0 ⩽ i ⩽ 3.

We deduce from Lemmas 5.1 and 5.2 that T contains at most two conjugacy classes of
subgroups isomorphic to Tv, and these subgroups are all conjugate in PGL2(p). Thus
up to isomorphism of graphs, we fix two subgroups K, H of T , and write

Γ ∼= Cos(T,H,K, o),

where K < H ∼= Tv, |H : K| = 3 and o ∈ NT (K) with o2 ∈ K and 〈o,H〉 = T .
By Theorem 2.10, T �AutΓ. Noting that Aut(T ) = {conj(g) | g ∈ PGL2(p)}, we have

(5.2) AutCos(T,H,K, o) = T{conj(g)H | g ∈ NPGL2(p)(H,HoH)},

by Lemma 3.4. Recall that conj(g)H = gĝ for g ∈ NT (H).
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5.1. |H| = 3. Assume that H ∼= Z3. Then p ≡ ±3 (mod 8) by (5.1), K = 1, and o
is an involution. Let S and O be the sets of involutions x ∈ T with 〈x,H〉 6= T and
〈x,H〉 = T , respectively. Then |S|+ |O| = p(p−η)

2
, see Lemma 5.1 (1).

Lemma 5.3.

|S| =


3p+3ε+|ε+η|

2
if p 6≡ ±1 (mod 10), ε+ η 6= −2,

7p−5
2

if p 6≡ ±1 (mod 10), ε = η = −1,
7p+7ε+|ε+η|

2
if p ≡ ±1 (mod 10), ε+ η 6= −2,

11p−9
2

if p ≡ ±1 (mod 10), ε = η = −1.

Proof. For an arbitrary x ∈ S, inspecting the subgroups of PSL2(p), we deduce that
〈x,H〉 ∼= S3, Z6 (if ε = η), Zp:Z6 (if ε = η = −1), A4, or A5 (if p ≡ ±1 (mod 10)). Let
∆1 = {X < PSL2(p) | H < X ∼= S3}, ∆2 = {X < PSL2(p) | H < X ∼= Z6} when ε = η,
∆3 = {X < PSL2(p) | H < X ∼= Zp:Z6} when ε = η = −1, ∆4 = {X < PSL2(p) | H <
X ∼= A4}, and ∆5 = {X < PSL2(p) | H < X ∼= A5} when p ≡ ±1 (mod 10). Then
x ∈ S if and only if x is an involution contained in one member of ∆i for some i.

By Lemma 5.1, PSL2(p) contains exactly p(p−ε)
2

subgroups Z3, p(p2−1)
12

subgroups S3,
p(p−ε)

2
subgroups Z6, p− ε subgroups Zp:Z6, p(p2−1)

24
subgroups A4, and p(p2−1)

60
subgroups

A5. Note that S3, Z6, Zp:Z6, A4 and A5 contain exactly 1, 1, p, 4 and 10 subgroups Z3,
respectively. Enumerating the pairs (Y,X) with Z3

∼= Y < X ∼= S3, Z6, Zp:Z6, A4 or
A5, we have

p(p− ε)

2
|∆i| =



p(p2−1)
12

, i = 1;
p(p−ε)

2
, i = 2, ε = η;

p(p− ε), i = 3, ε = η = −1;

4p(p2−1)
24

, i = 4;

10p(p2−1)
60

, i = 5.

It follows that |∆1| = p+ε
6

, |∆2| = 1 if ε = η, |∆3| = 2 if ε = η = −1, |∆4| = p+ε
3

, and
|∆5| = p+ε

3
if p ≡ ±1 (mod 10).

Let Si be the set of involutions contained in the members of ∆i, where 1 ⩽ i ⩽ 5.
Then x ∈ S if and only if x ∈ Si for some i. Note that none of S3, A4 and A5 contains
elements of order 6, and A4 has no subgroup isomorphic to S3. It is easily shown that
the following hold: |S1| = p+ε

2
; |S2| = 1 and (S1 ∪ S4 ∪ S5) ∩ S2 = ∅ when ε = η;

(S1 ∪ S4 ∪ S5) ∩ S3 = ∅ when ε = η = −1; |S4| = p + ε and S1 ∩ S4 = ∅. Moreover, for
ε = η = −1, putting ∆2 = {X} and ∆3 = {X1, X2}, it is easily shown that X1∩X2 = X,
this implies that S2 ⊂ S3 and |S3| = 2p− 1.

Assume first that p 6≡ ±1 (mod 10). If ε = η = 1 then S = S1 ∪ S2 ∪ S4, and so
|S| = p+1

2
+ 1 + p + 1 = 3p+3ε+|ε+η|

2
. If ε 6= η, i.e., ε + η = 0 then S = S1 ∪ S4, and

so |S| = p+ε
2

+ p + ε = 3p+3ε+|ε+η|
2

. If ε = η = −1 then S = S1 ∪ S3 ∪ S4, and so
|S| = p−1

2
+ 2p− 1 + p− 1 = 7p−5

2
.

Assume next that p ≡ ±1 (mod 10). In this case, each subgroup of PSL2(p) which is
isomorphic to S3 or A4 is contained in a subgroup isomorphic to A5. It follows that each
member of ∆1 ∪ ∆4 is a subgroup of some member of ∆5. Then one of the following
holds: S = S5 if ε 6= η; S = S2 ∪ S5 if ε = η = 1; S = S3 ∪ S5 if ε = η = −1.
For a given subgroup of order 3 in A5, it is easily checked that A5 contains exactly
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one subgroup which is isomorphic to S3 and contains the subgroup of order 3, and two
subgroups which are isomorphic to A4 and contain the subgroup of order 3. From this
observation, we deduce that each member of ∆5 contributes 15−3−2 ·3 = 6 involutions
to S5 \ (S1 ∪ S4). Thus |S5 \ (S1 ∪ S4)| = 6p+ε

3
= 2(p+ ε). If ε 6= η then ε+ η = 0, and

|S| = |S5| = |S5 \ (S1 ∪ S4)|+ |S1|+ |S4| = 2(p+ ε) + p+ε
2

+ p+ ε = 7p+7ε
2

= 7p+7ε+|ε+η|
2

.
If ε = η = 1 then |S| = |S2| + |S5| = 1 + 7p+7ε

2
= 7p+7ε+|ε+η|

2
. If ε = η = −1 then

|S| = |S3|+ |S5| = 2p− 1 + 7p+7ε
2

= 11p−9
2

. This completes the proof. □
It is easy to see that |S| < p(p−η)

2
. We have |O| = p(p−η)

2
− |S| > 0. Clearly, O is

invariant under the conjugation of NPGL2(p)(H). Noting that NPGL2(p)(H) ∼= D2(p+ε), we
write

NPGL2(p)(H) = 〈a, b〉,
where a has order p+ ε and b is an involution not contained in T . Then

H ⩽ 〈a2〉 < 〈a〉, NT (H) = 〈a2, ab〉.

