ON 2**-ARC-TRANSITIVE GRAPHS ADMITTING A VERTEX-TRANSITIVE SIMPLE GROUP**

ZAI PING LU

Abstract. A graph *Γ* is said to be 2-arc-transitive if its automorphism group acts transitively on the set of 2-arcs of *Γ*. In this paper, we give a group-theoretic characterization of those connected 2-arc-transitive graphs which admit a vertextransitive simple group.

Keywords. Simple group, quasisimple group, perfect group, arc-transitive, 2-arctransitive.

1. Introduction

In this paper, all groups are assumed to be finite, and all graphs are assumed to be finite, simple and undirected.

Let *Γ* = (*V, E*) be a regular graph with vertex set *V* and edge set *E*. Denote by Aut(*Γ*) the automorphism group of *Γ*, and let *G* be a subgroup of Aut(*Γ*). The graph *Γ* is called *G-vertex-transitive*, or *G* is called a *vertex-transitive group* of *Γ*, if *G* acts transitively on *V* , and called a Cayley graph of *G* if *G* acts regularly on *V* . Recall that an arc of *Γ* is an ordered pair of adjacent vertices, and a 2-arc is a triple (α, β, γ) of vertices with $\{\alpha, \beta\}, \{\beta, \gamma\} \in E$ and $\alpha \neq \gamma$. The graph *Γ* is called *G*-arc-transitive (or (*G,* 2)*-arc-transitive*) if it has no isolated vertex and *G* acts transitively on the set of arcs (or the set of 2-arcs). Note that 2-arc-transitivity leads to arc-transitivity, and arc-transitivity leads to vertex-transitivity.

In the literature, the solutions of quite a number of problems about arc-transitive graphs have been reduced or partially reduced into the class of graphs arising from (almost) simple groups. For example, the reduction for arc-transitive graphs of prime valency [25], the reduction for 2-arc-transitive graphs established in [27], the Weiss Conjecture [34, Conjecture 3.12] for non-bipartite locally primitive graphs [5], the normality of Cayley graphs of simple groups [10, 11], the existence and classification of edge-[prim](#page-18-0)itive graphs [13, 26], and so on. Certainly, the class of gr[aph](#page-18-1)s admitting (almost) sim[ple](#page-18-2) groups plays an important role in the theory of arc-transitive [gr](#page-17-0)aphs.

In this paper, we focus on those arc-tra[nsi](#page-18-3)t[ive](#page-18-4) graphs which admit a vertextransitive simple group. [On](#page-18-5)e [of](#page-18-6) our motivations comes from a problem in the study of the automorphism groups or the normality of arc-transitive Cayley graphs of finite nonabelian simple groups. Let $\Gamma = (V, E)$ be a connected *G*-arc-transitive graph of valency $d \geqslant 3$. Assume that either *d* is a prime or *Γ* is $(G, 2)$ -arc-transitive, and *G* has a nonabelian simple subgroup *T* which acts regularly on *V* . Then the Weiss Conjecture is true for (*Γ, G*), that is, the orders of vertex-stabilizers have an upper bound depending only on the valency *d*, refer to [5]. This ensures that *T* is normal in

²⁰¹⁰ Mathematics Subject Classification. 05C25, 20B25, 20E22.

Supported by the National Natural Science Foundation of China (12331013, 12161141006) and the Fundamental Research Funds for the Central Univer[sit](#page-17-0)ies.

G with a finite number of exceptions, see [10, Theorem 1.1]. An interesting problem, as proposed in [10], is to figure out the exceptions for *T*. This problem has been solved for $d \leq 5$ in several papers, refer to [8, 9, 10, 31]. In [32], the exceptions for *T* are determined under the assumption [tha](#page-18-3)t *d* is a prime and a vertex-stabilizer is solvable. The o[the](#page-18-3)r possible exceptions for *T* can be read out from a recent paper [21], which are alternating gr[ou](#page-17-1)[ps](#page-18-7), simple groups [wit](#page-18-3)h $|T| - 1 = d$ $|T| - 1 = d$ $|T| - 1 = d$ and, possibly, the simple orthogonal groups of minus type and characte[rist](#page-18-8)ic 2. With these, we observe that if *T* is not normal in *G* then *G* is an almost simple group. This leads to another interesting problem. What will happen if we weaken the 'regularity' of *T* into 'tran[siti](#page-18-10)vity'? Thus, in this paper, we consider those arc-transitive graphs satisfying the following assumptions:

Hypothesis 1.1. *Γ* is a connected *G*-arc-transitive graph of valency $d \geq 3$, *G* contains a vertex-transitive nonabelian simple subgroup *T*, and either *d* is a prime or *Γ* is $(G, 2)$ -arc-transitive.

Recall that a group *X* is perfect if it equals to its derived subgroup. If a central extension of some simple group is perfect then it is called a quasisimple group or a covering group of the simple group. For a finite group X, denote by $\text{rad}(X)$ and $\mathbf{O}_r(X)$, respectively, the maximal solvable normal subgroup and the maximal normal *r*-subgroup of *X*, where *r* is a prime divisor of *|X|*.

In Section 4, the following result is proved.

Theorem 1.2. *Assume that Γ, G and T are described as in Hypothesis* 1.1*. Then G has at most one transitive minimal normal subgroup, and one of the following holds:*

- (1) $G \cong \text{AGL}_3(2)$ $G \cong \text{AGL}_3(2)$ $G \cong \text{AGL}_3(2)$, and Γ is the complete graph on 8 vertices;
- (2) *T is contained in a characteristic perfect subgroup N of G, and [eith](#page-1-0)er* (i) *N is quasisimple; or*
	- (ii) $N/\mathbf{O}_r(N)$ *is quasisimple, T* and $N/\text{rad}(N)$ are simple groups of Lie type *over finite fields of characteristic* r *, and* $|\text{rad}(N)|$ *is a divisor of* $|T|$ *.*

In particular, if G has a transitive minimal normal subgroup M, then either $G \cong$ AGL₃(2) *or M is simple and* $T \leq M$ *.*

Theorem 1.2 is just the first step toward characterizing those simple groups which act transitively on the vertex set of a 2-arc-transitive graph or an arc-transitive graph of prime valency, and then classifying those graphs in Hypothesis 1.1 with *T* not normal in *G*. For (2)(i) and (ii) of Theorem 1.2 with $T \neq N$ (and so $N/\text{rad}(N) \not\cong T$), we observe [tha](#page-1-1)t the simple group $N/\text{rad}(N)$ has a factorization $N/\text{rad}(N) = XY$ with $X \cong T$ and $Y \neq 1$. In a sequel, employing factorizations of [fin](#page-1-0)ite (almost) simple groups, we shall work out a possible [list](#page-1-1) for those simple groups *T* which are not normal in *G*.

2. Primes involved in some finite simple groups

In this section, we assume that n is a positive integer and r is a prime. Write

(2.1)
$$
n = a_0 + a_1 r + \dots + a_k r^k, \ s_r(n) = a_0 + a_1 + \dots + a_k,
$$

where a_i are integers with $0 \leq a_i < r$. For an integer *x*, denote by $\nu_r(x)$ the highest power of *r* that divides *x*. By Legendre's formula,

(2.2)
$$
\nu_r(n!) = \frac{n - s_r(n)}{r - 1}.
$$

In particular, $\nu_r(n!) \leq n-1$, where the equality holds if and only if $r = 2$ and *n* is a power of 2.

Recall that, for integers $l \geq 2$ and $q \geq 2$, a primitive prime divisor of $q^{l} - 1$ is a prime which divides $q^{l} - 1$ but does not divide $q^{i} - 1$ for any $0 < i < l$. If *r* is a primitive prime divisor of $q^{l} - 1$, then q has order l modulo r, and thus l is a divisor of $r-1$, in particular, $r \geq l+1$; if further $r \mid (q^m-1)$ with $m \geq 1$ then $l \mid m$. Thus, by [12, Theorems 3.1 and 3.5], we have the following result, where [*x*] denotes the integer part of a real number *x*.

Lemma 2.1. *Let* $\Lambda_n(q) = \prod_{i=1}^n (q^i - 1)$ *, where n and q are integers no less than* 2*. Ass[um](#page-18-11)e that r is a prime divisor of* $\Lambda_n(q)$ *, and let l be the order of q modulo r. Then one of the following holds:*

- (1) r is odd or $q \equiv 1 \pmod{4}$, and $\nu_r(\Lambda_n(q)) = \left[\frac{n}{l}\right] \nu_r(q^l-1) + \nu_r(\left[\frac{n}{l}\right])$;
- (2) $r = 2$, $q \equiv 3 \pmod{4}$, and $\nu_2(\Lambda_n(q)) = \left[\frac{n}{2}\right]\nu_2(q+1) + \left[\frac{n+a_0}{2}\right] + \nu_2(n!)$.

Corollary 2.2. *Let n*, *q*, *r* and $\Lambda_n(q)$ *be as in Lemma* 2.1*. Then either*

(1)
$$
\nu_r(\Lambda_n(q)) < n \log_2(q) + \nu_r(n!) \leq q^{\frac{n}{2}} + n - 1
$$
 for $(r, q) \neq (2, 3)$; or
(2) $(r, q) = (2, 3)$ and $\nu_2(\Lambda_n(q)) \leq \frac{5n-2}{2} \leq 3^{\frac{n}{2}} + n - 1$.

In particular, $\nu_2(\Lambda_n(q)) = q^{\frac{n}{2}} + n - 1$ *if and only if* $(r, q, n) = (2, 3, 2)$ $(r, q, n) = (2, 3, 2)$ $(r, q, n) = (2, 3, 2)$ *.*

Proof. Let *l* be the order of *q* modulo *r*.

Assume that (1) of Lemma 2.1 holds. Noting that $\nu_r(n!) \leq n-1$, we have

$$
\nu_r(\Lambda_n(q)) = \left[\frac{n}{l}\right] \nu_r(q^l - 1) + \nu_r(\left[\frac{n}{l}\right]!) \leq \left[\frac{n}{l}\right] \log_r(q^l - 1) + \nu_r(\left[\frac{n}{l}\right]!)
$$

$$
< \left[\frac{n}{l}\right] \log_r(q^l) + \nu_r(\left[\frac{n}{l}\right]!) \leq \log_r(q^n) + \nu_r(n!) \leq \log_2(q^n) + n - 1.
$$

It is easily shown that $x^{\frac{1}{2}} - \log_2(x)$ is nonnegative and monotonically increasing when $x \geq 16$. It follows that either $\log_2(q^n) \leq q^{\frac{n}{2}}$ or $q^n \leq 15$. The former case yields part (1) of this corollary. For $q^n \leq 15$, since either *r* is odd or $q \equiv 1 \pmod{4}$, the only possibility is that $(q, n) = (2, 2)$ or $(2, 3)$; in this case, $r \in \{3, 7\}$ and $\nu_r(\Lambda_n(q)) = 1$, which also meets (1) of the corollary.

Now let $r = 2$ and $q \equiv 3 \pmod{4}$. If $q > 3$ then $n < \frac{n}{2} \log_2 q$, and so

$$
\nu_2(\Lambda_n(q)) \leqslant \left[\frac{n}{2}\right] \nu_2(q+1) + \left[\frac{n+a_0}{2}\right] + \nu_2(n)
$$

$$
< \left[\frac{n}{2}\right] \log_2(2q) + \left[\frac{n+1}{2}\right] + \nu_2(n!)
$$

$$
= \left[\frac{n}{2}\right] \log_2(q) + \left[\frac{n}{2}\right] + \left[\frac{n+1}{2}\right] + \nu_2(n!)
$$

$$
= \left[\frac{n}{2}\right] \log_2(q) + n + \nu_2(n!) < n \log_2(q) + \nu_2(n!)
$$

$$
\leqslant q^{\frac{n}{2}} + n - 1,
$$

desired as in (1) of this corollary. Assume that $q = 3$. Then

$$
\nu_2(\Lambda_n(q)) = 2[\frac{n}{2}] + [\frac{n+a_0}{2}] + n - s_2(n).
$$

Noting that $a_0 \in \{0, 1\}$ and $s_2(n) \geq 1$, we have

$$
\nu_2(\Lambda_n(q)) \leq 2\left[\frac{n}{2}\right] + \left[\frac{n+1}{2}\right] + n - 1 \leq \frac{5n-2}{2}.
$$

It is easily shown that $3^x \ge 3x$ for $x \ge 1$. Thus $\frac{5n-2}{2} = 3 \cdot \frac{n}{2} + n - 1 \le 3^{\frac{n}{2}} + n - 1$, and the corollary follows. \Box

For a group *X*, denote its derived subgroup by *X′* . For a finite simple group of Lie type in characteristic p, let $e(L)$ denote a lower bound, given as in [17, page 188, Table 5.3.A], on degrees of faithful projective *s*-modular representations of *L* with $s \neq p$.

Lemma 2.3. *Let L be a finite simple group of Lie type defined over a [fie](#page-18-12)ld of order* $q = p^f$, where p is a prime. Assume that *r* is a prime divisor of |L| with $r \neq p$. Then $\nu_r(|L|) < e(L)$ *with the following exceptions:*

 (L) $L = \text{PSL}_2(9), r = 2, \nu_r(|L|) = 3 = e(L);$ (L) $L = \text{Sp}_4(2)^\prime, r = 3, \nu_r(|L|) = 2 = e(L);$ (L) $L = \text{PSU}_4(2), r = 3, \nu_r(|L|) = 4 = e(L);$ (L) $L = \text{PSU}_4(3), r = 2, \nu_r(|L|) = 7$ and $e(L) = 6$; $(L = \text{PSL}_2(5), r = 2, \nu_r(|L|) = 2 = e(L);$ (6) $L = \text{PSL}_2(7), r = 2, \nu_r(|L|) = 3 = e(L);$ (T) $L = \text{PSp}_4(3)$, $r = 2$, $\nu_r(|L|) = 6$ and $e(L) = 4$.

