EDGE-TRANSITIVE CUBIC GRAPHS OF TWICE SQUARE-FREE ORDER

GUI XIAN LIU AND ZAI PING LU

Abstract. A graph is edge-transitive if its automorphism group acts transitively on the edge set. This paper presents a complete classification for connected edge-transitive cubic graphs of order 2*n*, where *n* is even and square-free. In particular, it is shown that such a graph is either symmetric or isomorphic to one of the following graphs: a semisymmetric graph of order 420, a semisymmetric graph of order 29260 and five families of semisymmetric graphs constructed from the simple group $PSL_2(p)$.

Keywords. Edge-transitive graph, symmetric graph, semisymmetric graph, coset graph, bi-coset graph.

1. INTRODUCTION

All graphs in this paper are finite, simple and undirected, and have no isolated vertex.

Let $\Gamma = (V, E)$ be a graph with vertex set V and edge set E, and denote by Aut Γ the automorphism group of Γ . Let *G* be a subgroup of Aut Γ , written as $G \leq \text{Aut}\Gamma$. Then Γ is said to be *G*-vertex-transitive or *G*-edge-transitive if *G* acts transitively on *V* or *E*, respectively. If Γ is *G*-edge-transitive but not *G*-vertex-transitive then Γ is a bipartite graph with a bipartition given by the *G*-orbits on *V* ; in this case, Γ is called *G*semisymmetric if further it is a regular graph. Recall that an arc in Γ is an ordered pair of adjacent vertices. Then Γ is said to be *G*-symmetric if *G* acts transitively on the set of arcs. For a vertex $v \in V$, set $\Gamma(v) = \{v' \in V \mid \{v, v'\} \in E\}$ and $G_v = \{g \in G \mid v^g = v\},\$ called the neighborhood and stabilizer of *v* in Γ and *G*, respectively. Clearly, if Γ is either *G*-symmetric or *G*-semisymmetric then G_v acts transitively on $\Gamma(v)$ for all $v \in V$.

A graph Γ is called vertex-transitive, edge-transitive, symmetric and semisymmetric if it is AutΓ-vertex-transitive, AutΓ-edge-transitive, AutΓ-symmetric and AutΓsemisymmetric, respectively. Clearly, symmetric graphs are both edge-transitive and vertex-transitive, and by [31, p.55, 7.31], the converse is also true for regular graphs of odd valency. In particular, edge-transitive cubic graphs (regular graphs of valency 3) are either symmetric or semisymmetric.

In this paper, we focus on connected edge-transitive cubic graphs. Interest in edgetransitive cubic graphs stems from the classical result on symmetric cubic graphs due to Tutte. In [29, 30], Tutte considered the automorphism groups of connected symmetric cubic graphs, and proved that the order of a vertex-stabilizer is a divisor of 2 4 *·*3. Tutte's result was generalized by Goldschmidt in [16] where it is proved that the stabilizers of two adjacent vertices in a connected edge-transitive cubic graph are isomorphic to one of

²⁰¹⁰ Mathematics Subject Classification. 05C25, 20B25.

Supported by the National Natural Science Foundation of China (12331013, 12161141006, 11971248) and the Fundamental Research Funds for the Central Universities.

fifteen pairs of groups; in particular, the order of a vertex-stabilizer is a divisor of $2^7 \cdot 3$. Following these two classical results, edge-transitive cubic graphs have been extensively studied from different perspectives over the decades, see [5, 6, 7, 8, 9, 12, 18, 24, 26, 27, 28] for example. In recent papers [21] and [23], connedcted edge-transitive cubic graphs of square-free order were classified. This motivates us to classify connected edge-transitive cubic graphs of order 2*n*, where *n* is even and square-free.

Let Γ be an arbitrary connected edge-transitive cubic graph of order 2*n* with *n* even and square-free. The group-theoretic structure of Γ is investigated in Section 2, where it is proved that, with four exceptions for Γ , an edge-transitive group of Γ has a unique insolvable minimal normal subgroup say *T*, which is isomorphic to J_1 or $PSL_2(p)$. In Section 3, we collect two group-theoretic constructions for edge-transitive graphs, and present some improvements on the automorphisms or isomorphisms of coset graphs and bi-coset graphs. Then Γ is determined in Section 4 for the case where $T = J_1$, followed by the classifications for $PSL_2(p)$ -symmetric Γ and $PSL_2(p)$ -semisymmetric Γ in Sections 5 and 6, respectively. Finally, the case where Γ is not PSL2(*p*)-edge-transitive is settled in Section 7, and then our main result stated as follows is proved.

Theorem 1.1. *Assume that* $\Gamma = (V, E)$ *is a connected edge-transitive cubic graph of order* 2*n, where n is even and square-free. Let p be the largest prime divisor of n, and choose* $\varepsilon, \eta \in \{1, -1\}$ *for those odd p with* $p + \varepsilon$ *and* $p + \eta$ *divisible by* 3 *and* 4*, respectively.* Let $\delta = 1$ *if* $p \equiv \pm 1 \pmod{10}$ *, or* $\delta = 0$ *otherwise.*

- (1) *If* Γ *is not bipartite then* Γ *is isomorphic to either the complete graph* K_4 *of order* 4 *or one of the graphs described as Table* 1*, where* $v \in V$, $T = \text{PSL}_2(p)$ and ω is *the number of non-isomorphic graphs with isomorphic automorphism groups.*
- (2) *If* Γ *is bipartite then* Γ *is isomorphic to one of the graphs described as Table* 2*, where* $\{u, w\} \in E$, $T = \text{PSL}_2(p)$ *and* ν *is the number of non-isomorphic graphs with isomorphic automorphism groups.*

2. On the automorphism groups

In this and the following sections, G is a finite group. Denote by $Aut(G)$ the automorphism group of *G*. If α is a subset or an element of *G*, then we write $g^{-1}\alpha g$ to denote the conjugation of α under some $g \in G$. For subsets $X, Y \subseteq G$, we write $\mathbf{C}_X(Y) = \{x \in X \mid x^{-1}yx = y \text{ for all } y \in Y\} \text{ and } \mathbf{N}_X(Y) = \{x \in X \mid x^{-1}Yx = Y\},\$ called the centralizer and normalizer of *Y* in *X*, respectively.

In the following, $\Gamma = (V, E)$ is assumed to be a connected *G*-edge-transitive cubic graph. Note that Γ is either *G*-symmetric or *G*-semisymmetric. Let $\{u, w\} \in E$. If Γ is *G*-semisymmetric then Γ is bipartite, and $G = \langle G_u, G_v \rangle$. Suppose that Γ is *G*-symmetric. Then Γ is $\langle G_u, G_v \rangle$ -edge-transitive, and $|G : \langle G_u, G_v \rangle| \leq 2$, where the equality holds if and only if Γ is bipartite, refer to [32, Exercise 3.8]. Clearly, if $|G: \langle G_u, G_v \rangle| = 2$ then **Γ** is $\langle G_u, G_v \rangle$ -semisymmetric. Thus, replacing *G* by $\langle G_u, G_v \rangle$ if necessary, we assume further that

- (C1) Γ is either *G*-semisymmetric, or non-bipartite and *G*-symmetric, where $G \leq$ AutΓ; and
- $(C2)$ $|V| = 2n$, where *n* is even and square-free.

	$G = Aut\Gamma$	G_{v}	ω	Comments
1	A_6	S_3	1	F60, cf. [6]
$\overline{2}$	$PSL_2(8)$	S_3	1	F84, cf. [6]
3	J_1	S_3	10	Example 3.5
4	$PGL_2(p)$	S_3	$\frac{p-\eta-6}{4}$	Theorem 5.7
				$p\equiv \pm 3 \pmod{8}$
5	$PSL_2(p) \times \mathbb{Z}_2$	S_3	$\frac{p+\eta-2 \varepsilon+\eta }{4}-2\delta$	Theorem 5.7
				$p \equiv \pm 3 \pmod{8}$
6	$PGL_2(p)$	D_{12}	$1-\frac{ \varepsilon+\eta }{2}$	Theorem 5.12
				$p \equiv \pm 7 \pmod{16}$
$\overline{7}$	$PSL_2(p) \times \mathbb{Z}_2$	D_{12}	$ \varepsilon + \eta $	Theorem 5.12
				$p\equiv\pm7\,(\text{mod }16)$
8	$PSL_2(p)$	S_3	$\frac{p+\eta-4 \varepsilon+\eta }{8}-1-\delta$	Theorem 5.12
				$p \equiv \pm 7 \pmod{16}$
9	$PSL_2(p)$	D_{12}	$\mathbf{1}$	Theorem 5.13
				$p \equiv \pm 47 \pmod{96}$
10	$PSL_2(p)$	S_4	1	Theorem 5.14
				$p \equiv \pm 31 \pmod{64}$
11	$(PSL_2(p) \times Z_3):Z_2$	S_3	$\frac{p-\eta-6}{4}$	$T=\mathrm{PSL}_2(p), T_v=1$
				$p \equiv \pm 3 \pmod{8}$
12	$PSL_2(p) \times S_3$	S_3	$\frac{p+\eta-2 \varepsilon+\eta }{4}-2\delta$	$T=\mathrm{PSL}_2(p), T_v=1$
				$p \equiv \pm 3 \pmod{8}$

Table 1. Non-bipartite symmetric cubic graphs.

2.1. **Preliminaries.** Let $\{u, w\} \in E$. If Γ is *G*-symmetric then G_u and G_w are conjugate in *G* and, by [2, p.147, 18f], $G_u \cong \mathbb{Z}_3$, S_3 , D_{12} , S_4 or $\mathbb{Z}_2 \times S_4$; in particular, $|G_u|$ is a divisor of 48. Suppose that Γ is *G*-semisymmetric. Then *G* has exactly two orbits on *V*, $G =$ $\langle G_u, G_w \rangle$, and G_{uw} is a Sylow 2-subgroup of G_u (and G_w). The triple (G_u, G_{uw}, G_w) was determined by Goldschmidt in [16] where it is shown that (G_u, G_{uw}, G_w) is isomorphic to one of fifteen triples, see also [28, Table 3]. Then we have the following lemma.

Lemma 2.1. *Let* $\{u, w\} \in E$ *. Then one of the following holds:*

- (1) $G_u \cong G_w \cong \mathbb{Z}_3$, S_3 , D_{12} , S_4 *or* $\mathbb{Z}_2 \times S_4$ *;*
- (2) Γ is G-semisymmetric, $G_u \not\cong G_w$, and either $|G_u| = |G_w| = 2^i \cdot 3$ with $i \in$ $\{5,6,7\}$ *or* (G_u, G_w) *is isomorphic to one of* (S_3, \mathbb{Z}_6) , (D_{12}, A_4) , (D_{24}, S_4) , $((\mathbb{Z}_2^2 \times$ $(\mathbb{Z}_3) \cdot \mathbb{Z}_2$, S_4), $(\mathbb{Z}_2 \times D_{12}, \mathbb{Z}_2 \times A_4)$ *and* $(D_8 \times S_3, \mathbb{Z}_2 \times S_4)$ *.*

In particular,

- (i) *if* $|G_u| > 3$ *then G contains at least two involutions; if* $|G_u| > 12$ *then either* $(G_u, G_w) \cong (\mathbb{Z}_2 \times D_{12}, \mathbb{Z}_2 \times A_4)$, or *G* contains nonabelian Sylow 2-subgroups;
- (ii) *if* Γ *is* G *-symmetric then* $|G|$ *is a divisor of* $2^5 \cdot 3n$ *; if* Γ *is* G *-semisymmetric then* $|G|$ *is a divisor of* $2^8 \cdot 3n$ *.*

Let *N* be a normal subgroup of *G*, written as $N \leq G$. Suppose that *N* is intransitive on *V*. For $v \in V$, denote by \bar{v} the *N*-orbit containing *v*. Put $\bar{V} = {\bar{v} \mid v \in V}$. The normal quotient graph Γ_N of Γ relative to G and N is defined on \overline{V} with edge set

	$G = Aut\Gamma$	G_u, G_w	ν	Symmetric?	Comments
1	$S_7 \times \mathbb{Z}_2$	$S_4\times\mathbb{Z}_2$, $S_3\times D_8$	1	N _o	S420, cf. [8]
$\overline{2}$	J_1	D_{12} , D_{12}	$\mathbf{1}$	$\rm No$	Example 3.11
3	$PSL_2(p) \times \mathbb{Z}_2$	D_{12} , D_{12}	$\frac{ \varepsilon + \eta }{2}$	N _o	Theorem 6.5
					$p\equiv \pm 3 \pmod{8}$
4	$PGL_2(p)\times \mathbb{Z}_2$	D_{12}, D_{12}	1	Yes	Theorem 6.5
					$p\equiv \pm 3 \pmod{8}$
5	$PGL_2(p)$	S_3, S_3	$\frac{p+\eta-4}{8}$	Yes	Theorem 6.5
					$p\equiv \pm 3 \pmod{8}$
6	$PSL_2(p) \times \mathbb{Z}_2$	S_3, S_3	$\frac{p+\eta-4}{8}-\delta$	Yes	Theorem 6.5
					$p\equiv \pm 3 \pmod{8}$
$\overline{7}$	$PSL_2(p) \times \mathbb{Z}_2$	D_{24} , S_4	1	N _o	Theorem 6.7
					$p\equiv\pm23\,(\text{mod }48)$
8	$PSL_2(p) \times \mathbb{Z}_2$	D_{12} , D_{12}	1	Yes	Theorem 6.7
					$p\equiv\pm23\,(\text{mod }48)$
9	$PSL_2(p)$	D_{24} , S_4	1	$\rm No$	Theorem 6.8
					$p \equiv \pm 47 \pmod{96}$
10	$PSL_2(p) \times \mathbb{Z}_2$	S_4, S_4	$\mathbf{1}$	Yes	Theorem 6.8
					$p\equiv\pm 15\,(\text{mod }32)$
11	$PSL_2(p) \times S_3$	D_{12} , D_{12}	1	N _o	$T=\mathrm{PSL}_2(p), T_u \cong S_3, T_w \cong \mathbb{Z}_2$
					$p\equiv \pm 11 \pmod{24}$
12	$PSL_2(p) \times S_3$	D_{24} , S_4	$\mathbf{1}$	N _o	$T=\mathrm{PSL}_2(p), T_u \cong D_{12}, T_w \cong \mathbb{Z}_2^2$
					$p \equiv \pm 23 \pmod{48}$

Table 2. Bipartite edge-transitive cubic graphs.

 $\overline{E} := \{\{\overline{u}, \overline{w}\} \mid \{u, w\} \in E\}$. Denote by $G^{\overline{V}}$ (by \overline{G} for short) the permutation group induced by *G* on \overline{V} . Recall that *N* is said to be semiregular (on *V*) if all its orbits have length $|N|$, i.e., $N_v = 1$ for all $v \in V$. We have the following lemma, see [22, Lemma 2.6] for example.

Lemma 2.2. Let $N \leq G$. Assume that N is intransitive on each G -orbit on V . Then Γ_N *is cubic and* \bar{G} -edge-transitive, N *is semiregular on* V *, and* $\bar{G} \cong G/N$ *.*

Lemma 2.3. *Let* $N \leq G$ *. Assume that* N *is not semiregular on* V *. Then either* Γ *is N-edge-transitive, or* Γ *is bipartite and the following hold:*

- (1) *N acts transitively on one part say U of* Γ *and has three orbits on the other part;*
- (2) $|G: N|$ *is divisible by* 3, $|N|$ *is indivisible by* 9 *and, for* $u \in U$ *, the stabilizer* N_u *is a* 2*-group and acts trivially on* $\Gamma(u)$ *.*

Proof. Assume first that *N* is transitive on each *G*-orbit on *V*. Then $|N: N_u| = |N:$ N_w = 2*n* or *n*, in particular, $|N_u| = |N_w|$, where $u, w \in V$. Suppose that N_u acts trivially on $\Gamma(u)$. Then, letting $w \in \Gamma(u)$, we have $N_u = N_w$. Since $N_w \leq G_w$ and G_w acts transitively on $\Gamma(w)$, we deduce that N_w acts trivially on $\Gamma(w)$. It follows from the connectedness of Γ that N_u fixes V point-wise, and so $N_u = 1$, a contradiction. Thus *N_u* acts transitively on Γ(*u*) for all $u \in V$, and hence Γ is *N*-edge-transitive.

Assume now that Γ is bipartite, and *N* is not transitive on one part of Γ, say *W*. Since *N* is not semiregular, by Lemma 2.2, *N* is transitive on $U := V \setminus W$. By [15, Lemma 5.5, *N* has three orbits on *W* and, for $u \in U$, the stabilizer N_u is contained in the kernel of G_u acting on $\Gamma(u)$. It follows that N_u is a 2-group, and $|G_u : N_u|$ is divisible by 3. Noting that $|G:G_u|=n=|N:N_u|$, we have that $|G:N|=|G_u:N_u|$, and $|N|$ is indivisible by 9. Then the lemma follows.

2.2. **The solvable case.** For a prime divisor p, denote by $\mathbf{O}_p(G)$ the maximal normal *p*-subgroup of *G*.

Lemma 2.4. *Either* $\Gamma \cong K_4$ *, or* $|\mathbf{O}_p(G)| \in \{1, p\}$ *for every prime divisor* p *of* $|G|$ *.*

Proof. Assume first that *p* is an odd prime. Since each *G*-orbit on *V* has even length *n* or 2*n*, we know that $\mathbf{O}_p(G)$ is intransitive on each *G*-orbit on *V*. By Lemma 2.2, $\mathbf{O}_p(G)$ has order a divisor of 2*n*, yielding $|\mathbf{O}_p(G)| \in \{1, p\}$.

Now consider the case where $p = 2$. Assume that $\mathbf{O}_2(G)$ is not transitive on each *G*-orbit. By Lemma 2.2, $\mathbf{O}_2(G)$ is semiregular on *V*, and so $|\mathbf{O}_2(G)| \in \{1,2,4\}$. If $|\mathbf{O}_2(G)| = 4$ then we get a cubic graph $\Gamma_{\mathbf{O}_2(G)}$ of odd order, which is impossible. Thus $|O_2(G)|$ ∈ {1, 2}. Assume that $O_2(G)$ is transitive on one of *G*-orbits, say *U*. Then *|U*| is a divisor of $|O_2(G)|$, which forces that either $|U| = n = 2$ or $|V| = |U| = 4$. It follows that $\Gamma \cong K_4$. This completes the proof. □

Theorem 2.5. *Assume that G is solvable. Then* $\Gamma \cong K_4$ *.*

Proof. Let F be the Fitting subgroup of G, i.e., the direct product of all $O_p(G)$, where p runs over the prime divisors of $|G|$. Since *G* is solvable, every minimal normal subgroup of *G* has prime power order, and so $F \neq 1$.

Suppose that $\Gamma \not\cong K_4$. Then $2n = |V| > 4$ and, by Lemma 2.4, *F* is cyclic and has order a divisor of *n*. In particular, *F* is intransitive on *V* as $|V| = 2n$. Let *B* be an arbitrary *F*-orbit on *V* , and let *K* be the kernel of *F* acting on *B*. Since *F* is cyclic, *K* is characteristic in *G*, and so $K \triangleleft G$. If *G* is transitive on *V* then, since all *K*-orbits have equal length, *K* acts trivially on *V*, and so $K = 1$. Assume that *G* is intransitive on *V* . Then *G* has exactly two orbits on *V* , say *U* and *W*. Without loss of generality, let $B \subseteq U$. Then *K* acts trivially on *U*. If $K \neq 1$ then it is easily shown that Γ is isomorphic to the complete bipartite graph $K_{3,3}$, and so $2n = 6$, which is not the case. Therefore, *F* is faithful and hence regular on each of its orbits; in particular, *F* is semiregular on *V* .