Lemma 5.4. (1) If o ∈ O then CPGL2(p)(o) ∩ 〈a〉 = 1.
(2) If Ho1H = Ho2H for o1, o2 ∈ O, then o1 and o2 are conjugate under 〈a〉.

Proof. Assume that o ∈ O and y ∈ CPGL2(p)(o) ∩ 〈a〉. Then PSL2(p) = 〈o,H〉 ⩽
CPGL2(p)(y), forcing that y = 1. Thus (1) of the lemma follows.

Assume that Ho1H = Ho2H for some o1, o2 ∈ O. Then o2 = xo1y for some x, y ∈ H.
If xy = 1 then x = y−1, and (2) follows. Suppose that yx 6= 1, and so H = 〈yx〉. Since
o2 is an involution, we have xo1yxo1y = o22 = 1, yielding o1yxo1 = x−1y−1 = (yx)−1.
Then T = 〈o1, H〉 = 〈o1, yx〉 ∼= S3, a contradiction. This completes the proof. □

By (1) of Lemma 5.4, if o ∈ O then either NPGL2(p)(H) ∩ CPGL2(p)(o) = 1 or o ∈
CPGL2(p)(a

ib) for some integer i. For the latter case, o ∈ CT (a
ib) as o ∈ T . Define

O1 = {o ∈ O | ∃ i s.t. o ∈ CT (a
2i+1b)},

O2 = {o ∈ O | ∃ i s.t. o ∈ CT (a
2ib)}.

Clearly, O1 ∩O2 = ∅.

Lemma 5.5.
|O1| =

{
(p+ε)(p+η−2|ε+η|)

4
if p 6≡ ±1 (mod 10),

(p+ε)(p+η−2|ε+η|−8)
4

if p ≡ ±1 (mod 10).

Proof. Let x ∈ CT (a
2i+1b) \ {a2i+1b} be an involution. Then x ∈ O1 if and only if

〈x,H〉 = T , or equivalently, 〈x,H, a2i+1b〉 = T . Note that 〈H, a2i+1b〉 ∼= S3. Suppose that
〈x,H, a2i+1b〉 6= T . Inspecting the subgroups of T , we deduce that either 〈x,H, a2i+1b〉 ⩽
NT (H), or p ≡ ±1 (mod 10) and 〈x,H, a2i+1b〉 ∼= A5. The former case implies that x

lies in the center of NT (H), and then ε = η, x = a
p+ε
2 or a

p+ε
2 a2i+1b. Assume that the

latter case occurs. Enumerating the subgroups A5 which contain a given subgroup S3,
we deduce that 〈H, a2i+1b〉 is contained exactly in two subgroups A5. It follows that
there exist exactly four choices of x with 〈x,H, a2i+1b〉 ∼= A5. Thus

|CT (a
2i+1b) ∩O1| =

{ p+η−2|ε+η|
2

if p 6≡ ±1 (mod 10),
p+η−2|ε+η|−8

2
if p ≡ ±1 (mod 10).
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Assume that o ∈ CT (a
2i+1b) ∩CT (a

2j+1b) ∩ O1. Then o ∈ CT (a
2(i−j)). If a2(i−j) 6= 1

then o ∈ CT (a
2(i−j)) = NT (H), which is impossible as 〈o,H〉 = T . Thus a2(i−j) = 1, and

so a2i+1b = a2j+1b. This says that every o ∈ O1 centralizes exactly one of p+ε
2

involutions
a2i+1b. Then |O1| is desired as in the lemma. □
Lemma 5.6. |O2| = (p+ε)(p−η−6)

4
.

Proof. Let x ∈ CT (a
2ib) be an involution. Then x ∈ O2 if and only if 〈x,H〉 = T ,

or equivalently, 〈x,H, a2ib〉 = PGL2(p). Note that 〈H, a2ib〉 ∼= S3. Suppose that
〈x,H, a2ib〉 6= PGL2(p). Inspecting the subgroups of PGL2(p), either 〈x,H, a2ib〉 ⩽
NPGL2(p)(H), or 〈x,H, a2ib〉 ∼= S4. The former case implies that either ε = η and
x = a

p+ε
2 , or ε 6= η and x = a

p+ε
2 a2ib. For 〈x,H, a2ib〉 ∼= S4, enumerating the sub-

groups S4 which contain a given subgroup S3, we deduce that 〈H, a2ib〉 is contained
exactly in two subgroups S4. Noting that 〈x,H, a2ib〉 ∩ T ∼= A4, it follows that there
exist exactly two choices of x with 〈x,H, a2ib〉 ∼= S4. Since CT (a

2ib) ∼= Dp−η, we have
|CT (a

2ib)∩O2| = p−η−6
2

. Similarly as in the proof of Lemma 5.5, it is easily shown that
every o ∈ O2 centralizes exactly one of p+ε

2
involutions a2ib. Then |O2| is desired as in

the lemma. □
It is easy to check that |O1|+ |O2| = p(p−η)

2
− |S| = |O|, and so O = O1 ∪O2. Clearly,

O1 and O2 are invariant under the conjugation of 〈a〉, and so each of them is the union of
some 〈a〉-conjugacy classes. Selecting a representative o from each 〈a〉-conjugacy class in
O such that NPGL2(p)(H)∩CPGL2(p)(o) = 〈ab〉 or 〈b〉, we have a set O0 of ω0 involutions,
where

ω0 =

{ p−|ε+η|−3
2

if p 6≡ ±1 (mod 10),
p−|ε+η|−7

2
if p ≡ ±1 (mod 10).

Then O0 consists of ω0 − p−η−6
4

involutions from O1, and p−η−6
4

involutions from O2.
Theorem 5.7. Assume that H ∼= Z3. Then Γ is isomorphic to one of ω0 non-isomorphic
symmetric cubic graphs, p−η−6

4
of them have automorphism group T 〈conj(b)H〉 ∼= PGL2(p),

and the others have automorphism group 〈âb〉 × T .
Proof. By the foregoing argument, Γ ∼= Cos(T,H, 1, o) for some o ∈ O0.