Proof. Suppose first that $(L, e(L))$ is a pair given as in the third column of [17, page 188, Table 5.3.A]. Then *L*, *p*, $e(L)$ and $|L|$ are listed in Table 2.1. Inspecting

L	р	e(L)	
$PSL_2(4)$	$\overline{2}$	$\overline{2}$	$p^2\cdot 3\cdot 5$
$PSL_2(9)$	3	3	$p^2\cdot 2^3\cdot 5$
$PSL_3(2)$	$\overline{2}$	$\overline{2}$	$p^3 \cdot 3 \cdot 7$
PSL ₃ (4)	$\overline{2}$	4	$p^6\cdot 3^2\cdot 5\cdot 7$
$Sp_{4}(2)'$	$\overline{2}$	$\overline{2}$	$p^3\cdot 3^2\cdot 5$
$PSp_6(2)'$	$\overline{2}$	$\overline{7}$	$p^9\cdot 3^4\cdot 5\cdot 7$
$PSU_4(2)$	$\overline{2}$	4	$p^6\cdot 3^4\cdot 5$
$PSU_4(3)$	3	6	$p^6\cdot 2^7\cdot 5\cdot 7$
$P\Omega_8^+(2)$	$\overline{2}$	8	$p^{12} \cdot 3^5 \cdot 5^2 \cdot 7$
$\Omega_7(3)$	3	27	$p^9\cdot 2^9\cdot 5\cdot 7\cdot 13$
$F_4(2)$	$\overline{2}$	$\geqslant 44$	$p^{24} \cdot 3^6 \cdot 5^2 \cdot 7^2 \cdot 13 \cdot 17$
$G_2(3)$	3	14	$p^6\cdot 3^6\cdot 7\cdot 13$
$G_2(4)$	$\overline{2}$	12	$p^{12} \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 13$
Sz(8)	2	8	$p^6 \cdot 5 \cdot 7 \cdot 13$

TABLE 2.1. Exceptions for $e(L)$

the groups in Table 2.1, we have $\nu_r(|L|) < e(L)$ unless $(L, r, \nu_r(|L|), e(L))$ is one of $(PSL_2(9), 2, 3, 3), (Sp_4(2)', 3, 2, 2), (PSU_4(2), 3, 4, 4) \text{ and } (PSU_4(3), 2, 7, 6).$

We next deal with the case where $e(L)$ is listed in the second column of [17, page 188, Table 5.3.A]. W[e fix](#page-3-0) a Sylow *r*-subgroup *R* of *L*. Then $\nu_r(|L|) = \nu_r(|R|)$.

Case 1. Assume that $L = \text{PSL}_2(q)$ and $e(L) = \frac{q-1}{(2q-1)}$, where $4 < q \neq 9$. In this case, $|R|$ is a divisor of $\Lambda_2(q)$, and so $\nu_r(|L|) = \nu_r(|R|) \leq \nu_r(\Lambda_2(q))$ [.](#page-18-12) Since $q \neq 3$, by (1) of Corollary 2.2, $\nu_r(|L|) < 2\log_2(q) + 1$. If $q \leq 15$ then $q = 5$ or 7, which gives (5) or (6) of this lemma. Now let $q > 15$. Then $log_2(q) \leqslant q^{\frac{1}{2}}$, and so $\nu_r(|L|) < 2\log_2(q) + 1 \leq 2q^{\frac{1}{2}} + 1$. Suppose that $\nu_r(|L|) \geq e(L)$. Then $2q^{\frac{1}{2}} + 1 > \frac{q-1}{2}$,

and so $q^2 - 22q + 9 < 0$, yielding $q < 22$. Thus $q = 16, 17$ or 19, and then $e(L) \geq 8$; however, r^8 is not a divisor of $|PSL_2(16)|$, $|PSL_2(17)|$ or $|PSL_2(19)|$, a contradiction. Then $\nu_r(|L|) < e(L)$, as desired.

Case 2. Assume that $L = \text{PSL}_n(q)$ and $e(L) = q^{n-1} - 1$, where $n > 2$ and $(n, q) \neq 0$ $(3, 2), (3, 4)$. Suppose that $q^{n-1} \leq 1$. Then $q^{n-1} \leq 16$, and so $(n, q) = (3, 3)$, $(4,2)$ or $(5,2)$. We have $e(L) \geq 7$, and $(|L|, p) = (2^4 \cdot 3^3 \cdot 13, 3)$, $(2^6 \cdot 3^2 \cdot 5 \cdot 7, 2)$ or $(2^{10} \cdot 3^2 \cdot 5 \cdot 7 \cdot 31, 2)$. It follows that $\nu_r(|L|) < e(L)$.

Now let $q^{\frac{n-1}{4}}-1>1$. Then $q^{n-1}-1=(q^{\frac{n-1}{2}}+1)(q^{\frac{n-1}{4}}+1)(q^{\frac{n-1}{4}}-1)>(q^{\frac{n-1}{2}}+1)$ $1(q^{\frac{n-1}{4}}+1)$, and so

$$
e(L) > (q^{\frac{n-1}{2}} + 1)(q^{\frac{n-1}{4}} + 1) = q^{\frac{3(n-1)}{4}} + q^{\frac{n-1}{2}} + q^{\frac{n-1}{4}} + 1 > q^{\frac{n}{2}} + 2^{\frac{n-1}{2}} + 2.
$$

Noting that $|R|$ is a divisor of $\Lambda_n(q)$, we have $\nu_r(|L|) = \nu_r(|R|) \leq \nu_r(\Lambda_n(q))$. By Corollary 2.2, $\nu_r(|L|) < q^{\frac{n}{2}} + n - 1$. If $n = 4$ then $e(L) > q^{\frac{n}{2}} + 4 > \nu_r(|L|)$. If $n \neq 4$ then $2^{\frac{n-1}{2}} \geq n-1$, and thus $e(L) > q^{\frac{n}{2}} + n - 1 + 2 > \nu_r(|L|)$.

Case 3. Assume that $L = \text{PSp}_{2m}(q)$, where $m > 1$ and $(m, q) \neq (2, 2), (3, 2)$. Noting th[at](#page-2-1) $|R|$ is a divisor of $\Lambda_m(q^2)$, we have $\nu_r(|L|) = \nu_r(|R|) \leq \nu_r(\Lambda_m(q^2))$. By (1) of Corollary 2.2, since $q^2 \neq 3$, we have

$$
\nu_r(|L|) < m \log_2(q^2) + \nu_r(m!) = 2 \log_2(q^m) + \nu_r(m!).
$$

If $q^m \leq 15$ then $(m, q) = (2, 3)$ $(m, q) = (2, 3)$; in this case, $r = 2$, $L = \text{PSp}_4(3)$, $\nu_r(|L|) = 6$ and $e(L) = \frac{q^m-1}{q^2} = 4$, as in part (7). Thus we assume next that $q^m > 15$. Then $\log_2(q^m) \leqslant q^{\frac{m}{2}}$ and so $\nu_r(|L|) < 2q^{\frac{m}{2}} + m - 1$.

Suppose that *q* is odd. Then $e(L) = \frac{q^m-1}{2}$. If $m > 3$ then $m \leq 2^{\frac{m}{2}}$, and so

$$
\nu_r(|L|) < 2q^{\frac{m}{2}} + m - 1 \leqslant 2q^{\frac{m}{2}} + 2^{\frac{m}{2}} - 1 < q^{\frac{m+2}{2}} - 1 \leqslant q^{m-1} - 1 < e(L).
$$

Assume that $m \leq 3$. Then either $(m, q) = (3, 3)$ or $q \geq 5$. For $(m, q) = (3, 3)$, we have $\nu_r(|L|) \leq 9 < 13 = e(L)$. Now let $q \geq 5$. If $m = 2$ then $\nu_r(|L|) < 2q + 1$, yielding $\nu_r(|L|) \leq 2q \leq \frac{q-1}{2}q < \frac{q^2-1}{2} = e(L)$. If $m = 3$ then $\nu_r(|L|) < 2q^{\frac{3}{2}} + 2$, and thus $\nu_r(|L|) \leq 2q^{\frac{3}{2}} + 1 < q^2 + q + 1 \leq \frac{q^3 - 1}{2} = e(L).$

Suppose that *q* is even. Then $e(L) = \frac{q^{m-1}(q^{m-1}-1)(q-1)}{2}$. If $m > 3$ then

$$
\nu_r(|L|) < 2q^{\frac{m}{2}} + m - 1 \leqslant 2q^{\frac{m}{2}} + 2^{\frac{m}{2}} - 1 \leqslant 3q^{\frac{m}{2}} - 1 < q^{\frac{m}{2} + \frac{7}{4}} - 1 < q^m < e(L).
$$

If $m = 2$ then $q \ge 4$ and $q^m > 15$, and so $\nu_r(|L|) < 2q + 1 < \frac{q(q-1)^2}{2} = e(L)$. If $m = 3$ then $q \ge 4$, and so $\nu_r(|L|) < 2q^{\frac{3}{2}} + 2 < q^2 + q + 2 < 2q^2 < \frac{q^2(q^2-1)(q-1)}{2} = e(L)$.

Case 4. Assume that $L = \text{PSU}_n(q)$, where $n > 2$ and $(n, q) \neq (3, 2)$, $(4, 2)$, $(4, 3)$. Then $e(L) = \frac{q^{n-1}}{q+1}$ or $\frac{q^{n}-q}{q+1}$, where *n* is even or odd respectively. Since $|R|$ is a divisor of $\Lambda_n(q^2)$, we have $\nu_r(|L|) = \nu_r(|R|) \leq \nu_r(\Lambda_n(q^2))$. Since $q^2 \neq 3$, by (1) of Corollary 2.2, $\nu_r(|L|) < \log_2(q^{2n}) + n - 1$. If $n = 4$ then $q \geq 4$, and so $\nu_r(|L|) < 8q + 3$ $(q^2+1)(q-1) = e(L)$. If $n = 3$ then $\nu_r(|L|) < 6q+2 < q(q-1) = e(L)$ unless $q < 8$; for $q < 8$, we also have $\nu_r(|L|) < e(L)$ by calculation of the order of L. If $n = 5$ [the](#page-2-1)n $\nu_r(|L|) < 10q + 4 < (q^2 + 1)q(q - 1) = e(L)$ unless $q = 2$; for the exception $(n,q) = (5,2)$, we have $r \in \{3,5,11\}$, and $\nu_r(|L|) \leq 5 < 10 = e(L)$. If $n = 6$ then $\nu_r(|L|) < 12q + 5 < (q^3 - 1)(q^2 - q + 1) = e(L)$ unless $q = 2$; for the exception $(n, q) = (6, 2)$, we have $r \in \{3, 5, 7, 11\}$, and $\nu_r(|L|) \leq 6 < 21 = e(L)$. Now let $n > 6$.

Then $\log_2(q^n) < q^{\frac{n}{2}}$ and $n < 2^{\frac{n}{2}}$, and so

$$
\nu_r(|L|) < 2q^{\frac{n}{2}} + 2^{\frac{n}{2}} - 1 < 3q^{\frac{n}{2}} - \frac{2}{3} = \frac{2}{3} \left(\frac{9}{2} q^{\frac{n}{2}} - 1 \right) < \frac{2}{3} \left(q^{\frac{2n+9}{4}} - 1 \right) < \frac{q}{q+1} \left(q^{n-1} - 1 \right) \leqslant e(L).
$$

Case 5. Assume that $L = \text{P}\Omega_{2m}^{\epsilon}(q)$, where $\epsilon = \pm, m > 3$ and $(m, q, \epsilon) \neq (4, 2, +)$. Then

$$
e(L) = (q^{m-1} - 1)(q^{m-2} + 1), (q^{m-1} - 1)q^{m-2} \text{ or } (q^{m-1} + 1)(q^{m-2} - 1);
$$

in particular, $e(L) > 3q^{m-2}$. Since |R| is a divisor of $\Lambda_m(q^2)$, we have $\nu_r(|L|) =$ $\nu_r(|R|) \le \nu_r(\Lambda_m(q^2))$. Since $q^2 \neq 3$, by (1) of Corollary 2.2, $\nu_r(|L|) < m \log_2(q^2) + \frac{1}{n}$ $m-1 = 2\log_2(q^m) + m-1$. Noting that $q^m \geq 16$ and $m > 3$, we have $\log_2(q^m) \leqslant q^{\frac{m}{2}}$ and $m \leqslant 2^{\frac{m}{2}}$, and then

$$
\nu_r(|L|) < 2\log_2(q^m) + m - 1 \leqslant 3q^{\frac{m}{2}} - 1 < 3q^{m-2} < e(L).
$$

Case 6. Assume that $L = \Omega_{2m+1}(q)$, where q is odd, $m > 2$ and $(m, q) \neq (3, 3)$. Then $e(L) = q^{m-1}(q^{m-1} - 1)$ or $q^{2m-2} - 1$. Since $|R|$ is a divisor of $\Lambda_m(q^2)$, we have $\nu_r(|L|) = \nu_r(|R|) \le \nu_r(\Lambda_m(q^2))$. By (1) of Corollary 2.2, $\nu_r(|L|) < m \log_2(q^2) + m - 1 =$ $2\log_2(q^m) + m - 1$. Since $m > 2$, we have $m < 3^{\frac{m}{2}}$. Noting that $q^m \geq 27$, we have $\log_2 q^m < q^{\frac{m}{2}}$, and thus

$$
\nu_r(|L|) < 2\log_2 q^m + m - 1 < 2q^{\frac{m}{2}} + 3^{\frac{m}{2}} - 1 \leqslant 3q^{\frac{m}{2}} - 1 \leqslant q^{\frac{m+2}{2}} - 1 < e(L).
$$

Case 7. Assume that *L* is an exceptional simple group of Lie type. Then *|R|* is a divisor of $\Lambda_m(q^2)$ with *m* listed as follows:

$$
\begin{array}{c|ccccc} L & G_2(q) & F_4(q) & E_6(q) & E_7(q) & E_8(q) & ^2B_2(q) & ^2G_2(q) & ^2F_4(q) & ^3D_4(q) & ^2E_6(q) \\ \hline m & 3 & 6 & 9 & 9 & 15 & 2 & 3 & 6 & 6 & 9 \end{array}.
$$

Noting that $q^2 \neq 3$, by (1) of Corollary 2.2, $\nu_r(|L|) < m \log_2(q^2) + 2 \leq 2mq + m - 1$. Comparing $2mq + m - 1$ and the values of $e(L)$ given in [17, page 188, Table 5.3.A], we have $\nu_r(|L|) < e(L)$, the details are omitted here. □

3. Simple subgroups in [ext](#page-2-1)ensions of a [sim](#page-18-12)ple group

Let *X* and *Y* be groups. Denote by *X.Y* an extension of *X* by *Y* , while *X*:*Y* stands for a split extension. By $X \leq Y$, $X \leq Y$, X char Y and $X \leq Y$ we mean that X is a subgroup, a normal subgroup, a characteristic subgroup and isomorphic to a subgroup of *Y*, respectively. When $X \leq Y$ or $X \leq Y$ but $X \neq Y$, we write $X < Y$ or $X \triangleleft Y$, respectively. We call *X* a section of *Y* if *X* is isomorphic a quotient group of some subgroup of *Y* . The automorphism group and inner automorphism group of *X* are denoted by $\text{Aut}(X)$ and $\text{Inn}(X)$, respectively, and let $\text{Out}(X) = \text{Aut}(X)/\text{Inn}(X)$. As a consequence of the *Classification of Finite Simple Groups*, the *Schreier Conjecture* is true, see $[7,$ Appendix A $]$ for example. Thus, if X is a finite simple group then Out(*X*) is solvable. In addition, $\text{Inn}(X) ≅ X/\mathbf{Z}(X)$, where $\mathbf{Z}(X)$ is the center of X.

