ON 2-ARC-TRANSITIVE GRAPHS ADMITTING A
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ABSTRACT. A graph I is said to be 2-arc-transitive if its automorphism group
acts transitively on the set of 2-arcs of I'. In this paper, we give a group-theoretic
characterization of those connected 2-arc-transitive graphs which admit a vertex-
transitive simple group.
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1. INTRODUCTION

In this paper, all groups are assumed to be finite, and all graphs are assumed to
be finite, simple and undirected.

Let I' = (V, E) be a regular graph with vertex set V' and edge set E. Denote by
Aut(I") the automorphism group of I', and let G be a subgroup of Aut(I"). The graph
I' is called G-vertex-transitive, or G is called a vertez-transitive group of I'; if G acts
transitively on V', and called a Cayley graph of G if G acts regularly on V. Recall
that an arc of I" is an ordered pair of adjacent vertices, and a 2-arc is a triple («a, 3, )
of vertices with {«, 5}, {8,7} € F and a # . The graph I is called G-arc-transitive
(or (G,2)-arc-transitive) if it has no isolated vertex and G acts transitively on the
set of arcs (or the set of 2-arcs). Note that 2-arc-transitivity leads to arc-transitivity,
and arc-transitivity leads to vertex-transitivity.

In the literature, the solutions of quite a number of problems about arc-transitive
graphs have been reduced or partially reduced into the class of graphs arising from
(almost) simple groups. For example, the reduction for arc-transitive graphs of prime
valency [25], the reduction for 2-arc-transitive graphs established in [27], the Weiss
Conjecture [34, Conjecture 3.12] for non-bipartite locally primitive graphs [5], the
normality of Cayley graphs of simple groups [10, [11], the existence and classification
of edge-primitive graphs [[13, 26], and so on. Certainly, the class of graphs admitting
(almost) simple groups plays an important role in the theory of arc-transitive graphs.

In this paper, we focus on those arc-transitive graphs which admit a vertex-
transitive simple group. One of our motivations comes from a problem in the study
of the automorphism groups or the normality of arc-transitive Cayley graphs of finite
nonabelian simple groups. Let I' = (V| E)) be a connected G-arc-transitive graph of
valency d > 3. Assume that either d is a prime or I' is (G, 2)-arc-transitive, and
G has a nonabelian simple subgroup 7" which acts regularly on V. Then the Weiss
Conjecture is true for (I",G), that is, the orders of vertex-stabilizers have an upper
bound depending only on the valency d, refer to [5]. This ensures that 7" is normal in
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G with a finite number of exceptions, see [10, Theorem 1.1]. An interesting problem,
as proposed in [10], is to figure out the exceptions for 7. This problem has been
solved for d < 5 in several papers, refer to [8, 9, [10, B1]. In [32], the exceptions for
T are determined under the assumption that d is a prime and a vertex-stabilizer is
solvable. The other possible exceptions for T' can be read out from a recent paper
[21], which are alternating groups, simple groups with || — 1 = d and, possibly, the
simple orthogonal groups of minus type and characteristic 2. With these, we observe
that if T" is not normal in GG then G is an almost simple group. This leads to another
interesting problem. What will happen if we weaken the ‘regularity’ of 7" into ‘tran-
sitivity’? Thus, in this paper, we consider those arc-transitive graphs satisfying the
following assumptions:

Hypothesis 1.1. [ is a connected G-arc-transitive graph of valency d > 3, G con-
tains a vertex-transitive nonabelian simple subgroup 7', and either d is a prime or I
is (G, 2)-arc-transitive.

Recall that a group X is perfect if it equals to its derived subgroup. If a central
extension of some simple group is perfect then it is called a quasisimple group or
a covering group of the simple group. For a finite group X, denote by rad(X) and
O, (X), respectively, the maximal solvable normal subgroup and the maximal normal
r-subgroup of X, where r is a prime divisor of | X]|.

In Section @, the following result is proved.

Theorem 1.2. Assume that I', G and T are described as in Hypothesis . Then G
has at most one transitive minimal normal subgroup, and one of the following holds:

(1) G = AGL3(2), and I' is the complete graph on 8 vertices;
(2) T is contained in a characteristic perfect subgroup N of G, and either
(i) N is quasisimple; or
(ii)) N/O,(N) is quasisimple, T and N/rad(N) are simple groups of Lie type
over finite fields of characteristic r, and |rad(N)| is a divisor of |T|.

In particular, if G has a transitive minimal normal subgroup M, then either G =
AGL;3(2) or M is simple and T < M.

Theorem @ is just the first step toward characterizing those simple groups which
act transitively on the vertex set of a 2-arc-transitive graph or an arc-transitive graph
of prime valency, and then classifying those graphs in Hypothesis with T" not
normal in G. For (2)(i) and (ii) of Theorem [1.9 with 7" # N (and so N/rad(N) 2 T),
we observe that the simple group N/rad(N) has a factorization N/rad(N) = XY
with X = T and Y # 1. In a sequel, employing factorizations of finite (almost)
simple groups, we shall work out a possible list for those simple groups 7" which are
not normal in G.

2. PRIMES INVOLVED IN SOME FINITE SIMPLE GROUPS

In this section, we assume that n is a positive integer and r is a prime. Write
(2.1) n=ag+ar+---+ar® s.(n)=ag+a + -+ a,
where a; are integers with 0 < a; < r. For an integer z, denote by v,.(z) the highest
power of r that divides x. By Legendre’s formula,
n— s.(n)

(2.2) vp(nl) = 1
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In particular, v,.(n!) < n — 1, where the equality holds if and only if r = 2 and n is a
power of 2.