Let o ∈ O0. Then AutCos(T,H, 1, o) ⩾ 〈âb〉 × T or T 〈conj(b)H〉 depending on o ∈ O1

or o ∈ O2, respectively. Pick an arbitrary element z ∈ NPGL2(p)(H)\H with Hz−1ozH =
HoH. We have z−1oz = xoy for some x, y ∈ H, and so xoyxoy = 1, yielding oyxo =
(yx)−1. If yx 6= 1 then T = 〈o,H〉 = 〈o, yx〉 ∼= S3, a contradiction. Then yx = 1, i.e,
y = x−1. Thus z−1oz = xoy = xox−1, and so (zx)−1ozx = o. By the choice of O0, we
have 〈zx〉 = NPGL2(p)(H)∩CPGL2(p)(o) = 〈ab〉 or 〈b〉. It follows that NPGL2(p)(H,HoH) =

H〈ab〉 or H〈b〉. Thus, by (5.2), AutCos(T,H, 1, o) = 〈âb〉 × T or T 〈conj(b)H〉.
By Lemma 5.4 and the choice of O0, distinct elements in O0 produce distinct coset

graphs Cos(T,H, 1, o). Then, by Lemma 3.3, we have ω0 non-isomorphic symmetric
cubic graphs Cos(T,H, 1, o). This completes the proof. □
5.2. |H| = 6. Assume that H ∼= S3. Then p ≡ ±7 (mod 16) by (5.1), K ∼= Z2, and
o ∈ NT (K) = CT (K) ∼= Dp+η. Since o2 ∈ K, either o is an involution or o has order 4.
Let

O = {o ∈ CT (K) | o2 ∈ K, 〈o,H〉 = T}.
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Lemma 5.8. O contains two inverse elements of order 4 and |O| − 2 involutions, and

|O| =
{ p+η−2|ε+η|

2
− 2 if p 6≡ ±1 (mod 10),

p+η−2|ε+η|
2

− 6 if p ≡ ±1 (mod 10).

Proof. Let S = {x ∈ CT (K) \K | x2 ∈ K, 〈o,H〉 6= T}. Then |S| + |O| = p+η+4
2

, and
S ∪O consists of two inverse elements of order 4 and p+η

2
involutions in CT (K) \K.

Let x ∈ S. Then 〈x,H〉 ∼= Dm, S4, or A5 (if p ≡ ±1 (mod 10)), where m > 6 is a
divisor of p+ε and divisible by 6. By the choice of x and inspecting the elements of Dm,
S4 and A5, we deduce that x is an involution. By Lemma 5.1, all subgroups S3 of T are
conjugate in PGL2(p). Enumerating the maximal subgroups of T which contain H, we
deduce that H is contained exactly in one subgroup Dp+ε, two subgroups S4, and two
subgroups A5 if p ≡ ±1 (mod 10). Let L be a maximal subgroup of T with 〈x,H〉 ⩽ L.
If L ∼= Dp+ε then |S ∩ L| = |ε + η|. If L ∼= S4 or A5 then |S ∩ L| = 2. We deduce that
|S| = |ε + η| + 8 if p ≡ ±1 (mod 10), or |S| = |ε + η| + 4 otherwise. Then |O| is given
as in this lemma. Clearly, S consists of involutions. Then the lemma follows. □

Note that Ko ⊆ O for o ∈ O. It follows that O is the union of |O|
2

cosets of K.
Lemma 5.9. Let o, o′ ∈ O. Then Ho′H = HoH if and only of Ko = Ko′.
Proof. Clearly, if Ko′ = Ko then Ho′H = HoH. Conversely, suppose that Ho′H = HoH
for distinct o, o′ ∈ O. If o and o′ are of order 4 then K = 〈o2〉 and o′ ∈ {o, o−1}, we have
Ko = Ko′. Thus, without loss of generality, we assume that o is an involution. Write
o = xo′y for some x, y ∈ H. Then xo′yxo′y = o2 = 1, yielding o′yxo′ = (yx)−1.

If yx has order 3, then o′ ∈ NT (〈yx〉) = NT (H), which contradicts that 〈o′, H〉 = T .
Assume that yx = 1. Then 1 6= y 6∈ K, and o = y−1o′y ∈ CT (K) ∩ CT (y

−1Ky). This
implies that o centralizes 〈K, y−1Ky〉 = H. We have 〈o,H〉 6= T , a contradiction. Thus
yx 6= 1. It follows that yx is an involution, and so o′ ∈ CT (yx). In addition, yx ∈ K
since, otherwise, o′ centralizes 〈K, yx〉 = H, which will give a contradiction.

Now we have K = 〈yx〉. Then o = xo′y = y−1(yx)o′y ∈ CT (K) ∩ CT (y
−1Ky), and

so o centralizes 〈K, y−1Ky〉. If y 6∈ K then 〈K, y−1Ky〉 = H, and so o centralizes
T = 〈o,H〉, a contradiction. Then y ∈ K, and x ∈ K. Thus o = xo′y = yxo′ ∈ Ko′,
yielding Ko = Ko′. This completes the proof. □

Note that NPGL2(p)(H) ∼= D12, which has center of order 2. Let c be the involution in
the center of NPGL2(p)(H). Clearly, o ∈ CPGL2(p)(K). Then NPGL2(p)(H,K) = 〈c〉 ×K,
and c ∈ T if and only if ε = η. Consider the conjugation of 〈c〉 on Ω := {Ko | o ∈ O}.

Lemma 5.10. The action of 〈c〉 on Ω produces 2+|ε+η|
2

orbits of size 1, and |O|−|ε+η|−2
4

orbits of size 2.
Proof. Pick an element o0 ∈ O of order 4. Then co0c = o−1

0 , c fixes Ko0, and 〈o0, c〉 ∼= D8.
It is easily shown that 〈o0, c〉∩O = {o0, o−1

0 , o0c, o
−1
0 c} or {o0, o−1

0 } depending on whether
ε = η or not. Note that Ko0 = Ko−1

0 and Ko0c = Ko−1
0 c. It follows 〈o0, c〉 contributes

2+|ε+η|
2

fixed-points of 〈c〉 on Ω.
Now assume that Ko is fixed by 〈c〉, where o ∈ O. Then Kcoc = Ko = Ko−1,

yielding coco ∈ K, and so co has order 2 or 4. Recall that c, o ∈ CPGL2(p)(K) \K and
CPGL2(p)(K) ∼= D2(p+η). If co has order 4 then co ∈ {o0, o−1

0 }, and so o ∈ 〈c, o0〉. Assume
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that co is an involution. Then either co or o = cco is contained in the cyclic subgroup of
CPGL2(p)(K) of index 2. This implies that either co or o lies in 〈o0〉, and hence o ∈ 〈c, o0〉.
Therefore, 〈c〉 has exactly 2+|ε+η|

2
fixed-points on Ω. Since 〈c〉 ∼= Z2, every 〈c〉-orbit on

Ω has length 1 or 2. Then the lemma follows. □
Choosing a coset Ko from each 〈c〉-orbit on Ω and a representative from Ko, we have

a set O1 of size
ω1 =

{
p+η
8

if p 6≡ ±1 (mod 10),
p+η
8

− 1 if p ≡ ±1 (mod 10).

By the foregoing argument, the following statements hold:
(i) Γ ∼= Cos(T,H,K, o) for some o ∈ O1, and HoH 6= Ho′H for distinct o, o′ ∈ O1;
(ii) O1 contains a unique element of order 4, say o0, and NPGL2(p)(H,Ho0H) ⩾

〈c〉 ×K = NPGL2(p)(H,K);
(iii) if o ∈ O1 is an involution then NPGL2(p)(H,K,HoH) = K, except that ε = η,

Ko = Ko0c, and NPGL2(p)(H,Ho0H) ⩾ 〈c〉 ×K = NPGL2(p)(H,K).