Assume that *F* has two orbits on *V*. Then Γ is bipartite and $|F| = n$. Let *L* be the 2 *′* -Hall subgroup of *F*. Then *L* is a normal subgroup of *G*. Clearly, *L* is intransitive on both the *F*-orbits. By Lemma 2.2, the quotient graph Γ*^L* has valency 3. However, Γ*^L* is a bipartite graph of order 4, a contradiction.

Assume that *F* has at least three orbits on *V* . In this case, it is easy to see that *F* is intransitive on each *G*-orbit on *V*. Then, by Lemma 2.2, the quotient graph Γ_F is cubic, and *G* induces an edge-transitive subgroup of $\text{Aut}\Gamma_F$, which is isomorphic to G/F . Since *G* is solvable, $\mathbf{C}_G(F) \leq F$, refer to [1, p.158, (31.10)]. Thus $\mathbf{C}_G(F) = F$. Noting that *G* induces a subgroup $\text{Aut}(F)$ by conjugation, we have $G/F = \mathbb{N}_G(F)/\mathbb{C}_G(F) \lesssim \text{Aut}(F)$. Since *F* is cyclic, $Aut(F)$ is abelian, and so does G/F . It follows that $Aut\Gamma_F$ has an abelian edge-transitive subgroup. Then the only possibility is that $\Gamma_F \cong \mathsf{K}_{3,3}$ and $G/F \cong \mathbb{Z}_3^2$. In particular, $n = 3|F|$, and Γ is bipartite. Let *L* be the 2'-Hall subgroup

of *F*. Then *L* is normal in *G* and intransitive on each of *F*-orbits. By Lemma 2.2, *G* induces an edge-transitive subgroup of $\text{Aut}\Gamma_L$, which is isomorphic to G/L . Noting that *F/L* is a normal subgroup of G/L of order 2, we have $G/L \cong \mathbb{Z}_2 \times \mathbb{Z}_3^2$. It follows that Λ ut Γ_L has an abelian edge-transitive subgroup, and thus $\Gamma_L \cong K_{3,3}$, which is impossible as Γ_L has order divisible by 4. Therefore, $\Gamma \cong K_4$, and the result follows. □

2.3. **The insolvable case.** In this subsection, the group *G* is assumed to be insolvable. Denote by $\mathsf{rad}(G)$ the maximal solvable normal subgroup of G. Then $\mathsf{rad}(G)$ is a characteristic subgroup *G*. If $\text{rad}(G)$ is transitive on one of *G*-orbits on *V*, then $G = \text{rad}(G)G_v$ for some $v \in V$, which implies that G is solvable, a contradiction. Then Lemma 2.2 is available for the triple $(\Gamma, G, \text{rad}(G))$. For $v \in V$, denote by \bar{v} the rad(*G*)-orbit containing *v*. Put $\bar{V} = {\bar{v} \mid v \in V}$, and $\bar{G} = G^{\bar{V}}$. We have the following lemma.

Lemma 2.6. *Assume that G is insolvable.* Then $\Gamma_{\text{rad}(G)}$ *is a connected* \overline{G} -edge-transitive *cubic graph,* $|\text{rad}(G)|$ *is a divisor of n*, $|\bar{V}| = \frac{2n}{|\text{rad}(G)|}$ $\frac{2n}{\lvert \mathsf{rad}(G) \rvert}$ *and* $\bar{G} \cong G/\mathsf{rad}(G)$ *.*

Lemma 2.7. *Assume that* G *is insolvable. Then* \overline{G} *has a unique minimal normal* $subgroup$ say \bar{N} , $\Gamma_{rad(G)}$ *is* \bar{N} -edge-transitive, and \bar{N} *is isomorphic to one of the following simple groups:* A_6 , A_7 , J_1 , $PSL_2(8)$ *and* $PSL_2(p)$ *, where* $p \geq 5$ *is a prime.*

Proof. Let \bar{N} be a minimal normal subgroup of \bar{G} . Then \bar{N} is insolvable, and $|\bar{N}|$ is a divisor of $2^8 \cdot 3n$. Note that \overline{N} is a direct product of isomorphic nonabelian simple groups. If \bar{N} is not simple then $|\bar{N}|$ has a divisor r^2 for some prime $r > 3$, and so *n* is divisible by r^2 , which contradicts the assumption that *n* is square-free. Thus \bar{N} is simple. If $|\text{rad}(G)|$ is even then, noting that $\Gamma_{\text{rad}(G)}$ has square-free order $|\overline{V}|$, our lemma follows from [21, Lemma 6.3] and [23, Lemma 4.3]; in this case, $\overline{N} \cong A_6$, A_7 or $PSL_2(p)$. Thus, we assume next that $|\text{rad}(G)|$ is an odd divisor of *n*.

If \bar{N} is intransitive on each \bar{G} -orbit on \bar{V} then, by Lemma 2.2, the quotient graph of $\Gamma_{\text{rad}(G)}$ with respect to *N* is cubic and of order $|V|/|N|$; however, $|N|$ is divisible by 4, and so $|\bar{V}|/|\bar{N}|$ is odd, a contradiction. Thus \bar{N} is transitive on at least one of \bar{G} -orbits, say \bar{U} . Then $\dot{\bar{G}} = \bar{N}\dot{\bar{G}}_{\bar{u}}$ for some $\bar{u} \in \bar{U}$. Let $C = \mathbf{C}_{\bar{G}}(\bar{N})$. We have $\bar{N} \cap C = 1$, and so $C \cong \bar{N}C/\bar{N} \leq \bar{G}/\bar{N} \cong \bar{G}_{\bar{u}}/\bar{N}_{\bar{u}}$. It follows that *C* is solvable, and so $C = 1$ as rad(\bar{G}) = 1 and $C \triangleleft \overline{G}$. This says that \overline{N} is the unique minimal normal subgroup of *G*.

Note that $|\bar{N}|$ is not divisible by 2^{10} , 3^3 or r^2 , where r is an arbitrary prime with $r \geq 5$. Inspecting the orders of finite simple groups (refer to [19, Tables 5.1.A-C]), we deduce that N is isomorphic to one of the following groups: A_6 , A_7 , A_8 , M_{11} , M_{22} , M_{23} , J_1 , $PSL_3(4)$, $PSL_2(2^f)$ and $PSL_2(p)$, where $3 \leqslant f \leqslant 8$, and $p \geqslant 5$ is a prime.

Suppose that \bar{N} is isomorphic to one of A₆, A₇, PSL₂(8), A₈, M₁₁, M₂₂, M₂₃, PSL₃(4) and $PSL_2(2^6)$. Then $|\bar{N}|$ is divisible by 9. It follows from Lemma 2.3 that $\Gamma_{\text{rad}(G)}$ is *N*-edge-transitive. If \overline{N} ≅ $PSL_2(2^6)$ then $|\overline{N}_{\overline{v}}|$ is divisible by $2^4 \cdot 3$, by Lemma 2.1 (i), *N* has nonabelian Sylow 2-subgroups, which is impossible. Assume that \overline{N} \cong M₂₂ or M_{23} . Then $|\bar{N}_{\bar{u}}|$ is divisible by $2^5 \cdot 3$. By Lemma 2.1, $\Gamma_{\text{rad}(G)}$ is \bar{N} -semisymmetric, and then $|\bar{N}_{\bar{u}}| = 2^6 \cdot 3$. Since $\Gamma_{\text{rad}(G)}$ is connected, $\bar{N} = \langle L, R \rangle$, where *R* and *L* are the stabilizers of two adjacent vertices. For such a pair (L, R) , noting that $|L| = |R| = 2⁶ \cdot 3$ and $|L \cap R| = 64$, computation with GAP [14] shows that either $|\langle L, R \rangle| = 1344$, or *N* ≅ M_{23} and $\vert \langle L, R \rangle \vert$ ∈ {576*,* 1920*,* 40320}, and so $\bar{N} \neq \langle L, R \rangle$, a contradiction. Assume that $\overline{N} \cong \text{PSL}_3(4)$, A_8 or M_{11} . Then $|\overrightarrow{V}| = 2 \frac{n}{|\text{rad}(G)|} = 420$, 420 or 660, respectively. By [6, 8], up to graph isomorphisms, there exist one connected edge-transitive cubic graph of order 420, and two connected edge-transitive cubic graphs of order 660, which have automorphism groups of order 10080, 3960 and 3960 respectively. Then $|\bar{N}| >$ $|Aut\Gamma_{rad(G)}|$, a contradiction. Thus, in this case, $\Gamma_{rad(G)}$ is \bar{N} -edge-transitive, and \bar{N} is one of A_6 , A_7 and $PSL_2(8)$.

Finally, suppose that $\overline{N} \cong J_1$, $PSL_2(2^4)$, $PSL_2(2^5)$, $PSL_2(2^7)$, $PSL_2(2^8)$ or $PSL_2(p)$. Recalling that $\mathbf{C}_{\bar{G}}(\bar{N}) = 1$, we know that \bar{G} is almost simple, and $\bar{G} = \bar{N}.O$, where O is a subgroup of the outer automorphism group of \overline{N} . Checking [19, Tables 5.1.A and 5.1.C], we conclude that $|O|$ is a divisor of 1, 4, 5, 7, 8 or 2, respectively. Then $|G:N|=|O|$ is indivisible by 3. Noting that $|\bar{G}_{\bar{v}} : \bar{N}_{\bar{v}}| = |\bar{N}G_{\bar{v}} : \bar{N}|$, it follows that $|\bar{N}_{\bar{v}}|$ is divisible by 3 for all $\bar{v} \in \bar{V}$. By Lemma 2.3, $\Gamma_{\text{rad}(G)}$ is \bar{N} -edge-transitive. If $\bar{N} \cong \text{PSL}_2(2^4)$ then $|\bar{V}| = 340$; however, by [6, 8], there exists no connected edge-transitive cubic graph of order 340. Suppose that $\overline{N} \cong \text{PSL}_2(2^f)$, where $f \in \{5, 7, 8\}$. Then $f - 2 \geq 3$, and $|\overline{N}_{\overline{v}}|$ is divisible by $2^{f-2} \cdot 3$. Noting that $PSL_2(2^f)$ has abelian Sylow 2-subgroups, by Lemma 2.1 (i), we conclude that $f = 5$, $\bar{N}_{\bar{v}} \cong \mathbb{Z}_2 \times D_{12}$ or $\mathbb{Z}_2 \times A_4$. This contradicts that $PSL_2(2^5)$ has no subgroup isomorphic to $\mathbb{Z}_2 \times D_{12}$ or $\mathbb{Z}_2 \times A_4$, see Lemma 5.1. Therefore, $\Gamma_{\text{rad}(G)}$ is \overline{N} -edge-transitive, and $\overline{N} \cong J_1$ or PSL₂(p). This completes the proof. □

Denote by $G^{(\infty)}$ the intersection of all terms appearing in the derived series of *G*.

Lemma 2.8. *Assume that G is insolvable.* Let $T = G^{(\infty)}$. Then $T \cong A_6$, A_7 , J_1 , $PSL_2(8)$ *or* $PSL_2(p)$ *,* $rad(G) = \mathbf{C}_G(T)$ *and* Γ *is* $rad(G)T$ *-edge-transitive.*

Proof. By Lemma 2.7, \bar{G} has a unique minimal normal subgroup $\bar{N} \cong A_6$, A_7 , J₁, $PSL_2(8)$ or $PSL_2(p)$, and $\Gamma_{rad(G)}$ is \bar{N} -edge-transitive. By the edge-transitivity of \bar{N} , we conclude that \bar{N} is transitive on each of \bar{G} -orbits on \bar{V} . Then $\bar{G} = \bar{N}\bar{G}_{\bar{v}}$ for $\bar{v} \in \bar{V}$. Since $\overline{G}_{\overline{v}}$ is solvable, we have $\overline{N} = \overline{G}^{(\infty)}$. Noting that $\mathsf{rad}(G)T/\mathsf{rad}(G) = (G/\mathsf{rad}(G))^{(\infty)} \cong$ $\overline{G}^{(\infty)} = \overline{N}$, it follows that rad(*G*)*T* is the primage of \overline{N} in *G*. Then, considering $\Gamma_{\text{rad}(G)}$ as a normal quotient of Γ with respect rad(*G*)*T* and rad(*G*), it is easily shown that Γ is $rad(G)T$ -edge-transitive.

Note that $T/(\text{rad}(G) \cap T) \cong \text{rad}(G)T/\text{rad}(G) \cong \overline{N}$. Suppose that $\text{rad}(G) \cap T = 1$. Then $T \cong \overline{N} \cong A_6$, A_7 , J_1 , $PSL_2(8)$ or $PSL_2(p)$. In addition, $rad(G) \leqslant C_G(T)$. Since $(\mathbf{C}_G(T))^{(\infty)} \leq G^{(\infty)} = T$ and $\mathbf{C}_G(T) \cap T = 1$, we have $(\mathbf{C}_G(T))^{(\infty)} = 1$, and so $\mathbf{C}_G(T)$ is a solvable normal subgroup of *G*. It follows that $\mathsf{rad}(G) = \mathbb{C}_G(T)$. Thus, to complete the proof, it suffices to show that $\mathsf{rad}(G) \cap T = 1$.

Clearly, $|\text{rad}(G) \cap T|$ is square-free, and so $\text{Aut}(\text{rad}(G) \cap T)$ is solvable. Note that T induces a subgroup of $Aut(\text{rad}(G) \cap T)$ by conjugation with kernel equal to $\mathbf{C}_T(\text{rad}(G) \cap T)$ *T*). Since *T* is simple, C_T (rad(*G*) $\cap T$) = 1 or *T*. If C_T (rad(*G*) $\cap T$) = 1 then Aut(rad(*G*) \cap *T*) has a subgroup isomorphic to *T*, and so Aut($\mathsf{rad}(G) \cap T$) is insolvable, a contradiction. We have $T = \mathbf{C}_T(\text{rad}(G) \cap T)$, and thus T is a covering group of the simple group N with center $\mathsf{rad}(G) \cap T$. Then $\mathsf{rad}(G) \cap T$ is a homomorphic image of the Schur multiplier of \overline{N} , refer to [1, p.168, (33.8)]. If $\overline{N} \cong \text{PSL}_2(8)$ or J_1 then \overline{N} has Schur multiplier 1 (see [19, p. 173, Theorem 5.14]), and so $\text{rad}(G) \cap T = 1$.

Next we suppose that $\mathsf{rad}(G) \cap T \neq 1$, and produce a contradiction. By the above argument, we have that $\bar{N} \cong A_6$, A_7 or $PSL_2(p)$, and \bar{N} has Schur multiplier \mathbb{Z}_6 , \mathbb{Z}_6 or \mathbb{Z}_2 respectively, refer to [19, p.173, Theorem 5.14]. For \bar{N} ≃ A₆ or A₇, recalling that *|G|* is indivisible by 3³, we have rad(*G*) ∩ *T* $\cong \mathbb{Z}_2$; in this case, computation with GAP

shows that *T* contains a unique involution. If $\overline{N} \cong \text{PSL}_2(p)$ then $\text{rad}(G) \cap T \cong \mathbb{Z}_2$ and $T \cong SL_2(p)$; in this case, *T* also contains a unique involution.

Let $N = \text{rad}(G)T$, the primage of \overline{N} in *G*. Recall that Γ is *N*-edge-transitive. Since $|rad(G)|$ is square-free, rad(*G*) has a unique Hall 2'-subgroup say *L*. Then $L \leq N$, and *L* is not transitive on each of *N*-orbits on *V*. Then, by Lemma 2.2, Γ_L is a cubic graph, and *N* induces an edge-transitive subgroup say *X* of $\text{Aut} \Gamma_L$ with kernel equal to *L*. By the choice of *L*, we have $\mathsf{rad}(G) = L \times (\mathsf{rad}(G) \cap T)$, and so $X \cong N/L = TL/L \cong T$. In particular, $|X|$ is divisible by 8, and so X_{α} has order divisible by 6, where α is an *L*-orbit. By Lemma 2.1 (i), *X* contains at least two involutions, and hence so does *T*, a contradiction. Therefore, $\text{rad}(G) \cap T = 1$. This completes the proof. □

Assume that *G* is insolvable. Let $M = \text{rad}(G)$ and $T = G^{(\infty)}$. For $v \in V$, denote by *v* the *M*-orbit containing *v*. Put $\bar{V} = {\bar{v} \mid v \in V}$, and $\bar{T} = T^{\bar{V}}$. Then $MT = M \times T$ and $\overline{T} \cong MT/M \cong T$. Considering the set-wise stabilizers $T_{\overline{v}}$ and $(MT)_{\overline{v}}$ of \overline{v} in *T* and *MT* respectively, we have $M(MT)_v = (MT)_{\bar{v}} = MT_{\bar{v}}$, and so

(2.1)
$$
T_{\bar{v}} \cong (MT)_v \cong (MT)_{\bar{v}}/M \cong \bar{T}_{\bar{v}}.
$$

Choose a *G*-orbit on *V*, say *W*, such that *T* is transitive on *W*. For $w \in W$, it is easily shown that $T_{\bar{w}}$ is transitive on \bar{w} . Noting that *M* is regular on \bar{w} and centralizes $T_{\bar{w}}$, it follows from [11, p.109, Theorem 4.2A] that

$$
(2.2) \t\t T_w \trianglelefteq T_{\bar{w}}, M \cong T_{\bar{w}}/T_w.
$$

In particular, since $|M|$ is square-free and $|T_{\bar{w}}| = 2^s \cdot 3$ for some integer *s*, we have

$$
(2.3) \t\t |M| \in \{1, 2, 3, 6\}.
$$

Lemma 2.9. *Assume that G is insolvable. Let* $M = \text{rad}(G)$ *and* $T = G^{(\infty)}$ *. Then* Γ *is MT-edge-transitive, and either* Γ *is* T *-edge-transitive, or* $|M| \in \{3, 6\}$ *and one of the following holds:*

- (1) Γ *is bipartite,* $T \in \{J_1, PSL_2(p)\}$ *, and* T *is transitive on one part of* Γ *and has three orbits on the other part;*
- (2) $T = \text{PSL}_2(p)$ *is regular on V*, and $p \equiv \pm 3 \pmod{8}$.

Proof. By Lemma 2.8, Γ is MT -edge-transitive. Note that $|MT:T| = |M|$. If *T* is not semiregular on *V* then, applying Lemmas 2.3 and 2.8 to the triple (Γ*, MT, T*), either Γ is *T*-edge-transitive, or $|M| \in \{3, 6\}$ and (1) occurs.

Assume that *T* is semiregular on *V* . Then *T* has an odd number of orbits on *V* . Since there exists no cubic graph of odd order, by Lemma 2.2, we conclude that *T* is transitive on V , and so T is regular on V . In particular, $|T|$ is not divisible by 8 or 9, and so $T = \text{PSL}_2(p)$ with $p \equiv \pm 3 \pmod{8}$, desired as in (2).

Theorem 2.10. *Let* $A = \text{Aut}\Gamma$, and $T = G^{(\infty)}$. Assume that G is insolvable. Then

- (1) *either* $T \in \{J_1, PSL_2(p)\}$ *or one of the following holds:*
	- (i) $\Gamma \cong$ **F**60 *and* $\text{Aut}\Gamma = A_6$;
	- (ii) $\Gamma \cong$ **5**420 *and* $\text{Aut}\Gamma = \mathbb{Z}_2 \times \text{S}_7$ *;*
	- (iii) $\Gamma \cong$ F84 *and* $\text{Aut}\Gamma = \text{PSL}_2(8)$;
- (2) $A^{(\infty)} = T$, and either $|\text{rad}(G)| = 2$ or $\text{rad}(G) \leq A$.