Recall that, for integers [ > 2 and ¢ > 2, a primitive prime divisor of ¢ — 1 is a
prime which divides ¢ — 1 but does not divide ¢ — 1 for any 0 < i < [. If r is a
primitive prime divisor of ¢' — 1, then ¢ has order [ modulo 7, and thus [ is a divisor
of r — 1, in particular, > [ + 1; if further r | (¢ —1) with m > 1 then [ ‘ m. Thus,
by [12, Theorems 3.1 and 3.5], we have the following result, where [z] denotes the
integer part of a real number x.

Lemma 2.1. Let A,(q) = [[;-,(¢" — 1), where n and q are integers no less than 2.
Assume that r is a prime divisor of A,(q), and let | be the order of ¢ modulo r. Then
one of the following holds:

(1) ris odd or ¢ =1 (mod 4), and v,(A,(q)) = [3ve(¢" — 1) + v ([H]1);

(2) r =2, ¢ =3 (mod 4), and v5(A,(q)) = [F]va(q + 1) + [*52] + 1a(n!).

Corollary 2.2. Let n, q, r and A,(q) be as in Lemma @ Then either

(1) v, (An(q)) < nlogy(q) + vp(n) < g% +n —1 for (r,q) # (2,3); or

(2) (r,q) = (2,3) and v5(An(q)) < 22 <32 +n— 1.

In particular, vo(Ay(q)) = q2 +n — 1 if and only if (r,q,n) = (2,3,2).

Proof. Let [ be the order of ¢ modulo 7.
Assume that (1) of Lemma @ holds. Noting that v,.(n!) < n — 1, we have

v (Aa(@)) = [T = 1) + v (510 < [F]log, (@' = 1) + 1T 1)

1og,(4') + w4 ([711) < log, (¢") + v, (n)) < logy(g") +n — 1.

It is casily shown that 22 —log,(z) is nonnegative and monotonically increasing when
x > 16. It follows that either log,(¢") < g2 or ¢" < 15. The former case yields part
(1) of this corollary. For ¢™ < 15, since either r is odd or ¢ = 1 (mod 4), the only
possibility is that (¢,n) = (2,2) or (2,3); in this case, r € {3,7} and v,.(A,(q)) = 1,
which also meets (1) of the corollary.

Now let 7 = 2 and ¢ = 3 (mod 4). If ¢ > 3 then n < % log, ¢, and so

<[

n + ag

va(Aa(@) < [Flala +1) + [F52] + va(n)

n n—+1
5] log,(2q) + [ 5

= [5]logs () + (5] +

] + 12(nl)
n+1

<

| 4+ vo(n!)
n
- [5] logy(q) + 1+ va(n!) < nlogy(q) + va(n!)

desired as in (1) of this corollary. Assume that ¢ = 3. Then
n n + ag
n(Ala)) = 205) + "
Noting that ag € {0,1} and so(n) > 1, we have

n n+1 5n — 2
va(An@)) < 25] + =] +n— 1< T

] +n— so(n).
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It is easily shown that 3% > 3x for z > 1Thus"T_2:3-§+n—1<3%—|—n—1,

and the corollary follows. O

For a group X, denote its derived subgroup by X’. For a finite simple group of
Lie type in characteristic p, let e(L) denote a lower bound, given as in [17, page 188,
Table 5.3.A], on degrees of faithful projective s-modular representations of L with

s # p.

Lemma 2.3. Let L be a finite simple group of Lie type defined over a field of order
q = p’, where p is a prime. Assume that r is a prime divisor of |L| with v # p. Then
v (|L]) < e(L) with the following exceptions:

(1) L= PSLy(0). r = 2, (L)) = 3 = e(L);

(2) L=8py(2), r =3, (L) =2 = e(L);

(3) L =PSU4(2), r=3, v.(|L]) =4 =e(L);

(4) L =PSU43), r =2, v.(|L]) =7 and e(L) = 6;
(5) L =PSLy(5), r =2, v.(|L]) =2 =e(L);

(6) L =PSLy(7), r =2, v,.(|L]) =3 =e(L);

(7) L=PSp,(3), r =2, v.(|]L|]) =6 and e(L) =4

Proof. Suppose first that (L,e(L)) is a pair given as in the third column of [17,
page 188, Table 5.3.A]. Then L, p, e(L) and |L| are listed in Table El! Inspecting

L ple(l) | |L]

PSLy(4) [2]2 p?-3-5
PSL,(9) |33 p?-2%.5
PSL3(2) |22 p>3.7
PSL3(4) | 2|4 pt-3%.5.7
Sp,(2) |22 p>-3%.5
PSpg(2) | 2| 7 p’-3'5.7
PSU4(2) | 2 | 4 pt-3*-5
PSUL(3) |36 pt-27.5.7
PQ(2) |28 pt2-35.52.7
Q7(3) 3127 |p?-2°-5-7-13
F4(2) 2| >44|p*.30.52.72.13.17
Go(3) 3|14 | p®-30.7.13
Go(4) |2(12 | p'2-33.52.7-13
Sz(8) 28 pt-5.7-13

TABLE 2.1. Exceptions for e(L)

the groups in Table Ell, we have v,.(|L|) < e(L) unless (L,r,v,.(|L|),e(L)) is one of
(PSL2(9),2,3,3), (Sp4(2),3,2,2), (PSUL(2),3,4,4) and (PSU(3),2,7,6).