In the following, N is assumed to be a finite group. For $Y, X \leq N$, denote by $\mathbf{C}_X(Y)$ and $\mathbf{N}_X(Y)$ $\mathbf{N}_X(Y)$ $\mathbf{N}_X(Y)$ the centralizer and normalizer of Y in X, respectively. Clearly, $\mathbf{C}_X(Y) = \mathbf{C}_N(Y) \cap X$ and $\mathbf{N}_X(Y) = \mathbf{N}_N(Y) \cap X$. It is easily shown that both $\mathbf{C}_X(Y)$ and $N_X(Y)$ are normal (or characteristic) subgroups of N provided that X and Y are normal (or characteristic) in *N*.

Lemma 3.1. *Assume that* $K \leq N$ *and* N/K *is a nonabelian simple group. Suppose that* $|K|^2$ *divides of* $|N|$ *. Then one of the following holds:*

 (1) *N* ≅ *K* × *K*;

 $P(X|X) = R(X)$ *K* \cap *N* \cap *KC*, where *C* char *N*, $C = C'$ *and* $\text{rad}(C) = K \cap C$ *.*

Proof. Assume first that $K^{\sigma} \neq K$ for some $\sigma \in \text{Aut}(N)$. Clearly, $K^{\sigma} \lhd N^{\sigma} = N$, and so $K^{\sigma}K/K \leq N/K$. Since N/K is simple, we have $N/K = (K^{\sigma}K)/K \cong K^{\sigma}/(K \cap K^{\sigma})$. In particular, $|N| = |K||K^{\sigma} : (K \cap K^{\sigma})|$. Noting that $|K|^2$ divides $|N|$, it follows that $K \cap K^{\sigma} = 1$ and $N = KK^{\sigma} = K \times K^{\sigma}$. Then part (1) of this lemma follows.

Now let *K* char *N*. Choose a minimal member *C* among those characteristic subgroups of *N* with $N = KC$. Then $N/K = KC/K \cong C/(K \cap C)$, and $N/K =$ $(N/K)' = (KC')/K$. In particular, $N = KC'$, and so $C = C'$ by the choice of *C*. We next show that $K \cap C$ is solvable. Note that $(K \cap C)$ char *N*.

Suppose that $K \cap C$ is insolvable. Choose *I*, *J* char($K \cap C$) with $I \leq J$ and $J/I \cong T^l$, where $l \geq 1$ and *T* is a nonabelian simple group. Clearly, *I*, *J* char *N*, and ${\bf C}_{C/I}(J/I) \cap (J/I) = 1$. Set $C_1/I = {\bf C}_{C/I}(J/I)$. Then C_1 char $N, C_1 < C$, and $N \neq KC_1$ by the choice of *C*. Since N/K is simple, we have $(KC_1)/K = 1$, and so $C_1 \leq K \cap C$. Considering the action of C/I on J/I by conjugation, we have

$$
C/(C_1J) \cong (C/I)/(C_1J/I) \lesssim \text{Out}(T^l) = \text{Out}(T)^l \cdot S_l,
$$

where S_l is the symmetric group of degree l . Note that

$$
N/K = KC/K \cong C/(K \cap C) \cong (C/(C_1J))/(K \cap C)/(C_1J)).
$$

It follows that N/K is a section of $Out(T)^{l}S_{l}$. Noting that $Out(T)$ is solvable, it follows that N/K is a section of S_l , and so $|N/K|$ divides *l*!. Since $|K|^2$ divides $|N|$, we conclude that $|T|^l$ divides $|N/K|$, and thus $|T|^l$ divides *l*!. Then, for a prime divisor r of |T|, we have $l \leq \nu_r(|T|^l) \leq \nu_r(l!)$. By Legendre's formula, $\nu_r(l) = \frac{l - s_r(l)}{r - 1} \leq l - 1$, and so $l \le l-1$, a contradiction. Then $K \cap C$ is solvable, and part (2) of this lemma is true. \Box

For a finite group *X*, denote by $X^{(\infty)}$ the intersection of all subgroups appearing in the derived series of *X*.

Lemma 3.2. *Assume that N contains a normal subgroup* $I \cong \mathbb{Z}_r^k$ *and a nonabelian simple subgroup T such that* r^k *is a divisor of* $|T|$ *, where r is a prime and* $k \geq 1$ *. Suppose that* N/I *is a covering group of some simple group L. Then either* $N =$ $\mathbf{C}_N(I)$ *, or* $\mathbf{C}_N(I) \leq \text{rad}(N)$ *,* $T \leq N/\mathbf{C}_N(I) \leq \text{SL}_k(r)$ *and one of the following holds:*

- $(N = I: T = \mathbb{Z}_2^k: A_{2^e}, \text{ where } e \geq 3, \text{ and either } k = 2^e - 2 \text{ or } e = 3 \text{ and } k \in \{4, 5\};$
- (2) *either* $N = I \cdot T \cong \text{AGL}_3(2)$ *, or* $N = I \cdot T = \mathbb{Z}_2^6 \cdot \text{PSp}_4(3) \lesssim \text{AGL}_6(2)$ *;*
- (3) *L is a simple group of Lie type over a finite field of characteristic 2, N* \neq $I: T = \mathbb{Z}_2^k: A_{2^e}$, where $e \ge 3$, and either $k = 2^e - 2$ or $k \in \{4, 5\}$ and $e = 3$;
- (4) *T and L are simple groups of Lie type over finite fields of characteristic r.*

Proof. Note that $C_N(I)/I \leq N/I$. Since N/I is quasisimple, either $C_N(I)/I \leq$ $\mathbf{Z}(N/I)$ or $\mathbf{C}_N(I)/I = N/I$, refer to [1, page 157, (31.2)]. For the latter, we have $N =$ $\mathbf{C}_N(I)$. Thus we assume that $\mathbf{C}_N(I)/I \leq \mathbf{Z}(N/I)$. In particular, $\mathbf{C}_N(I) \leq \mathbf{rad}(N)$.

Now consider the action of *N* on *I* by conjugation, and let \widehat{N} be the resulting subgroup of Aut(*I*). We have $\hat{N} \cong N/C_N(I) \cong (N/I)/(C_N(I)/I)$. Then \hat{N} is a covering group of *L*, and N/I is a central extension of \hat{N} . Let \hat{T} be the image of *T* in \hat{N} . Since $T \cap rad(N) = 1$, we have $\hat{T} \cong T\mathbb{C}_N(I)/C_N(I) \cong T$, and so

8 Z.P. LU

 $T \leq N \leq SL_k(r)$. Since r^k is a divisor of *|T|*, noting that $T \cong T$ rad(*N*)/rad(*N*) \leq $N/rad(N) \cong L$, we have $k \leq \nu_r(|T|) \leq \nu_r(|L|)$. Further, if $T \cong L$ then $N = rad(N)$: T and $N/I = (rad(N)/I):(TI/I)$, since N/I is a covering group of $L \cong TI/I$, we have $N/I = (N/I)^{(\infty)} = TI/I$, yielding rad $(N)/I = 1$, and so $I = \text{rad}(N)$, and $L \cong T \cong TI/I = N/C_N(I) \cong N$.

Case 1. Assume that *L* \cong A_{*n*} for some *n* ≥ 5. Then

$$
k \leq \nu_r(|L|) = \nu_r(\frac{n!}{2}) = \nu_r(n!) - (2 - (2, r - 1)).
$$

By Legendre's formula, we have $k \leq \frac{n - s_r(n)}{r - 1} - (2 - (2, r - 1))$. On the other hand, since $\widehat{N} \lesssim SL_k(r)$, a lower bound for *k* is given by [17, Propositions 5.3.2 and 5.3.7].

Suppose that $n \leq 8$. Check the subgroups of A_n with order divisible by r^k for all possible values of *k*. Using GAP [29], computation shows that $T \cong L = A_8$, $r = 2$ and $k \in \{4, 5, 6\}$. Then $N = I$:*T*, desired as in (1) [of t](#page-18-12)his lemma.

Now let $n \geq 9$. Then $k \geq n-2$ by [17, page 186, Proposition 5.3.7], and thus $n-2 \leq k \leq \frac{n-s_r(n)}{r-1} - (2-(2,r-1))$ $n-2 \leq k \leq \frac{n-s_r(n)}{r-1} - (2-(2,r-1))$. It follows that $k = n-2$, $r = 2$, n is a power of 2, and $\frac{|L|}{2^k}$ is odd. In particular, *T* is isomorphic to a simple subgroup of A_n with odd index. By [18, Theorem 1.2], we have $T \cong L = A_n$ $T \cong L = A_n$ $T \cong L = A_n$, and thus $N = \mathbb{Z}_2^{n-2}$: A_n as in (1).

Case 2. Assume that *L* is one of the 26 sporadic simple groups. Then the lower bound for *k* is given as in [17, page 187, Proposition 5.3.8]. Checking the orders of sporadic [si](#page-18-14)mple groups, we conclude that $r = 2$ and one of the following holds: $L = M_{12}$ with $k = 6, L = M_{22}$ with $k \in \{6, 7\}, L = J_2$ with $k \in \{6, 7\}, L = S$ uz with $k \in \{12, 13\}$. Recall that $\widehat{N} \lesssim SL_k(2)$ and \widehat{N} is a covering group of *L*. Then $|L|$ is a divisor of $|SL_k(2)|$, and so $|L:Q|$ is a divisor of $\Lambda_k(2)$, where *Q* is a Sylow 2-subgroup of *L*. If $k \in \{6, 7\}$ then $\Lambda_k(2)$ is not divisible by 5^2 or 11, and thus $L \neq M_{12}, M_{22}$ or J₂. This forces that $L = Suz$ and $k \in \{12, 13\}$. By [23, Corollary 4.3], since $\hat{N} \lesssim SL_k(2)$, we have $|\text{Suz}| \leqslant |\hat{N}| < 2^{2k+4} \leqslant 2^{30}$, which is impossible.

Case 3. Assume that *L* is a simple group of Lie type ov[er a](#page-18-15) finite field of characteristic *p*, and $L \not\cong A_n$ for any $n \geq 5$.

Subcase 3.1. Suppose first that $r \neq p$. Recalling that $\hat{N} \leq SL_k(r)$, by [17, Proposition 5.3.2 and Theoren 5.3.9, $k \ge e(L)$, where $e(L)$ is given as in [17, Table 5.3.A]. Then $e(L) \leq k \leq \nu_r(|T|) \leq \nu_r(|L|)$. Thus *L* appears in the exceptions listed in Lemma 2.3. Note that $|L|$ is [a d](#page-18-12)ivisor of $|SL_k(r)|$; in particular, $|L:Q|$ is a divisor of $\Lambda_k(r)$, where *Q* is a Sylow *r*-subgroup of *L*. In view this, the grou[ps i](#page-18-12)n (1), (2), (4) and (5) of Lemma 2.3 are easily excluded.

Assu[me t](#page-3-1)hat *L* is described as in (3), (6) or (7) of Lemma 2.3. Checking simple subgroups of *L* with order divisible by r^k , we conclude that $L \cong T \leq SL_k(r)$, and thus $N = I$:*T*. For [\(3\)](#page-3-1) of Lemma 2.3, we have $r = 3$ and $k = 4$; however, computation using GAP shows that $SL_4(3)$ has no subgroup isomorphic to $PSU_4(2)$ $PSU_4(2)$. For (6) of Lemma 2.3, we have $r = 2$, $k = 3$ and $L = \text{PSL}_2(7) \cong \text{GL}_3(2)$. For (7) of Lemma 2.3, we have $r = 2$, $k = 6$ and $L = \text{PSp}_4(3)$. Then part (2) of this lemma follows.

Subcase 3.2. Now let $r = p$. Assume that *T* is an alternating group or a sporadic simple [grou](#page-3-1)p. Similarly as Cases 1 and 2, we have $r = 2$, $T \cong A_{2^e}$ for some $e \geq 3$, [and](#page-3-1) either $k = 2^e - 2$ or $k \in \{4, 5\}$ and $e = 3$. This gives part (3) of this lemma.