Lemma 5.11. Let o ∈ O1. Then NPGL2(p)(H,HoH) = K, except that
(1) o = o0, in this case, NPGL2(p)(H,HoH) = K × 〈c〉; and
(2) η = ε and Ko = Ko0c, in this case, NPGL2(p)(H,HoH) = K × 〈c〉.

Proof. Let g be an arbitrary element in NPGL2(p)(H,HoH)\H. Noting that Hg−1ogH =
HoH, by Lemma 5.9, Ko = Kg−1og. Then 〈Kg−1og〉 = 〈Ko〉 = 〈o〉 ×K. This implies
that g−1og ∈ CT (K), and so o ∈ CT (gKg−1). Then o centralizes 〈K, gKg−1〉. Since
〈o,H〉 = T and 〈K, gKg−1〉 ⩽ H, we have K = gKg−1, i.e., g ∈ NPGL2(p)(K). Thus
g ∈ NPGL2(p)(H,K,HoH). Then the lemma follows from (ii) and (iii) listed as above. □
Theorem 5.12. Assume that H ∼= S3. Then Γ is isomorphic to one of ω1 non-isomorphic
symmetric cubic graphs, and AutΓ = PSL2(p) except that

(1) Γ ∼= Cos(T,H,K, o0), and AutΓ = Z2 × PSL2(p) or PGL2(p) depending on
whether η = ε or not; and

(2) η = ε, Γ ∼= Cos(T,H,K, o0c), and AutΓ = Z2 × PSL2(p).
Proof. Recall that Γ ∼= Cos(T,H,K, o) for some o ∈ O1. By (5.2) and Lemma 5.11,
we deduce that AutΓ is described as in this lemma. Then it suffices to show that if
Cos(T,H,K, o) ∼= Cos(T,H,K, o′) for o, o′ ∈ O1 then o = o′.

Suppose that Cos(T,H,K, o) ∼= Cos(T,H,K, o′) for some o, o′ ∈ O1. By Lemma 5.11,
we deduce from (5.2) that A := AutCos(T,H,K, o) = AutCos(T,H,K, o′). It follows
from Lemma 3.3 that Hg−1ogH = Ho′H for some g ∈ NPGL2(p)(H). By Lemma 5.9,
Kg−1og = Ko′, which forces that g−1og centralizes K. Then o centralizes 〈K, gKg−1〉.
Noting that 〈K, gKg−1〉 ⩽ H and 〈o,H〉 = T , we have K = gKg−1, and so g ∈
NPGL2(p)(H,K). By the choice of O1, we have o = o′, and the result follows. □
5.3. |H| = 12. Assume that H ∼= D12. Then p ≡ ±15 (mod 32) by (5.1), and ε = η.
This implies that p ≡ ±47 (mod 96). Since K ∼= Z2

2, by [17, II.8.16], NT (K) ∼= S4, and
thus o is either an involution or of order 4. Clearly, o lies in some Sylow 2-subgroup of
NT (K).

Theorem 5.13. Assume that H ∼= D12. Then Γ is isomorphic to a unique symmetric
cubic graph, which has automorphism group PSL2(p).
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Proof. By the choice of η, we know that p+ η is divisible by 4, and so p− η is indivisible
by 4. Noting that (p + η)(p − η) = p2 − 1 ≡ 0 (mod 32), we have p ≡ −η (mod 16).
Thus p+ ε = p+ η is divisible by 16. We have NT (H) ∼= D24 and NT (H,K) ∼= D8. Let
P := NT (H,K), P0 and P1 be the three Sylow 2-subgroups of NT (K). It is easily shown
that there exists an involution x ∈ P \ K such that xP0x = P1. Pick an involution
o0 ∈ P0 \ K. Suppose that 〈o0, H〉 6= T . Inspecting the subgroups of PSL2(p), we
deduce that 〈o0, H〉 ⩽ NT (H). Then o0 ∈ NT (H,K) = P , and so P0 = 〈o0, K〉 ⩽ P ,
a contradiction. Thus 〈o0, H〉 = T . Recalling that o ∈ P ∪ P0 ∪ P1, since 〈o,H〉 = T ,
we have o ∈ P0 ∪ P1. Then HoH = Ho0H or Hxo0xH. Since x ∈ NT (H), we have
Cos(T,H,K, o0) ∼= Cos(T,H,K, xo0x), and so Γ ∼= Σ := Cos(T,H,K, o0).

Choose a maximal subgroup L of PGL2(p) with NPGL2(p)(H) ⩽ L. Then L ∼=
D2(p+ε), and NPGL2(p)(H) = NL(H) ∼= D24. Recalling that NT (H) ∼= D24, we have
NPGL2(p)(H) = NT (H). Then NPGL2(p)(H) = HP = H〈x〉. By (5.2), we deduce that
AutΣ = T 〈conj(x)〉 or T depending on whether Hxo0xH = Ho0H or not.

Suppose that AutΣ = T 〈conj(x)〉. Then AutΣ = T×〈x̂〉, where x̂ is defined as in (3.3).
Let M = 〈x̂〉, and consider the quotient graph ΣM . Let T̄ be the subgroup of AutΣM

induced by T . Then ΣM is a T̄ -symmetric cubic graph of square-free order n. Let v̄ be
the M -orbit on [T : H] containing v := H. We have n = |T̄ : T̄v̄|. Since T̄ ∼= PSL2(p)
has order divisible by 16, it follows that |T̄v̄| is divisible by 8. By Lemma 2.1, T̄v̄

∼= S4,
and so Tv̄

∼= S4 by (2.1). By (2.2), Tv has index 2 in Tv̄, forcing Tv
∼= A4, which is

impossible as Σ is T -symmetric. Therefore, AutΣ = T , and our result follows. □

5.4. |H| = 24. Assume that H ∼= S4. Then p ≡ ±31 (mod 64) by (5.1). In this case, H is
maximal in T , K ∼= D8 and NG(K) ∼= D16. Fix an involution o0 ∈ NG(K)\K. We have
〈H, o0〉 = T , and HNG(K)H = H ∪ Ho0H. Then Γ ∼= Cos(T,H,K, o0). Checking the
subgroups of PGL2(p), we deduce that NPGL2(p)(H) = H, and so NPGL2(p)(H,Ho0H) =
NT (H,Ho0H) = H. Then we have the following result.

Theorem 5.14. Assume that H ∼= S4. Then Γ is isomorphic to a unique symmetric
cubic graph, which has automorphism group PSL2(p).

6. PSL2(p)-semisymmetric graphs

In this section, Γ = (V,E) is a connected T -semisymmetric cubic graph of order 2n,
where T = PSL2(p) for some prime p ⩾ 5, and n is even and square-free. Choose
ε, η ∈ {1,−1} with p+ ε and p+ η divisible by 3 and 4, respectively.