We next deal with the case where e(L) is listed in the second column of [17, page
188, Table 5.3.A]. We fix a Sylow r-subgroup R of L. Then v(|L]) = v.(|R)).

Case 1. Assume that L = PSLy(q) and e(L) = (Qq—, where 4 < ¢ # 9. In
this case, |R| is a divisor of As(q), and so v,(|L]) = v.(|R|) < v-(Aa(g)). Since
q # 3, by (1) of Corollary R.2, v,.(|L|) < 2logy(q) + 1. If ¢ < 15 then ¢ = 5 or 7,
which gives (5) or (6) of this lemma. Now let ¢ > 15. Then logy(q) < ¢2, and so

v (|L]) < 2logy(q) +1 < 2¢2 + 1. Suppose that v,(|L]) > e(L). Then 2¢z +1 > =



2-ARC-TRANSITIVE GRAPHS 5

and so ¢? —22¢ + 9 < 0, yielding ¢ < 22. Thus ¢ = 16, 17 or 19, and then e(L) > 8;
however, r® is not a divisor of |PSLy(16)|, |PSLy(17)] or |PSLy(19)], a contradiction.
Then v,(|L|) < e(L), as desired.

Case 2. Assume that L = PSL,(q) and e(L) = ¢"~' — 1, where n > 2 and (n, q) #
(3,2), (3,4). Suppose that qn771 —1 < 1. Then ¢" ! < 16, and so (n,q) = (3,3),
(4,2) or (5,2). We have e(L) > 7, and (|L|,p) = (2*-3%-13,3), (26-3%-5-7,2) or
(219.3%.5.7-31,2). It follows that v,(|L|) < e(L)

Nowletq4 —1>1. Then ¢" ' —1=(¢"7 +1)(¢"T +1)(¢"
1)(¢"T +1), and so

1

m—1)> (g2 +

o(L)> (@7 + 1)@ T + 1) =q T +q¢7T +¢"T +1>4¢5+2°7 2.
Noting that |R| is a divisor of A,(q), we have v,.(|L|) = v.(|R|) < v(A,(q)). By
Corollary @, v,(IL]) < q2 +n—1. If n =4 then e(L) > q2 +4 > v,(|L|). If n # 4
then 227 >n — 1, and thus e(L) > ¢> +n — 14+ 2 > v,.(|L]).

Case 3. Assume that L = PSp,,,(q), where m > 1 and (m,q) # (2,2), (3,2).

Noting that |R| is a divisor of A,,(¢?), we have v,(|L]) = 1/,.(|R|) < v (A(¢?)). By
(1) of Corollary R.2, since ¢* # 3, we have

vp(|LI) < mlogy(q?) + vi(ml) = 2logy(q™) + v, (m!).

If ¢ < 15 then (m,q) = (2,3); in this case, r = 2, L = PSp,(3), v.(|L]) =
and e(L) = qm2—_1 = 4, as in part (7). Thus we assume next that ¢™ > 15. Then
log,(¢™) < g% and so v(|L]) < 2¢% +m — 1.

Suppose that ¢ is odd. Then e(L) = 4 *1 . If m > 3 then m < 2%, and so

v (L)) < 2¢% +m —1<2¢% —|—2%—1<q%—1<qm_1—1<6(L).

Assume that m < 3. Then either (m,q) = (3,3) or ¢ = 5. For (m,q) = (3,3), we
have v,.(|L]) < 9 < 13 = e(L). Now let ¢ > 5. If m = 2 then v,.(|L|) < 2¢ + 1,
yielding v,(|L]) < 2¢ < Gtq < q22_1 — e(L). If m = 3 then v,(|L|) < 2¢2 + 2, and
thus v,.(|L]) < 2q2 +1 <@F+qg+1< q_l =e(L).

Suppose that ¢ is even. Then e(L) = qm l(qm;_l)(q—l). If m > 3 then

v(|L) <2¢% +m—1<2¢% +2% —1<3¢% —1<q%ti—1<q™ <e(L).

If m =2 then ¢ >4 and ¢™ > 15, and so v,.(|L]) < 2¢+1 < q(q Ok e(L). If m=3

then ¢ >4, and so v,(|L]) < 2¢2 +2 < ® + ¢+ 2 < 2¢° <w:e(l‘/).

Case 4. Assume that L = PSU,(q), where n > 2 and (n,q) # (3,2), (4,2), (4,3).

n_
Then e(L) = 4 +11 or qT’ where n is even or odd respectlvely Since |R| is a divisor

of An(q*), we have v,.(|L]) = v,(|R|) < v(An(g?)). Since ¢* # 3, by (1) of Corollary

, vr(|L]) < loge(¢®™) +n — 1. If n = 4 then ¢ > 4, and so v,.(|L]) < 8¢+ 3 <
(*+1)(g—1) =e(L). If n =3 then v,(|L]) < 6¢g+2 < q(qg—1) = e(L) unless q < 8&;
for ¢ < 8, we also have v,.(|L]) < e(L) by calculation of the order of L. If n =5
then v,.(|L]) < 10g + 4 < (¢> + 1)q(q — 1) = e(L) unless ¢ = 2; for the exception
(n,q) = (5,2), we have r € {3,5,11}, and v,(|L]) < 5 < 10 = ¢(L). If n = 6 then
v(|L|) < 12¢+5 < (¢* — 1)(¢*> — g+ 1) = e(L) unless ¢ = 2; for the exception
(n,q) = (6,2), we have r € {3,5,7,11}, and v,(|L]) < 6 < 21 = e(L). Now let n > 6.
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Then log,(¢") < ¢% and n < 23, and so