Assume that *T* is a simple group of Lie type over a finite field of characteristic *p ′* . If $p' = r$ then part (4) of this lemma occurs. Now let $r \neq p'$. Then, by Lemma 2.3, *T* and *r* are known. By a similar argument as in the case where $r \neq p$, we conclude that *N* is desired as in part (2) of this lemma. This completes the proof. \Box

Lemma 3.3. Let N be a perfect group with $L := N/\text{rad}(N)$ simple. Assume that N *contains a nonabelian simple subgroup T such that* $|\text{rad}(N)|$ *is a divisor of* $|T|$ *. Then* $N/\mathbf{O}_r(N)$ *is a covering group of L for some prime divisor r of* |*T|, and either N is a covering group of L or one of the following holds:*

- $P(X|X) = \text{rad}(N)T = [2^k]: A_8 \text{ or } \mathbb{Z}_2^{n-2}:\mathbb{A}_n, \text{ where } k \in \{4, 5, 6\} \text{ and } n = 2^m \text{ for some } k \in \{4, 5, 6\}$ *integer* $m \geqslant 4$ *;*
- (2) $N = IT = \mathbb{Z}_2^3$: $PSL_3(2) \cong AGL_3(2)$ *or* $N = IT = \mathbb{Z}_2^6$: $PSp_4(3) \lesssim AGL_6(2)$;
- (3) *L is a simple group of Lie type over a finite field of characteristic 2,* $L \not\cong T$ *, and* $\mathbf{O}_r(N)T = [2^k]: A_8 \text{ or } \mathbb{Z}_2^{n-2} : A_n$, where *k* and *n* are as in part (1);
- (4) *T and L are simple groups of Lie type with characteristic r.*

Proof. Let $K = \text{rad}(N)$, and choose *J* char K such that N/J is a covering group of L with maximal order as possible. If $J = 1$ then the lemma is true. Thus we assume that $J \neq 1$ in the following.

Let *J*₀ char *J* with $J/J_0 \cong \mathbb{Z}_r^k$ for some prime *r* and integer $k \geq 1$. Then Lemma 3.2 works for N/J_0 , J/J_0 and $T J_0/J_0$. Suppose that $N/J_0 = \mathbb{C}_{N/J_0}(J/J_0)$. Then N/J_0 is a perfect central extension of N/J . It follows that N/J_0 is a perfect central extension of *L*, refer to [1, page 167, (33.5)]. Thus N/J_0 is a covering group of *L*, [whi](#page-6-0)ch contradicts the choice of *J*. Therefore, $N/J_0 \neq \mathbf{C}_{N/J_0}(J/J_0)$. Let $\overline{N} = N/J_0$, $\overline{T} = T J_0 / J_0$ and $\overline{J} = J / J_0$. Then $T \cong \overline{T} \leq \overline{N} / C_{\overline{N}}(\overline{J}) \leq SL_k(r)$, $\overline{N}/\overline{J} \cong N / J$ and one of the following hold[s:](#page-17-3)

- (i) $\overline{N} = \overline{J} \overline{T} = \mathbb{Z}_2^k$: A_n, where $n = 2^m$ for some $m \geqslant 3$, and either $k = n 2$ or $k \in \{4, 5\}$ with $n = 8$;
- (ii) $\overline{N} = \overline{J} \overline{T} = \mathbb{Z}_2^3$:PSL₃(2) or \mathbb{Z}_2^6 :PS_{P₄(3) with $k = 3$ or 6, respectively;}
- (iii) *L* is a simple group of Lie type over a finite field of characteristic 2, $\overline{J}\overline{T}$ = \mathbb{Z}_2^k :A_n, where $n = 2^m$ for some $m \ge 3$, and either $k = n - 2$ or $k \in \{4, 5\}$ with $n = 8$;
- (iv) \overline{T} and L are simple groups of Lie type over finite fields of characteristic r.

Case 1. Suppose that *J* is an *r*-group. Then $N/\mathbf{O}_r(N) \cong (N/J)/(\mathbf{O}_r(N)/J)$, and so $N/\mathbf{O}_r(N)$ is a covering group of *L*. For (iv), we get part (4) of this lemma. Assume that one of (i)-(iii) holds, in particular, $r = 2$. Then $\mathbb{Z}_2^k \cong \overline{J} = J/J_0 =$ $\mathbf{O}_2(\overline{N}) = \mathbf{O}_2(N)/J_0$, and so $|\mathbf{O}_2(N)| = 2^k|J_0| = |J|$. Note that $\nu_2(|A_n|) = n-2$, $\nu_2(|PSL_3(2)|) = 3$ and $\nu_2(|PSp_4(3)|) = 6$. It follows that either $\nu_2(|T|) = k$, or $T = A_8$ and $k \in \{4, 5\}$. Since $|\mathbf{O}_2(N)|$ is a divisor of $|T|$, we conclude that either $|\mathbf{O}_2(N)| =$ 2^k, yielding $J_0 = 1$ and $\mathbf{O}_2(N) = J \cong \mathbb{Z}_2^k$, or $T \cong A_8$ and $2^4 \leqslant |\mathbf{O}_2(N)| \leqslant 2^6$. Then one of $(1)-(3)$ of this lemma holds.

Case 2. Suppose that *J* is not an *r*-group. Let $I = \mathbf{O}^r(J)$, the normal subgroup of *J* such that J/I is an *r*-group with maximal order. Then $1 \neq I$ char *N*. Choose *I*₀ char *I* such that $I/I_0 \cong \mathbb{Z}_p^l$ for some prime *p* and integer $l \geq 1$. By the choice of *I*, we have $r \neq p$. Assume that $TI_0/I_0 \leq C_{N/I_0}(I/I_0)$. Since $(N/I_0)/(K/I_0)$ is simple and N/I_0 is perfect, we have $N/I_0 = (K/I_0) \mathbf{C}_{N/I_0}(I/I_0) = \mathbf{C}_{N/I_0}(I/I_0)$. In particular, I/I_0 lies in the center of J/I_0 . Then $J/I_0 = \mathbf{O}_r(J/I_0) \times I/I_0$. Setting $\mathbf{O}_r(J/I_0) = J_1/I_0$, we have

$$
N/J_1 \cong (N/I_0)/(J_1/I_0) = \mathbf{C}_{(N/I_0)/((J_1/I_0))}((I/I_0)(J_1/I_0)/(J_1/I_0)) \cong \mathbf{C}_{N/J_1}(J/J_1).
$$

Thus N/J_1 is a perfect central extension of N/J . It follows that N/J_1 is a perfect central extension of *L*, which contradicts the choice of *J*. Therefore, $T I_0/I_0 \nleq$ $\mathbf{C}_{N/I_0}(I/I_0)$, and so $TI_0/I_0 \nleq \mathbf{C}_{TI/I_0}(I/I_0)$. We have $T \cong TI_0/I_0 \lesssim \mathrm{SL}_l(p)$.

Now consider the group $TI/I_0 = (I/I_0):(TI_0/I_0)$. Applying Lemma 3.2 to the triple $(T I / I_0, T I_0 / I_0, I / I_0)$, we conclude that one of the following holds:

- (v) $p = 2$ and TI_0/I_0 is isomorphic to one of A_{2^e} , $PSL_3(2)$ and $PSp_4(3)$;
- (vi) *T* is isomorphic to a simple group of Lie type with characteristic *p*.

Assume first that *p* is odd. Then *T* is isomorphic to a simple group [of L](#page-6-0)ie type with characteristic p. Recall that either $r = 2$ and T is one of A_{2^m} , $PSL_3(2)$ and $PSp_4(3)$, or *T* is a simple group of Lie type with characteristic *r*, see (i)-(iv) above. It follows from [17, Proposition 2.9.1 and Theorem 5.1.1] that $r = 2$, and (T, p) is one of $(PSL_2(4), 5)$, $(PSL_3(2), 7)$, $(Sp_4(2)', 3)$, $(PSU_4(2), 3)$, $(PSL_2(8), 3)$ and $(G_2(2)', 3)$. Noting that $r^k p^l$ is a divisor of $|T|$, it follows that none of these groups satisfies both $T \leq SL_k(r)$ and $T \leq SL_l(p)$, a contradiction. Now let $p = 2$. Then *r* is odd as $r \neq p$, and so T is a s[im](#page-18-12)ple group of Lie type over a finite field of characteristic r , which leads to a similar contradiction as above. This completes the proof. \Box

4. Proof of Theorem 1.2

In this section, we assume that $\Gamma = (V, E)$ *is a connected G-arc-transitive graph of valency* $d \geq 3$, and either *d* is a prime or *Γ* is $(G, 2)$ -arc-transitive. For $\alpha \in V$, let $G_{\alpha} = \{ g \in G \mid \alpha^g = \alpha \}$ and $\Gamma(\alpha) = \{ \beta \in V \mid \{ \alpha, \beta \} \in E \}$, called the *stabilizer* and *neighborhood* of α in G and in Γ , respectively. Then Γ is $(G, 2)$ -arc-transitive if and only if G_{α} acts 2-transitively on $\Gamma(\alpha)$. Denote by $G_{\alpha}^{\Gamma(\alpha)}$ the permutation group induced by G_{α} on $\Gamma(\alpha)$. Then either $G_{\alpha}^{\Gamma(\alpha)}$ is 2-transitive on $\Gamma(\alpha)$, or *d* is a prime and $G_{\alpha}^{\Gamma(\alpha)} \leq AGL_1(d)$, refer to [7, page 99, Corollary 3.5B]. In particular, by [7, page 107, Theorem 4.1B, the socle $\mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)})$ is either simple or regular on $\Gamma(\alpha)$, and thus $\text{soc}(G_{\alpha}^{\Gamma(\alpha)})$ is the unique minimal normal subgroup of $G_{\alpha}^{\Gamma(\alpha)}$. In addition, $\mathbf{C}_{G_{\alpha}^{\Gamma(\alpha)}}(\operatorname{soc}(G_{\alpha}^{\Gamma(\alpha)})) = 1$ or $\operatorname{soc}(G_{\alpha}^{\Gamma(\alpha)})$ by [7, page 114, Theorem 4.3B].

We shall proceed by analyzing the actions on *V* of normal subgroups of the group *G*. Let $N \leq G$. By [28, Theorem 4.1], only one of the following holds:

- (I) *Γ* is a bipartite graph, and the *N*[-o](#page-17-2)rbits are the two parts of the bipartition;
- (II) *N* is semiregular and has at least three orbits on *V* , in particular, *|N|* is a proper divis[or o](#page-18-16)f $|V|$;
- (III) *N* is transitive on *V* ; in this case, if *K* is an intransitive normal subgroup of *N* and N_α acts primitively on $\Gamma(\alpha)$ then (I) or (II) holds for *Γ* with *G* and *N* replaced by *N* and *K*, respectively.

In particular, if $N_\alpha \neq 1$ for some $\alpha \in V$ then *N* has at most two orbits on *V*.

Lemma 4.1. *Assume that* $N \leq G$ *and* $N_{\alpha} \neq 1$ *, where* $\alpha \in V$ *. Then N has at most two orbits on V*, N_{α} *acts transitively on* $\Gamma(\alpha)$, $\text{soc}(N_{\alpha}^{\Gamma(\alpha)}) = \text{soc}(G_{\alpha}^{\Gamma(\alpha)})$, and one of *the following holds:*

- (1) N_α *acts* 2-transitively on $\Gamma(\alpha)$;
- (2) N_α *acts primitively on* $\Gamma(\alpha)$ *, and either*
	- (i) $d = 28$, $N_{\alpha}^{(\alpha)} = \text{PSL}_2(8)$, $G_{\alpha}^{(\alpha)} = \text{P}\Gamma\text{L}_2(8)$; or
	- (ii) $d = p^2$, $\mathbb{Z}_p^2: SL_2(5) \leq N_\alpha^{\Gamma(\alpha)} \leq G_\alpha^{\Gamma(\alpha)} \leq \mathbb{Z}_p^2: (\mathbb{Z}_{p-1}.PSL_2(5)),$ where $p \in$ *{*19*,* 29*,* 59*};*

(3) $d = p^k$, $N_\alpha^{\Gamma(\alpha)} = \mathbb{Z}_p^k$:*H*, where *H* is solvable and acts faithfully and semiregu*larly on* $\mathbb{Z}_p^k \setminus \{1\}$ *by conjugation, where p is a prime and* $k \geq 1$ *.*

Proof. Since $N_{\alpha} \neq 1$, by [20, Lemma 2.5], *N* has at most two orbits on *V*, and *N*^{*α*} acts transitively on *Γ*(*α*). Note that $N_{\alpha}^{(\alpha)}$ is a transitive normal subgroup of $G_{\alpha}^{\Gamma(\alpha)}$. Since soc $(N_{\alpha}^{\Gamma(\alpha)})$ is a characteristic subgroup of $N_{\alpha}^{\Gamma(\alpha)}$, we have soc $(N_{\alpha}^{\Gamma(\alpha)}) \leq$ $G_{\alpha}^{\Gamma(\alpha)}$, and so [soc](#page-18-17) $(N_{\alpha}^{\Gamma(\alpha)}) \cap$ soc $(G_{\alpha}^{\Gamma(\alpha)}) \leq G_{\alpha}^{\Gamma(\alpha)}$. Recall that soc $(G_{\alpha}^{\Gamma(\alpha)})$ is the unique minimal normal subgroup of $G_{\alpha}^{\Gamma(\alpha)}$. We have $\mathsf{soc}(N_{\alpha}^{\Gamma(\alpha)}) \geqslant \mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)})$. Let *K* be an arbitrary minimal normal subgroup of $N_{\alpha}^{\Gamma(\alpha)}$. Since $\mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)}) \cap K \leq N_{\alpha}^{\Gamma(\alpha)}$, we have either $K \leqslant \mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)})$ or $K \cap \mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)}) = 1$. The latter case implies that $K \leqslant \mathbf{C}_{G_{\alpha}^{\Gamma(\alpha)}}(\mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)})) = 1$ or $\mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)})$, a contradiction. Thus $K \leqslant \mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)})$. It follows that $\mathsf{soc}(N_{\alpha}^{\Gamma(\alpha)}) \leqslant \mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)})$, and so $\mathsf{soc}(N_{\alpha}^{\Gamma(\alpha)}) = \mathsf{soc}(G_{\alpha}^{\Gamma(\alpha)})$.