Proof. By Lemma 2.8, $T \cong A_6$, A_7 , $PSL_2(8)$, J_1 or $PSL_2(p)$, where $p \geq 5$ is a prime. Suppose that $T \cong A_6$, A_7 or $PSL_2(8)$. Then $|T|$ has a divisor 9, and so Γ is T -edgetransitive by Lemma 2.3. We have $|V| = 60$, 420 or 84, respectively. Employing [6, 8], we conclude that Γ is desired as in (i), (ii) or (iii), and part (1) follows.

Let $X = \langle A_u, A_w \rangle$ for an edge $\{u, w\} \in E$. Then $|A : X| \leq 2$, where the equality holds if and only if Γ is bipartite, refer to [32, Exercise 3.8]. In particular, $A^{(\infty)} = X^{(\infty)}$. Clearly, $G \leqslant X$, and Γ is either non-bipartite or *X*-semisymmetric. Then, by Lemma 2.8, $A^{(\infty)} = X^{(\infty)} \cong A_6$, A₇, PSL₂(8), J₁ or PSL₂(p). By Lemma 2.3, we may choose a *G*-orbit *U* such that *T* acts transitively on it. Noting that $T = G^{(\infty)} \leq A^{(\infty)}$, we know that *U* is also a $A^{(\infty)}$ -orbit. In particular, $|T : T_u| = |U| = |A^{(\infty)} : (A^{(\infty)})_u|$, where $u \in U$. Then $|T|$ and $|A^{(\infty)}|$ have the same prime divisors no less than 5. It follows that $A^{(\infty)} = T$, desired as in (2).

Finally, by (2.3), $|rad(X)|$ is a divisor of 6. Noting that $rad(G) = \mathbf{C}_G(T) \leq \mathbf{C}_X(T) =$ rad(*X*), if $|rad(G)| \neq 2$ then $|rad(G)| = 1$, 3 or 6, and so rad(*G*) is a characteristic subgroup of rad(*X*), yielding rad(*G*) \trianglelefteq *A*. This completes the proof. \Box

3. Coset graphs and bi-coset graphs

Let *G* be a finite group. If *G* is normal in some group *A* then each $a \in A$ induces an automorphism $\text{conj}(a)$ of *G* by conjugation:

$$
x^{\text{conj}(a)} := a^{-1}xa, \,\forall x \in G.
$$

For $X_1, \ldots, X_m \subseteq G$, we write

$$
\mathbf{N}_G(X_1, \ldots, X_m) = \bigcap_{i=1}^m \mathbf{N}_G(X_i),
$$

\n
$$
\mathbf{N}_G(\{X_1, \ldots, X_m\}) = \{g \in G \mid \{g^{-1}X_1g, \ldots, g^{-1}X_mg\} = \{X_1, \ldots, X_m\}\},
$$

\n
$$
\mathrm{Aut}(G, X_1, \ldots, X_m) = \{\sigma \in \mathrm{Aut}(G) \mid X_i^{\sigma} = X_i, 1 \leq i \leq m\},
$$

\n
$$
\mathrm{Aut}(G, \{X_1, \ldots, X_m\}) = \{\sigma \in \mathrm{Aut}(G) \mid \{X_1^{\sigma}, \ldots, X_m^{\sigma}\} = \{X_1, \ldots, X_m\}\}.
$$

3.1. **Coset actions.** Assume that *H* is a core-free subgroup of *G*, that is, *H* contains no nontrivial normal subgroup of *G*. Then *G* acts faithfully and transitively on [*G* : $H := \{Hx \mid x \in G\}$ by right multiplication:

(3.1)
$$
(Hx)^g := Hxg, \forall x, g \in G.
$$

The resulting transitive subgroup of $Sym([G : H])$ is still denoted by G in the following.

Note that the group $Aut(G, H)$ has a natural action on $[G : H]$ by

$$
(Hx)^{\sigma} := Hx^{\sigma}, \ x \in G, \sigma \in \text{Aut}(G, H).
$$

For $\sigma \in Aut(G, H)$, we denote by σ_H the permutation induced by σ on $[G : H]$. Clearly,

(3.2)
$$
\operatorname{conj}(h)_H = h, \forall h \in H.
$$

The next lemma says that $\sigma \mapsto \sigma_H$ is an embedding from $Aut(G, H)$ into Sym($[G : H]$).

Lemma 3.1. Aut (G, H) *acts faithfully on* $[G : H]$ *.*

Proof. Clearly, if $H = 1$ then the action of $Aut(G, H)$ is faithful. Thus let $H \neq 1$. Pick $\sigma \in \text{Aut}(G, H)$ such that $Hx^{\sigma} = Hx$, i.e., $x^{\sigma}x^{-1} \in H$, for all $x \in G$. For $x, y \in G$,

$$
Hyx = H(yx)^{\sigma} = Hy^{\sigma}x^{\sigma} = Hyx^{\sigma} \Rightarrow yx^{\sigma}x^{-1}y^{-1} \in H.
$$

Then, for each $x \in G$, the subgroup *H* contains a normal subgroup $\langle yx^{\sigma}x^{-1}y^{-1} | y \in G \rangle$ of *G*. Since *H* is core-free, we have $x^{\sigma}x^{-1} = 1$, i.e., $x^{\sigma} = x$ for all $x \in G$. Thus $\sigma = 1$, and the lemma follows. \Box

If $q \in N_G(H)$, then *q* induces a permutation \hat{q} on [*G* : *H*] by

(3.3)
$$
(Hx)^{\hat{g}} := Hg^{-1}x, \forall x \in G.
$$

In fact, $\hat{g}g = \text{conj}(g)_H = g\hat{g}$, where *g* acts on $[G:H]$ by the way described as in (3.1).

Lemma 3.2. $N_G(H)/H \cong \mathbf{C}_{Sym([G:H])}(G) = \{ \hat{g} \mid g \in \mathbf{N}_G(H) \}$, and $\mathbf{N}_{Sym([G:H])}(G) =$ $G\{\sigma_H \mid \sigma \in \text{Aut}(G,H)\}.$

Proof. The first part of this lemma follows directly from [11, p.108, Lemma 4.2A].

Let $N = \mathbf{N}_{Sym([G:H])}(G)$, and K be the point-stabilizer of H in N. Then $G \leq N$ and, since *G* is transitive on $[G : H]$, we have $N = GK$. Clearly, $Aut(G, H) \cong {\sigma_H \mid \sigma \in H}$ Aut (G, H) } $\leqslant K$. For $t \in K$, considering the point-stabilizers of H^t and H in G , we have $t^{-1}Ht = H$, and so $\text{conj}(t) \in \text{Aut}(G, H)$. Thus we have a group homomorphism: $K \to \text{Aut}(G, H), t \mapsto \text{conj}(t)$, and the kernel equals to $\mathbf{C}_K(G)$. Noting that $\mathbf{C}_K(G)$ is semiregular on $[G : H]$, we have $\mathbb{C}_K(G) = 1$. Thus K is isomorphic to a subgroup of Aut (G, H) , and so $|K| \leq \vert Aut(G, H) \vert$. We have $K = \{\sigma_H \mid \sigma \in Aut(G, H)\}\$, and the lemma follows. □

3.2. **Coset graphs.** Let $G \neq 1$ be a finite group, and let H be a core-free subgroup of *G*. Suppose that *H* has a subgroup *K* with index *k >* 1, and

(I) there exists $o \in \mathbb{N}_G(K) \setminus H$ such that $o^2 \in K$ and $H \cap o^{-1}Ho = K$.

The coset graph $Cos(G, H, K, o)$ is defined on $[G : H]$ such that Hx and Hy are adjacent if and only if yx^{-1} ∈ *HoH*. Then $Cos(G, H, K, o)$ is a well-defined *G*-symmetric graph of valency *k*. It is well-known that every connected symmetric graph of valency *k* is isomorphic to a coset graph defined as above. The following facts are easily shown, see also [20] for example.

- (II) $\text{Cos}(G, H, K, o)$ is connected if and only if $G = \langle H, o \rangle$.
- (III) If $\sigma \in Aut(G)$ then $Hx \mapsto H^{\sigma}x^{\sigma}$ defines an isomorphism from $Cos(G, H, K, o)$ to $\textsf{Cos}(G, H^{\sigma}, K^{\sigma}, o^{\sigma})$. In particular, if $\sigma \in \text{Aut}(G, H)$ then σ_H is an automorphism of $\textsf{Cos}(G, H, K, o)$ if and only if $Ho^{\sigma}H = HoH$. (Note, for $h \in H$, we have $Cos(G, H, K, o) = Cos(G, H, h^{-1}Kh, h^{-1}oh).$

In view of (III), up to isomorphism of graphs, *H*, *K* and *o* may be chosen up to the conjugacy under $Aut(G)$, $Aut(G, H)$ and $Aut(G, H, K)$, respectively.

Lemma 3.3. Let $\Gamma = \text{Cos}(G, H, K, o)$ and $\Sigma = \text{Cos}(G, H, K, o')$. Suppose that both AutΓ *and* AutΣ *have a unique subgroup isomorphic to G. Then* Γ *∼*= Σ *if and only if* $Ho^{\sigma} H = Ho'H$ *for some* $\sigma \in \text{Aut}(G, H, K)$ *.*

Proof. The sufficiency of $\Gamma \cong \Sigma$ is immediate from the above (III). Now let λ be an isomorphism from $Cos(G, H, K, o)$ to $Cos(G, H, K, o')$. Then $Aut\Sigma = \lambda^{-1}Aut\Gamma\lambda$. It follows that $G = \lambda^{-1}G\lambda$. Since *G* is transitive on the arc sets of Γ and Σ , without

loss of generality, we choose λ with $(H, Ho)^{\lambda} = (H, Ho')$. Considering the stabilizers of *H*, (H, Ho) and (H, Ho') in *G*, we have $H = \lambda^{-1}H\lambda$ and $K = \lambda^{-1}K\lambda$. Then $\sigma := \text{conj}(\lambda) \in \text{Aut}(G, H, K)$. For $Hx \in [G : H]$, since λ fixes the vertex *H*, we have

$$
(Hx)^{\lambda} = H^{x\lambda} = H^{\lambda^{-1}x\lambda} = H(\lambda^{-1}x\lambda) = Hx^{\sigma}.
$$

Considering the neighborhoods of *H* in Γ and Σ , we have

$$
\{Ho'h \mid h \in H\} = \{Hoh \mid h \in H\}^{\lambda} = \{H\lambda^{-1}oh\lambda \mid h \in H\} = \{Ho^{\sigma}h^{\sigma}\lambda \mid h \in H\}.
$$

This implies that $Ho'H = Ho^{\sigma}H$, and the lemma follows. \Box

Using Lemma 3.2, the following lemma is easily shown.

Lemma 3.4. *Let* $\Gamma = \text{Cos}(G, H, K, o)$ *, and view G as a subgroup of* Aut Γ *. Then* $\mathbf{C}_{\text{Aut}\Gamma}(G) = \{ \hat{g} \mid g \in \mathbf{N}_G(H, HoH) \}, \text{ and } \mathbf{N}_{\text{Aut}\Gamma}(G) = G \{ \sigma_H \mid \sigma \in \text{Aut}(G, H, HoH) \}.$

Example 3.5. Let $T = J_1$, the first Janko group. Computation with GAP [14] shows that, up to conjugacy, J_1 has two subgroup isomorphic to S_3 , and only one of them say *H* has a subgroup *K* which has order 2 and satisfies the condition that $\mathbf{N}_T(K) \setminus K$ contains elements *o* with $o^2 \in K$ and $\langle H, o \rangle = T$. Fix such a pair (H, K) . Then $\mathbf{N}_T(K) = \mathbb{Z}_2 \times \mathbf{A}_5$, and thus every desired *o* should be an involution. Further computation shows that there exist exactly 20 desired involutions, which are conjugate in pairs under $N_T(H, K)$ and produce 10 distinct double cosets *HoH*. Thus we get ten connected *T*-symmetric cubic graphs of order $4 \cdot 5 \cdot 7 \cdot 11 \cdot 19$. It is shown in Section 4 that these graphs are not isomorphic to each other. □

3.3. **Bi-coset graphs.** Let *G* be a finite group, and $L, R < G$ with $L \neq R$, $|L| = |R|$ and $L \cap R$ core-free in *G*. The bi-coset graph $BC(G, L, R)$ is defined with bipartition $([G : L], [G : R])$ such that *Lx* and *Ry* are adjacent if and only if $yx^{-1} \in RL$, i.e., *xy*^{^{−1} ∈ *LR*. Then BC(*G, L, R*) is a well-defined regular graph of valency $|L : (L ∩ R)|$,} and $BC(G, L, R) = BC(G, R, L)$. View G as a subgroup of $AutBC(G, L, R)$, where G acts on $[G: L]$ and $[G: R]$ by right multiplications:

(3.4)
$$
(Lx)^{g} := Lxg, (Ry)^{g} := Ryg, \ \forall g, x, y \in G.
$$

Then $BC(G, L, R)$ is *G*-semisymmetric. It is easily shown that $BC(G, L, R)$ is connected if and only if $G = \langle L, R \rangle$. The reader is referred to [13, 25] for more information about bi-coset graphs.

Each $\sigma \in \text{Aut}(G)$ defines an isomorphism from $\text{BC}(G, L, R)$ to $\text{BC}(G, L^{\sigma}, R^{\sigma})$ by

(3.5)
$$
Lx \mapsto L^{\sigma}x^{\sigma}, Ry \mapsto R^{\sigma}y^{\sigma}, \ \forall x, y \in G.
$$

Thus, up to isomorphism of graphs, the subgroups *L* and *R* may be chosen under Aut(*G*) conjugacy and Aut(*G, L*)-conjugacy, respectively.

Lemma 3.6. Assume that $G = \langle L_1, R_1 \rangle = \langle L_2, R_2 \rangle$, and $\Gamma_i = BC(G, L_i, R_i)$ for $i = 1, 2$.

- (1) *If* $\{L_1^{\sigma}, R_1^{\sigma}\} = \{L_2, R_2\}$ *for some* $\sigma \in Aut(G)$ *then* $\Gamma_1 \cong \Gamma_2$ *.*
- (2) *Suppose that both* $Aut\Gamma_1$ *and* $Aut\Gamma_2$ *have a unique subgroup isomorphic to G. If* $\Gamma_1 \cong \Gamma_2$ *then* $\{L_1^{\sigma}, R_1^{\sigma}\} = \{L_2, R_2\}$ *for some* $\sigma \in \text{Aut}(G)$ *, and* σ *is chosen from* $Aut(G, L_1)$ *for the case where* $L_1 = L_2$ *and either* Γ_1 *is symmetric or* L_1 *and* R_1 *are not conjugate under* Aut(*G*)*.*

12 LIU AND LU

Proof. Part (1) of the lemma is pretty obvious. Suppose that both $Aut\Gamma_1$ and $Aut\Gamma_2$ have a unique subgroup isomorphic to *G*, and let λ be an isomorphism from Γ_1 to Γ_2 . Then $Aut\Gamma_2 = \lambda^{-1}Aut\Gamma_1\lambda$, and $G = \lambda^{-1}G\lambda$. Since *G* acts transitively on the edge sets, we choose λ such that $\{L_1, R_1\}^{\lambda} = \{L_2, R_2\}$. Let σ be the automorphism of *G* induced by *λ*. Considering the vertex-stabilizers of L_1 , L_2 , R_1 and R_2 in *G*, we deduce that

$$
\{L_2, R_2\} = \{\lambda^{-1}L_1\lambda, \lambda^{-1}R_1\lambda\} = \{L_1^{\sigma}, R_1^{\sigma}\}.
$$

Assume further that $L_1 = L_2$, and either Γ_1 is symmetric or L_1 and R_1 are not conjugate under Aut(*G*). It is easily shown that λ may be chosen such that $(L_1, R_1)^{\lambda} = (L_1, R_2)$. This implies that $L_1^{\sigma} = L_1$ and $R_2 = R_1^{\sigma}$, and so part (2) of the lemma follows. \Box

Note that $Aut(G, \{L, R\})$ induces a subgroup of $AutBC(G, L, R)$, see (3.5). Denote *σ*_{*L,R*} the graph automorphism induced by $\sigma \in \text{Aut}(G, \{L, R\})$. Clearly,

$$
\operatorname{conj}(h)_{\{L,R\}} = h, \ \forall h \in L \cap R.
$$

Lemma 3.7. Aut $(G, \{L, R\})$ *acts faithfully on* $[G: L] \cup [G: R]$ *.*

Proof. Let *K* be the kernel of $Aut(G, \{L, R\})$ acting on $[G : L] \cup [G : R]$. Then $K \leq$ Aut (G, L, R) . Let $\sigma \in K$ and $x \in G$. It is easily shown that both L and R contains a normal subgroup $\langle yx^{\sigma}x^{-1}y^{-1} | y \in G \rangle$ of *G*, see the proof of Lemma 3.1. Since $L \cap R$ is core-free in *G*, we have $x^{\sigma}x^{-1} = 1$. Thus $x^{\sigma} = x$ for all $x \in G$ and $\sigma \in K$. Then $K = 1$, and the lemma follows. \Box

Lemma 3.8. *Let* $\Gamma = BC(G, L, R)$ *and* $N = \mathbf{N}_{Aut} \Gamma(G)$ *. Then* $N = G\{\sigma_{\{L, R\}} \mid \sigma \in$ $Aut(G, \{L, R\})$.

Proof. Let *H* be the edge-stabilizer of $\{L, R\}$ in *N*. We have $H \geq \{\sigma_{\{L, R\}} \mid \sigma \in$ $Aut(G, \{L, R\}) \simeq Aut(G, \{L, R\})$ and, since Γ is *G*-edge-transitive, $N = GH$. Considering the conjugation of *H* on *G*, we have a homomorphism $\rho : H \to \text{Aut}(G)$ with kernel equal to $\mathbf{C}_H(G)$. Note that Γ has valency $|L:(L\cap R)|>1$. It follows that N acts faithfully on the edge set of Γ . Then $\mathbf{C}_H(G)$ is faithful and semiregular on the edge set of Γ . Thus $\mathbf{C}_H(G) = 1$, and ρ is injective. In particular, $|H| = |\rho(H)|$.

Let $t \in H$. Then either $L^t = L$ and $R^t = R$, or $L^t = R$ and $R^t = L$. Now consider the vertex-stabilizers of *L*, *R*, L^t and R^t in *G*. If $L^t = L$ and $R^t = R$, then $L^{\rho(t)} = t^{-1}Lt = L$ and $R^{\rho(t)} = t^{-1}Rt = R$; if $L^t = R$ and $R^t = L$ then $L^{\rho(t)} = L$ $t^{-1}Lt = R$ and $R^{\rho(t)} = t^{-1}Rt = L$. For both cases, $\rho(t) \in Aut(G, \{L, R\})$. Thus $|H| = |\rho(H)| \leq |\text{Aut}(G, \{L, R\})| = |\{\sigma_{\{L, R\}} \mid \sigma \in \text{Aut}(G, \{L, R\})\}|.$ Recalling that $\{\sigma_{\{L,R\}} \mid \sigma \in \text{Aut}(G,\{L,R\})\} \leq H$, it follows that $\{\sigma_{\{L,R\}} \mid \sigma \in \text{Aut}(G,\{L,R\})\} = H$. Then the lemma follows. □

For $g_1 \in \mathbb{N}_G(L)$ and $g_2 \in \mathbb{N}_G(R)$, define

$$
\tilde{g_1}: \ [G:L] \cup [G:R] \to Lx \mapsto Lg_1^{-1}x, Ry \mapsto Ry; \n\tilde{g_2}: \ [G:L] \cup [G:R] \to Lx \mapsto Lx, Ry \mapsto Rg_2^{-1}y.
$$

Then

 $\mathbf{C}_{Sym([G:L])\times Sym([G:R])}(G) = {\{\tilde{g}_1 \tilde{g}_2 \mid g_1 \in \mathbf{N}_G(L), g_2 \in \mathbf{N}_G(R)\}.$

Further, we have the following lemma.