3730 q+1

Case 5. Assume that L = PQ5, (q), where e = &, m > 3 and (m, q,€) # (4,2, +).
Then

e(L) = (¢" ' =)@ +1), (¢" " = 1)g"? or (q"“1 +1)(¢" 2 = 1);

in particular, e(L) > 3¢™ 2. Since |R| is a divisor of A, (q*), we have I/T(|L|)

v, (|R]) < vr(An(q?)). Since ¢* # 3, by (1) of Corollary @ v (|L]) < mlogy(q?)
m—1 = 2log,(¢"™)+m —1. Noting that ¢" > 16 and m > 3, we have log,(¢™) < ¢
and m < 2%, and then

v (|L)) < 2logy(¢™) +m — 1< 3¢% —1 < 3¢™ 2 < e(L).

SR

Case 6. Assume that L = ngﬂ(q), where ¢ is odd, m > 2 and (m,q) # (3, 3).
Then e(L) = ¢" (g™ — 1) or q ~2 — 1. Since |RLis a divisor of A,,(¢%), we have
ve(IL]) = v (IR]) < 12 (A (g?)). By (1) of Corollary .2, v, (|L[) < mlogy(¢*)+m—1 =
2log,(¢™) +m — 1. Since m > 2, we have m < 3%. Noting that ¢™ > 27, we have
log, ¢™ < ¢%, and thus

+

ve(|L]) < 2logy, ¢™ +m —1<2¢> +3% —1<3¢? —1< —1<e(L).

Case 7. Assume that L is an exceptional simple group of Lie type. Then |R] is a
divisor of A,,(¢?) with m listed as follows:

L | Gy(q) Falg) Es(q) Ex(q) Es(g) *Ba(g) *Ga(g) *Falg) *Dalg) *Es(q)
m‘ 3 6 9 9 15 2 3 6 6 9 ’

Noting that ¢* # 3, by (1) of Corollary @, v (|L]) < mlogs(q?) +2 < 2mg+m — 1.
Comparing 2mq +m — 1 and the values of e(L) given in [[17, page 188, Table 5.3.A],
we have v,(|L|) < e(L), the details are omitted here. O

3. SIMPLE SUBGROUPS IN EXTENSIONS OF A SIMPLE GROUP

Let X and Y be groups. Denote by X.Y an extension of X by Y, while X:Y stands
for a split extension. By X <Y, X 1Y, X charY and X <Y we mean that X is a
subgroup, a normal subgroup, a characteristic subgroup and isomorphic to a subgroup
of Y, respectively. When X <Y or X <Y but X #Y, we write X <Y or X Y,
respectively. We call X a section of YV if X is isomorphic a quotient group of some
subgroup of Y. The automorphism group and inner automorphism group of X are
denoted by Aut(X) and Inn(X), respectively, and let Out(X) = Aut(X)/Inn(X). As
a consequence of the Classification of Finite Simple Groups, the Schreier Conjecture
is true, see [, Appendix A] for example. Thus, if X is a finite simple group then
Out(X) is solvable. In addition, Inn(X) = X/Z(X), where Z(X) is the center of X.

In the following, N is assumed to be a finite group. For Y, X < N, denote by
Cx(Y) and Nx(Y) the centralizer and normalizer of Y in X, respectively. Clearly,
Cx(Y)=Cy(Y)NnX and Nx(Y) = Ny(Y)NX. It is easily shown that both Cx(Y)
and Nx(Y) are normal (or characteristic) subgroups of N provided that X and Y
are normal (or characteristic) in N.
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Lemma 3.1. Assume that K < N and N/K is a nonabelian simple group. Suppose
that |K|? divides of |N|. Then one of the following holds:

(1) N2 K x K;

(2) KcharN and N = KC, where Cchar N, C = C" and rad(C) = KN C.

Proof. Assume first that K7 # K for some o € Aut(/N). Clearly, K < N? = N, and
so K°K/K<N/K. Since N/K is simple, we have N/K = (K°K)/K = K°/(KNK").
In particular, |[N| = |K||K? : (K N K?)|. Noting that |K|? divides |N|, it follows
that K N K% =1and N = KK? = K x K°. Then part (1) of this lemma follows.

Now let K char N. Choose a minimal member C' among those characteristic sub-
groups of N with N = KC. Then N/K = KC/K = C/(KNC), and N/K =
(N/K) = (KC")/K. In particular, N = KC", and so C' = C" by the choice of C. We
next show that K N C is solvable. Note that (K N C)char V.

Suppose that K N C is insolvable. Choose I, Jchar (K N C) with I < J and
J/I = T' where | > 1 and T is a nonabelian simple group. Clearly, I, Jchar N,
and C¢y(J/I) N (J/I) = 1. Set C1/I = C¢y(J/I). Then Cychar N, C; < C, and
N # KC by the choice of C. Since N/K is simple, we have (KC,)/K =1, and so
C; < KNC. Considering the action of C/I on J/I by conjugation, we have

C/(CyJ) = (C/I)/(C1/T) < Out(Th) = Out(T)":S;,
where S; is the symmetric group of degree [. Note that
N/K = KC/K = C/(KNC) = (C/(CJ))/(KNC)/(C1])).