Now we show that one of (1)-(3) holds. If $G_{\alpha}^{\Gamma(\alpha)}$ is not 2-transitive, then *d* is a prime, and part (3) occurs with $k = 1$, refer to [7, Corollary 3.5B]. Thus assume that $G_{\alpha}^{\Gamma(\alpha)}$ is 2-transitive. By [1, page 191, (35.25)] and [7, page 215, Theorem 7.2C], either $N_{\alpha}^{\Gamma(\alpha)}$ is a primitive subgroup of $G_{\alpha}^{\Gamma(\alpha)}$, or $N_{\alpha}^{\Gamma(\alpha)} = K$: H with $K = \text{soc}(G_{\alpha}^{\Gamma(\alpha)}) \cong \mathbb{Z}_p^k$ and *H* acting semiregularly on $K \setminus \{1\}$ by conj[ug](#page-17-2)ation, where p is a prime and $k \ge 2$. Then the lemma follows f[ro](#page-17-3)m checking one by one t[he](#page-17-2) 2-transitive permutation groups listed in [3, pages 195-197, Tables 7.3 and 7.4], see also [22, Corollary 2.5]. \Box

Let $N \leq G$. For $\alpha \in V$, let $N_{\alpha}^{[1]}$ be the kernel of N_{α} acting on $\Gamma(\alpha)$. Then $N_{\alpha}^{\Gamma(\alpha)} \cong N_{\alpha}/N_{\alpha}^{[1]}$. Let $\beta \in \Gamma(\alpha)$. We have $(N_{\alpha}^{\Gamma(\alpha)})_{\beta} = (N_{\alpha\beta})^{\Gamma(\alpha)} \cong N_{\alpha\beta}/N_{\alpha}^{[1]}$.

Lemma [4](#page-17-4).2. *Let* $N \leq G$ *and* $\{\alpha, \beta\} \in E$ *. Then every i[nso](#page-18-18)lvable composition factor of* N_{α} *is* (*isomorphic to*) *an insolvable composition factor of either* $N_{\alpha}^{\Gamma(\alpha)}$ *or* $(N_{\alpha}^{\Gamma(\alpha)})_{\beta}$ *. In particular,* N_{α} *is solvable if and only if* $N_{\alpha}^{\Gamma(\alpha)}$ *is solvable.*

Proof. Pick $x \in G$ with $(\alpha, \beta)^x = (\beta, \alpha)$. Then

$$
\Gamma(\alpha)^x = \Gamma(\beta), N_\beta = x^{-1} N_\alpha x, N_\beta^{[1]} = x^{-1} N_\alpha^{[1]} x
$$
 and $N_{\alpha\beta} = x^{-1} N_{\alpha\beta} x$.

It follows that

$$
(N_{\alpha}^{\Gamma(\alpha)})_{\beta} \cong N_{\alpha\beta}/N_{\alpha}^{[1]} \cong N_{\alpha\beta}/N_{\beta}^{[1]} \cong (N_{\alpha\beta})^{\Gamma(\beta)} = (N_{\beta}^{\Gamma(\beta)})_{\alpha}.
$$

Noting that $N_{\alpha}^{[1]} \leq N_{\alpha\beta}$, we have $(N_{\alpha}^{[1]})^{r(\beta)} \leq (N_{\alpha\beta})^{r(\beta)} = (N_{\beta}^{r(\beta)})^{r(\beta)}$ $\left[P^{(1)}_{\beta} \right]_{\alpha}$. Put $N^{[1]}_{\alpha\beta} =$ $N_{\alpha}^{[1]} \cap N_{\beta}^{[1]}$ *[*¹]. Then $(N_{\alpha}^{[1]})^{r(\beta)} \cong N_{\alpha}^{[1]} N_{\beta}^{[1]}$ ^[1]/ $N_{\beta}^{[1]}$ $\cong N_{\alpha}^{[1]}/N_{\alpha\beta}^{[1]}$. Thus,

(4.1)
$$
N_{\alpha}^{[1]}/N_{\alpha\beta}^{[1]} \cong (N_{\alpha}^{[1]})^{T(\beta)} \trianglelefteq (N_{\beta}^{T(\beta)})_{\alpha} \cong (N_{\alpha}^{T(\alpha)})_{\beta}.
$$

By [14, Corollary 2.3], $G_{\alpha\beta}^{[1]}$ has a prime power order. Then $G_{\alpha\beta}^{[1]}$ is solvable, and so is $N_{\alpha\beta}^{[1]}$. Recalling that $N_{\alpha}^{I(\alpha)} \cong N_{\alpha}/N_{\alpha}^{[1]}$, the lemma follows from (4.1). □

Let $N \triangleleft G$, and suppose that N has at least three orbits on V . Set $V_N = \{ \alpha^N \mid$ $\alpha \in V$ [}](#page-18-19). Define the quotient graph $\Gamma_{G/N}$ with vertex set V_N and edge set $E_N :=$ $\{\{\alpha^N, \beta^N\} \mid \{\alpha, \beta\} \in E\}$. For $X \leq G$, let X^{V_N} be the subgroup of $\text{Aut}(\Gamma_N)$ $\text{Aut}(\Gamma_N)$ $\text{Aut}(\Gamma_N)$ induced by *X*. By [28, Theorem 4.1], *N* is semiregular on *V* , and *N* is the kernel of *G* acting on V_N . Then $X^{V_N} \cong N X/N \cong X/(X \cap N)$. Further, we have the following lemma.

Lemma 4.3. Let $N \triangleleft G$ and $X \leq G$. Assume that N has at least three orbits on V . *Then the f[ollo](#page-18-16)wing statements hold:*

12 Z.P. LU

- (1) $X^{V_N} \cong N X / N$, *N* is semiregular on *V*, and $\Gamma_{G/N}$ has valency *d*; in particular, *|N| is a proper divisor of |V |; and*
- (2) $(NX)_{\alpha} \cong (X^{V_N})_{\alpha^N} \cong X_{\alpha^N}/(N \cap X)$, and if X is transitive on V then |N| is *a divisor of* $|(X^{V_N})_{\alpha^N}||N \cap X|$ *; and*
- (3) $\Gamma_{G/N}$ *is* $(X^{V_N}, 2)$ *-arc-transitive if and only if* Γ *is* $(NX, 2)$ *-arc-transitive; and*
- (4) $\Gamma_{G/N}$ *is* (G^{V_N} , 2)*-arc-transitive, or d is a prime and* $\Gamma_{G/N}$ *is* G^{V_N} *-arc-transitive.*

Proof. In view of [28, Theorem 4.1], we need only prove (2). Noting that $(NX)_{\alpha} =$ NX_{α^N} and $N \cap X_{\alpha^N} = N \cap X$, we have $(X^{V_N})_{\alpha^N} \cong N X_{\alpha^N}/N \cong X_{\alpha^N}/(N \cap X)$. Since $(NX)_{\alpha^N} = N(NX)_{\alpha}$, we get

$$
(NX)_{\alpha} \cong N(NX)_{\alpha}/N = (NX)_{\alpha^N}/N \cong (X^{V_N})_{\alpha^N} \cong X_{\alpha^N}/(N \cap X).
$$

If *X* is transitive on *V* then $NX = X(NX)_{\alpha}$, and so

$$
|N: N \cap X| = |NX: X| = |X(NX)_{\alpha}: X| = |(NX)_{\alpha}: X_{\alpha}|,
$$

 $\text{yielding } |N| = |(NX)_\alpha : X_\alpha||N \cap X| = \frac{|(X^{V_N})_{\alpha^N}||N \cap X|}{|X_\alpha|}$ $\frac{\int_{\alpha}^{\lambda} N ||N|| \cdot |\mathcal{X}|}{|X_{\alpha}|}$. Thus (2) holds. □

Lemma 4.4. *Let* $K, N \leq G$ *and* $I = K \cap N$ *. Assume that* K *has at least three orbits on V*, and *N* is transitive on *V*. Then K/I is a homomorphic image of $(N^{V_K})_{\alpha^K}$.

Proof. For $X \le G$, let $\overline{X} = XI/I$, and identify \overline{X} with a subgroup of $\text{Aut}(\Gamma_{G/I})$. Then Lemma 4.3 (1) and (4) work for the triples (Γ, G, I) and $(\Gamma_{G/I}, \overline{G}, \overline{K})$. Let $\alpha \in V$ and $\overline{\alpha} = \alpha^I$. Then \overline{K} is regular on $\overline{\alpha}^K$, and $\overline{N}_{\overline{\alpha}\overline{K}}$ acts transitively on $\overline{\alpha}^K$. Noting that $(\overline{K}N)_{\overline{\alpha}\overline{K}} = \overline{K}N_{\overline{\alpha}\overline{K}} = \overline{K} \times \overline{N}_{\overline{\alpha}\overline{K}}$, it follows from [7, Theorem 4.2A] that $\overline{N}_{\overline{\alpha}^K}$ induces [a reg](#page-10-1)ular permutation group isomorphic to \overline{K} on $\overline{\alpha}^K$. Then $\overline{N}_{\overline{\alpha}^K}$ has a quotient group isomorphic to \overline{K} . Clearly, α^{K} equals to the union of *I*-orbits involved in $\overline{\alpha}^K$. It follows that $\overline{N}_{\overline{\alpha}\overline{K}} = N_{\alpha^K}/I$. Then

$$
\overline{N}_{\overline{\alpha}^{\overline{K}}} \cong \overline{K} \ \overline{N}_{\overline{\alpha}^{\overline{K}}}/\overline{K} = (K/I)(N_{\alpha^K}/I)/(K/I) \cong KN_{\alpha^K}/K \cong (N^{V_K})_{\alpha^K},
$$
 and the lemma follows. \Box

Recall that a permutation group is quasiprimitive if its minimal normal subgroups are all transitive.

Lemma 4.5. *The group G has at most one transitive minimal normal subgroup.*

Proof. Suppose that *G* has distinct transitive minimal normal subgroups *M* and *N*. Then $M \cap N = 1$, and so M and N centralize each other. Thus M and N are nonabelian and regular on *V*, and $\mathbf{C}_G(N) = M$, refer to [7, pp.108-109, Lemma 4.2A and Theorem 4.2A]. In particular, *M* and *N* are the only minimal normal subgroups of *G*. Then *G* is quasiprimitive on *V*. By [27, Theorem 2], *Γ* is not $(G, 2)$ -transitive; otherwise, *G* should have a unique minimal normal su[bg](#page-17-2)roup. Thus *d* is a prime and $G_{\alpha}^{\Gamma(\alpha)}$ is solvable, and hence G_{α} is solvable by Lemma 4.2, where $\alpha \in V$. Set $X = MN$. Then $X = MX_\alpha$, and we have $N \cong X/M = MX_\alpha/M \cong X_\alpha$. Thus X_α and hence G_{α} is insolvable, a contradictio[n. T](#page-18-1)his completes the proof. \Box

By Lemma 4.5, we have the following corollary.

Corollary 4.6. *Assume that G contains a transitive simple subgroup T. If T is normal in a normal subgroup of G then T is normal in G.*

Proof. Let $T \leq N \leq G$ $T \leq N \leq G$ $T \leq N \leq G$. Then $T^g \leq N$ for each $g \in G$. Since *T* is simple, both *T* and *T*^{*g*} are minimal normal subgroup of *N*. It follows that either $T = T^g$ or $T \cap T^g = 1$.

Suppose that $T \neq T^g$ for some $g \in G$. Then $T \cap T^g = 1$, and $TT^g = T \times T^g$. Since T is transitive on V , it follows from [7, pp.109, Theorem 4.2A] that both T and T^g are nonabelian and regular on *V*, and so $|T| = |V| > d$. Let $\alpha \in V$. Then $TT^g \trianglelefteq N = TN_{\alpha}$, and so $T^g \cong TT^g/T \trianglelefteq TN_{\alpha}/T \cong N_{\alpha}$. Thus N_{α} is insolvable, and [s](#page-17-2)o is $N_{\alpha}^{\Gamma(\alpha)}$ by Lemma 4.2. Of course, $G_{\alpha}^{\Gamma(\alpha)}$ is insolvable, and so $G_{\alpha}^{\Gamma(\alpha)}$ is 2-transitive on $\Gamma(\alpha)$. Then *Γ* is $(G, 2)$ -arc-transitive, and (1) or (2) of Lemma 4.1 occurs for *N*.

Assume that (1) of Lemma 4.1 occurs, that is, N_α acts 2-transitively on $\Gamma(\alpha)$. Then, since *N* is trans[itive](#page-10-2) on *V* , we conclude that *Γ* is (*N,* 2)-transitive. By Lemma 4.5, *N* has at most one transitive minimal normal subgroup. Noti[ng t](#page-9-1)hat *T* and *T g* are minimal normal subgroups of *N*, we have $T = T^g$, a contradiction.