Lemma 3.9. *Let* $\Gamma = BC(G, L, R)$ *. If* $g_1 \in N_G(L)$ *and* $g_2 \in N_G(R)$ *, then* $\tilde{g}_1 \hat{g}_2 \in$ $\mathbf{C}_{\text{Aut}\Gamma}(G)$ if and only if $Rg_2^{-1}g_1L = RL$, and $\tilde{g}_1\hat{g}_2 = 1$ if and only if $g_1 \in L$ and $g_2 \in R$. **Lemma 3.10.** *Let* $\Gamma = (V, E)$ *be a connected G-semisymmetric graph of valency* $k > 1$ *.* Then $\Gamma \cong BC(G, L, R)$ for some $L, R < G$ with $|L| = |R|, k = |L : (L \cap R)|, G = \langle L, R \rangle$ $and L \cap R$ *core-free in G*.

Proof. Clearly, for $v \in V$, the stabilizer G_v acts transitively $\Gamma(v)$, and so $k = |G_v|$: $(G_v \cap G_{v'})$ for $v' \in \Gamma(v)$. Let *U* and *W* be the *G*-orbits on *V*, and fix an edge $\{u, w\} \in E$ with $u \in U$ and $w \in W$. Since Γ is regular, we have $|G: G_u| = |U| = |W| = |G: G_w|$, and so $|G_u| = |G_w|$. Since Γ is connected, $G = \langle G_u, G_w \rangle$. Since Γ has valency $k > 1$, it is easily shown that *G* acts faithfully on *E*. If $G_u \cap G_w$ contains a normal subgroup *N* of *G* then *N* fixes *E* point-wise, and so $N = 1$. Thus $G_u \cap G_w$ is core-free in *G*. Put $L = G_u$ and $R = G_w$. Noting that $U = \{u^x | x \in G\}$ and $W = \{w^y | y \in G\}$, define

 $\rho: U \cup W \to [G:L] \cup [G:R], u^x \mapsto Lx, w^y \mapsto Ry.$

Then ρ is a bijection and, for $u^x \in U$ and $w^y \in W$,

$$
\{u^x, w^y\} \in E \Leftrightarrow w^{yx^{-1}} \in \Gamma(u) \Leftrightarrow yx^{-1} \in G_w G_u = RL.
$$

Thus ρ is an isomorphism from Γ to $\mathsf{BC}(G, L, R)$, and the lemma follows. \Box

Example 3.11. Let $T = J_1$. Computation with GAP [14] shows that

- (i) *T* has a unique conjugacy class of subgroups isomorphic to D_{12} , and each subgroup D_{12} is self-normalized in T ; and
- (ii) fixing a subgroup $L \cong D_{12}$, there exist exactly 6 subgroups $R \cong D_{12}$ with $|L \cap R|$ 4 and $\langle L, R \rangle = G$, which form two classes under the conjugation of L.

Thus, up to isomorphism of graphs, we get two connected *T*-semisymmetric cubic graphs, say $\Gamma_1 = BC(T, L, R_1)$ and $\Gamma_2 = BC(T, L, R_2)$ with the stabilizers of two adjacent vertices isomorphic to D_{12} . We next show that $\Gamma_1 \cong \Gamma_2$.

Since $N_T(L) = L$, there is a unique $o \in G$ with $R_1 = o^{-1}Lo$. Set $R = oLo^{-1}$. Then $\langle L, R \rangle = T$ and $|L \cap R| = 4$. Suppose that $R = x^{-1}R_1x$ for some $x \in L$. We have $oLo^{-1} = x^{-1}o^{-1}Lox$, yielding $o^{-1} = ox$, and so $o^2 = x^{-1} \in L$. Then there exists a connected *T*-symmetric cubic graph $\text{Cos}(T, L, L \cap L^o, o)$, which is impossible by [21, Lemma 6.3. Therefore, R and R_1 are not conjugate under L , and so we may choose $R_2 = oLo^{-1}$. Noting that $\{L, R_2\}^{\text{conj}(o)} = \{L, R_1\}$, we have $\Gamma_1 \cong \Gamma_2$ by Lemma 3.6. □

4. THE GRAPHS ARISING FROM J_1

In this section, we assume that $\Gamma = (V, E)$ is a connected edge-transitive cubic graph of order $2n$ with *n* even and square-free. Assume further that $J_1 \leq \text{Aut}\Gamma$.

Lemma 4.1. *Suppose that* Γ *is* J_1 *-edge-transitive. Then* $Aut\Gamma = J_1$ *, and either*

- (1) Γ *is isomorphic to one of ten non-isomorphic graphs in Example* 3.5*; or*
- (2) Γ *is semisymmetric and isomorphic to the graph constructed in Example* 3.11*.*

Proof. Let $T = J_1$. We discuss in two cases according whether Γ is bipartite or not.

Case 1. Assume that Γ is not bipartite. Then Γ is *T*-symmetric, and $2n = |V| =$ $|T : T_u|$ for $u \in V$. We have $|T_u| = 6$, and so $T_u \cong S_3$ by Lemma 2.1. Then Γ is isomorphic one of the ten coset graphs $Cos(T, H, K, o)$ given as in Example 3.5. Let $A = \text{AutCos}(T, H, K, o)$. Then $T = A^{(\infty)}$ by Theorem 2.10. In particular, $N_A(T) =$ AutCos (T, H, K, o) . Note that every automorphism of T is induced by the conjugation

of some element in *T*. Computation with GAP shows that $Aut(T, H) \cong D_{12}$, and if $\sigma \in \text{Aut}(T, H)$ such that $Ho^{\sigma}H = HoH$ then $\sigma = \text{conj}(h)$ for some $h \in H$. We deduce from Lemma 3.4 that $AutCos(T, H, K, o) = T$. Thus every graph in Example 3.5 has automorphism group *T*. By Lemma 3.3, these coset graphs are not isomorphic to each other, and part (1) if the lemma follows.

Case 2. Assume that Γ is bipartite. Then *T* is intransitive on *V* ; otherwise, *T* has a subgroup of index 2, and so T is not simple, a contradiction. Thus Γ is T-semisymmetric, and $n = |T : T_u|$ for $u \in V$. We have $|T_u| = 12$. By Lemma 2.1, we assume that $T_u \cong D_{12}$ and $T_w \cong D_{12}$ or A_4 , where $w \in \Gamma(u)$. If $T_u \not\cong T_w$ then computation with GAP shows that $|\langle T_u, T_w \rangle| = 660 \neq |T|$, which contradicts the fact that Γ is connected. We have $T_u \cong T_w \cong D_{12}$. By Lemma 3.10, Γ is isomorphic to the bi-coset graph BC(*T, L, R*₁) given in Example 3.11. By Theorem 2.10, we have $T \leq \text{AutBC}(T, L, R_1)$. Computation with GAP shows that $Aut(T, \{L, R_1\}) = \{ \text{conj}(h) \mid h \in L \cap R_1 \}$. It follows from Lemma 3.8 that $AutBC(T, L, R_1) = T$. Then Γ is semisymmetric, and part (2) of the lemma follows. \Box

Theorem 4.2. *Let* $A = \text{Aut}\Gamma$ *. Assume that* $A^{(\infty)} = J_1$ *. Then* Γ *is* J_1 *-edge-transitive, and* Γ *is described as in Lemma* 4.1*.*

Proof. By Lemma 4.1, it suffices to show that Γ is J₁-edge-transitive. We next suppose that Γ is not J₁-edge-transitive, and produce a contradiction. By Lemma 2.9, Γ is bipartite, and $T := J_1$ is transitive on one part of Γ say W and has three orbits on the other part *U*. Let $\{u, w\} \in E$ with $u \in U$ and $w \in W$. Then $n = |T : T_w|$ and $n = 3|T : T_u|$. It follows that $|T_w| = 4$ and $|T_u| = 12$.

Let $G = \langle A_u, A_w \rangle$ and $M = \text{rad}(G)$. By Lemma 2.9, $|M| = 3$ or 6. Clearly, the quotient graph Γ_M is bipartite. Then, by Lemma 2.7, Γ_M is \overline{T} -semisymmetric. In addition, $|\bar{T}:\bar{T}_{\bar{v}}| = \frac{n}{|M|}$ $\frac{n}{|M|}$ is square-free, where $v \in V$. By Lemma 2.1 and inspecting the subgroups of J_1 , we conclude that $\bar{T}_{\bar{u}}$ and $\bar{T}_{\bar{w}}$ are isomorphic to D_{12} or A_4 . In particular, *n* $\frac{n}{|M|}$ is even, and so |M| is odd. We have $|M| = 3$. Recall that $\bar{T}_{\bar{w}} \cong T_{\bar{w}}$ and $M \cong T_{\bar{w}}/T_{w}$, see (2.1) and (2.2). This implies that $\bar{T}_{\bar{w}} \cong A_4$, and so $\bar{T}_{\bar{u}} \cong D_{12}$ by Lemma 2.1. However, $\sin \text{ce}$ $|\vec{T} : \vec{T}_{\bar{v}}|$ is even and square-free, (2) of Lemma 4.1 is available for the pair (\bar{T}, Γ_M) , which leads to $\bar{T}_{\bar{w}} \cong \bar{T}_{\bar{u}} \cong D_{12}$, a contradiction. This completes the proof. □

5. $PSL_2(p)$ -SYMMETRIC GRAPHS

In this section, $\Gamma = (V, E)$ is a connected *T*-symmetric cubic graph of order 2*n*, where $T = \text{PSL}_2(p)$ for some prime $p \ge 5$, and *n* is even and square-free. Choose $\varepsilon, \eta \in \{1, -1\}$ with $p + \varepsilon$ and $p + \eta$ divisible by 3 and 4, respectively. Our discussion is based on the subgroup structure of $PSL_2(p)$ and $PGL_2(p)$. The reader is referred to [17, II.8.27] and [3, Theorem 3] for the subgroups of $PSL_2(p)$, and to [4, Theorem 2] for the subgroups of $PGL_2(p)$. For convenience, we list the subgroups of $PSL_2(p)$ and $PGL_2(p)$ in the following two lemmas.

Lemma 5.1. *Let* $p \geq 5$ *be a prime. Then the subgroups of* $PSL_2(p)$ *are listed as follows.*

- (1) *One conjugacy class of* $\frac{p(p-n)}{2}$ *cyclic subgroups* \mathbb{Z}_2 *.*
- (2) One conjugacy class of $\frac{p(p+1)}{2}$ cyclic subgroups \mathbb{Z}_d , where $d\left|\frac{p\pm 1}{2}\right|$ $\frac{\pm 1}{2}$ *and* $d > 2$ *.*
- (3) $\frac{p(p^2-1)}{24}$ elementary abelian subgroups \mathbb{Z}_2^2 .
- $(4) \frac{p(p^2-1)}{4d}$ $\frac{d^{2}-1}{4d}$ dihedral subgroups D_{2d} , where $d\left|\frac{p\pm1}{2}\right|$ $\frac{\pm 1}{2}$ *and* $d > 2$ *.*
- (5) *One conjugacy class of* $p + 1$ *subgroups* $\mathbb{Z}_p \times \mathbb{Z}_d$ *, where* $d \left| \frac{p-1}{2} \right|$ $\frac{-1}{2}$ and $d \geqslant 1$.
- (6) $\frac{p(p^2-1)}{24}$ *subgroups* A₄.
- (7) *Two conjugacy classes of subgroups* S_4 , each consists of $\frac{p(p^2-1)}{48}$ subgroups, where $p \equiv \pm 1 \pmod{8}$.
- (8) *Two conjugacy classes of subgroups* A_5 , each consists of $\frac{p(p^2-1)}{120}$ subgroups, where $p \equiv \pm 1 \pmod{10}$.

Moreover, isomorphic subgroups of $PSL_2(p)$ *are conjugate in* $PGL_2(p)$ *.*

Lemma 5.2. Let $p \geq 5$ be a prime. Then the subgroups of $\text{PGL}_2(p)$ are listed as follows.

- (1) *The subgroup* $PSL_2(p)$ *.*
- (2) *Two conjugacy classes of cyclic subgroup* \mathbb{Z}_2 , one class consists of $\frac{p(p-\eta)}{2}$ subgroups *which lie in* $PSL_2(p)$ *, and the other one consists of* $\frac{p(p+\eta)}{2}$ *subgroups.*
- (3) *One conjugacy class of* $\frac{p(p+1)}{2}$ *cyclic subgroups* \mathbb{Z}_d *, where* $d \mid p \pm 1$ *and* $d > 2$ *.*
- (4) *Two conjugacy classes of subgroups* \mathbb{Z}_2^2 , one class consists of $\frac{p(p^2-1)}{24}$ subgroups *which lie in* $PSL_2(p)$ *, and the other one consists of* $\frac{p(p^2-1)}{8}$ $\frac{z-1}{8}$ subgroups.
- (5) *Two conjugacy classes of subgroups* D_{2d} *, one class consists of* $\frac{p(p^2-1)}{4d}$ $\frac{a^2-1}{4d}$ subgroups *which lie in* $PSL_2(p)$ *, and the other one consists of* $\frac{p(p^2-1)}{4d}$ $\frac{p^2-1}{4d}$ subgroups, where $d\left(\frac{p\pm 1}{2}\right)$ 2 *and* $d > 2$ *.*
- (6) *One conjugacy class of* $\frac{p(p^2-1)}{2d}$ $\frac{2^{2}-1}{2d}$ subgroups D_{2d} *, where* $d > 2$ *and* $\frac{p\pm 1}{d}$ *is an odd integer.*
- (7) *One conjugacy class of* $p + 1$ *subgroups* $\mathbb{Z}_p : \mathbb{Z}_d$ *, where* $d \mid (p 1)$ *and* $d \ge 1$ *.*
- (8) *One conjugacy class of* $\frac{p(p^2-1)}{24}$ *subgroups* A₄.
- (9) *One conjugacy class of* $\frac{p(p^2-1)}{24}$ *subgroups* S₄.
- (10) *One conjugacy classes of* $\frac{p(p^2-1)}{60}$ *subgroups* A₅*, where* $p \equiv \pm 1 \pmod{10}$ *.*

By Lemma 2.1 and inspecting the subgroups of $PSL_2(p)$, we have $T_v \cong \mathbb{Z}_3$, S_3 , D_{12} or S₄, where $v \in V$. Then

(5.1)
$$
p \equiv 2^{i+2} \pm 1 \pmod{2^{i+3}}
$$
 and $|T_v| = 2^i \cdot 3$ for $0 \le i \le 3$.

We deduce from Lemmas 5.1 and 5.2 that *T* contains at most two conjugacy classes of subgroups isomorphic to T_v , and these subgroups are all conjugate in $PGL_2(p)$. Thus up to isomorphism of graphs, we fix two subgroups *K, H* of *T*, and write

$$
\Gamma \cong \text{Cos}(T, H, K, o),
$$

where $K < H \cong T_v$, $|H : K| = 3$ and $o \in \mathbb{N}_T(K)$ with $o^2 \in K$ and $\langle o, H \rangle = T$.

By Theorem 2.10, $T \leq \text{Aut}\Gamma$. Noting that $\text{Aut}(T) = \{\text{conj}(q) \mid q \in \text{PGL}_2(p)\}\$, we have

(5.2)
$$
\text{AutCos}(T, H, K, o) = T\{\text{conj}(g)_H \mid g \in \mathbf{N}_{\text{PGL}_2(p)}(H, HoH)\},
$$

by Lemma 3.4. Recall that $\text{conj}(q)_H = q\hat{q}$ for $q \in \mathbb{N}_T(H)$.

5.1. $|H| = 3$. Assume that $H \cong \mathbb{Z}_3$. Then $p \equiv \pm 3 \pmod{8}$ by (5.1), $K = 1$, and *o* is an involution. Let *S* and *O* be the sets of involutions $x \in T$ with $\langle x, H \rangle \neq T$ and $\langle x, H \rangle = T$, respectively. Then $|S| + |O| = \frac{p(p - \eta)}{2}$ $\frac{(-\eta)}{2}$, see Lemma 5.1 (1).

Lemma 5.3.

$$
|S| = \left\{ \begin{array}{cl} \frac{3p+3\varepsilon+|\varepsilon+\eta|}{2} & \text{if } p \not\equiv \pm 1 \, (\text{mod } 10), \varepsilon+\eta \neq -2, \\ \frac{7p-5}{2} & \text{if } p \not\equiv \pm 1 \, (\text{mod } 10), \varepsilon=\eta=-1, \\ \frac{7p+7\varepsilon+|\varepsilon+\eta|}{2} & \text{if } p \equiv \pm 1 \, (\text{mod } 10), \varepsilon+\eta \neq -2, \\ \frac{11p-9}{2} & \text{if } p \equiv \pm 1 \, (\text{mod } 10), \varepsilon=\eta=-1. \end{array} \right.
$$

Proof. For an arbitrary $x \in S$, inspecting the subgroups of $PSL_2(p)$, we deduce that $\langle x, H \rangle \cong S_3$, \mathbb{Z}_6 (if $\varepsilon = \eta$), $\mathbb{Z}_p: \mathbb{Z}_6$ (if $\varepsilon = \eta = -1$), A₄, or A₅ (if $p \equiv \pm 1 \pmod{10}$). Let $\Delta_1 = \{X < PSL_2(p) \mid H < X \cong S_3\},\ \Delta_2 = \{X < PSL_2(p) \mid H < X \cong \mathbb{Z}_6\}$ when $\varepsilon = \eta$, $\Delta_3 = \{X < PSL_2(p) \mid H < X \cong \mathbb{Z}_p: \mathbb{Z}_6\}$ when $\varepsilon = \eta = -1, \, \Delta_4 = \{X < PSL_2(p) \mid H < \mathbb{Z}_6\}$ $X \cong A_4$, and $\Delta_5 = \{X < PSL_2(p) \mid H < X \cong A_5\}$ when $p \equiv \pm 1 \pmod{10}$. Then $x \in S$ if and only if *x* is an involution contained in one member of Δ_i for some *i*.

By Lemma 5.1, $PSL_2(p)$ contains exactly $\frac{p(p-\varepsilon)}{2}$ subgroups \mathbb{Z}_3 , $\frac{p(p^2-1)}{12}$ subgroups S_3 , *p*(*p−ε*) $\frac{p(z)}{2}$ subgroups \mathbb{Z}_6 , $p - \varepsilon$ subgroups \mathbb{Z}_p : \mathbb{Z}_6 , $\frac{p(p^2-1)}{24}$ subgroups A₄, and $\frac{p(p^2-1)}{60}$ subgroups A₅. Note that S_3 , \mathbb{Z}_6 , $\mathbb{Z}_p:\mathbb{Z}_6$, A_4 and A_5 contain exactly 1, 1, p, 4 and 10 subgroups \mathbb{Z}_3 , respectively. Enumerating the pairs (Y, X) with $\mathbb{Z}_3 \cong Y < X \cong S_3$, \mathbb{Z}_6 , $\mathbb{Z}_p: \mathbb{Z}_6$, A₄ or A_5 , we have

$$
\frac{p(p-\varepsilon)}{2}|\Delta_i| = \begin{cases} \frac{\frac{p(p^2-1)}{12},}{\frac{p(p-\varepsilon)}{2},} & i = 1; \\ \frac{p(p-\varepsilon)}{2}, & i = 2, \varepsilon = \eta; \\ p(p-\varepsilon), & i = 3, \varepsilon = \eta = -1; \\ \frac{4\frac{p(p^2-1)}{24}}{10\frac{p(p^2-1)}{60}}, & i = 5. \end{cases}
$$

It follows that $|\Delta_1| = \frac{p+\varepsilon}{6}$ $\frac{1+\varepsilon}{6}$, $|\Delta_2| = 1$ if $\varepsilon = \eta$, $|\Delta_3| = 2$ if $\varepsilon = \eta = -1$, $|\Delta_4| = \frac{p+\varepsilon}{3}$ $\frac{+\varepsilon}{3}$, and $|\Delta_5| = \frac{p+\varepsilon}{3}$ $\frac{+ε}{3}$ if $p \equiv \pm 1 \pmod{10}$.