Let {u,w} ∈ E. By Lemma 2.1 and inspecting the subgroups of PSL2(p), we may
assume that (Tu, Tw) ∼= (S3, S3), (D12,D12), (S4, S4), (S3,Z6), (D12,A4) or (S4,D24). By
Lemma 3.10, Γ ∼= BC(T, L,R), where L ∼= Tu and R ∼= Tw. Note that |T : L| = n is even
and square-free. We have
(6.1) p ≡ 2i+1 ± 1 (mod 2i+2) and |L| = 2i · 3 for 1 ⩽ i ⩽ 3.

In addition, η = ε if L or R has a subgroup isomorphic to Z6.
It follows from Lemma 5.2 that T contains at most two conjugacy classes of subgroup

isomorphic to L, and these subgroups are conjugate in PGL2(p). Then, up to isomor-
phism of graphs, we may fix a subgroup L. Note that L ∩ R is a Sylow 2-subgroup of
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L, and BC(T, L,R) ∼= BC(T, L, h−1Rh) for h ∈ L. Thus, fixing a Sylow 2-subgroup P of
L, one of our main tasks is to determine those subgroups R with |R| = |L|, L ∩ R = P
and 〈L,R〉 = T . Put

R = {R < T | |R| = |L|, L ∩R = P}.

Lemma 6.1. Let L ∼= R < T . Then R ∈ R if and only if R = z−1Lz for some
z ∈ NPGL2(p)(P ) \NPGL2(p)(L, P ).

Proof. The sufficiency is trivial. Now assume that L ∼= R ∈ R. By Lemma 5.2, L
and R are conjugate in PGL2(p). Then R = x−1Lx for some x ∈ PGL2(p). We have
P, xPx−1 ⩽ L, and so xPx−1 = y−1Py for some y ∈ L. Then yx ∈ NPGL2(p)(P ), and so
x = y−1z for some z ∈ NPGL2(p)(P ). Thus R = x−1Lx = z−1Lz. Since L ∩ R = P 6= L,
we know that L is not normalized by z, and so z ∈ NPGL2(p)(P ) \NPGL2(p)(L, P ). Then
the lemma follows. □

6.1. |L| = 6. Assume that L ∼= S3. Then p ≡ ±3 (mod 8) by (6.1), NPGL2(p)(L)
∼= D12,

P ∼= Z2 and NPGL2(p)(P ) = CPGL2(p)(P ) ∼= D2(p+η). Clearly, the center of NPGL2(p)(L)
has order 2 and is contained in CPGL2(p)(P ). Write

CPGL2(p)(P ) = 〈a, c〉,
where a has order p+ η and c generates the center of NPGL2(p)(L). Then

P = 〈a
p+η
2 〉, NPGL2(p)(L, P ) = 〈c, a

p+η
2 〉 ∼= Z2

2.

In addition, c ∈ T if and only if ε = η.

Lemma 6.2. If ε 6= η then R = {a−iLai | 1 ⩽ i < p+η
2
}, if ε = η then R = {〈a p+η

6 〉} ∪
{a−iLai | 1 ⩽ i < p+η

2
}.

Proof. Recalling that P = 〈a p+η
2 〉, we have P < a−iLai for an arbitrary integer i. If

i ≡ j (mod p+η
2
) then it is easily shown that a−iLai = a−jLaj. Conversely, suppose that

a−iLai = a−jLaj for some integers i and j. Then ai−j ∈ NPGL2(p)(L) ∩NPGL2(p)(P ) =
NPGL2(p)(L, P ) = 〈c, P 〉. This implies that ai−j ∈ P , and so i ≡ j (mod p+η

2
). By Lemma

6.1, all members S3 of R are contained in {a−iLai | 1 ⩽ i < p+η
2
}.

Assume that R ∈ R and R 6∼= S3. Then R ∼= Z6, and so R < CPGL2(p)(P ) = 〈a, c〉 ∼=
D2(p+η). In particular, p + η is divisible by 3, and so ε = η. Note that D2(p+η) has a
unique subgroup Z6, which is generated by a

p+η
6 . Then the lemma follows. □

Lemma 6.3. Let Ri = a−iLai for 1 ⩽ i < p+η
2

, and R0 = 〈a p+η
6 〉 if further ε = η. Then

(1) NPGL2(p)({L,R0}) = NPGL2(p)(L,R0) = 〈a p+η
2 , c〉 < T , in this case, ε = η;

(2) NPGL2(p)(L,Ri) = P and NPGL2(p)({L,Ri}) = 〈a p+η
2 , aic〉, where i 6= p+η

4
and

1 ⩽ i < p+η
2

.
(3) NPGL2(p)({L,R p+η

4
}) = 〈a p+η

4 , c〉, and NPGL2(p)(L,R p+η
4
) = 〈a p+η

2 , c〉.

Proof. Clearly, |NPGL2(p)({L,R}) : NPGL2(p)(L,R)| ⩽ 2, and if the equality holds then
R ∼= S3. In particular, since L 6∼= R0, we have NPGL2(p)({L,R0}) = NPGL2(p)(L,R0).
Recall that NPGL2(p)(L) = L×〈c〉. If ε = η then c ∈ T and, noting that NPGL2(p)(R0) =

CPGL2(p)(P ), we have NPGL2(p)({L,R0}) = NPGL2(p)(L,R0) = 〈a p+η
2 , c〉, desired as in (1).
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Now let R = Ri, where 1 ⩽ i < p+η
2

. Note that P ⩽ NPGL2(p)(L,R) ⩽ NPGL2(p)(L, P ) =

〈a p+η
2 , c〉 ∼= Z2

2. If R = R p+η
4

then cRc = ca−
p+η
4 La

p+η
4 c = a

p+η
4 La−

p+η
4 = a−

p+η
4 La

p+η
4 =

R, and so NPGL2(p)(L,R) = 〈a p+η
2 , c〉. Suppose that NPGL2(p)(L,R) = 〈a p+η

2 , c〉. Then
a−iLai = R = cRc = ca−iLaic = aiLa−i, and so a−2iLa2i = L. This implies that
2i ≡ 0 (mod p+η

2
), yielding i = p+η

4
. Thus NPGL2(p)(L,R) = 〈a p+η

2 , c〉 if and only if
R = R p+η

4
. Noting that NPGL2(p)({L,R}) = NPGL2(p)(L,R)〈aic〉, we obtain (2) or (3).

Then the lemma follows. □
Lemma 6.4. Let R ∈ R. Then either 〈L,R〉 = T , or p ≡ ±1 (mod 10) and 〈L,R〉 ∼= A5.
For the latter case, R = a−iLai or a−( p+η

2
−i)La

p+η
2

−i for a unique i with 1 < i < p+η
2

,
i 6= p+η

4
and aic ∈ T ; in particular, i is odd or even depending on whether ε = η or not.