Assume that (2) of Lemma [4.1](#page-9-1) occurs. Recalling that N_α has a normal simple [sub](#page-11-0)group isomorphic to T^g , by Lemma 4.2, T is isomorphic to a composition factor of either $N_{\alpha}^{\Gamma(\alpha)}$ or $(N_{\alpha}^{\Gamma(\alpha)})_{\beta}$. It follows that either $d = 28$ and $T \cong \text{PSL}_2(8)$, or $d = p^2$ and *T* \cong PSL₂(5), where *p* \in {19*,* 29*,* [59](#page-9-1)}. The latter case forces that $|V| = |T| = 60 < d$, a contradiction. Therefore, we let $d = 28$ $d = 28$ and $T = \text{PSL}_2(8)$. Since T is regular on V, identifying *V* with *T*, the group *N* lies in the holomorph *T*: $Aut(T)$ of *T*, where *T* acts on *V* by right multiplication. Letting α be the vertex corresponding to the identity of *T*, we have $N_{\alpha} \le \text{Aut}(T) \cong T.\mathbb{Z}_3$. Recall that N_{α} has a normal subgroup isomorphic to *T*. We conclude that $N_\alpha = \text{Inn}(T)$ or $\text{Aut}(T)$. Since $N_\alpha \neq 1$, by Lemma 4.1, $\Gamma(\alpha)$ is an N_α -orbit on *V*. Thus $\Gamma(\alpha)$, as a subset of *T*, is a conjugacy class of length 28 in *T* or under $Aut(T)$, which is impossible by the Atlas [6].

The argument above shows that $T = T^g$ for all $g \in G$. Then $T \leq G$, and [the](#page-9-1) result follows. \Box

In the following, we always assume that *G* contains a [tr](#page-17-5)ansitive nonabelian simple subgroup *T*. Since Γ is connected and Γ is transitive on V , if Γ is a bipartite graph then *T* has a subgroup of index 2, which is impossible. Thus *Γ* is not bipartite. Then the next lemma follows at once from [28, Theorem 4.1], see also (I)-(III) above.

Lemma 4.7. *Assume that* $N \leq G$ *and* N *contains a transitive nonabelian simple subgroup T. Let K be an intransitive normal subgroup of N, and* $\alpha \in V$ *. If* N_{α} *acts primitively on* $\Gamma(\alpha)$ *, then K is semi[reg](#page-18-16)ular and has at least three orbits on V*; *in particular,* $|K|$ *is a proper divisor of* $|V|$ *and* $|T|$ *.*

Lemma 4.8. *Assume that G is quasiprimitive on V , and G contains a transitive nonabelian simple subgroup T. Then either* $\text{soc}(G)$ *is simple and* $T \leq \text{soc}(G)$ *, or* Γ *is the complete graph on* 8 *vertices,* $T \cong \text{PSL}_3(2)$ *and* $G \cong \text{AGL}_3(2)$ *.*

Proof. Let $N = \text{soc}(G)$. By Lemma 4.5, N is the unique minimal normal subgroup of *G*. Write $N = T_1 \times T_2 \times \cdots \times T_k$, where $k \geq 1$ and T_i are isomorphic simple groups.

Case 1. Assume first that *N* is abelian. Then *G* is primitive on *V*, $N \cong \mathbb{Z}_p^k$ and $G \leq \text{AGL}_k(p)$ for some prime *p*. In [this](#page-11-0) case, *N* is regular on *V* and $T \leq \text{GL}_k(p)$, in particular, $k \geqslant 2$. If *Γ* is (*G*, 2)-arc-transitive then $p = 2$, refer to [16, Theorem 1]. If *d* is an odd prime then $|N| = |V|$ is even, and so $p = 2$.

Since *T* is transitive on *V*, we have $|T : T_\alpha| = 2^k$ for $\alpha \in V$. By [15], $k \geq 3$ and either $T = A_{2^k}$, or $T = \text{PSL}_n(q)$ with $\frac{q^{n-1}}{q-1} = 2^k$. Note that $A_{2^k} \not\leq \text{GL}_k(2)$ $A_{2^k} \not\leq \text{GL}_k(2)$ $A_{2^k} \not\leq \text{GL}_k(2)$, see [17, pp. 186, Proposition 5.3.7]. Then $T \cong \text{PSL}_n(q)$, and $\frac{q^n-1}{q-1} = 2^k$. In particular, $q^n - 1$ has no primitive prime divisor. By Zsigmondy's Theorem, $n = 2$ and $q = 2^k - 1$ $q = 2^k - 1$. By [17, pp. 188, Theorem 5.3.9], we have $k \geq \frac{q-1}{(2,q-1)} = 2^{k-1} - 1$, yielding $k \leq 3$. T[hen](#page-18-12)

 $k = 3$, $N \cong \mathbb{Z}_2^3$, $T \cong \text{PSL}_3(2)$, and $G \cong \text{AGL}_3(2)$. In particular, *G* is 3-transitive on *V*, and thus *Γ* is the complete graph on 8 vertices.

Case 2. Now assume that *N* is nonabelian. Suppose that $T \nleq N$. Then $T \cap N = 1$, and $TN/N \cong T$. Since N is the unique minimal normal subgroup of G, we have $\mathbf{C}_G(N) = 1$, and thus *T* acts faithfully on $\{T_1, T_2, \ldots, T_k\}$ by conjugation. Then *T* is isomorphic to a subgroup of the symmetric group S_k . In particular, $|T|$ is a divisor of *k*!. Noting that $G = NG_{\alpha}$ for $\alpha \in V$, we have $T \cong TN/N \le G/N \cong G_{\alpha}/(G_{\alpha} \cap N)$, and so G_{α} is insolvable. Then Γ is $(G, 2)$ -arc-transitive, by [27, Theorem 2], *G* satisfies III(b)(i) or III(c) described as in [27, Section 2]. It follows that $|T_1|$ has a prime divisor p such that |*V*| is divisible by p^k . Since T is transitive on *V*, it follows that p^k is a divisor of $|T|$. Thus *k*! is divisible by p^k , and so $k \leq \nu_p(k!)$. By Legendre's formula, $\nu_p(k!) = \frac{k - s_p(k)}{p - 1} \leq k - 1$, which l[ead](#page-18-1) to a contradiction. T[her](#page-18-1)efore, $T \leq N$.

To complete the proof it remains to show that $k = 1$. Suppose on the contrary that $k > 1$, and consider the projections:

$$
\phi_i: N \to T_i, x_1 \cdots x_k \mapsto x_i, x_j \in T_j, 1 \leqslant i, j \leqslant k.
$$

Without loss of generality, we may let $\phi_1(T) \neq 1$. Then $T \cong \phi_1(T) \leq T_1$. Note that $T \neq N$, and so *N* is not regular on *V*. Let $\alpha \in V$. By Lemma 4.1, N_{α} acts transitively on $\Gamma(\alpha)$. Since *N* is transitive on *V*, we know that *Γ* is *N*-arc-transitive.

Recall that either *Γ* is (*G,* 2)-arc-transitive or the valency *d* of *Γ* is a prime. Suppose that *d* is a prime. Then Lemma 4.5 holds for the pair (*N, Γ*), and so *N* [ha](#page-9-1)s at most one transitive minimal normal subgroup. Noting that $N = T_1 \times \cdots \times T_k$ with $k > 1$, it follows that every T_i is intransitive on *V*. Considering the quadruple (T, N, T, T_1) , by Lemma 4.7, $|T_1|$ is a proper di[viso](#page-11-0)r of $|T|$, which contradicts that $T \cong \phi_1(T) \leq T_1$. Therefore, *d* is not a prime, and *Γ* is (*G,* 2)-arc-transitive.

Since *N* is not regular on *V*, by [27, Theorem 2], *N* satisfies $III(b)(i)$ described as in [27, Sec[tion](#page-12-0) 2]. Then $N_{\alpha} \leq R_1 \times \cdots \times R_k$ for $\alpha \in V$, where $R_i = \phi_i(N_{\alpha}) < T_i$ for $1 \leq i \leq k$, and $R_1 \cong R_2 \cong \cdots \cong R_k$. In particular, $|N_\alpha|$ divides $|R_1|^k$. On the other hand, since $T \leq N$ and *T* is transitive on *V*, we have $N = TN_\alpha$, and so $N/T = TN_{\alpha}/T \cong N_{\alpha}/(N_{\alpha} \cap T)$ $N/T = TN_{\alpha}/T \cong N_{\alpha}/(N_{\alpha} \cap T)$ $N/T = TN_{\alpha}/T \cong N_{\alpha}/(N_{\alpha} \cap T)$. I[n p](#page-18-1)articular, $|N/T|$ divides $|N_{\alpha}|$. Recalling that $T \lesssim T_1$ and $|N| = |T_1|^k$, it follows that $|T_1|^{k-1}$ divides $|N_{\alpha}|$, and hence $|T_1|^{k-1}$ divides $|R_1|^k$. Since $k > 1$, we have that $|T_1|$ divides $|R_1|^k$. Since $R_1 < T_1$, we conclude that a prime *r* is a divisor of $|T_1|$ if and only if *r* is a divisor of $|R_1|$. It follows from [24, Corollary 5 and Table 10.7] that R_1 is insolvable. Thus N_α is insolvable, and so $N_{\alpha}^{\Gamma(\alpha)}$ is insolvable by Lemma 4.2. Then N_{α} acts primitively on $\Gamma(\alpha)$ by Lemma 4.1.

Recalling that *N* is the unique minimal normal subgroup of *G*, we have *N* char *G*. [If](#page-18-22) T_1 is transitive on *V* then, applying Corollary 4.6 to the pair (G, T_1) , we have $T_1 \leq G$, contrary to the mini[malit](#page-10-2)y of *N*. Thus T_1 is intransitive on *V*. Conside[ring](#page-9-1) the quadruple (Γ, N, T, T_1) , by Lemma 4.7, $|T_1|$ is a proper divisor of $|T|$, which contracts that $T \leq T_1$. Therefore, $k = 1$. This com[plet](#page-11-1)es the proof. □

Corollary 4.9. *Assume that G contains a transitive minimal normal subgroup N and a transitive nonabelian simple subg[roup](#page-12-0) T. Then either* $d = 7$, $|V| = 8$ *and* $G \cong \text{AGL}_3(2)$ *, or* $T \leq N$ *and* N *is simple.*

Proof. Choose a maximal intransitive normal subgroup *K* of *G*. Then $T \cap K =$ $N \cap K = 1$; in particular, $KN = K \times N$. If $K = 1$ then *G* is quasiprimitive on *V*, and so the corollary is true by Lemma 4.8.

Assume that $K \neq 1$. Since $K \leq \mathbf{C}_G(N) \neq N$, by [7, Theorem 4.2A], N is nonabelian. Write $N = T_1 \times \cdots \times T_k$ for some integer $k \geq 1$ and isomorphic nonabelian simple groups T_i . Then *G* acts transitively on $\{T_1, \ldots, T_k\}$ by conjugation. It follows that G/K acts transitively [on](#page-17-2) $\{T_1K/K,\ldots,T_kK/K\}$ by conjugation. Thus NK/K is a minimal normal subgroup of *G/K*. By Lemma 4.7, *K* has at least three orbits on *V* . Now consider the quotient graph *ΓG/K*. Identifying *G/K* with a subgroup of Aut($\Gamma_{G/K}$), by Lemma 4.3 (1) and (4), we know that Lemma 4.8 works for $\Gamma_{G/K}$, G/K and TK/K . Noting that $N = T_1 \times \cdots \times T_k \cong NK/K \trianglelefteq G/K$, we have *G/K* \cong AGL₃(2), and hence *NK/K* is simple and *[TK](#page-12-0)/K* ≤ *NK/K*. By Lemma 4.7, |*K*| is a proper div[isor](#page-10-1) of |*T*|. If $T \nless N$ then $N \cap T = 1$ as *T* is simple, and so $T \cong TN/N \leq KN/N \cong K$, a contradiction. Thus $N \geq T$, and o[ur r](#page-12-1)esult is true. □

Lemma 4.10. *Assume that G contains a transitive nonabelian simple subgroup T. [Let](#page-12-0) K be a maximal intransitive normal subgroup of G. Then either*

- (1) *G* \cong AGL₃(2)*, K* = 1*, |V* $|= 8$ *and d* = 7*; or*
- (2) *T* is contained in a characteristic perfect subgroup N of G such that $N/\text{rad}(N)$ *is simple,* $K \cap N = \text{rad}(N)$ *and* $K/\text{rad}(N) = \mathbf{C}_{G/\text{rad}(N)}(N/\text{rad}(N)).$

Proof. By the choice of K, we know that G^{V_K} is a quasiprimitive permutation group on V_K . By Lemma 4.7, K is semiregular and has at least three orbits on V . It follows from (4) of Lemma 4.3 and Lemma 4.8 that either $d = 7$, $|V_K| = 8$ and $G^{V_K} \cong \text{AGL}_3(2)$, or $\text{soc}(G^{V_K})$ is a nonabelian simple group and $T^{V_K} \leqslant \text{soc}(G^{V_K})$.

Case 1. Assume [tha](#page-12-0)t $G^{V_K} \cong \text{AGL}_3(2)$. Then $(G^{V_K})_{\alpha^K} \cong T \cong \text{PSL}_3(2)$, where $\alpha \in V$. Let $I \lhd G$ with $K < I$ $K < I$ $K < I$ and $I/K \cong \mathbb{Z}_2^3$ $I/K \cong \mathbb{Z}_2^3$ $I/K \cong \mathbb{Z}_2^3$. Then $G = I$:*T* and *I* is regular on *V*. In particular, $|V| = 8|K| = |I|$. Noting that $|V| = |T : T_\alpha|$, it follows that *|K|* is a divisor of 21, and so *K* is solvable. Since $G/K \cong G^{V_K} \cong {\rm AGL}_3(2)$, we have $G^{(\infty)}/(G^{(\infty)} \cap K) \cong KG^{(\infty)}/K \cong (G/K)^{(\infty)} \cong AGL_3(2) \cong G/K$. It follows that $G = KG^{(\infty)}$, and $G^{(\infty)}$ is a perfect extension of $(G^{(\infty)} \cap K): \mathbb{Z}_2^3$ by $PSL_3(2)$. Noting that $(G^{(\infty)} \cap K): \mathbb{Z}_2^3$ is solvable, it follows from Lemma 3.3 that $G^{(\infty)} \cong \widehat{AGL}_3(2)$, and $G^{(\infty)} \cap K = 1$. Since $G = KG^{(\infty)}$, we have $((G^{(\infty)})^{V_K})_{\alpha^K} = (G^{V_K})_{\alpha^K} \cong \text{PSL}_3(2)$. By Lemma 4.4, *K* is isomorphic to a quotient group of $PSL₃(2)$, and so $K = 1$ as *|K|* \lt |*T*|. Then *G* = *G*^(∞) \cong AGL₃(2), and part (1) [of th](#page-8-0)is lemma follows.