Let S_i be the set of involutions contained in the members of Δ_i , where $1 \leq i \leq 5$. Then $x \in S$ if and only if $x \in S_i$ for some *i*. Note that none of S_3 , A_4 and A_5 contains elements of order 6, and A_4 has no subgroup isomorphic to S_3 . It is easily shown that the following hold: $|S_1| = \frac{p+\epsilon}{2}$ $\frac{1}{2}$; $|S_2| = 1$ and $(S_1 \cup S_4 \cup S_5) \cap S_2 = \emptyset$ when $\varepsilon = \eta$; $(S_1 \cup S_4 \cup S_5) \cap S_3 = \emptyset$ when $\varepsilon = \eta = -1$; $|S_4| = p + \varepsilon$ and $S_1 \cap S_4 = \emptyset$. Moreover, for $\varepsilon = \eta = -1$, putting $\Delta_2 = \{X\}$ and $\Delta_3 = \{X_1, X_2\}$, it is easily shown that $X_1 \cap X_2 = X$, this implies that $S_2 \subset S_3$ and $|S_3| = 2p - 1$.

Assume first that $p \neq \pm 1 \pmod{10}$. If $\varepsilon = \eta = 1$ then $S = S_1 \cup S_2 \cup S_4$, and so $|S| = \frac{p+1}{2} + 1 + p + 1 = \frac{3p+3\varepsilon + |\varepsilon + \eta|}{2}$. If $\varepsilon \neq \eta$, i.e., $\varepsilon + \eta = 0$ then $S = S_1 \cup S_4$, and $|\mathcal{S}| = \frac{p+\varepsilon}{2} + p + \varepsilon = \frac{3p+3\varepsilon+|\varepsilon+\eta|}{2}$ $\frac{1}{2}$ $\frac{1}{2}$. If $\varepsilon = \eta = -1$ then $S = S_1 \cup S_3 \cup S_4$, and so $|S| = \frac{p-1}{2} + 2p - 1 + p - 1 = \frac{7p-5}{2}.$

Assume next that $p \equiv \pm 1 \pmod{10}$. In this case, each subgroup of $PSL_2(p)$ which is isomorphic to S_3 or A_4 is contained in a subgroup isomorphic to A_5 . It follows that each member of $\Delta_1 \cup \Delta_4$ is a subgroup of some member of Δ_5 . Then one of the following holds: $S = S_5$ if $\varepsilon \neq \eta$; $S = S_2 \cup S_5$ if $\varepsilon = \eta = 1$; $S = S_3 \cup S_5$ if $\varepsilon = \eta = -1$. For a given subgroup of order 3 in A_5 , it is easily checked that A_5 contains exactly

CUBIC GRAPHS 17

one subgroup which is isomorphic to S_3 and contains the subgroup of order 3, and two subgroups which are isomorphic to A_4 and contain the subgroup of order 3. From this observation, we deduce that each member of Δ_5 contributes $15-3-2 \cdot 3=6$ involutions to $S_5 \setminus (S_1 \cup S_4)$. Thus $|S_5 \setminus (S_1 \cup S_4)| = 6\frac{p+\varepsilon}{3} = 2(p+\varepsilon)$. If $\varepsilon \neq \eta$ then $\varepsilon + \eta = 0$, and $|S| = |S_5| = |S_5 \setminus (S_1 \cup S_4)| + |S_1| + |S_4| = 2(p + \varepsilon) + \frac{p + \varepsilon}{2} + p + \varepsilon = \frac{7p + 7\varepsilon}{2} = \frac{7p + 7\varepsilon + |\varepsilon + \eta|}{2}$ $\frac{1+\left|\varepsilon+\eta\right|}{2}$. If $\varepsilon = \eta = 1$ then $|S| = |S_2| + |S_5| = 1 + \frac{7p+7\varepsilon}{2} = \frac{7p+7\varepsilon+|\varepsilon+\eta|}{2}$ $\frac{1}{2}$. If $\varepsilon = \eta = -1$ then $|S| = |S_3| + |S_5| = 2p - 1 + \frac{7p + 7\varepsilon}{2} = \frac{11p - 9}{2}$ $\frac{p-9}{2}$. This completes the proof. \Box

It is easy to see that $|S| < \frac{p(p-\eta)}{2}$ $\frac{p(p-1)}{2}$. We have $|O| = \frac{p(p-1)}{2} - |S| > 0$. Clearly, *O* is invariant under the conjugation of $\mathbf{N}_{\mathrm{PGL}_2(p)}(H)$. Noting that $\mathbf{N}_{\mathrm{PGL}_2(p)}(H) \cong D_{2(p+\varepsilon)}$, we write

$$
\mathbf{N}_{\mathrm{PGL}_2(p)}(H) = \langle a, b \rangle,
$$

where *a* has order $p + \varepsilon$ and *b* is an involution not contained in *T*. Then

$$
H \leqslant \langle a^2 \rangle < \langle a \rangle, \ \mathbf{N}_T(H) = \langle a^2, ab \rangle.
$$

Lemma 5.4. (1) *If* $o \in O$ *then* $C_{PGL_2(p)}(o) \cap \langle a \rangle = 1$ *.* (2) If $Ho_1H = Ho_2H$ for $o_1, o_2 \in O$, then o_1 and o_2 are conjugate under $\langle a \rangle$.

Proof. Assume that $o \in O$ and $y \in C_{PGL_2(p)}(o) \cap \langle a \rangle$. Then $PSL_2(p) = \langle o, H \rangle \le$ $\mathbf{C}_{\text{PGL}_2(p)}(y)$, forcing that $y = 1$. Thus (1) of the lemma follows.

Assume that $Ho_1H = Ho_2H$ for some $o_1, o_2 \in O$. Then $o_2 = xo_1y$ for some $x, y \in H$. If $xy = 1$ then $x = y^{-1}$, and (2) follows. Suppose that $yx \neq 1$, and so $H = \langle yx \rangle$. Since o_2 is an involution, we have $xo_1yxo_1y = o_2^2 = 1$, yielding $o_1yxo_1 = x^{-1}y^{-1} = (yx)^{-1}$. Then $T = \langle o_1, H \rangle = \langle o_1, yx \rangle \cong S_3$, a contradiction. This completes the proof. □

By (1) of Lemma 5.4, if $o \in O$ then either $N_{PGL_2(p)}(H) \cap C_{PGL_2(p)}(o) = 1$ or $o \in$ $\mathbf{C}_{\text{PGL}_2(p)}(a^i b)$ for some integer *i*. For the latter case, $o \in \mathbf{C}_T(a^i b)$ as $o \in T$. Define

$$
O_1 = \{o \in O \mid \exists i \text{ s.t. } o \in \mathbf{C}_T(a^{2i+1}b)\},\
$$

$$
O_2 = \{o \in O \mid \exists i \text{ s.t. } o \in \mathbf{C}_T(a^{2i}b)\}.
$$

Clearly, $O_1 \cap O_2 = \emptyset$.

Lemma 5.5.

$$
|O_1| = \begin{cases} \frac{(p+\varepsilon)(p+\eta-2|\varepsilon+\eta|)}{4} & \text{if } p \not\equiv \pm 1 \pmod{10}, \\ \frac{(p+\varepsilon)(p+\eta-2|\varepsilon+\eta|-8)}{4} & \text{if } p \equiv \pm 1 \pmod{10}. \end{cases}
$$

Proof. Let $x \in C_T(a^{2i+1}b) \setminus \{a^{2i+1}b\}$ be an involution. Then $x \in O_1$ if and only if $\langle x, H \rangle = T$, or equivalently, $\langle x, H, a^{2i+1}b \rangle = T$. Note that $\langle H, a^{2i+1}b \rangle \cong S_3$. Suppose that $\langle x, H, a^{2i+1}b \rangle \neq T$. Inspecting the subgroups of *T*, we deduce that either $\langle x, H, a^{2i+1}b \rangle \leq$ $N_T(H)$, or $p \equiv \pm 1 \pmod{10}$ and $\langle x, H, a^{2i+1}b \rangle \cong A_5$. The former case implies that *x* lies in the center of $\mathbf{N}_T(H)$, and then $\varepsilon = \eta$, $x = a^{\frac{p+\varepsilon}{2}}$ or $a^{\frac{p+\varepsilon}{2}}a^{2i+1}b$. Assume that the latter case occurs. Enumerating the subgroups A_5 which contain a given subgroup S_3 , we deduce that $\langle H, a^{2i+1}b \rangle$ is contained exactly in two subgroups A_5 . It follows that there exist exactly four choices of *x* with $\langle x, H, a^{2i+1}b \rangle \cong A_5$. Thus

$$
|\mathbf{C}_T(a^{2i+1}b)\cap O_1| = \begin{cases} \frac{p+\eta-2|\varepsilon+\eta|}{2} & \text{if } p \not\equiv \pm 1 \pmod{10}, \\ \frac{p+\eta-2|\varepsilon+\eta| - 8}{2} & \text{if } p \equiv \pm 1 \pmod{10}. \end{cases}
$$

Assume that $o \in \mathbf{C}_T(a^{2i+1}b) \cap \mathbf{C}_T(a^{2j+1}b) \cap O_1$. Then $o \in \mathbf{C}_T(a^{2(i-j)})$. If $a^{2(i-j)} \neq 1$ then $o \in \mathbf{C}_T(a^{2(i-j)}) = \mathbf{N}_T(H)$, which is impossible as $\langle o, H \rangle = T$. Thus $a^{2(i-j)} = 1$, and so $a^{2i+1}b = a^{2j+1}b$. This says that every $o \in O_1$ centralizes exactly one of $\frac{p+\varepsilon}{2}$ involutions $a^{2i+1}b$. Then $|O_1|$ is desired as in the lemma. □

 ${\bf Lemma \ 5.6.} \ \left| {\cal O}_2 \right| = \frac{(p+\varepsilon)(p-\eta-6)}{4}$ $\frac{p-\eta-6)}{4}$.

Proof. Let $x \in C_T(a^{2i}b)$ be an involution. Then $x \in O_2$ if and only if $\langle x, H \rangle = T$, or equivalently, $\langle x, H, a^{2i}b \rangle = \text{PGL}_2(p)$. Note that $\langle H, a^{2i}b \rangle \cong S_3$. Suppose that $\langle x, H, a^{2i}b \rangle \neq \text{PGL}_2(p)$. Inspecting the subgroups of $\text{PGL}_2(p)$, either $\langle x, H, a^{2i}b \rangle \leq$ $N_{\text{PGL}_2(p)}(H)$, or $\langle x, H, a^{2i}b \rangle \cong S_4$. The former case implies that either $\varepsilon = \eta$ and $x = a^{\frac{p+\varepsilon}{2}}$, or $\varepsilon \neq \eta$ and $x = a^{\frac{p+\varepsilon}{2}} a^{2i} b$. For $\langle x, H, a^{2i} b \rangle \cong S_4$, enumerating the subgroups S_4 which contain a given subgroup S_3 , we deduce that $\langle H, a^{2i}b \rangle$ is contained exactly in two subgroups S_4 . Noting that $\langle x, H, a^{2i}b \rangle \cap T \cong A_4$, it follows that there exist exactly two choices of *x* with $\langle x, H, a^{2i}b \rangle \cong S_4$. Since $\mathbf{C}_T(a^{2i}b) \cong D_{p-\eta}$, we have $|C_T(a^{2i}b) \cap O_2| = \frac{p - \eta - 6}{2}$ $\frac{\eta-6}{2}$. Similarly as in the proof of Lemma 5.5, it is easily shown that every $o \in O_2$ centralizes exactly one of $\frac{p+\varepsilon}{2}$ involutions $a^{2i}b$. Then $|O_2|$ is desired as in the lemma. \Box

It is easy to check that $|O_1| + |O_2| = \frac{p(p-\eta)}{2} - |S| = |O|$, and so $O = O_1 \cup O_2$. Clearly, O_1 and O_2 are invariant under the conjugation of $\langle a \rangle$, and so each of them is the union of some $\langle a \rangle$ -conjugacy classes. Selecting a representative *o* from each $\langle a \rangle$ -conjugacy class in *O* such that $N_{\text{PGL}_2(p)}(H) \cap C_{\text{PGL}_2(p)}(o) = \langle ab \rangle$ or $\langle b \rangle$, we have a set *O*₀ of ω_0 involutions, where

$$
\omega_0 = \begin{cases} \frac{p - |\varepsilon + \eta| - 3}{2} & \text{if } p \not\equiv \pm 1 \pmod{10}, \\ \frac{p - |\varepsilon + \eta| - 7}{2} & \text{if } p \equiv \pm 1 \pmod{10}. \end{cases}
$$

Then O_0 consists of $\omega_0 - \frac{p - \eta - 6}{4}$ $\frac{\eta-6}{4}$ involutions from O_1 , and $\frac{p-\eta-6}{4}$ involutions from O_2 .

Theorem 5.7. *Assume that* $H \cong \mathbb{Z}_3$ *. Then* Γ *is isomorphic to one of* ω_0 *non-isomorphic* $symmetric \ cubic \ graphs, \frac{p-\eta-6}{4} \ of \ them \ have \ automorphism \ group \ T \langle conj(b)_H \rangle \cong \text{PGL}_2(p)$, and the others have automorphism group $\langle a\hat{b} \rangle \times T$.

Proof. By the foregoing argument, $\Gamma \cong \text{Cos}(T, H, 1, o)$ for some $o \in O_0$.

Let $o \in O_0$. Then $AutCos(T, H, 1, o) \geqslant \langle a\hat{b} \rangle \times T$ or $T\langle conj(b)_H \rangle$ depending on $o \in O_1$ or $o \in O_2$, respectively. Pick an arbitrary element $z \in \mathbb{N}_{PGL_2(p)}(H) \setminus H$ with $Hz^{-1}ozH =$ *HoH*. We have $z^{-1}oz = xoy$ for some $x, y \in H$, and so $xoyxoy = 1$, yielding $oyxo =$ $(yx)^{-1}$. If $yx \neq 1$ then $T = \langle o, H \rangle = \langle o, yx \rangle \cong S_3$, a contradiction. Then $yx = 1$, i.e, $y = x^{-1}$. Thus $z^{-1}oz = xoy = xox^{-1}$, and so $(zx)^{-1}ozx = o$. By the choice of O_0 , we have $\langle zx \rangle = \mathbf{N}_{\text{PGL}_2(p)}(H) \cap \mathbf{C}_{\text{PGL}_2(p)}(o) = \langle ab \rangle$ or $\langle b \rangle$. It follows that $\mathbf{N}_{\text{PGL}_2(p)}(H, HoH) =$ $H \langle ab \rangle$ or $H \langle b \rangle$. Thus, by (5.2), AutCos $(T, H, 1, o) = \langle \hat{ab} \rangle \times T$ or $T \langle \text{conj}(b)_H \rangle$.

By Lemma 5.4 and the choice of O_0 , distinct elements in O_0 produce distinct coset graphs $Cos(T, H, 1, o)$. Then, by Lemma 3.3, we have ω_0 non-isomorphic symmetric cubic graphs $\textsf{Cos}(T, H, 1, o)$. This completes the proof.

5.2. $|H| = 6$. Assume that $H \cong S_3$. Then $p \equiv \pm 7 \pmod{16}$ by (5.1), $K \cong \mathbb{Z}_2$, and $o \in \mathbf{N}_T(K) = \mathbf{C}_T(K) \cong D_{p+\eta}$. Since $o^2 \in K$, either *o* is an involution or *o* has order 4. Let

$$
O = \{ o \in \mathbf{C}_T(K) \mid o^2 \in K, \langle o, H \rangle = T \}.
$$

Lemma 5.8. *O contains two inverse elements of order* 4 *and |O| −* 2 *involutions, and*

$$
|O| = \begin{cases} \frac{p+\eta-2|\varepsilon+\eta|}{2} - 2 & \text{if } p \not\equiv \pm 1 \pmod{10}, \\ \frac{p+\eta-2|\varepsilon+\eta|}{2} - 6 & \text{if } p \equiv \pm 1 \pmod{10}. \end{cases}
$$

Proof. Let $S = \{x \in \mathbf{C}_T(K) \setminus K \mid x^2 \in K, \langle o, H \rangle \neq T\}$. Then $|S| + |O| = \frac{p + \eta + 4}{2}$ $\frac{\eta+4}{2}$, and $S \cup O$ consists of two inverse elements of order 4 and $\frac{p+\eta}{2}$ involutions in $\mathbf{C}_T(K) \setminus K$.

Let $x \in S$. Then $\langle x, H \rangle \cong D_m$, S₄, or A₅ (if $p \equiv \pm 1 \pmod{10}$), where $m > 6$ is a divisor of $p + \varepsilon$ and divisible by 6. By the choice of x and inspecting the elements of D_m , S_4 and A_5 , we deduce that x is an involution. By Lemma 5.1, all subgroups S_3 of T are conjugate in $PGL_2(p)$. Enumerating the maximal subgroups of T which contain H, we deduce that *H* is contained exactly in one subgroup $D_{p+\epsilon}$, two subgroups S_4 , and two subgroups A_5 if $p \equiv \pm 1 \pmod{10}$. Let *L* be a maximal subgroup of *T* with $\langle x, H \rangle \leq L$. If $L \cong D_{p+\varepsilon}$ then $|S \cap L| = |\varepsilon + \eta|$. If $L \cong S_4$ or A_5 then $|S \cap L| = 2$. We deduce that $|S| = |\varepsilon + \eta| + 8$ if $p \equiv \pm 1 \pmod{10}$, or $|S| = |\varepsilon + \eta| + 4$ otherwise. Then *|O*| is given as in this lemma. Clearly, S consists of involutions. Then the lemma follows. \Box

Note that $K_o \subseteq O$ for $o \in O$. It follows that *O* is the union of $\frac{|O|}{2}$ cosets of *K*.

Lemma 5.9. *Let* $o, o' \in O$ *. Then* $Ho'H = HolH$ *if and only of* $Ko = Ko'$ *.*

Proof. Clearly, if $Ko' = Ko$ then $Ho'H = HoH$. Conversely, suppose that $Ho'H = HoH$ for distinct $o, o' \in O$. If *o* and *o'* are of order 4 then $K = \langle o^2 \rangle$ and $o' \in \{o, o^{-1}\}$, we have $K_0 = K_0'$. Thus, without loss of generality, we assume that *o* is an involution. Write $o = xo'y$ for some $x, y \in H$. Then $xo'yxo'y = o^2 = 1$, yielding $o'yxo' = (yx)^{-1}$.