Proof. Assume that 〈L,R〉 6= T . Inspecting the subgroups of PSL2(p), we deduce that
either 〈L,R〉 is isomorphic to a subgroup of Dp+ε, or p ≡ ±1 (mod 10) and 〈L,R〉 ∼= A5.
For the former case, noting that Dp+ε has a unique subgroup of order 3, we have |L∩R| ⩾
3, a contradiction. Then the latter case occurs; in particular, L and R are conjugate in
T . It is easily shown that for each subgroup of A5 that isomorphic to S3, there exists
a unique subgroup isomorphic to S3 such that their intersection is a subgroup of order
2. Then R is uniquely determined by L in 〈L,R〉. Enumerating the subgroups A5 of T
which contain L, it follows that L is contained exactly in two subgroups A5. Then R
has exactly two choices.

Fix an R ∈ R with 〈L,R〉 ∼= A5. Then cRc ∈ R and 〈L, cRc〉 ∼= A5. Write R = a−iLai,
where 1 ⩽ i < p+η

2
. Then cRc = a−( p+η

2
−i)La

p+η
2

−i. By (2) and (3) of Lemma 6.3,
the involution aic normalizes 〈L,R〉. Noting that PGL2(p) has no proper subgroup
isomorphic to S5 or Z2 × A5, it follows that aic ∈ 〈L,R〉 < T . Suppose that i = p+η

4
.

Noting that a
p+η
4 6∈ T , we have c 6∈ T . By (3) of Lemma 6.3, c normalizes 〈L,R〉. Then

〈L,R, c〉 ∼= S5 or Z2×A5, which is impossible. Thus i 6= p+η
4

, and the lemma follows. □
Define

ν1 =

{ p+η+2|ε+η|
4

if p 6≡ ±1 (mod 10),
p+η+2|ε+η|

4
− 1 if p ≡ ±1 (mod 10).

Theorem 6.5. Assume that L ∼= S3. Then Γ is isomorphic to one of ν1 non-isomorphic
connected edge-transitive cubic bipartite graphs described as follows:

(1) |ε+η|
2

semisymmetric graphs with automorphism group isomorphic to Z2 × T ;
(2) a unique symmetric graph with automorphism graph isomorphic to Z2×PGL2(p);
(3) ν1 − 1 − |ε+η|

2
non-isomorphic symmetric graphs, p+η−4

8
of these graphs have

automorphism group isomorphic to PGL2(p), and the others have automorphism
group isomorphic to Z2 × T .

Proof. Let R0, R1, . . . , R p+η
2

−1 be defined as in Lemma 6.3. Put I = {0, 1, 2 . . . , p+η
2
−1},

and choose an i0 ∈ I with 〈L,Ri0〉 ∼= A5. For each i ∈ I, by Lemma 6.4, 〈L,Ri〉 = T

if and only if i ∈ I0 := I \ {i0, p+η
2

− i0}. Then |I0| = 2ν1 − 1 − |ε+η|
2

, and we get |I0|
distinct connected T -semisymmetric cubic graphs Γi := BC(T, L,Ri), where i runs over
I0. Moreover, Γ ∼= Γi for some i ∈ I0.

By Theorem 2.10, since Γi is T -semisymmetric, T is the unique insolvable minimal
normal subgroup of AutΓi. In particular, by Lemma 3.8, AutΓi = T{conj(g){L,R} | g ∈
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NPGL2(p)({L,Ri})}. Let ci = aic. It follows from Lemmas 3.9 and 6.3 that

AutΓi =


T × 〈ĉc̃〉 ∼= T × Z2 if ε = η, i = 0;
T 〈conj(c){L,Ri}〉 × 〈ĉic̃i〉 ∼= PGL2(p)× Z2 if ε 6= η, i = p+η

4
;

T 〈conj(ci){L,Ri}〉 × 〈ĉc̃〉 ∼= PGL2(p)× Z2 if ε = η, i = p+η
4
;

T × 〈ĉic̃i〉 ∼= T × Z2 if i 6= p+η
4
, i+ ε+η

2
is odd;

T 〈conj(ci){L,Ri}〉 ∼= PGL2(p) if i 6= p+η
4
, i+ ε+η

2
is even.

Clearly, Γ0 6∼= Γ p+η
4

, and if i ∈ I1 := I0 \ {0, p+η
4
} then Γi 6∼= Γ0 or Γ p+η

4
. Thus, it remains

to consider the isomorphisms among 2ν1 − 2− |ε+ η| graphs Γi, where i ∈ I1.
Let I2 = {i ∈ I1 | AutΓi

∼= PGL2(p)} and I3 = I1 \ I2. Then Γi 6∼= Γj for all i ∈ I2
and j ∈ I3. It is easily shown that |I2| = p+η

4
− 1. Let i, j ∈ I2 or I3 with i 6= j. Recall

that NPGL2(p)(L, P ) = 〈c, a p+η
2 〉. It follows from Lemma 3.6 that Γi

∼= Γj if and only if
cRic = Rj, i.e., ca−iLaic = a−jLaj. Noting that ca−iLaic = aiLa−i, it is easily shown
that ca−iLaic = a−jLaj if and only if j ≡ p + η − i (mod p+η

2
), see the proof of Lemma

6.2. Since 1 ⩽ i, j < p+η
2

, if j ≡ p + η − i (mod p+η
2
) then i + j = p+η

2
. Thus Γi

∼= Γj if
and only if i+j = p+η

2
. On the other hand, it is easy to check that I2 = {p+η

2
− i | i ∈ I2}

and I3 = {p+η
2

− i | i ∈ I3}. Then we have |I2|
2

or |I3|
2

non-isomorphic graphs Γi when i
runs over I2 or I3, respectively. This completes the proof. □
6.2. |L| = 12. Assume that L ∼= D12. Then p ≡ ±7 (mod 16) and ε = η, see (6.1). In
addition, R ∼= D12 or A4, and P ∼= Z2

2. It is easily shown that NPGL2(p)(P ) = NT (P ) ∼=
S4, NPGL2(p)(L) = NT (L) ∼= D24, and NPGL2(p)(L,R) ⩽ NT (L, P ) ∼= D8. Write NT (P ) =
P :〈a, b〉, where a has order 3 and b is an involution such that NT (L, P ) = P : 〈b〉.
Lemma 6.6. Assume that L ∼= D12. Then R = {P :〈a〉, a−1La, aLa−1}.
Proof. Let R ∈ R. If R ∼= A4 then R ⩽ NPGL2(p)(P ) = P :〈a, b〉, yielding R = P :〈a〉.
Suppose that R ∼= D12. Then R = x−1Lx for some x ∈ PGL2(p). We have P, xPx−1 ⩽
L, and so xPx−1 = y−1Py for some y ∈ L. Then yx ∈ NPGL2(p)(P ) = P :〈a, b〉. It follows
that R = x−1Lx = z−1Lz for some z ∈ 〈a, b〉. Noting that bLb = L, we have R = P :〈a〉,
a−1La or aLa−1. Clearly, P :〈a〉 6= a−1La or aLa−1. If a−1La = aLa−1 then a ∈ NT (L),
yielding A4

∼= P :〈a〉 ⩽ NT (L) ∼= D24, a contradiction. Then the lemma follows. □
Theorem 6.7. Assume that L ∼= D12. Then Γ is isomorphic to one of two edge-
transitive cubic graphs with automorphism group isomorphic to T × Z2, one of them is
semisymmetric and the other one is symmetric.
Proof. Inspecting the subgroups of T , we deduce that 〈L,R〉 = T for all R ∈ R. Up to
isomorphism of graphs, write Γ = BC(T, L,R) for some R ∈ R. By Theorem 2.10 and
Lemma 3.8, we have AutΓ = T{conj(g){L,R} | g ∈ NPGL2(p)({L,R})}.