Case 2. Assume that $T^{V_K} \leqslant \mathsf{soc}(G^{V_K})$ and $\mathsf{soc}(G^{V_K})$ is simple. In this case, we have $\mathsf{soc}(G^{V_K}) \cong \mathsf{soc}(G/K)$ $\mathsf{soc}(G^{V_K}) \cong \mathsf{soc}(G/K)$ $\mathsf{soc}(G^{V_K}) \cong \mathsf{soc}(G/K)$ and, letting $I = K \cap G^{(\infty)}$,

$$
T\cong TK/K\leqslant\operatorname{soc}(G/K)=(G/K)^{(\infty)}=G^{(\infty)}K/K\cong G^{(\infty)}/I.
$$

By Lemma 4.7, $|K|$ is a proper divisor of $|T|$. Then $|I|$ is a proper divisor of $|T|$. Since $T \cong G^{(\infty)}/I$, we know that $|I|^2$ is a proper divisor of $|G^{(\infty)}|$. In particular, $G^{(\infty)} \ncong I \times I$. Then, by Lemma 3.1, we may choose *N* char $G^{(\infty)}$ such that $G^{(\infty)} = IN$ and $I \cap N = \text{rad}(N)$ $I \cap N = \text{rad}(N)$ $I \cap N = \text{rad}(N)$. Clearly, $N \text{ char } G$, and $\text{rad}(N) = I \cap N = K \cap N$. Let $\overline{G} = G/\text{rad}(N), \overline{N} = N/\text{rad}(N)$ and $\overline{K} = K/\text{rad}(N)$. We have $\overline{K} \overline{N} = \overline{K} \times \overline{N}$, that is, $\overline{K} \leqslant \mathbf{C}_{\overline{G}}(\overline{N})$.

Note that $\mathsf{rad}(N) \triangleleft G$ $\mathsf{rad}(N) \triangleleft G$ $\mathsf{rad}(N) \triangleleft G$ and $\mathsf{rad}(N)$ is intransitive on *V*. By (1) and (4) of Lemma 4.3, $\Gamma_{G/\text{rad}(N)}$ has valency *d* and, identifying \overline{G} with a subgroup of $\text{Aut}(\Gamma_{G/\text{rad}(N)}),$ either *d* is a prime or $\Gamma_{G/\text{rad}(N)}$ is $(\overline{G}, 2)$ -arc-transitive. By the choice of *N*, we have

$$
\overline{N} = N/\text{rad}(N) \cong G^{(\infty)}/I \cong G^{(\infty)}K/K = \text{soc}(G/K).
$$

[The](#page-10-1)n \overline{N} is simple, and so \overline{N} is a minimal normal subgroup of \overline{G} . Noting that $T \leq$ $G^{(\infty)}$, we have $T \cong TK/K \leq G^{(\infty)}K/K \cong \overline{N}$. In particular, $|T|$ divides $|\overline{N}|$.

Let $\overline{T} = T \text{rad}(N)/\text{rad}(N)$. Then $\overline{T} \cong T$. Since *T* is transitive on *V*, it is easy to see that \overline{T} acts transitively on $V_{\mathsf{rad}(N)}$; in particular, $|V_{\mathsf{rad}(N)}|$ is a divisor of $|\overline{T}|$. If \overline{N} is intransitive on $V_{\text{rad}(N)}$ then, by (1) of Lemma 4.3, $|\overline{N}|$ is a proper divisor of $|V_{\mathsf{rad}(N)}|$, and so $|\overline{N}| < |V_{\mathsf{rad}(N)}| \leqslant |\overline{T}| \leqslant |\overline{N}|$, a contradiction. Thus \overline{N} is a transitive minimal normal subgroup of \overline{G} . By Corollary 4.9, we have $\overline{T} \leq \overline{N}$, yielding $T \leq N$.

Suppose that $\mathbf{C}_{\overline{G}}(\overline{N})$ is transitive on $V_{\mathsf{rad}(N)}$. Then [both](#page-10-1) \overline{N} and $\mathbf{C}_{\overline{G}}(\overline{N})$ are regular on $V_{\text{rad}(N)}$, see [7, Theorem 4.2A]. This implies that $\overline{N} \cong \mathbf{C}_{\overline{G}}(\overline{N})$, refer to [7, Lemma 4.2A]. Thus $\mathbf{C}_{\overline{G}}(\overline{N})$ $\mathbf{C}_{\overline{G}}(\overline{N})$ is simple, and hence $\mathbf{C}_{\overline{G}}(\overline{N})$ is a transitive minimal normal subgroup of \overline{G} . It follows from Lemma 4.5 that $\overline{N} = \mathbf{C}_{\overline{G}}(\overline{N})$, and so \overline{N} is abelian, a contradiction.

Suppose [t](#page-17-2)hat $\mathbf{C}_{\overline{G}}(\overline{N})$ is intransitive on $V_{\mathsf{rad}(N)}$ [.](#page-17-2) Set $\mathbf{C}_{\overline{G}}(\overline{N}) = C/\mathsf{rad}(N)$. Then C is intransitive on *V*. Recalling that $\overline{K} \leqslant \mathbf{C}_{\overline{G}}(\overline{N})$, we have $K \leqslant C$, and hence $K = C$ by the choice of *K*. Then part (2) of this lemma follows. \Box

Lemma 4.11. *Assume that G contains a transitive nonabelian simple subgroup T. Let N and K be as in* (2) *of Lemma* 4.10*. Then either N is quasisimple or* (4) *of Lemma* 3.3 *holds for N and T.*

Proof. By Lemma 4.7, $|K|$ is a divisor of $|T|$, and so $|\text{rad}(N)|$ is a divisor of $|T|$ as $rad(N) = K \cap N$. Then *N*, rad(*N*) a[nd](#page-14-0) *T* are described as in Lemma 3.3. Thus it suffices [to s](#page-8-0)how N and T do not satisfy one of $(1)-(3)$ given as in Lemma 3.3.

Again by Lemma [4.7](#page-12-0), *K* has at least three orbits on *V* . Then Lemma 4.3 holds for (T, G, K, X) , where $X \le G$. For convenience, we put $\overline{X} = XK/K$ an[d id](#page-8-0)entify \overline{X} with a subgroup of $\text{Aut}(\Gamma_{G/K})$. Then $\overline{T} \cong T$, $K \cap N = \text{rad}(N)$ and $\overline{N} \cong N/\text{rad}(N)$ $\overline{N} \cong N/\text{rad}(N)$ $\overline{N} \cong N/\text{rad}(N)$. Fix $\alpha \in V$, and let $B = \alpha^{K}$. Since $K \cap T = 1$, applying (2) of Lemma 4.3 to the pair (K, T) , we conclude [tha](#page-12-0)t $|\overline{T}_B|$ is divisib[le b](#page-10-1)y $|K|$, and so $|\overline{N}_B|$ is divisible by $|K|$.

Case 1. Suppose that (1) or (2) of Lemma 3.3 holds for *N* and *T*. Then $N =$ rad(*N*):*T*, and so $\operatorname{soc}(\overline{G}) = \overline{N} = \overline{T} \cong T$. In this case, $|\overline{G} : \overline{N}| \le 2$, we have $|\overline{G}_B : \overline{N}_B| \le 2$. Thus $|\overline{N}_B|$ is divisible by every odd divisor of $|\overline{G}_B|$. In particular, $\overline{N}_B \neq 1$ $\overline{N}_B \neq 1$ $\overline{N}_B \neq 1$, and so Lemma 4.1 works for $(\Gamma_{G/K}, \overline{G}, \overline{N})$.

Subcase 1.1. Assume $N = [2^k]$:A₈ with $k \in \{4, 5, 6\}$. Then $|K \cap N| = |\text{rad}(N)| = 2^k$, $\mathsf{soc}(\overline{G}) = \overline{N} = \overline{T} \cong \mathsf{A}_8$, and $|\overline{N}_B|$ is divisible by 2^k .

Suppose that \overline{N}_B is in[solv](#page-9-1)able. Using GAP [29], we search the insoluble subgroups of A₈ with order divisible by 2^k . It follows that $\overline{N}_B \cong S_6$ or \mathbb{Z}_2^3 :PSL₃(2). Assume that $\overline{N}_B \cong S_6$. Then the action of \overline{N} on V_K is equivalent to the rank three action of A₈ on the 2-subsets of a 8-set. It follows t[hat](#page-18-13) $d = 12$ or 15. In this case, $\Gamma_{G/K}$ is $(\overline{G}, 2)$ -arc-transitive and of valency *d*, and then *d* − 1 is a divisor of $|\overline{G}_B|$. Recalling that $|\overline{N}_B|$ is divisible by every odd divisor of $|\overline{G}_B|$, it follows that $|\overline{N}_B|$ has a divisor 11 or 7, which is impossible as $\overline{N}_B \cong S_6$. Thus, we have $\overline{N}_B \cong \mathbb{Z}_2^3$:PSL₃(2). Then the action of \overline{N} on V_K is equivalent to the 2-transitive action of $PSL_4(2)$ on the projective points or on hyperplanes. This implies that *ΓG/K* is the complete graph of order 15, and then \overline{G} acts 3-transitively on V_K . Noting that \overline{N} is not 3-transitive on V_K , we have $N \neq G$. Then $G \cong S_8$; however, S_8 has no transitive permutation representation of degree 15, a contradiction.

Next we suppose that \overline{N}_B is solvable. By (3) of Lemma 4.1, *d* is a prime power. Since $\overline{N} = \overline{T} \cong A_8$, considering the prime divisors of A_8 , we conclude that $d \in$ $\{2^l, 3, 5, 7, 9\}$, where $2 \leq l \leq 6$. Let $m = 2^k d$ if *d* is odd, or $m = 2^k (d-1)$ if *d* is even. Then $|\overline{N}_B|$ is divisible by *m*. Searching by GAP the solvable subgroups of A₈ with order divisible by m , we conclude that \overline{N}_B has the form of $[2^s]$:S₃ or \mathbb{Z}_2^4 : \mathbb{Z}_3^2 : \mathbb{Z}_2^t , where $s \geq 3$ and $0 \leq t \leq 2$. In particular, $d \in \{3, 4, 9\}$. Checking the vertex-stabilizers for connected arc-transitive graphs of valency 4, refer to [19, Lemma 2.6], we have $d \neq 4$. If $d = 3$ then $|N_B| = 48$ by [33], and thus $|V_K| = 420$; however, by [4], there is no connected arc-transitive cubic graph of order 420.

Assume [tha](#page-18-23)t $d = 9$. Then $|\mathbf{O}_{2}(\overline{N}_{B})| \geqslant 2^{4}$. Noting that $\mathbf{O}_{2}(\overline{N}_{B})$ char $\overline{N}_{B},$ it follows that $\mathbf{O}_2(\overline{N}_B) \leq \overline{G}_B$ $\mathbf{O}_2(\overline{N}_B) \leq \overline{G}_B$ $\mathbf{O}_2(\overline{N}_B) \leq \overline{G}_B$, and then $\mathbf{O}_2(\overline{N}_B)$ lies in the kernel of \overline{G}_B actin[g](#page-17-6) on $\Gamma_{G/K}(B)$. Since \overline{G}_B acts 2-transitively on $\Gamma_{G/K}(B)$, we know that 72 is a divisor of $|\overline{G}_B^{\Gamma_{G/K}(B)}|$, and so $|\overline{G}_B|$ is divisible by $72|\mathbf{O}_2(\overline{N}_B)|$. Then $|\overline{G}_B|$ has a divisor $2^7 \cdot 3^2$. Noting that $\overline{G} \lesssim S_8$, it follows that $|\overline{G} : \overline{G}_B|$ is odd. Then $\Gamma_{G/K}$ has odd order and odd valency, which is impossible.

Subcase 1.2. Assume that $N = \mathbb{Z}_2^{n-2}$: A_n, where $n = 2^e$ for some $e \ge 4$. Then $\mathsf{soc}(\overline{G}) = \overline{N} = \overline{T} \cong \mathrm{A}_n, \text{ and } |K \cap N| = |\mathsf{rad}(N)| = 2^{n-2}.$ By (2) of Lemma 4.3, $|\overline{T}_B| = 2^{n-2}$ is divisible by 2^{n-2} , it follows that \overline{T}_B has odd index in \overline{T} , and so $|V_K| = |\overline{T} : \overline{T}_B|$ is odd. Then $\Gamma_{G/K}$ is a $(\overline{G}, 2)$ -arc-transitive graph of odd order. By [18, Theorem 1.1]¹, *n* is odd, a contradiction.

Subcase 1.3. Assume that $N \cong \text{AGL}_3(2)$ $N \cong \text{AGL}_3(2)$. Then $\text{soc}(\overline{G}) = \overline{N} = \overline{T} \cong \text{PSL}_3(2)$, and $|K \cap N| = |rad(N)| = 2^3$. B[y](#page-18-14) (2) of Lemma 4.3, $|\overline{N}_B|$ is divisible by 2^3 . C[he](#page-16-0)cking the subgroups of $PSL_3(2)$ with order divisible by 8, we have $\overline{N}_B \cong S_4$ or D_8 . If $\overline{N}_B \cong D_8$ then, noting that $|\overline{G} : \overline{N}| \leq 2$, we have $|\overline{G}_B| \in \{8, 16\}$, which is impossible as Γ_K is $(\overline{G}, 2)$ -arc-transitive. Thus $\overline{N}_B \cong S_4$ an[d, si](#page-10-1)nce $|\overline{N} : \overline{N}_B| = |V_K| = |\overline{G} : \overline{G}_B|$, we have $\overline{G} = \overline{N}$ by checking the subgroups of \overline{G} . Thus $\Gamma_{G/K}$ is the complete graph of order 7. From the 2-arc-transitivity of *G* on $\Gamma_{G/K}$, we conclude that $PSL_3(2)$ has a 3-transitive permutation representation of degree 7, which is impossible.