If *yx* has order 3, then $o' \in \mathbb{N}_T(\langle yx \rangle) = \mathbb{N}_T(H)$, which contradicts that $\langle o', H \rangle = T$. Assume that $yx = 1$. Then $1 \neq y \notin K$, and $o = y^{-1}o'y \in \mathbf{C}_T(K) \cap \mathbf{C}_T(y^{-1}Ky)$. This implies that *o* centralizes $\langle K, y^{-1}Ky \rangle = H$. We have $\langle o, H \rangle \neq T$, a contradiction. Thus $yx \neq 1$. It follows that *yx* is an involution, and so $o' \in \mathbb{C}_T(yx)$. In addition, $yx \in K$ since, otherwise, *o'* centralizes $\langle K, yx \rangle = H$, which will give a contradiction.

Now we have $K = \langle yx \rangle$. Then $o = xo'y = y^{-1}(yx)o'y \in \mathbf{C}_T(K) \cap \mathbf{C}_T(y^{-1}Ky)$, and so *o* centralizes $\langle K, y^{-1}Ky \rangle$. If $y \notin K$ then $\langle K, y^{-1}Ky \rangle = H$, and so *o* centralizes $T = \langle o, H \rangle$, a contradiction. Then $y \in K$, and $x \in K$. Thus $o = xo'y = yxo' \in Ko'$, yielding $Ko = Ko'$. This completes the proof. □

Note that $N_{\text{PGL}_2(p)}(H) \cong D_{12}$, which has center of order 2. Let *c* be the involution in the center of $\mathbf{N}_{\mathrm{PGL}_2(p)}(H)$. Clearly, $o \in \mathbf{C}_{\mathrm{PGL}_2(p)}(K)$. Then $\mathbf{N}_{\mathrm{PGL}_2(p)}(H,K) = \langle c \rangle \times K$, and $c \in T$ if and only if $\varepsilon = \eta$. Consider the conjugation of $\langle c \rangle$ on $\Omega := \{ Ko \mid o \in O\}$.

Lemma 5.10. *The action of* $\langle c \rangle$ *on* Ω *produces* $\frac{2+|\varepsilon+\eta|}{2}$ *orbits of size* 1*, and* $\frac{|O|-|\varepsilon+\eta|-2}{4}$ *orbits of size* 2*.*

Proof. Pick an element $o_0 \in O$ of order 4. Then $co_0c = o_0^{-1}$, c fixes Ko_0 , and $\langle o_0, c \rangle \cong D_8$. It is easily shown that $\langle o_0, c \rangle \cap O = \{o_0, o_0^{-1}, o_0 c, o_0^{-1} c\}$ or $\{o_0, o_0^{-1}\}$ depending on whether $\varepsilon = \eta$ or not. Note that $Ko_0 = Ko_0^{-1}$ and $Ko_0c = Ko_0^{-1}c$. It follows $\langle o_0, c \rangle$ contributes 2+*|ε*+*η|* $\frac{\varepsilon + \eta}{2}$ fixed-points of $\langle c \rangle$ on Ω .

Now assume that *Ko* is fixed by $\langle c \rangle$, where $o \in O$. Then $K\text{co}c = Ko = Ko^{-1}$, yielding $\operatorname{coco} \in K$, and so *co* has order 2 or 4. Recall that $c, o \in \mathbf{C}_{\mathrm{PGL}_2(p)}(K) \setminus K$ and $\mathbf{C}_{\text{PGL}_2(p)}(K) \cong D_{2(p+\eta)}$. If *co* has order 4 then $co \in \{o_0, o_0^{-1}\}$, and so $o \in \langle c, o_0 \rangle$. Assume that *co* is an involution. Then either *co* or *o* = *cco* is contained in the cyclic subgroup of $\mathbf{C}_{\text{PGL}_2(p)}(K)$ of index 2. This implies that either *co* or *o* lies in $\langle o_0 \rangle$, and hence $o \in \langle c, o_0 \rangle$. Therefore, $\langle c \rangle$ has exactly $\frac{2+|\varepsilon+\eta|}{2}$ fixed-points on Ω . Since $\langle c \rangle \cong \mathbb{Z}_2$, every $\langle c \rangle$ -orbit on Ω has length 1 or 2. Then the lemma follows. \Box

Choosing a coset $K\sigma$ from each $\langle c \rangle$ -orbit on Ω and a representative from $K\sigma$, we have a set O_1 of size

$$
\omega_1 = \begin{cases} \frac{p+\eta}{8} & \text{if } p \not\equiv \pm 1 \pmod{10}, \\ \frac{p+\eta}{8} - 1 & \text{if } p \equiv \pm 1 \pmod{10}. \end{cases}
$$

By the foregoing argument, the following statements hold:

- (i) $\Gamma \cong \text{Cos}(T, H, K, o)$ for some $o \in O_1$, and $H o H \neq H o' H$ for distinct $o, o' \in O_1$;
- (ii) O_1 contains a unique element of order 4, say o_0 , and $N_{\text{PGL}_2(p)}(H, H o_0 H) \geq$ $\langle c \rangle \times K = \mathbf{N}_{\mathrm{PGL}_2(p)}(H, K);$
- (iii) if $o \in O_1$ is an involution then $N_{PGL_2(p)}(H, K, Hol) = K$, except that $\varepsilon = \eta$, $Ko = Ko_0c$, and $\mathbf{N}_{\mathrm{PGL}_2(p)}(H, Ho_0H) \geqslant \langle c \rangle \times K = \mathbf{N}_{\mathrm{PGL}_2(p)}(H, K)$.

Lemma 5.11. *Let* $o \in O_1$ *. Then* $N_{\text{PGL}_2(p)}(H, HoH) = K$ *, except that*

- (1) $o = o_0$ *, in this case,* $\mathbf{N}_{\text{PGL}_2(p)}(H, HoH) = K \times \langle c \rangle$ *; and*
- (2) $\eta = \varepsilon$ and $Ko = Ko_0c$, in this case, $\mathbf{N}_{\text{PGL}_2(p)}(H, HoH) = K \times \langle c \rangle$.

Proof. Let *g* be an arbitrary element in $N_{PGL_2(p)}(H, HoH) \setminus H$. Noting that $Hg^{-1}ogH =$ *HoH*, by Lemma 5.9, $Ko = Kg^{-1}og$. Then $\langle Kg^{-1}og \rangle = \langle Ko \rangle = \langle o \rangle \times K$. This implies that $g^{-1}og \in \mathbf{C}_T(K)$, and so $o \in \mathbf{C}_T(gKg^{-1})$. Then *o* centralizes $\langle K, gKg^{-1} \rangle$. Since $\langle o, H \rangle = T$ and $\langle K, gKg^{-1} \rangle \leq H$, we have $K = gKg^{-1}$, i.e., $g \in \mathbb{N}_{\mathrm{PGL}_2(p)}(K)$. Thus $g \in \mathbf{N}_{\mathrm{PGL}_2(p)}(H, K, HoH)$. Then the lemma follows from (ii) and (iii) listed as above. \Box

Theorem 5.12. *Assume that* $H \cong S_3$ *. Then* Γ *is isomorphic to one of* ω_1 *non-isomorphic symmetric cubic graphs, and* $Aut\Gamma = PSL₂(p)$ *except that*

- (1) $\Gamma \cong \text{Cos}(T, H, K, o_0)$ *, and* $\text{Aut}\Gamma = \mathbb{Z}_2 \times \text{PSL}_2(p)$ *or* $\text{PGL}_2(p)$ *depending on whether* $\eta = \varepsilon$ *or not; and*
- (2) $\eta = \varepsilon$, $\Gamma \cong \text{Cos}(T, H, K, o_0 c)$, and $\text{Aut}\Gamma = \mathbb{Z}_2 \times \text{PSL}_2(p)$.

Proof. Recall that $\Gamma \cong \text{Cos}(T, H, K, o)$ for some $o \in O_1$. By (5.2) and Lemma 5.11, we deduce that AutΓ is described as in this lemma. Then it suffices to show that if $\mathsf{Cos}(T, H, K, o) \cong \mathsf{Cos}(T, H, K, o')$ for $o, o' \in O_1$ then $o = o'$.

Suppose that $Cos(T, H, K, o) \cong Cos(T, H, K, o')$ for some *o*, $o' \in O_1$. By Lemma 5.11, we deduce from (5.2) that $A := \text{AutCos}(T, H, K, o) = \text{AutCos}(T, H, K, o')$. It follows from Lemma 3.3 that $Hg^{-1}ogH = Ho'H$ for some $g \in \mathbf{N}_{\mathrm{PGL}_2(p)}(H)$. By Lemma 5.9, $Kg^{-1}og = Ko'$, which forces that $g^{-1}og$ centralizes *K*. Then *o* centralizes $\langle K, gKg^{-1} \rangle$. Noting that $\langle K, gKg^{-1} \rangle \leq H$ and $\langle o, H \rangle = T$, we have $K = gKg^{-1}$, and so $g \in$ $N_{\text{PGL}_2(p)}(H, K)$. By the choice of O_1 , we have $o = o'$, and the result follows. □

5.3. $|H| = 12$. Assume that $H \cong D_{12}$. Then $p \equiv \pm 15 \pmod{32}$ by (5.1), and $\varepsilon = \eta$. This implies that $p \equiv \pm 47 \pmod{96}$. Since $K \cong \mathbb{Z}_2^2$, by [17, II.8.16], $\mathbf{N}_T(K) \cong S_4$, and thus *o* is either an involution or of order 4. Clearly, *o* lies in some Sylow 2-subgroup of $N_T(K)$.

Theorem 5.13. *Assume that* $H \cong D_{12}$ *. Then* Γ *is isomorphic to a unique symmetric cubic graph, which has automorphism group* $PSL_2(p)$ *.*

Proof. By the choice of *η*, we know that $p + \eta$ is divisible by 4, and so $p - \eta$ is indivisible by 4. Noting that $(p + \eta)(p - \eta) = p^2 - 1 \equiv 0 \pmod{32}$, we have $p \equiv -\eta \pmod{16}$. Thus $p + \varepsilon = p + \eta$ is divisible by 16. We have $\mathbf{N}_T(H) \cong D_{24}$ and $\mathbf{N}_T(H, K) \cong D_8$. Let $P := \mathbf{N}_T(H,K)$, P_0 and P_1 be the three Sylow 2-subgroups of $\mathbf{N}_T(K)$. It is easily shown that there exists an involution $x \in P \setminus K$ such that $xP_0x = P_1$. Pick an involution $o_0 \in P_0 \setminus K$. Suppose that $\langle o_0, H \rangle \neq T$. Inspecting the subgroups of $PSL_2(p)$, we deduce that $\langle o_0, H \rangle \leqslant \mathbf{N}_T(H)$. Then $o_0 \in \mathbf{N}_T(H, K) = P$, and so $P_0 = \langle o_0, K \rangle \leqslant P$, a contradiction. Thus $\langle o_0, H \rangle = T$. Recalling that $o \in P \cup P_0 \cup P_1$, since $\langle o, H \rangle = T$, we have $o \in P_0 \cup P_1$. Then $H \circ H = H o_0 H$ or $Hx o_0 x H$. Since $x \in \mathbb{N}_T(H)$, we have $\mathsf{Cos}(T, H, K, o_0) \cong \mathsf{Cos}(T, H, K, xo_0x)$, and so $\Gamma \cong \Sigma := \mathsf{Cos}(T, H, K, o_0)$.

Choose a maximal subgroup *L* of $PGL_2(p)$ with $N_{PGL_2(p)}(H) \leq L$. Then $L \cong$ $D_{2(p+\varepsilon)}$, and $N_{\text{PGL}_2(p)}(H) = N_L(H) \cong D_{24}$. Recalling that $N_T(H) \cong D_{24}$, we have $N_{\text{PGL}_2(p)}(H) = N_T(H)$. Then $N_{\text{PGL}_2(p)}(H) = HP = H\langle x \rangle$. By (5.2), we deduce that $Aut\Sigma = T\langle \text{conj}(x) \rangle$ or *T* depending on whether $Hxo_0xH = Ho_0H$ or not.

Suppose that $Aut\Sigma = T\langle \text{conj}(x) \rangle$. Then $Aut\Sigma = T \times \langle \hat{x} \rangle$, where \hat{x} is defined as in (3.3). Let $M = \langle \hat{x} \rangle$, and consider the quotient graph Σ_M . Let \overline{T} be the subgroup of $\text{Aut}\Sigma_M$ induced by *T*. Then Σ_M is a *T*-symmetric cubic graph of square-free order *n*. Let \bar{v} be the *M*-orbit on $[T : H]$ containing $v := H$. We have $n = |\overline{T} : \overline{T}_{\overline{v}}|$. Since $\overline{T} \cong \text{PSL}_2(p)$ has order divisible by 16, it follows that $|\bar{T}_{\bar{v}}|$ is divisible by 8. By Lemma 2.1, $\bar{T}_{\bar{v}} \cong S_4$, and so $T_{\bar{v}} \cong S_4$ by (2.1). By (2.2), T_v has index 2 in $T_{\bar{v}}$, forcing $T_v \cong A_4$, which is impossible as Σ is *T*-symmetric. Therefore, $Aut\Sigma = T$, and our result follows. \square

5.4. $|H| = 24$. Assume that $H \cong S_4$. Then $p \equiv \pm 31 \pmod{64}$ by (5.1). In this case, *H* is maximal in *T*, $K \cong D_8$ and $\mathbf{N}_G(K) \cong D_{16}$. Fix an involution $o_0 \in \mathbf{N}_G(K) \setminus K$. We have $\langle H, o_0 \rangle = T$, and $H N_G(K) H = H \cup H o_0 H$. Then $\Gamma \cong \text{Cos}(T, H, K, o_0)$. Checking the subgroups of $\text{PGL}_2(p)$, we deduce that $\mathbf{N}_{\text{PGL}_2(p)}(H) = H$, and so $\mathbf{N}_{\text{PGL}_2(p)}(H, Ho_0H) =$ $N_T(H, Ho_0H) = H$. Then we have the following result.

Theorem 5.14. *Assume that* $H \cong S_4$. *Then* Γ *is isomorphic to a unique symmetric cubic graph, which has automorphism group* $PSL_2(p)$.

6. $PSL_2(p)$ -SEMISYMMETRIC GRAPHS

In this section, $\Gamma = (V, E)$ is a connected *T*-semisymmetric cubic graph of order $2n$, where $T = \text{PSL}_2(p)$ for some prime $p \geq 5$, and *n* is even and square-free. Choose $\varepsilon, \eta \in \{1, -1\}$ with $p + \varepsilon$ and $p + \eta$ divisible by 3 and 4, respectively.

Let $\{u, w\} \in E$. By Lemma 2.1 and inspecting the subgroups of $PSL_2(p)$, we may assume that $(T_u, T_w) \cong (S_3, S_3)$, (D_{12}, D_{12}) , (S_4, S_4) , (S_3, \mathbb{Z}_6) , (D_{12}, A_4) or (S_4, D_{24}) . By Lemma 3.10, $\Gamma \cong BC(T, L, R)$, where $L \cong T_u$ and $R \cong T_w$. Note that $|T : L| = n$ is even and square-free. We have

(6.1)
$$
p \equiv 2^{i+1} \pm 1 \pmod{2^{i+2}}
$$
 and $|L| = 2^i \cdot 3$ for $1 \le i \le 3$.

In addition, $\eta = \varepsilon$ if *L* or *R* has a subgroup isomorphic to \mathbb{Z}_6 .

It follows from Lemma 5.2 that *T* contains at most two conjugacy classes of subgroup isomorphic to L, and these subgroups are conjugate in $PGL_2(p)$. Then, up to isomorphism of graphs, we may fix a subgroup *L*. Note that $L \cap R$ is a Sylow 2-subgroup of *L*, and $BC(T, L, R) \cong BC(T, L, h^{-1}Rh)$ for $h \in L$. Thus, fixing a Sylow 2-subgroup *P* of *L*, one of our main tasks is to determine those subgroups *R* with $|R| = |L|$, $L \cap R = P$ and $\langle L, R \rangle = T$. Put

$$
\mathcal{R} = \{ R < T \mid |R| = |L|, L \cap R = P \}.
$$

Lemma 6.1. *Let* $L \cong R < T$. *Then* $R \in \mathcal{R}$ *if and only if* $R = z^{-1}Lz$ *for some* $z \in \mathbf{N}_{\mathrm{PGL}_2(p)}(P) \setminus \mathbf{N}_{\mathrm{PGL}_2(p)}(L, P).$

Proof. The sufficiency is trivial. Now assume that $L \cong R \in \mathcal{R}$. By Lemma 5.2, *L* and *R* are conjugate in PGL₂(*p*). Then $R = x^{-1}Lx$ for some $x \in \text{PGL}_2(p)$. We have *P*, xPx^{-1} ≤ *L*, and so $xPx^{-1} = y^{-1}Py$ for some $y \in L$. Then $yx \in \mathbf{N}_{\mathrm{PGL}_2(p)}(P)$, and so $x = y^{-1}z$ for some $z \in \mathbb{N}_{\mathrm{PGL}_2(p)}(P)$. Thus $R = x^{-1}Lx = z^{-1}Lz$. Since $L \cap R = P \neq L$, we know that *L* is not normalized by *z*, and so $z \in \mathbf{N}_{\mathrm{PGL}_2(p)}(P) \setminus \mathbf{N}_{\mathrm{PGL}_2(p)}(L, P)$. Then the lemma follows.

6.1. $|L| = 6$. Assume that $L \cong S_3$. Then $p \equiv \pm 3 \pmod{8}$ by (6.1), $N_{\text{PGL}_2(p)}(L) \cong D_{12}$, $P \cong \mathbb{Z}_2$ and $\mathbf{N}_{\mathrm{PGL}_2(p)}(P) = \mathbf{C}_{\mathrm{PGL}_2(p)}(P) \cong D_{2(p+\eta)}$. Clearly, the center of $\mathbf{N}_{\mathrm{PGL}_2(p)}(L)$ has order 2 and is contained in $\mathbf{C}_{\mathrm{PGL}_2(p)}(P)$. Write

$$
\mathbf{C}_{\mathrm{PGL}_2(p)}(P) = \langle a, c \rangle,
$$

where *a* has order $p + \eta$ and *c* generates the center of $N_{\text{PGL}_2(p)}(L)$. Then

$$
P = \langle a^{\frac{p+\eta}{2}} \rangle, \ \mathbf{N}_{\mathrm{PGL}_2(p)}(L, P) = \langle c, a^{\frac{p+\eta}{2}} \rangle \cong \mathbb{Z}_2^2.
$$

In addition, $c \in T$ if and only if $\varepsilon = \eta$.

Lemma 6.2. If $\varepsilon \neq \eta$ then $\mathcal{R} = \{a^{-i}La^{i} \mid 1 \leqslant i < \frac{p+\eta}{2}\}, \text{ if } \varepsilon = \eta \text{ then } \mathcal{R} = \{\langle a^{\frac{p+\eta}{6}} \rangle\} \cup$ ${a^{-i}La^{i} \mid 1 \leqslant i < \frac{p+\eta}{2}}.$

Proof. Recalling that $P = \langle a^{\frac{p+n}{2}} \rangle$, we have $P \langle a^{-i}La^i \rangle$ for an arbitrary integer *i*. If $i \equiv j \pmod{\frac{p+\eta}{2}}$ then it is easily shown that $a^{-i}La^i = a^{-j}La^j$. Conversely, suppose that $a^{-i}La^i = a^{-j}La^j$ for some integers i and j. Then $a^{i-j} \in \mathbf{N}_{\mathrm{PGL}_2(p)}(L) \cap \mathbf{N}_{\mathrm{PGL}_2(p)}(P) =$ $\mathbf{N}_{\mathrm{PGL}_2(p)}(L, P) = \langle c, P \rangle$. This implies that $a^{i-j} \in P$, and so $i \equiv j \pmod{\frac{p+\eta}{2}}$. By Lemma 6.1, all members S₃ of \mathcal{R} are contained in $\{a^{-i}La^i \mid 1 \leqslant i < \frac{p+\eta}{2}\}.$

Assume that $R \in \mathcal{R}$ and $R \not\cong S_3$. Then $R \cong \mathbb{Z}_6$, and so $R < \mathbf{C}_{PGL_2(p)}(P) = \langle a, c \rangle \cong$ $D_{2(p+\eta)}$. In particular, $p+\eta$ is divisible by 3, and so $\varepsilon = \eta$. Note that $D_{2(p+\eta)}$ has a unique subgroup \mathbb{Z}_6 , which is generated by $a^{\frac{p+n}{6}}$. Then the lemma follows.