Assume that R = P :〈a〉. Then L 6∼= R, and so NPGL2(p)({L,R}) = NPGL2(p)(L,R).
We have P :〈b〉 ⩽ NPGL2(p)({L,R}) = NPGL2(p)(L,R) ⩽ NT (L, P ) = P :〈b〉, yielding
NPGL2(p)(L,R) = P :〈b〉 < T . Then AutΓ = T × 〈b̂b̃〉, and Γ is semisymmetric.

Assume that R 6= P :〈a〉. Noting that ba−1Lab = aLa−1, we have BC(T, L, a−1La) ∼=
BC(T, L, aLa−1). Thus, we may choose R = a−1La. Note that P ⩽ NPGL2(p)({L,R}) ⩽
NPGL2(p)(P ) = NT (P ) = P :〈a, b〉. Calculation shows that NPGL2(p)(L,R) = P and
NPGL2(p)({L,R}) = P × 〈ba〉. We get AutΓ = T 〈conj(ba){L,R}〉 = T × 〈baconj(ba){L,R}〉.



CUBIC GRAPHS 25

Noting that conj(ba){L,R} interchanges two parts of Γ, it follows that Γ is symmetric.
Then the result follows. □

6.3. |L| = 24. Assume that L ∼= S4. Then p ≡ ±15 (mod 32) by (6.1). In addition,
NPGL2(p)(L) = L, P ∼= D8, and NPGL2(p)(P ) = NT (P ) ∼= D16. For each R ∈ R we have
R ∼= S4 or D24, and it is easily shown that T = 〈L,R〉. Note, if R ∼= D24 then ε = η.
Write NT (P ) = P :〈b〉, where b is an involution in T .

Let R ∈ R. Since L is self-normalized in PGL2(p), we have R1 := bLb 6= L. If
R ∼= S4 then R = R1 by Lemma 6.1. Assume that R ∼= D24. Then ε = η, and
NPGL2(p)(R) = NT (R) ∼= D48. We deduce from Lemma 5.2 that T has two classes of
subgroups D8 and two classes subgroups D24. Note that all subgroups D8 in D24 are
conjugate. It follows that, for the given pair (L, P ), there exists a unique subgroup
R0 < T with R0

∼= D24 and R0 ∩ L = P . Thus R = {R0, R1}.
Note that NPGL2(p)(L) = L and |NPGL2(p)({L,Ri}) : NPGL2(p)(L,Ri)| ⩽ 2. We have

NPGL2(p)({L,R0}) = NPGL2(p)(L,R0) = P , and NPGL2(p)({L,R1}) = P :〈b〉. Then, by
Theorem 2.10 and Lemma 3.8, we have the following result.

Theorem 6.8. Assume that L ∼= S4. Then Γ is isomorphic to one of two edge-transitive
cubic graphs, one of them is semisymmetric with automorphism group PSL2(p), and the
other one is symmetric with automorphism group PSL2(p)× Z2.

7. Proof of Theorem 1.1

Let Γ = (V,E) be a connected edge-transitive cubic graph of order 2n with n even and
square-free, and let A = AutΓ. If A is solvable then Γ ∼= K4 by Theorem 2.5. Assume
that A is insolvable, and let T = A(∞). By Theorem 2.10, either T is one of J1 and
PSL2(p), or Γ is described as in Lines 1, 2 of Table 1 and Line 1 of Table 2. If T = J1
then Line 3 of Table 1 and Line 2 of Table 2 follow from Theorem 4.2. If T = PSL2(p)
and Γ is T -edge-transitive then we get Lines 4-10 of Table 1 by Theorems 5.7, 5.12-5.14,
and Lines 3-10 of Table 2 by Theorems 6.5, 6.7 and 6.8.

In the following, we assume that T = PSL2(p), and Γ is not T -edge-transitive. Fix
an edge {u,w} ∈ E, and let A∗ = 〈Au, Aw〉. By Lemma 2.9, |rad(A∗)| ∈ {3, 6}, Γ is
rad(A∗)T -edge-transitive, and one of the following holds:

(i) T is transitive on one part say W of Γ and has three orbits on the other part U ;
(ii) T is regular on V , and p ≡ ±3 (mod 8).

Let M = 〈z〉 be the unique Sylow 3-subgroup of rad(A∗), and put G = MT . For each
g ∈ PGL2(p), extend conj(g) to an automorphism of G by setting yconj(g) = y for y ∈ M .
Let Aut(M) = 〈τ〉, and extend τ to an automorphism of G by setting xτ = x for x ∈ T .
Then

Aut(G) = 〈τ〉 × {conj(g) | g ∈ PGL2(p)}.
Clearly, G acts transitively on each A∗-orbit. This implies that Γ is G-edge-transitive.

Let T̄ be the subgroup of AutΓM induced by T . For v ∈ V , let v̄ be the M -orbit
containing v. Then Tv̄

∼= Gv
∼= T̄v̄, see (2.1). We next discuss in two cases.

Case 1. Assume that (i) occurs, u ∈ U and w ∈ W . Then n = 3|T : Tu| = |T : Tw|,
and so |Tu| = 3|Tw|. Recall that T̄w̄

∼= Tw̄, Tw � Tw̄ and M ∼= Tw̄/Tw, see (2.2). Since
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M ∼= Z3, it follows from Lemma 2.1 that either Gw
∼= T̄w̄

∼= Z6 and Gu
∼= T̄ū

∼= S3, or
Gw

∼= T̄w̄
∼= A4 and Gu

∼= T̄ū
∼= D12, and so Tw

∼= Z2 or Z2
2, respectively. In particular,

Gw ∩ T = Gu ∩Gw = Tw. Since |Tu| = 3|Tw|, we have |Tu| = |Tū|. Then Tu = Tū
∼= Gu,

yielding Gu = Tū < T . It is easy to see that those subgroups of T isomorphic to T̄ū are
all conjugate under Aut(G). Up to isomorphism of graphs, we fix a subgroup L < T
and Sylow 2-subgroup P of L, and write Γ ∼= BC(G,L,R), where L ∼= T̄ū, R ∼= T̄w̄,
R ∩ T = P , and 〈L,R〉 = G.