Subcase 1.4. Assume that $N = \mathbb{Z}_2^6$: $PSp_4(3) \lesssim AGL_6(2)$. Then $\mathsf{soc}(\overline{G}) = \overline{N} = \overline{T} \cong \overline{T}$ $PSp_4(3)$, and $|K \cap N| = |\text{rad}(N)| = 2^6$. By (2) of Lemma 4.3, $|\overline{N}_B|$ is divisible by 2⁶. In particular, $|V_K| = |\overline{N} : \overline{N}_B|$ is odd, and so *d* is even. It follows that $\Gamma_{G/K}$ is $(G, 2)$ -arc-transitive, and *Γ* is $(G, 2)$ -arc-transitive. If $d = 4$ or 6 then, by [19, Lemma 2.6] and [20, Theorem 3.4], $|\overline{G}_B|$ is indivisible by 2^6 , a contr[adic](#page-10-1)tion.

Now let $d \ge 8$. Checking the subgroups of $PSp_4(3)$ with order divisible by 2^6 , we conclude t[hat](#page-18-23) $|\mathbf{O}_2(\overline{N}_B)| \geq 2^4$, and $\mathbb{Z}_2^4: \mathbb{Z}_2^2 \leq \overline{N}_B \leq \mathbb{Z}_2^4: A_5$. Recalling that $|\overline{N}_B|$ is divisible [by](#page-18-17) every odd divisor of $|\overline{G}_B|$, it follows that $|\overline{N}_B|$ is divisible by $d-1$. Then the only possibility is that $d = 16$ and $\overline{N}_B = \mathbb{Z}_2^4$: A₅. By Lemma 4.2, $\overline{N}_B^{\Gamma_{G/K}(B)}$ is insolvable. It follows from Lemma 4.1 that $\overline{N}_{B}^{\Gamma_{G/K}(B)}$ is 2-transitive on $\Gamma_{G/K}(B)$, and so $\Gamma_{G/K}$ is $(\overline{N}, 2)$ -arc-transitive as \overline{N} is transitive on V_K . Then, by (3) of Lemma 4.3, *Γ* is (*KN,* 2)-arc-transitive.

By Lemma 4.4, $K/(K \cap N)$ is is[omo](#page-9-1)rphic to a quotient group of N_B , it follows that $K/(K \cap N) = 1$, and so $K = K \cap N = \text{rad}(N)$. Thus *Γ* is an $(N, 2)$ -arc-transi[tive](#page-10-1) graph of valency 16. By (2) of Lemma 4.3, $N_{\alpha} \cong \overline{N}_B$, and so $N_{\alpha} \cong \mathbb{Z}_2^4$: A₅. Let $\beta \in \Gamma(\alpha)$, and $x \in N$ with $(\alpha, \beta)^x = (\alpha, \beta)$. Then $N_{\alpha\beta} \cong A_5$, $x \in \mathbf{N}_N(N_{\alpha\beta})$ and $x^2 \in N_{\alpha\beta}$. S[ince](#page-11-2) *Γ* is connected, $N = \langle x, N_{\alpha} \rangle$, refer to [2, page 118, 17B]. Recall that $N = \mathbf{O}_2(N)$: $T = \mathbb{Z}_2^6$: $PSp_4(3) \lesssim \text{AGL}_6(2)$ $PSp_4(3) \lesssim \text{AGL}_6(2)$ $PSp_4(3) \lesssim \text{AGL}_6(2)$. By the Atlas [6], for $1 \leq l \leq 5$, we

^{[1](#page-17-7)}In part (ii) of [18, Theorem 1.1], the value of *n* should be $2^{e+1} - 1$ but not $\binom{2^{e+1}-1}{2^e-1}$.

conclude that $SL_l(2)$ has no subgroup isomorphic to $T = PSp_4(3)$. It follows that *T* is an irreducible subgroup of $GL_6(2)$, and thus we may consider N as an affine primitive permutation group of degree 2 6 . Confirmed by GAP, *N* has a unique conjugacy class of subgroups isomorphic to N_α . This allows us the choose N_α as a subgroup of *T*. Then, by a further computation using GAP, we conclude that there is no desired *x* with $N = \langle x, N_{\alpha} \rangle$, a contradiction.

Case 2. Suppose that *N* and *T* satisfy (3) of Lemma 3.3. Then \overline{N} is a simple group of Lie type with characteristic 2, and $\overline{N} \neq \overline{T} \cong T = A_{2^e}$ for some $e \geq 3$. Noting that $\overline{N} = \overline{T} \overline{N}_B$, by [30, Theorem 1.1], $T = A_8$ and one of the following holds:

- (i) \overline{N} ≅ PSp₆(2), and $\overline{N}_B \cong [3^3]:\mathbb{Z}_8:\mathbb{Z}_2$, [3³]:2S₄, PSL₂[\(8\)](#page-8-0), PSL₂(8):3, PSU₃(3):2 or $PSU_4(2):2;$
- (ii) $\overline{N} \cong \text{PSp}_8(2)$, and $\overline{N}_B \cong \text{P}\Omega_8^-(2)$ $\overline{N}_B \cong \text{P}\Omega_8^-(2)$ $\overline{N}_B \cong \text{P}\Omega_8^-(2)$.2;
- (iii) $\overline{N} \cong \overline{P\Omega_8^+(2)}$, and $\overline{N}_B \cong \overline{Sp}_6(2)$, $PSU_4(2)$, $PSU_4(2):2$, $3 \times \overline{PSU}_4(2)$, $(3 \times$ $PSU_4(2)$: 2 or A_9 .

By Lemma 3.3, $\overline{N} \lesssim \text{PSL}_l(2)$ for some *l* with $2^l \leqslant |\mathbf{O}_2(N)| \in \{2^4, 2^5, 2^6\}$. It follows from [17, page 200, Proposition 5.4.13] that $l = 6$ and $\overline{N} \cong \text{PSp}_6(2)$. Then $\overline{G} = \overline{N}$. Recalling that $|\text{rad}(N)|$ is a divisor of $|\overline{T}_B|$, it follows that 2^6 is a divisor of $|\overline{G}_B|$. This forces [tha](#page-8-0)t $\overline{G}_B \cong \mathrm{PSU}_3(3):2$ or $\mathrm{PSU}_4(2):2$. By the 2-arc-transitivity of \overline{G} on $\Gamma_{G/K}$, [ei](#page-18-12)ther PSU₃(3):2 or PSU₄(2):2 has a 2-transitive permutation representation of degree *d*, which is impossible by [3, Table 7.4]. This completes the proof. \Box

Proof of Theorem 1.2. Let $\Gamma = (V, E)$ be a connected *G*-arc-transitive graph of valency $d \geq 3$. Assume that *G* contains a vertex-transitive nonabelian simple subgroup *T*, and that either *d* is a prime or *Γ* [is](#page-17-4) (*G,* 2)-arc-transitive. By Lemma 4.5, *G* has at most one transitive minimal normal subgroup. If *G* has a transitive minimal normal subgroup *M* then, [by](#page-1-1) Corollary 4.9, either (1) of Theorem 1.2 holds or *M* is simple and $T \nleq M$. In the general case, taking a maxi[mal](#page-11-0) intransitive normal subgroup *K* of *G*, by Lemma 4.10, either (*Γ, G*) is described as in (1) of Theorem 1.2, or *G* has a characteristic perfect s[ubg](#page-13-0)roup *N* such that $T \leq N$, $N/rad(N)$ is simple, $K \cap N = \text{rad}(N)$ and $K/\text{rad}(N) = \mathbf{C}_{G/\text{rad}(N)}(N/\text{rad}(N))$. Fo[r th](#page-1-1)e latter case, $|\text{rad}(N)|$ is a divisor of $|T|$ by [Lem](#page-14-0)ma 4.7, and we obtain $(2)(i)$ or (ii) of Theorem 1[.2](#page-1-1) from Lemma 4.11. This completes the proof. \Box

REFERENCES

- [1] M. Aschbacher, *Finite group theory*, Cambridge University Press, London, 1986.
- [2] N.L. Biggs, *Algebraic graph theory*, Cambridge University Press, London, 1974.
- [3] P.J. Cameron, *Permutation Groups*, Cambridge University Press, Cambridge, 1999.
- [4] M. Conder and P. Dobcsányi, Trivalent symmetric graphs on up to 768 vertices, *J. Combin. Math. Combin. Comput.* **40** (2002), 41-63.
- [5] M.D. Conder, C.H. Li and C.E. Praeger, On the Weiss conjecture for finite locally primitive graphs, *Proc. Edinburgh Math. Soc.* **43** (2000), 129-138.
- [6] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker and R.A. Wilson, *Atlas of Finite Groups*, Clarendon Press, Oxford, 1985.
- [7] J.D. Dixon and B. Mortimer, *Permutation Groups*, Springer-Verlag, New York, 1996.
- [8] J.L. Du, Y.Q. Feng, J.X. Zhou, Pentavalent symmetric graphs admitting vertex-transitive nonabelian simple groups, *Eur. J. Combin.* **63** (2017), 134-145.
- [9] X.G. Fang, C.H. Li and M.Y. Xu, On edge-transitive Cayley graphs of valency four, *Eur. J. Combin.* **25** (2004), 1107-1116.
- [10] X.G. Fang, X.S. Ma and J. Wang, On locally primitive Cayley graphs of finite simple groups, *J. Combin. Theory Ser. A* **118** (2011), 1039-1051.
- [11] X.G. Fang, C.E. Praeger and J. Wang, On the automorphism groups of Cayley graphs of finite simple groups, *J. London Math. Soc.* (2) **66** (2002), 563-578.
- [12] R.D. Fray, Congruence properties of ordinary and *q*-binomial coefficients. *Duke Math. J.* **34** (1967), 467-480.
- [13] M. Giudici and C.H. Li, On finite edge-primitive and edge-quasiprimitive graphs, *J. Combin. Theory Ser. B* **100** (2010), 275-298.
- [14] A. Gardiner, Arc transitivity in graphs, *Quart. J. Math. Oxford (2)* **24** (1973), 399-407.
- [15] R.M. Guralnick, Subgroups of prime power index in a simple group, *J. Algebra* **81** (1983), 304-311.
- [16] A.A. Ivanov and C.E. Praeger, On finite affine 2-arc-transitive graph, *Eur. J. Combin.* **14** (1993), 421-444.
- [17] P. Kleidman and M. Liebeck, *The subgroup structure of the finite classical groups*. London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990.
- [18] C. H. Li, J. J. Li and Z. P. Lu, Two-arc-transitive graphs of odd order – II, *European. J. Combin.* **96** (2021), 103354.
- [19] C.H. Li, Z.P. Lu and G.X. Wang, The vertex-transitive and edge-transitive tetravalent graphs of square-free order, *J. Algebra Combin.* **42** (2015), 25-50.
- [20] C.H. Li, Z.P. Lu and G.X. Wang, Arc-transitive graphs of square-free order and small valency, *Discrete Math.* **339** (2016), 2907-2918.
- [21] C.H. Li, L. Wang and B.Z. Xia, Finite simple groups: Factorizations, Regular Subgroups, and Cayley Graphs, https://arxiv.org/abs/2012.09551.
- [22] C.H. Li, Ákos Seress and S.J. Song, *s*-arc-transitive graphs and normal subgroups, *J. Algebra* **421**(2015), 331-348.
- [23] M. Liebeck, On the orders of maximal subgroups of the finite classical groups, *Proc. London Math. Soc.* (3) **50** (1985), 426-446.
- [24] M. W. Liebeck, C. E. Praeger and J. Saxl, Transitive Subgroups of Primitive Permutation Groups, *J. Algebra* **234** (2000), 291-361.
- [25] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, *J. Graph Theory* **8** (1984), 55-68.
- [26] Z.P. Lu, On edge-primitive 2-arc-transitive graphs, *J. Combin. Theory Ser. A* **171** (2020), 105172.
- [27] C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, *J. Lond. Math. Soc.* (2) **47** (1993), 227-239.
- [28] C.E. Praeger, Finite quasiprimitive graphs, *Surveys in combinatorics*, 1997. Proceedings of the 16th British combinatorial conference, London, UK, July 1997 (R. A. Bailey, ed.), *Lond. Math. Soc. Lect. Note Ser.*, no. 241, Cambridge University Press, 1997, pp. 65-85.
- [29] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.13.0, 2024. http://www.gap-system.org
- [30] B.Z. Xia, Quasiprimitive groups containing a transitive alternating group, *J. Algebra* **490** (2017), 555-567.
- [31] S. J. Xu, X. G. Fang, J. Wang and M. Y. Xu, On cubic *s*-arc transitive Cayley graphs of finite simple groups, *Eur. J. Combin.* **26** (2005), 133-143.
- [32] F.G. Yin, Y.Q. Feng, J.X. Zhou and S.S. Chen, Arc-transitive Cayley graphs on nonabelian simple groups with prime valency, *J. Combin. Theory Ser. A* **177** (2021), 1-20.
- [33] W.T. Tutte, A family of cubical graphs, *Proc. Cambridge Philos. Soc.* **43** (1947), 459-474.
- [34] R. Weiss, *s*-transitive graphs, Algebraic methods in graph theory, *Colloq. Math. Soc. Janos Bolyai* **25** (1981), 827-847.

Z.P. Lu, Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

Email address: lu@nankai.edu.cn