Lemma 6.3. Let $R_i = a^{-i}La^i$ for $1 \leqslant i < \frac{p+\eta}{2}$, and $R_0 = \langle a^{\frac{p+\eta}{6}} \rangle$ if further $\varepsilon = \eta$. Then

- $N_{\text{PGL}_2(p)}(\lbrace L, R_0 \rbrace) = N_{\text{PGL}_2(p)}(L, R_0) = \langle a^{\frac{p+\eta}{2}}, c \rangle < T$, in this case, $\varepsilon = \eta$;
- (2) ${\bf N}_{\rm PGL_2(p)}(L, R_i) = P$ and ${\bf N}_{\rm PGL_2(p)}(\{L, R_i\}) = \langle a^{\frac{p+\eta}{2}}, a^i c \rangle$, where $i \neq \frac{p+\eta}{4}$ $rac{+\eta}{4}$ and $1 \leqslant i \leqslant \frac{p+\eta}{2}.$
- (3) $\mathbf{N}_{\mathrm{PGL}_2(p)}(\lbrace L, R_{\frac{p+\eta}{4}} \rbrace) = \langle a^{\frac{p+\eta}{4}}, c \rangle$, and $\mathbf{N}_{\mathrm{PGL}_2(p)}(L, R_{\frac{p+\eta}{4}}) = \langle a^{\frac{p+\eta}{2}}, c \rangle$.

Proof. Clearly, $|\mathbf{N}_{\text{PGL}_2(p)}(\{L, R\})$: $\mathbf{N}_{\text{PGL}_2(p)}(L, R)| \leq 2$, and if the equality holds then *R* \cong *S*₃. In particular, since *L* \ncong *R*₀, we have $N_{PGL_2(p)}(\lbrace L, R_0 \rbrace) = N_{PGL_2(p)}(L, R_0)$. Recall that $N_{\text{PGL}_2(p)}(L) = L \times \langle c \rangle$. If $\varepsilon = \eta$ then $c \in T$ and, noting that $N_{\text{PGL}_2(p)}(R_0) =$ $\mathbf{C}_{\text{PGL}_2(p)}(P)$, we have $\mathbf{N}_{\text{PGL}_2(p)}(\{L, R_0\}) = \mathbf{N}_{\text{PGL}_2(p)}(L, R_0) = \langle a^{\frac{p+n}{2}}, c \rangle$, desired as in (1).

Now let $R = R_i$, where $1 \leq i < \frac{p+\eta}{2}$. Note that $P \leq \mathbf{N}_{\mathrm{PGL}_2(p)}(L, R) \leq \mathbf{N}_{\mathrm{PGL}_2(p)}(L, P) =$ $\langle a^{\frac{p+\eta}{2}}, c \rangle \cong \mathbb{Z}_2^2$. If $R = R_{\frac{p+\eta}{4}}$ then $cRc = ca^{-\frac{p+\eta}{4}}La^{\frac{p+\eta}{4}}c = a^{\frac{p+\eta}{4}}La^{-\frac{p+\eta}{4}} = a^{-\frac{p+\eta}{4}}La^{\frac{p+\eta}{4}} =$ *R*, and so $\mathbf{N}_{\mathrm{PGL}_2(p)}(L, R) = \langle a^{\frac{p+n}{2}}, c \rangle$. Suppose that $\mathbf{N}_{\mathrm{PGL}_2(p)}(L, R) = \langle a^{\frac{p+n}{2}}, c \rangle$. Then $a^{-i}La^i = R = cRc = ca^{-i}La^ic = a^iLa^{-i}$, and so $a^{-2i}La^{2i} = L$. This implies that $2i \equiv 0 \pmod{\frac{p+\eta}{2}}$, yielding $i = \frac{p+\eta}{4}$ $\frac{+ \eta}{4}$. Thus $N_{\text{PGL}_2(p)}(L, R) = \langle a^{\frac{p+\eta}{2}}, c \rangle$ if and only if $R = R_{\frac{p+n}{4}}$. Noting that $N_{\text{PGL}_2(p)}(\lbrace L, R \rbrace) = N_{\text{PGL}_2(p)}(L, R) \langle a^i c \rangle$, we obtain (2) or (3). Then the lemma follows. □

Lemma 6.4. *Let* $R \in \mathcal{R}$ *. Then either* $\langle L, R \rangle = T$ *, or* $p \equiv \pm 1 \pmod{10}$ *and* $\langle L, R \rangle \cong A_5$ *.* For the latter case, $R = a^{-i}La^i$ or $a^{-(\frac{p+\eta}{2}-i)}La^{\frac{p+\eta}{2}-i}$ for a unique i with $1 < i < \frac{p+\eta}{2}$, $i \neq \frac{p+\eta}{4}$ $\frac{+ \eta}{4}$ and $a^i c \in T$; in particular, *i* is odd or even depending on whether $\varepsilon = \eta$ or not. *Proof.* Assume that $\langle L, R \rangle \neq T$. Inspecting the subgroups of $PSL_2(p)$, we deduce that either $\langle L, R \rangle$ is isomorphic to a subgroup of $D_{p+\varepsilon}$, or $p \equiv \pm 1 \pmod{10}$ and $\langle L, R \rangle \cong A_5$. For the former case, noting that $D_{p+\varepsilon}$ has a unique subgroup of order 3, we have $|L \cap R| \geq$ 3, a contradiction. Then the latter case occurs; in particular, *L* and *R* are conjugate in *T*. It is easily shown that for each subgroup of A_5 that isomorphic to S_3 , there exists a unique subgroup isomorphic to S_3 such that their intersection is a subgroup of order 2. Then *R* is uniquely determined by *L* in $\langle L, R \rangle$. Enumerating the subgroups A_5 of *T* which contain *L*, it follows that *L* is contained exactly in two subgroups A_5 . Then *R* has exactly two choices.

Fix an $R \in \mathcal{R}$ with $\langle L, R \rangle \cong A_5$. Then $cRc \in \mathcal{R}$ and $\langle L, cRc \rangle \cong A_5$. Write $R = a^{-i} L a^i$, where $1 \leq i \leq \frac{p+\eta}{2}$. Then $cRc = a^{-\left(\frac{p+\eta}{2}-i\right)}La^{\frac{p+\eta}{2}-i}$. By (2) and (3) of Lemma 6.3, the involution $a^i c$ normalizes $\langle L, R \rangle$. Noting that $PGL_2(p)$ has no proper subgroup isomorphic to S₅ or $\mathbb{Z}_2 \times A_5$, it follows that $a^i c \in \langle L, R \rangle < T$. Suppose that $i = \frac{p+\eta}{4}$ $\frac{+\eta}{4}$. Noting that $a^{\frac{p+n}{4}} \notin T$, we have $c \notin T$. By (3) of Lemma 6.3, *c* normalizes $\langle L, R \rangle$. Then $\langle L, R, c \rangle \cong S_5$ or $\mathbb{Z}_2 \times A_5$, which is impossible. Thus $i \neq \frac{p+\eta}{4}$ $\frac{+\eta}{4}$, and the lemma follows. \square

Define

$$
\nu_1 = \begin{cases} \frac{p + \eta + 2|\varepsilon + \eta|}{4} & \text{if } p \not\equiv \pm 1 \pmod{10}, \\ \frac{p + \eta + 2|\varepsilon + \eta|}{4} - 1 & \text{if } p \equiv \pm 1 \pmod{10}. \end{cases}
$$

Theorem 6.5. Assume that $L \cong S_3$. Then Γ is isomorphic to one of ν_1 non-isomorphic *connected edge-transitive cubic bipartite graphs described as follows:*

- (1) $\frac{|\varepsilon + \eta|}{2}$ semisymmetric graphs with automorphism group isomorphic to $\mathbb{Z}_2 \times T$;
- (2) *a unique symmetric graph with automorphism graph isomorphic to* $\mathbb{Z}_2 \times \text{PGL}_2(p)$;
- (3) $\nu_1 1 \frac{|\varepsilon + \eta|}{2}$ $\frac{1 + \eta}{2}$ *non-isomorphic symmetric graphs,* $\frac{p + \eta - 4}{8}$ *of these graphs have automorphism group isomorphic to* $PGL₂(p)$ *, and the others have automorphism group isomorphic to* $\mathbb{Z}_2 \times T$ *.*

Proof. Let $R_0, R_1, \ldots, R_{\frac{p+\eta}{2}-1}$ be defined as in Lemma 6.3. Put $I = \{0, 1, 2, \ldots, \frac{p+\eta}{2}-1\}$, and choose an $i_0 \in I$ with $\langle L, R_{i_0} \rangle \cong A_5$. For each $i \in I$, by Lemma 6.4, $\langle L, R_i \rangle = T$ if and only if $i \in I_0 := I \setminus \{i_0, \frac{p+\eta}{2} - i_0\}$. Then $|I_0| = 2\nu_1 - 1 - \frac{|\varepsilon + \eta|}{2}$ $\frac{+\eta}{2}$, and we get $|I_0|$ distinct connected *T*-semisymmetric cubic graphs $\Gamma_i := BC(T, L, R_i)$, where *i* runs over *I*₀. Moreover, $\Gamma \cong \Gamma_i$ for some $i \in I_0$.

By Theorem 2.10, since Γ_i is T-semisymmetric, T is the unique insolvable minimal normal subgroup of $\text{Aut}\Gamma_i$. In particular, by Lemma 3.8, $\text{Aut}\Gamma_i = T\{\text{conj}(g)_{\{L,R\}} \mid g \in$ $N_{\text{PGL}_2(p)}(\lbrace L, R_i \rbrace)$. Let $c_i = a^i c$. It follows from Lemmas 3.9 and 6.3 that

$$
\mathrm{Aut} \Gamma_i = \left\{ \begin{array}{ll} T \times \langle \hat{c} \hat{c} \rangle \cong T \times \mathbb{Z}_2 & \text{if } \varepsilon = \eta, \, i = 0; \\ T \langle \mathrm{conj}(c)_{\{L,R_i\}} \rangle \times \langle \hat{c}_i \tilde{c}_i \rangle \cong \mathrm{PGL}_2(p) \times \mathbb{Z}_2 & \text{if } \varepsilon \neq \eta, \, i = \frac{p+\eta}{4}; \\ T \langle \mathrm{conj}(c_i)_{\{L,R_i\}} \rangle \times \langle \hat{c} \hat{c} \rangle \cong \mathrm{PGL}_2(p) \times \mathbb{Z}_2 & \text{if } \varepsilon = \eta, \, i = \frac{p+\eta}{4}; \\ T \times \langle \hat{c}_i \tilde{c}_i \rangle \cong T \times \mathbb{Z}_2 & \text{if } i \neq \frac{p+\eta}{4}, \, i + \frac{\varepsilon+\eta}{4} \text{ is odd}; \\ T \langle \mathrm{conj}(c_i)_{\{L,R_i\}} \rangle \cong \mathrm{PGL}_2(p) & \text{if } i \neq \frac{p+\eta}{4}, \, i + \frac{\varepsilon+\eta}{2} \text{ is even}. \end{array} \right.
$$

Clearly, $\Gamma_0 \not\cong \Gamma_{\frac{p+\eta}{4}}$, and if $i \in I_1 := I_0 \setminus \{0, \frac{p+\eta}{4}\}$ $\frac{+ \eta}{4}$ } then $\Gamma_i \ncong \Gamma_0$ or $\Gamma_{\frac{p+ \eta}{4}}$. Thus, it remains to consider the isomorphisms among $2\nu_1 - 2 - |\varepsilon + \eta|$ graphs Γ_i , where $i \in I_1$.

Let $I_2 = \{i \in I_1 \mid \text{Aut}\Gamma_i \cong \text{PGL}_2(p)\}\$ and $I_3 = I_1 \setminus I_2$. Then $\Gamma_i \ncong \Gamma_j$ for all $i \in I_2$ and $j \in I_3$. It is easily shown that $|I_2| = \frac{p+\eta}{4} - 1$. Let $i, j \in I_2$ or I_3 with $i \neq j$. Recall that $\mathbf{N}_{\mathrm{PGL}_2(p)}(L, P) = \langle c, a^{\frac{p+\eta}{2}} \rangle$. It follows from Lemma 3.6 that $\Gamma_i \cong \Gamma_j$ if and only if $cR_ic = R_j$, i.e., $ca^{-i}La^ic = a^{-j}La^j$. Noting that $ca^{-i}La^ic = a^iLa^{-i}$, it is easily shown that $ca^{-i}La^{i}c = a^{-j}La^{j}$ if and only if $j \equiv p + \eta - i \pmod{\frac{p+\eta}{2}}$, see the proof of Lemma 6.2. Since $1 \leq i, j < \frac{p+\eta}{2}$, if $j \equiv p+\eta-i \pmod{\frac{p+\eta}{2}}$ then $i+j = \frac{p+\eta}{2}$ $\frac{+ \eta}{2}$. Thus $\Gamma_i \cong \Gamma_j$ if and only if $i + j = \frac{p + \eta}{2}$ $\frac{1}{2}$. On the other hand, it is easy to check that $I_2 = \{ \frac{p+\eta}{2} - i \mid i \in I_2 \}$ and $I_3 = \{\frac{p+\eta}{2} - i \mid i \in I_3\}$. Then we have $\frac{|I_2|}{2}$ or $\frac{|I_3|}{2}$ $\frac{a_{3}}{2}$ non-isomorphic graphs Γ_i when *i* runs over I_2 or I_3 , respectively. This completes the proof.

6.2. $|L| = 12$. Assume that $L \cong D_{12}$. Then $p \equiv \pm 7 \pmod{16}$ and $\varepsilon = \eta$, see (6.1). In addition, $R \cong D_{12}$ or A_4 , and $P \cong \mathbb{Z}_2^2$. It is easily shown that $\mathbf{N}_{\text{PGL}_2(p)}(P) = \mathbf{N}_T(P) \cong$ $\mathbf{S}_4, \mathbf{N}_{\text{PGL}_2(p)}(L) = \mathbf{N}_T(L) \cong D_{24}$, and $\mathbf{N}_{\text{PGL}_2(p)}(L, R) \leqslant \mathbf{N}_T(L, P) \cong D_8$. Write $\mathbf{N}_T(P) =$ $P:\langle a,b\rangle$, where *a* has order 3 and *b* is an involution such that $\mathbf{N}_T(L,P) = P:\langle b\rangle$.

Lemma 6.6. *Assume that* $L \cong D_{12}$ *. Then* $\mathcal{R} = \{P:\langle a \rangle, a^{-1}La, aLa^{-1}\}.$

Proof. Let $R \in \mathcal{R}$. If $R \cong A_4$ then $R \leq \mathbf{N}_{PGL_2(p)}(P) = P:\langle a, b \rangle$, yielding $R = P:\langle a \rangle$. Suppose that $R \cong D_{12}$. Then $R = x^{-1}Lx$ for some $x \in \text{PGL}_2(p)$. We have $P, xPx^{-1} \leq$ *L*, and so $xPx^{-1} = y^{-1}Py$ for some $y \in L$. Then $yx \in \mathbf{N}_{\mathrm{PGL}_2(p)}(P) = P:\langle a, b \rangle$. It follows that $R = x^{-1}Lx = z^{-1}Lz$ for some $z \in \langle a, b \rangle$. Noting that $bLb = L$, we have $R = P:\langle a \rangle$, $a^{-1}La$ or aLa^{-1} . Clearly, $P:\langle a \rangle \neq a^{-1}La$ or aLa^{-1} . If $a^{-1}La = aLa^{-1}$ then $a \in N_T(L)$, yielding $A_4 \cong P$: $\langle a \rangle \leqslant N_T(L) \cong D_{24}$, a contradiction. Then the lemma follows. □

Theorem 6.7. *Assume that* $L \cong D_{12}$. *Then* Γ *is isomorphic to one of two edgetransitive cubic graphs with automorphism group isomorphic to* $T \times \mathbb{Z}_2$, one of them is *semisymmetric and the other one is symmetric.*

Proof. Inspecting the subgroups of *T*, we deduce that $\langle L, R \rangle = T$ for all $R \in \mathcal{R}$. Up to isomorphism of graphs, write $\Gamma = BC(T, L, R)$ for some $R \in \mathcal{R}$. By Theorem 2.10 and Lemma 3.8, we have $\text{Aut}\Gamma = T\{\text{conj}(g)_{\{L,R\}} \mid g \in \mathbf{N}_{\text{PGL}_2(p)}(\{L,R\})\}.$

Assume that $R = P:\langle a \rangle$. Then $L \not\cong R$, and so $\mathbf{N}_{\text{PGL}_2(p)}(\lbrace L, R \rbrace) = \mathbf{N}_{\text{PGL}_2(p)}(L, R)$. We have $P:\langle b \rangle \leqslant \mathbf{N}_{\text{PGL}_2(p)}(\{L, R\}) = \mathbf{N}_{\text{PGL}_2(p)}(L, R) \leqslant \mathbf{N}_T(L, P) = P:\langle b \rangle$, yielding $\mathbf{N}_{\mathrm{PGL}_2(p)}(L, R) = P:\langle b \rangle < T.$ Then $\mathrm{Aut}\Gamma = T \times \langle b\tilde{b} \rangle$, and Γ is semisymmetric.

Assume that $R \neq P$: $\langle a \rangle$. Noting that $ba^{-1}Lab = aLa^{-1}$, we have $BC(T, L, a^{-1}La) \cong$ $BC(T, L, aLa^{-1})$. Thus, we may choose $R = a^{-1}La$. Note that $P \leq N_{PGL_2(p)}(\lbrace L, R \rbrace) \leq$ $N_{\text{PGL}_2(p)}(P) = N_T(P) = P: \langle a, b \rangle$. Calculation shows that $N_{\text{PGL}_2(p)}(L, R) = P$ and $\mathbf{N}_{\mathrm{PGL}_2(p)}(\{L,R\}) = P \times \langle ba \rangle$. We get $\mathrm{Aut}\Gamma = T\langle \mathrm{conj}(ba)_{\{L,R\}} \rangle = T \times \langle ba\mathrm{conj}(ba)_{\{L,R\}} \rangle$. Noting that $\text{conj}(ba)_{\{L,R\}}$ interchanges two parts of Γ, it follows that Γ is symmetric. Then the result follows. □

6.3. $|L| = 24$. Assume that $L \cong S_4$. Then $p \equiv \pm 15 \pmod{32}$ by (6.1). In addition, $N_{\text{PGL}_2(p)}(L) = L$, $P \cong D_8$, and $N_{\text{PGL}_2(p)}(P) = N_T(P) \cong D_{16}$. For each $R \in \mathcal{R}$ we have $R \cong S_4$ or D_{24} , and it is easily shown that $T = \langle L, R \rangle$. Note, if $R \cong D_{24}$ then $\varepsilon = \eta$. Write $N_T(P) = P(\phi)$, where *b* is an involution in *T*.