It follows that N/K is a section of Out(7T)"S;. Noting that Out(7T) is solvable, it
follows that N/K is a section of S;, and so |N/K| divides I!. Since |K|? divides |N|,
we conclude that |T|! divides |[N/K |, and thus |T'|' divides I!. Then, for a prime divisor
r of |T|, we have | < v,.(|T]") < v,.(I!). By Legendre’s formula, v,.(I!) = ls—’” <l-1,
and so [ <1 —1, a contradiction. Then K NC' is solvable, and part (2) of thls lemma
is true. U

For a finite group X, denote by X(*) the intersection of all subgroups appearing
in the derived series of X.

Lemma 3.2. Assume that N contains a normal subgroup I = 7 and a nonabelian
simple subgroup T such that % is a divisor of |T|, where r is a prime and k > 1.
Suppose that N/I is a covering group of some simple group L. Then either N =
Cyn(I), or Cy(I) <rad(N), TS N/Cn(I) S SLi(r) and one of the following holds:
(1) N = I.T = ZX:Aye, where e > 3, and eitherk = 2°—2 ore = 3 and k € {4,5};
(2) either N = I'T = AGL3(2), or N = I'T = Z5:PSp,(3) < AGLg(2);
(3) L is a simple group of Lie type over a finite field of characteristic 2, N #
I:'T = 75:Aye, where e > 3, and either k =2° —2 or k € {4,5} and e = 3;
(4) T and L are simple groups of Lie type over finite fields of characteristic r.

Proof. Note that Cy(I)/I < N/I. Since N/I is quasisimple, either Cy(I)/I <
Z(N/I)or Cy(I)/I = N/I, refer to [, page 157, (31.2)]. For the latter, we have N =
Cxy(I). Thus we assume that Cy(I)/I < Z(N/I). In particular, Cy(I) < rad(N).
Now consider the action of N on [ by conjugation, and let N be the resulting
subgroup of Aut(I). We have N = N/Cy(I) = (N/1)/(Cn(I)/I). Then Nis a
covering group of L, and N/I is a central extensmn of N. Let T be the image
of T in N. Since T Nrad(N) = 1, we have T = TCy(I)/Cn(I) = T, and so
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T<NZ SLy(r). Since r* is a divisor of |T|, noting that T = T'rad(N)/rad(N) <
N/rad(N) = L, we have k < v,.(|T'|) < v,(|L]). Further, if T"= L then N = rad(N):T
and N/I = (rad(N)/I):(TI/I), since N/I is a covering group of L = TI/I, we
have N/I = (N/I)>) = TI/I, yielding rad(N)/I = 1, and so I = rad(N), and
LT =TI/I=N/Cy(I)=N.
Case 1. Assume that L = A,, for some n > 5. Then
n!

E<n(L) = n(5) = min) - @ @ - 1),

By Legendre’s formula, we have k < %’(”) (2= (2,7 = 1)). On the other hand,

since N < SL,(r), a lower bound for k is given by [17, Propositions 5.3.2 and 5.3.7).

Suppose that n < 8. Check the subgroups of A,, with order divisible by r* for all
possible values of k Using GAP [29], computation shows that "= L = Ag, r = 2
and k € {4,5,6}. Then N = [T, desired as in (1) of this lemma.

Now let n > 9. Then k > n — 2 by [17, page 186, Proposition 5.3.7], and thus

n—2< k %@—(2—(2 r—1)). It follows that k =n—2, r = 2, n is a power of

2, and is odd. In particular, T is isomorphic to a simple subgroup of A,, with odd
index. By [18, Theorem 1.2], we have T = L = A,,, and thus N = Z5 %A, as in (1).

Case 2. Assume that L is one of the 26 sporadic simple groups. Then the lower
bound for k is given as in [17, page 187, Proposition 5.3.8]. Checking the orders
of sporadic simple groups, we conclude that » = 2 and one of the following holds:
L =My with k=6, L= Mgg with k € {6, 7} L =1J, with k € {6,7}, L = Suz with
k € {12,13}. Recall that N < SL,(2) and N is a covering group of L. Then |L| is a
divisor of |SLg(2)[, and so |L : Q\ is a divisor of Ax(2), where @ is a Sylow 2-subgroup
of L. If k € {6,7} then Ax(2) is not divisible by 5% or 11, and thus L # My, My
or Jo. This forces that L = Suz and k € {12,13}. By [23, Corollary 4.3], since

N < SLy(2), we have [Suz| < |N| < 22644 < 2% which is impossible.

Case 3. Assume that L is a simple group of Lie type over a finite field of charac-
teristic p, and L 2¢ A,, for any n > 5.

Subcase 3.1. Suppose first that r # p. Recalling that N < SLy(r), by [17, Propo-
sition 5.3.2 and Theoren 5.3.9], k > e(L), where e(L) is given as in [17, Table 5.3.A].
Then e(L) < k < v,.(|T|) < v.(J]L]). Thus L appears in the exceptions listed in
Lemma E Note that |L| is a divisor of |[SLg(r)|; in particular, |L : Q| is a divisor of
Ag(r), where @ is a_Sylow r-subgroup of L. In view this, the groups in (1), (2), (4)
and (5) of Lemma @yare easily excluded.