Noting that P is the unique Sylow 2-subgroup of R, we write R = P :〈yx〉, where
y ∈ M and x ∈ T with 〈yx〉 ∼= Z3. Since 〈L,R〉 = G, we deduce that M = 〈y〉, and so
R = P :〈zx〉 or P :〈z−1x〉. Clearly, τ ∈ Aut(G,L, P ), and (P :〈zx〉)τ = P :〈z−1x〉. Thus,
up to isomorphism of graphs, we further choose R = P :〈zx〉, and then Γ is determined
completely by R0 := P :〈x〉.

Again by 〈L,R〉 = G, we have that 〈L, x〉 = T and x has order 3. Then Γ0 :=
BC(T, L,R0) is a connected T -semisymmetric cubic graph, and R0

∼= R ∼= Gw. Con-
versely, if Γ0 is connected then it is easily shown that BC(G,L,R) is also connected.

Let A = AutBC(G,L,R). Then T, G� A by Theorem 2.10. Noting that the normal
subgroup T is transitive on one part of BC(G,L,R) but not transitive on the other one,
it follows that BC(G,L,R) is semisymmetric. Further, by Lemma 3.8, we deduce that
A = G{σ{L,R} | σ ∈ Aut(G,L,R)}. Clearly, Aut(G,L,R) ⩽ 〈τ〉 × Aut(T, L,R0).

Suppose that L ∼= S3 and R ∼= Z6. By Lemma 6.2, ε = η, and R0 is uniquely de-
termined by L. By Lemma 6.3, we have Aut(G,L,R0) = {conj(g) | g ∈ P × 〈c〉},
where c generates the center of NT (L) and 〈R0, c〉 ∼= D12. Calculation shows that
Aut(G,L,R) = {conj(g), τconj(cg) | g ∈ P}. Noting that τconj(c) inverses z and cen-
tralizes T , we have A = G{σ{L,R} | σ ∈ Aut(G,L,R)} ∼= S3×T , and then Γ is described
as in Line 11 of Table 2.

Suppose that L ∼= D12 and R ∼= A4. Using Lemma 6.6 and Theorem 6.7, by a similar
argument as above, we deduce that R0 is uniquely determined by L, and A ∼= S3 × T .
Then Γ is described as in Line 12 of Table 2.

Case 2. Assume that (ii) occurs. Then Gv
∼= Z3, and Γ ∼= Cos(G,H, 1, o), where

o is an involution, H ∼= Z3 and 〈H, o〉 = G. Clearly, o ∈ T . Write H = 〈yx〉, where
y ∈ M and x ∈ T . Since 〈yx, o〉 = 〈H, o〉 = G, we deduce that M = 〈y〉, and 〈x, o〉 = T .
In particular, Cos(T, 〈x〉, 1, o) is a connect T -symmetric cubic graph. Conversely, for a
connect T -symmetric cubic graph Cos(T, 〈x〉, 1, o′), since G = M × T = 〈y〉 × T , it is
easily shown that 〈yx, o′〉 has a homomorphic image 〈x, o′〉 = T . Then |G : 〈yx, o′〉| is
a divisor of |G : T | = |M | = 3, and hence either G = 〈yx, o′〉 or |G : 〈yx, o′〉| = 3. The
latter case implies that 〈yx, o′〉 ∼= T is simple, since 〈yx, o′〉 6⩽ T and T is normal in G,
we have 〈yx, o′〉 ∩ T = 1, and hence 3|T | = |G| ⩾ |T 〈yx, o′〉| = |T |2, yielding |T | ⩽ 3, a
contradiction. Thus G = 〈yx, o′〉, and so Cos(G,H, 1, o′) is connected.

Recalling that 〈y〉 = M = 〈z〉, we have y = z or z−1. By the definition of τ , we
have yτ = y−1, (yx)τ = y−1x, and oτ = o. Then Cos(G,H, 1, o) ∼= Cos(G,Hτ , 1, o), see
(III) in Subsection 3.2. Thus, up to isomorphism of graphs, we may choose H = 〈zx〉.
Moreover, all elements of T with order 3 are all conjugate, this allows we fix an element
x ∈ T of order 3. Noting that Cos(T, 〈x〉, 1, o) is a connect T -symmetric cubic graph,
the argument in Subsection 5.1 is available for Cos(T, 〈x〉, 1, o). In particular, we assume
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that Cos(T, 〈x〉, 1, o) is one of ω0 non-isomorphic symmetric cubic graphs, p−η−6
4

of them
have automorphism group T 〈conj(b)⟨x⟩〉 ∼= PGL2(p), and the others have automorphism
group 〈âb〉 × T , where ω0, o ∈ O0, a and b are defined as in Subsection 5.1.

Let A = AutCos(G,H, 1, o). By Theorem 2.10, we have T,G � A. It follows from
Lemma 3.4 that A = G{σH | σ ∈ Aut(G,H,HoH)}. Recall that Aut(G) = 〈τ〉 ×
{conj(g) | g ∈ PGL2(p)}. It is easily shown that Aut(G,H,HoH) ⩽ 〈τ〉×Aut(T, 〈x〉, 〈x〉o〈x〉) =
〈τ〉×{conj(g) | g ∈ NPGL2(p)(〈x〉, 〈x〉o〈x〉)}. By calculation, see the proof of Theorem 5.7,
we have NPGL2(p)(〈x〉, 〈x〉o〈x〉) = 〈x〉〈b〉 or 〈x〉〈ab〉 when AutCos(T, 〈x〉, 1, o) ∼= PGL2(p)
or Z2×PSL2(p), respectively. It follows that Aut(G,H,HoH) = {τconj(g) | g ∈ 〈x〉〈b〉}
or {τconj(g) | g ∈ 〈x〉〈ab〉}, respectively. Since ab ∈ T and gĝ = conj(g)H for
g ∈ NG(H), we have A = G{σH | σ ∈ Aut(G,H,HoH)} = G〈τconj(b)H〉 or G〈τ âb〉,
which is isomorphic to (PSL2(p)× Z3):Z2 or PSL2(p)× S3, respectively.

Finally, suppose that Cos(G,H, 1, o1) ∼= Cos(G,H, 1, o2) for o1, o2 ∈ O0. Then, by
Lemma 3.3, there is σ ∈ Aut(G,H) such that Hoσ1H = Ho2H. This implies that
〈x〉oconj(g)1 〈x〉 = 〈x〉o2〈x〉 for some g ∈ PGL2(p). Then Cos(T, 〈x〉, 1, o1) ∼= Cos(T, 〈x〉, 1, o2).
By Theorem 5.7, we have o1 = o2. Thus distinct involutions o in O0 produce non-
isomorphic symmetric graphs Cos(G,H, 1, o). Therefore, Γ is described as in Lines 11
or 12 of Table 1. This completes the proof of Theorem 1.1.
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