Let $R \in \mathcal{R}$. Since L is self-normalized in $PGL_2(p)$, we have $R_1 := bLb \neq L$. If $R \cong S_4$ then $R = R_1$ by Lemma 6.1. Assume that $R \cong D_{24}$. Then $\varepsilon = \eta$, and $N_{\text{PGL}_2(p)}(R) = N_T(R) \cong D_{48}$. We deduce from Lemma 5.2 that *T* has two classes of subgroups D_8 and two classes subgroups D_{24} . Note that all subgroups D_8 in D_{24} are conjugate. It follows that, for the given pair (L, P) , there exists a unique subgroup $R_0 < T$ with $R_0 \cong D_{24}$ and $R_0 \cap L = P$. Thus $\mathcal{R} = \{R_0, R_1\}$.

Note that $\mathbf{N}_{\text{PGL}_2(p)}(L) = L$ and $|\mathbf{N}_{\text{PGL}_2(p)}(\{L, R_i\}) : \mathbf{N}_{\text{PGL}_2(p)}(L, R_i)| \leq 2$. We have $N_{\text{PGL}_2(p)}(\{L, R_0\}) = N_{\text{PGL}_2(p)}(L, R_0) = P$, and $N_{\text{PGL}_2(p)}(\{L, R_1\}) = P$:*\b*}. Then, by Theorem 2.10 and Lemma 3.8, we have the following result.

Theorem 6.8. *Assume that L ∼*= S4*. Then* Γ *is isomorphic to one of two edge-transitive cubic graphs, one of them is semisymmetric with automorphism group* $PSL_2(p)$ *, and the other one is symmetric with automorphism group* $PSL_2(p) \times \mathbb{Z}_2$.

7. Proof of Theorem 1.1

Let $\Gamma = (V, E)$ be a connected edge-transitive cubic graph of order 2*n* with *n* even and square-free, and let $A = \text{Aut}\Gamma$. If *A* is solvable then $\Gamma \cong \mathsf{K}_4$ by Theorem 2.5. Assume that *A* is insolvable, and let $T = A^{(\infty)}$. By Theorem 2.10, either *T* is one of J_1 and PSL₂(*p*), or Γ is described as in Lines 1, 2 of Table 1 and Line 1 of Table 2. If $T = J_1$ then Line 3 of Table 1 and Line 2 of Table 2 follow from Theorem 4.2. If $T = \text{PSL}_2(p)$ and Γ is *T*-edge-transitive then we get Lines 4-10 of Table 1 by Theorems 5.7, 5.12-5.14, and Lines 3-10 of Table 2 by Theorems 6.5, 6.7 and 6.8.

In the following, we assume that $T = \text{PSL}_2(p)$, and Γ is not *T*-edge-transitive. Fix an edge $\{u, w\} \in E$, and let $A^* = \langle A_u, A_w \rangle$. By Lemma 2.9, $|\text{rad}(A^*)| \in \{3, 6\}$, Γ is $rad(A^*)T$ -edge-transitive, and one of the following holds:

- (i) *T* is transitive on one part say *W* of Γ and has three orbits on the other part *U*;
- (ii) *T* is regular on *V*, and $p \equiv \pm 3 \pmod{8}$.

Let $M = \langle z \rangle$ be the unique Sylow 3-subgroup of $\mathsf{rad}(A^*)$, and put $G = MT$. For each $g \in \text{PGL}_2(p)$, extend conj(*g*) to an automorphism of *G* by setting $y^{\text{conj}(g)} = y$ for $y \in M$. Let $Aut(M) = \langle \tau \rangle$, and extend τ to an automorphism of *G* by setting $x^{\tau} = x$ for $x \in T$. Then

$$
Aut(G) = \langle \tau \rangle \times \{ \text{conj}(g) \mid g \in \mathrm{PGL}_2(p) \}.
$$

Clearly, *G* acts transitively on each A^* -orbit. This implies that Γ is *G*-edge-transitive. Let *T* be the subgroup of $\text{Aut}\Gamma_M$ induced by *T*. For $v \in V$, let \bar{v} be the *M*-orbit containing *v*. Then $T_{\bar{v}} \cong G_v \cong \overline{T}_{\bar{v}}$, see (2.1). We next discuss in two cases.

Case 1. Assume that (i) occurs, $u \in U$ and $w \in W$. Then $n = 3|T : T_u| = |T : T_w|$, and so $|T_u| = 3|T_w|$. Recall that $\overline{T}_{\overline{w}} \cong T_{\overline{w}}$, $T_w \leq T_{\overline{w}}$ and $M \cong T_{\overline{w}}/T_w$, see (2.2). Since

M $\cong \mathbb{Z}_3$, it follows from Lemma 2.1 that either $G_w \cong \overline{T}_{\overline{w}} \cong \mathbb{Z}_6$ and $G_u \cong \overline{T}_{\overline{u}} \cong S_3$, or $G_w \cong \overline{T}_w \cong A_4$ and $G_u \cong \overline{T}_u \cong D_{12}$, and so $T_w \cong \mathbb{Z}_2$ or \mathbb{Z}_2^2 , respectively. In particular, $G_w \cap T = G_u \cap G_w = T_w$. Since $|T_u| = 3|T_w|$, we have $|T_u| = |T_{\bar{u}}|$. Then $T_u = T_{\bar{u}} \cong G_u$, yielding $G_u = T_{\bar{u}} < T$. It is easy to see that those subgroups of *T* isomorphic to $\bar{T}_{\bar{u}}$ are all conjugate under Aut(*G*). Up to isomorphism of graphs, we fix a subgroup $L < T$ and Sylow 2-subgroup *P* of *L*, and write $\Gamma \cong BC(\tilde{G}, \tilde{L}, R)$, where $L \cong \overline{T}_{\bar{u}}, R \cong \overline{T}_{\bar{w}},$ $R \cap T = P$, and $\langle L, R \rangle = G$.

Noting that P is the unique Sylow 2-subgroup of R, we write $R = P/\langle yx \rangle$, where *y* ∈ *M* and *x* ∈ *T* with $\langle yx \rangle \cong \mathbb{Z}_3$. Since $\langle L, R \rangle = G$, we deduce that $M = \langle y \rangle$, and so $R = P:\langle zx \rangle$ or $P:\langle z^{-1}x \rangle$. Clearly, $\tau \in \text{Aut}(G, L, P)$, and $(P:\langle zx \rangle)^{\tau} = P:\langle z^{-1}x \rangle$. Thus, up to isomorphism of graphs, we further choose $R = P:\langle zx \rangle$, and then Γ is determined completely by $R_0 := P:\langle x \rangle$.

Again by $\langle L, R \rangle = G$, we have that $\langle L, x \rangle = T$ and *x* has order 3. Then $\Gamma_0 :=$ $BC(T, L, R_0)$ is a connected *T*-semisymmetric cubic graph, and $R_0 \cong R \cong G_w$. Conversely, if Γ_0 is connected then it is easily shown that $BC(G, L, R)$ is also connected.

Let $A = \text{AutBC}(G, L, R)$. Then $T, G \leq A$ by Theorem 2.10. Noting that the normal subgroup *T* is transitive on one part of $BC(G, L, R)$ but not transitive on the other one, it follows that $BC(G, L, R)$ is semisymmetric. Further, by Lemma 3.8, we deduce that $A = G\{\sigma_{\{L,R\}} \mid \sigma \in \text{Aut}(G, L, R)\}.$ Clearly, $\text{Aut}(G, L, R) \leq \langle \tau \rangle \times \text{Aut}(T, L, R_0).$

Suppose that $L \cong S_3$ and $R \cong \mathbb{Z}_6$. By Lemma 6.2, $\varepsilon = \eta$, and R_0 is uniquely determined by *L*. By Lemma 6.3, we have $Aut(G, L, R_0) = \{conj(g) | g \in P \times \langle c \rangle\},\$ where *c* generates the center of $N_T(L)$ and $\langle R_0, c \rangle \cong D_{12}$. Calculation shows that $Aut(G, L, R) = \{\text{conj}(g), \tau \text{conj}(cg) \mid g \in P\}$. Noting that $\tau \text{conj}(c)$ inverses *z* and centralizes *T*, we have $A = G\{\sigma_{\{L,R\}} \mid \sigma \in Aut(G, L, R)\} \cong S_3 \times T$, and then Γ is described as in Line 11 of Table 2.

Suppose that $L \cong D_{12}$ and $R \cong A_4$. Using Lemma 6.6 and Theorem 6.7, by a similar argument as above, we deduce that R_0 is uniquely determined by L , and $A \cong S_3 \times T$. Then Γ is described as in Line 12 of Table 2.

Case 2. Assume that (ii) occurs. Then $G_v \cong \mathbb{Z}_3$, and $\Gamma \cong \text{Cos}(G, H, 1, o)$, where *o* is an involution, *H* \cong Z₃ and $\langle H, o \rangle = G$. Clearly, *o* ∈ *T*. Write *H* = $\langle yx \rangle$, where $y \in M$ and $x \in T$. Since $\langle yx, o \rangle = \langle H, o \rangle = G$, we deduce that $M = \langle y \rangle$, and $\langle x, o \rangle = T$. In particular, $\text{Cos}(T, \langle x \rangle, 1, o)$ is a connect T-symmetric cubic graph. Conversely, for a connect *T*-symmetric cubic graph $Cos(T, \langle x \rangle, 1, o')$, since $G = M \times T = \langle y \rangle \times T$, it is easily shown that $\langle yx, o' \rangle$ has a homomorphic image $\langle x, o' \rangle = T$. Then $|G : \langle yx, o' \rangle|$ is a divisor of $|G : T| = |M| = 3$, and hence either $G = \langle yx, o' \rangle$ or $|G : \langle yx, o' \rangle| = 3$. The latter case implies that $\langle yx, o' \rangle \cong T$ is simple, since $\langle yx, o' \rangle \nleq T$ and T is normal in *G*, we have $\langle yx, o'\rangle \cap T = 1$, and hence $3|T| = |G| \geq |T\langle yx, o'\rangle| = |T|^2$, yielding $|T| \leq 3$, a contradiction. Thus $G = \langle yx, o' \rangle$, and so $Cos(G, H, 1, o')$ is connected.

Recalling that $\langle y \rangle = M = \langle z \rangle$, we have $y = z$ or z^{-1} . By the definition of τ , we have $y^{\tau} = y^{-1}$, $(yx)^{\tau} = y^{-1}x$, and $\sigma^{\tau} = o$. Then $\text{Cos}(G, H, 1, o) \cong \text{Cos}(G, H^{\tau}, 1, o)$, see (III) in Subsection 3.2. Thus, up to isomorphism of graphs, we may choose $H = \langle zx \rangle$. Moreover, all elements of *T* with order 3 are all conjugate, this allows we fix an element $x \in T$ of order 3. Noting that $Cos(T, \langle x \rangle, 1, o)$ is a connect *T*-symmetric cubic graph, the argument in Subsection 5.1 is available for $\text{Cos}(T, \langle x \rangle, 1, o)$. In particular, we assume

that $Cos(T, \langle x \rangle, 1, o)$ is one of ω_0 non-isomorphic symmetric cubic graphs, $\frac{p - \eta - 6}{4}$ of them have automorphism group $T\langle \text{conj}(b)_{\langle x \rangle} \rangle \cong \text{PGL}_2(p)$, and the others have automorphism group $\langle \hat{a}\hat{b} \rangle \times T$, where ω_0 , $o \in O_0$, *a* and *b* are defined as in Subsection 5.1.

Let $A = \text{AutCos}(G, H, 1, o)$. By Theorem 2.10, we have $T, G \leq A$. It follows from Lemma 3.4 that $A = G\{\sigma_H \mid \sigma \in \text{Aut}(G, H, HoH)\}.$ Recall that $\text{Aut}(G) = \langle \tau \rangle \times$ $\{\text{conj}(g) \mid g \in \text{PGL}_2(p)\}\.$ It is easily shown that $\text{Aut}(G, H, HoH) \leq \langle \tau \rangle \times \text{Aut}(T, \langle x \rangle, \langle x \rangle o \langle x \rangle) =$ $\langle \tau \rangle \times \{\text{conj}(g) \mid g \in \mathbf{N}_{\mathrm{PGL}_2(p)}(\langle x \rangle, \langle x \rangle o \langle x \rangle)\}.$ By calculation, see the proof of Theorem 5.7, we have $N_{\text{PGL}_2(p)}(\langle x \rangle, \langle x \rangle o(x)) = \langle x \rangle \langle b \rangle$ or $\langle x \rangle \langle ab \rangle$ when AutCos $(T, \langle x \rangle, 1, o) \cong \text{PGL}_2(p)$ or $\mathbb{Z}_2 \times \text{PSL}_2(p)$, respectively. It follows that $\text{Aut}(G, H, HoH) = {\tau \text{conj}(g) | g \in \langle x \rangle \langle b \rangle}$ or $\{\tau \text{conj}(g) \mid g \in \langle x \rangle \langle ab \rangle\}$, respectively. Since $ab \in T$ and $g\hat{g} = \text{conj}(g)_H$ for $g \in \mathbf{N}_G(H)$, we have $A = G\{\sigma_H \mid \sigma \in \text{Aut}(G, H, HoH)\} = G\langle \tau \text{conj}(b)_H \rangle$ or $G\langle \tau a b \rangle$, which is isomorphic to $(PSL_2(p) \times \mathbb{Z}_3): \mathbb{Z}_2$ or $PSL_2(p) \times S_3$, respectively.

Finally, suppose that $\text{Cos}(G, H, 1, o_1) \cong \text{Cos}(G, H, 1, o_2)$ for $o_1, o_2 \in O_0$. Then, by Lemma 3.3, there is $\sigma \in Aut(G, H)$ such that $Ho_1^{\sigma}H = Ho_2H$. This implies that $\langle x \rangle o_1^{\text{conj}(g)}$ $\sum_{1}^{\text{conj}(g)}\langle x\rangle = \langle x\rangle o_2\langle x\rangle$ for some $g \in \text{PGL}_2(p)$. Then $\text{Cos}(T, \langle x\rangle, 1, o_1) \cong \text{Cos}(T, \langle x\rangle, 1, o_2)$. By Theorem 5.7, we have $o_1 = o_2$. Thus distinct involutions *o* in O_0 produce nonisomorphic symmetric graphs $Cos(G, H, 1, o)$. Therefore, Γ is described as in Lines 11 or 12 of Table 1. This completes the proof of Theorem 1.1.

REFERENCES

- [1] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1993.
- [2] N. Biggs, *Algebraic Graph Theory*, 2nd ed., Cambridge University Press, New York, 1992.
- [3] P.J. Cameron, H.R. MaiMani, G.R. Omidi and B. Tayfeh-Rezaie, 3*-design from* PSL(2*, q*), Discrete Math. **306** (2006), 3062–3073.
- [4] P.J. Cameron, G.R. Omidi and B. Tayfeh-Rezaie, 3*-design from* PGL(2*, q*), Electron. J. Combin. **13** (2006), #*R*50.
- [5] M. Conder, *Arc-transitive trivalent Cayley graphs*, J. Algebra. **610** (2022), 896–910.
- [6] M. Conder and P. Dobcsányi, *Trivalent symmetric graphs on up to* 768 *vertices*, J. Combin. Math. Combin. Comput. **40** (2002), 41–63.
- [7] M. Conder and P. Lorimer, *Automorphism groups of symmetric graphs of valency* 3, J. Combin. Theory Ser. B. **47** (1989), 60–72.
- [8] M. Conder, A.Malnič, D. Marušič and P. Potočnik, *A census of semisymmetric cubic graphs on up to* 768, J. Algebraic Combin. **23** (2006), 255–294.
- [9] M. Conder and R. Nedela, *Symmetric cubic graphs of small girth*, J. Combin. Theory Ser. B. **97** (2007), 757–768.
- [10] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, *Atlas of Finite Groups*, Oxford University Press, Oxford, 1985.
- [11] J.D. Dixon and B. Mortimer, *Permutation Groups*, Springer-Verlag, New York, 1996.
- [12] D.Ž. Djoković and G.L. Miller, *Regular groups of automorphisms of cubic graphs*, J. Combin. Theory Ser. B. **29** (1980), 195–230.
- [13] S.F. Du and M.Y. Xu, *A classification of semisymmetric graphs of order* 2*pq*, Comm. Algebra. **28** (2002), 2685–2714.
- [14] The GAP Group, *GAP-Groups, Algorithms, and Programming*, Version 4.11.1, 2021. http://www.gap-system.org
- [15] M. Giudici, C. H. Li and C. E. Praeger, *Analysing finite locally s-arc transitive graphs*, Trans. Amer. Math. Soc. **365** (2004), 291–317.
- [16] D.M. Goldschmidt, *Automorphisms of trivalent graphs*, Ann. Math. **111** (1980), 377–406.
- [17] B. Huppert, *Endliche Gruppen I*, Springer-Verlag, Berlin, 1967.
- [18] M. E. Iofinova and A. A. Ivanov, *Biprimitive cubic graphs*, Investigation in Algrbraic Theory of Combinatorial Objects, Proceedings of the seminar, Institute for System Studies, Moscow, 1985, Kluwer Academic Publishers, London, 1994, pp 459–472.
- [19] P. Kleidman and M. Liebeck, *The Subgroup Structure of The Finite Classical Groups*, Cambridge University Press, Cambridge, 1990.
- [20] C.H. Li, Z. P. Lu and D. Marušič, *On primitive permutation groups with small suborbits and their orbital graphs*, J. Algebra **279** (2004), 749–770.
- [21] C.H. Li, Z.P. Lu and G.X. Wang, *Vertex-transitive cubic graphs of square-free order*, J. Graph Theory **75** (2014), 1–19.
- [22] C. H. Li, Z. P. Lu and G. X. Wang, *Arc-transitive graphs of square-free order and small valency*, Discrete Math. **339** (2016), 2907–2918.
- [23] G.X. Liu and Z.P. Lu, *On edge-transitive cubic graphs of square-free order*, European J. Combin. **45** (2015), 41–46.
- [24] J.J. Li and Z.P. Lu, *Cubic s-arc transitive Cayley graphs*, Discrete Math. **309** (2009), 6014–6025.
- [25] S. Lipschutz and M.Y. Xu, *Note on infinite families of travalent semisymmetric graphs*, European J. Combin. **23** (2002), 707–717.
- [26] A. Malnič, D. Marušič and P. Potočnik, *On cubic graphs admitting an edge-transitive solvable Group*, J. Algebraic Combin. **20** (2004), 99–113.
- [27] R.C. Miller, *The trivalent symmetric graphs of girth at most six*, J. Combin. Theory Ser. B. **10** (1971), 163–182.
- [28] C. W. Parker, *Semisymmetric cubic graphs of twice odd order*, European J. Combin. **28** (2007), 572–591.
- [29] W.T. Tutte, *A family of cubical graphs*, Proc. Cambridge Philos. Soc. **43** (1947), 459–474.
- [30] W.T. Tutte, *On the symmetry of cubic graphs*, Canad. J. Math. **11** (1959), 621–634.
- [31] W.T. Tutte, *Connectivity in Graphs*, University of Toronto Press, Toronto, 1966.
- [32] R. Weiss, *s-Transitive graphs*, Algebraic methods in graph theory, vols. I, II, Szeged, 1978, Colloq. Soc. Janos Bolyai, vol. 25, North-Holland, Amsterdam, New York, 1981, pp 827–847.

G.X. Liu, School of Science, Tianjin Chengjian University, Tianjin 300384, China *Email address*: lgx@tcu.edu.cn

Z.P. Lu, Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, China *Email address*: lu@nankai.edu.cn