Assume that L is described as in (3), (6) or (7) of Lemma @ Checking simple
subgroups of L with order divisible by 7%, we conclude that L = T < SL.(r), and
thus N = I'T. For (3) of Lemma R.3, we have r = 3 and k = 4; however, computation
using GAP shows that SL4(3) has no subgroup isomorphic to PSU4(2). For (6) of
Lemma R.3, we have r = 2, k = 3 and L = PSLy(7) = GL3(2). For (7) of Lemma

, we have r = 2, k = 6 and L = PSp,(3). Then part (2) of this lemma follows.

Subcase 3.2. Now let r = p. Assume that T is an alternating group or a sporadic
simple group. Similarly as Cases 1 and 2, we have r = 2, T' = A,e for some e > 3,
and either k =2° —2 or k € {4,5} and e = 3. This gives part (3) of this lemma.

Assume that T is a simple group of Lie type over a finite field of characteristic p'.
If p’ = r then part (4) of this lemma occurs. Now let r # p’. Then, by Lemma é



2-ARC-TRANSITIVE GRAPHS 9

T and r are known. By a similar argument as in the case where r # p, we conclude
that IV is desired as in part (2) of this lemma. This completes the proof. O

Lemma 3.3. Let N be a perfect group with L := N/rad(N) simple. Assume that N
contains a nonabelian simple subgroup T' such that |rad(N)| is a divisor of |T'|. Then
N/O,(N) is a covering group of L for some prime divisor r of |T|, and either N is
a covering group of L or one of the following holds:

(1) N =rad(N)T = [2¥]:Ag or Z5%:A,,, where k € {4,5,6} and n = 2™ for some
integer m = 4;

(2) N =1IT = 7Z3:PSL3(2) = AGL3(2) or N = IT = Z5:PSp,(3) < AGLg(2);

(3) L is a simple group of Lie type over a finite field of characteristic 2, L 2 T,
and O,(N)T = [2¥]:Ag or Z5~%:A,,, where k and n are as in part (1);

(4) T and L are simple groups of Lie type with characteristic r.

Proof. Let K =rad(N), and choose J char K such that N/J is a covering group of L
with maximal order as possible. If J = 1 then the lemma is true. Thus we assume
that J # 1 in the following.

Let Jychar J with J/Jy = Z¥ for some prime r and integer k¥ > 1. Then Lemma
works for N/Jy, J/Jy and T'Jy/Jy. Suppose that N/Jy = Cnyz,(J/Jy). Then
N/Jy is a perfect central extension of N/J. It follows that N/J, is a perfect central
extension of L, refer to [l, page 167, (33.5)]. Thus N/J, is a covering group of L,
which contradicts the choice of J. Therefore, N/Jy # Cnys,(J/Jo). Let N = N/.Jq,
T="TJy/Jyand J = J/Jy. Then T =T < N/Cx(J) < SLi(r), N/J = N/J and
one of the following holds:

(i) N=JT = ZS:An, where n = 2™ for some m > 3, and either k = n — 2 or
k€ {4,5} with n = 8;

(ii) N = JT = Z3:PSL3(2) or Z5:PSp,(3) with k = 3 or 6, respectively;

(iii) L is a simple group of Lie type over a finite field of characteristic 2, JT =
Z%:A,,, where n = 2™ for some m > 3, and either k =n—2 or k € {4,5} with
n=S_;

(iv) T and L are simple groups of Lie type over finite fields of characteristic 7.

Case 1. Suppose that J is an r-group. Then N/O,(N) = (N/J)/(O.(N)/J),
and so N/O,(N) is a covering group of L. For (iv), we get part (4) of this lemma.
Assume that one of (i)-(iii) holds, in particular, » = 2. Then Z§ = J = J/Jy =
05(N) = O4(N)/Jy, and so |O9(N)| = 2¥|Jo| = |J|. Note that v,(|A,|) = n — 2,
15(|PSL3(2)|) = 3 and v2(|PSp,(3)]) = 6. It follows that either v5(|T|) =k, or T = Ag
and k € {4,5}. Since |Oy(N)| is a divisor of |T'|, we conclude that either |O(N)| =
2k yielding Jo = 1 and O(N) = J 2 Z5 or T = Ag and 2* < |Oy(N)| < 2°. Then
one of (1)-(3) of this lemma holds.

Case 2. Suppose that J is not an r-group. Let I = O"(J), the normal subgroup
of J such that J/I is an r-group with maximal order. Then 1 # I char N. Choose
Ipchar I such that I/I; = Zi, for some prime p and integer [ > 1. By the choice
of I, we have r # p. Assume that TIy/Iy < Cyy1,(I/1o). Since (N/1y)/(K/Iy) is
simple and N/I is perfect, we have N/Iy = (K/Iy)Cn/1,({/1o) = Cny1y(I/1p). In
particular, I/l lies in the center of J/I,. Then J/Iy = O,(J/1y) x I/1y. Setting
OT(J/[()) = Jl/fo, we have

N/Jy = (N/1Ly)/(J1/1o) = Cny1o) (/1)) (L 10)(J1/10) [ (J1/10)) = Cnygy (J/ 1)
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Thus N/J; is a perfect central extension of N/J. It follows that N/J; is a per-
fect central extension of L, which contradicts the choice of J. Therefore, TIy/ly &
CN/[O(I/I()), and so TI()/[() % CTI/IO([/IO)' We have T' = TI()/IO S SLl(p)

Now consider the group T1/1y = (I/1y):(T1o/1y). Applying Lemma to the
triple (T'1/1y,T1y/1o,1/1y), we conclude that one of the following holds:

(v) p=2and T1y/I, is isomorphic to one of Ase, PSL3(2) and PSp,(3);

(vi) T is isomorphic to a simple group of Lie type with characteristic p.

Assume first that p is odd. Then T is isomorphic to a simple group of Lie type
with characteristic p. Recall that either » = 2 and T is one of Agm, PSL3(2) and
PSp,(3), or T' is a simple group of Lie type with characteristic r, see (i)-(iv) above.
It follows from [17, Proposition 2.9.1 and Theorem 5.1.1] that r = 2, and (T, p) is one
of (PSLy(4),5), (PSL3(2),7), (Sps(2),3), (PSU4(2),3), (PSLs(8),3) and (G2(2), 3).
Noting that 7*p' is a divisor of |T, it follows that none of these groups satisfies both
T < SLg(r) and T < SLy(p), a contradiction. Now let p = 2. Then r is odd as r # p,
and so T is a simple group of Lie type over a finite field of characteristic r, which
leads to a similar contradiction as above. This completes the proof. O

4. PROOF OF THEOREM

In this section, we assume that I' = (V| E) is a connected G-arc-transitive graph
of valency d > 3, and either d is a prime or I' is (G,2)-arc-transitive. For a € V|
let Go ={9g€ G| ! =a}and I'(a) = {8 € V | {a, 5} € E}, called the stabilizer
and neighborhood of « in G and in I', respectively. Then I' is (G, 2)-arc-transitive if
and only if G, acts 2-transitively on I'(a)). Denote by GL® the permutation group
induced by G, on I'(«v). Then either GL® is 2-transitive on I (), or d is a prime
and GL@ < AGL;(d), refer to [1, page 99, Corollary 3.5B]. In particular, by [{,
page 107, Theorem 4.1B], the socle soc(Gg(a)) is either simple or regular on I'(«),
and thus soc(Gh (a)) is the unique minimal normal subgroup of G4, In addition,

Crie (s0c(Ga ) =1 or soc(Ga'™) by [7, page 114, Theorem 4.3B].

We shall proceed by analyzing the actions on V' of normal subgroups of the group
G. Let N < G. By [28, Theorem 4.1], only one of the following holds:
(I) I' is a bipartite graph, and the N-orbits are the two parts of the bipartition;
(IT) N is semiregular and has at least three orbits on V, in particular, |N| is a
proper divisor of |V];
(III) N is transitive on V; in this case, if K is an intransitive normal subgroup of
N and N, acts primitively on I'(«) then (I) or (II) holds for I" with G and
N replaced by N and K, respectively.

In particular, if N, # 1 for some o € V' then N has at most two orbits on V.

Lemma 4.1. Assume that N <G and N, # 1, where « € V. Then N has at most
two orbits on V', N, acts transitively on I'(«a), soc(NOI;(a)) = soc(Gg(a)), and one of
the following holds:
(1) N, acts 2-transitively on I'(a);
(2) N, acts primitively on I'(«), and either
(i) d =28, NI = PSL,(8), GE = PT'L,(8); or
(i) d = p?, Z2SLy(5) < Na' < GE™ < 22:(Z,_1.PSLa(5)), where p €
(19,29, 59} ;
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(3) d = p~, NE@ = Z’;:H, where H is solvable and acts faithfully and semiregu-
larly on Z \ {1} by conjugation, where p is a prime and k > 1.

Proof. Since N, # 1, by [20, Lemma 2.5, N has at most two orbits on V, and
N, acts transitively on I'(«). Note that NI is a transitive normal subgroup of
GE® . Since soc(Nojj(a)) is a characteristic subgroup of Na ., we have soc(Nolj(a)) g
GE® and so soc(N& ) Nsoc(GL ™) < GE™. Recall that soc(G4 ™) is the unique
minimal normal subgroup of G4*. We have soc(Nojj(a)) > soc(Gg(O‘)). Let K be
an arbitrary minimal normal subgroup of NE® | Since soc(Gg(a)) NKJ Néf(“), we
have either K < soc(Gg(a)) or K N soc(G(I;(a)) = 1. The latter case implies that
K < Cgre (soc(GL)) = 1 or soc(GL™), a contradiction. Thus K < soc(G4™).
It follows that soc(NZ ™) < soc(GE™), and so soc(NL ™) = soc(GL™).

Now we show that one of (1)-(3) holds. If G s not 2-transitive, then d is a
prime, and part (3) occurs with k = 1, refer to [, Corollary 3.5B]. Thus assume that
GE® is 2-transitive. By [l, page 191, (35.25)] and [, page 215, Theorem 7.2C], either
NI@ g a primitive subgroup of Gg(a), or N = K:H with K = soc(Gg(a)) = Z];
and H acting semiregularly on K \ {1} by conjugation, where p is a prime and k > 2.
Then the lemma follows from checking one by one the 2-transitive permutation groups
listed in [3, pages 195-197, Tables 7.3 and 7.4], see also [22, Corollary 2.5]. O

Let N 9 G. For o € V, let NI be the kernel of N, acting on I'(«). Then
N @ =~ N /NV. Let 8 € I'(a). We have (N& )5 = (Nag)'® =2 N5 /NI

Lemma 4.2. Let N <G and {«, B} € E. Then every insolvable composition factor
of N, is (isomorphic to) an insolvable composition factor of either NI@ o (N(;I;(a))/g.
In particular, N, is solvable if and only if NE® s solvable.

Proof. Pick x € G with («, 8)* = (8, «). Then
I(a)* =T'(B8), Ng =2 "N, Ng] = x_lNg]x and Nos = 27" Nyp.
It follows that
(N2®)5 2 Nag/NY 2 Nag/Ny' 2 (Nag)™® = (N5 7).

B
Noting that Ni < Nyg, we have (NI)T) < (Nog)"® = (V) ), Put N} =
N A NI Then (W)@ = NUINI/ND 2 NET/NTL Thus,
(41) NN = (NED)TO 2 (NP, = (N),.

By [114, Corollary 2.3], Gg]ﬁ has a prime power order. Then G[;]B is solvable, and so
is N L% Recalling that N2 =~ N, /NS], the lemma follows from (@) O

Let N <t G, and suppose that N has at least three orbits on V. Set Viy = {a! |
a € V}. Define the quotient graph I a/n with vertex set Vy and edge set Ey :=
{{aV, 8N} | {a, B8} € E}. For X < G, let XYV be the subgroup of Aut(I'y) induced
by X. By [28, Theorem 4.1], N is semiregular on V', and N is the kernel of G acting
on Vy. Then X"¥ & NX/N = X/(X N N). Further, we have the following lemma.

Lemma 4.3. Let N <G and X < G. Assume that N has at least three orbits on V.
Then the following statements hold:
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(1) X'~ = NX/N, N is semiregular on V', and I'c/y has valency d; in particular,
|N| is a proper divisor of |V|; and

(2) (NX)y = (X)) ov 2 X v /(NN X), and if X is transitive on V then |N| is
a divisor of |(X"™) ~||N N X|; and

(3) I'gyn is (XYV,2)-arc-transitive if and only if I' is (N X, 2)-arc-transitive; and

(4) I'gn is (G'V, 2)-arc-transitive, or d is a prime and I'g/n is GV~ -arc-transitive.

Proof. In view of [28, Theorem 4.1], we need only prove (2). Noting that (NX).~ =
NX,~and NNX,~v = NNX, we have (X'¥) v 2 NX ~/N = X ~/(NNX). Since
(NX)onv = N(NX),, we get

(NX)a 2 N(NX)y/N = (NX)on /N = (X"V)ov 2 X v /(NN X).
If X is transitive on V then NX = X(NX),, and so
IN:NOX|=|NX:X|=[X(NX)a: X| = [(NX)a: Xal,

[N INDXT s (2) holds. O

vielding [N| = [(NX)o 0 Xal [N 0 X| = =8

Lemma 4.4. Let K, N <G and [ = KN N. Assume that K has at least three orbits
on 'V, and N is transitive on V. Then K/I is a homomorphic image of (NVE)x.

Proof. For X < G, let X = XI/I, and identify X with a subgroup of Aut(I'/;).
Then Lemma @ (1) and (4) work for the triples (I',G,I) and (I'g)1,G,K). Let
a € Vand @ = of. Then K is regular on &F, and Naf acts transitively on ak.
Noting that (K N)_x = K N_x = K x N_g, it follows from [, Theorem 4.2A] that

Naf induces a regular permutation group isomorphic to &K on @”®. Then Naf has a

quotient group isomorphic to K. Clearly, a® equals to the union of I-orbits involved
in @X. Tt follows that Naf = N,x/I. Then

Nowe 2 KN /K = (K/ 1) (Nt 1)/ (K/T) = K Nt | K 2 (NV) 1,
and the lemma follows. O
Recall that a permutation group is quasiprimitive if its minimal normal subgroups
are all transitive.

Lemma 4.5. The group G has at most one transitive minimal normal subgroup.

Proof. Suppose that G has distinct transitive minimal normal subgroups M and N.
Then M NN = 1, and so M and N centralize each other. Thus M and N are
nonabelian and regular on V', and Cg(N) = M, refer to [[7, pp.108-109, Lemma 4.2A
and Theorem 4.2A]. In particular, M and N are the only minimal normal subgroups
of G. Then G is quasiprimitive on V. By [27, Theorem 2], I" is not (G, 2)-transitive;
otherwise, GG should have a unique minimal normal subgroup. Thus d is a prime

and GL@ is solvable, and hence G, is solvable by Lemma {.2, where a € V. Set
X = MN. Then X = MX,, and we have N = X/M = MX,/M = X,. Thus X,
and hence G, is insolvable, a contradiction. This completes the proof. U

By Lemma @, we have the following corollary.

Corollary 4.6. Assume that G contains a transitive simple subgroup T. If T is
normal in a normal subgroup of G then T is normal in G.

Proof. Let T <N <JG. Then 79 < N for each g € G. Since T' is simple, both 7" and
T9 are minimal normal subgroup of N. It follows that either T'=T9 or TNTY = 1.
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Suppose that T" # T9 for some g € G. Then TNTY9 =1, and TT9 =T x T9.
Since T is transitive on V, it follows from [[7, pp.109, Theorem 4.2A] that both T
and 7Y are nonabelian and regular on V, and so |T| = |V| > d. Let « € V. Then
TT9 <N =TN,, and so T9 =2 TT9/T <TN,/T = N,. Thus N, is insolvable, and
so is NZ'® by Lemma . Of course, GL® is insolvable, and so GL) is 2-transitive
on I'(cv). Then I' is (G, 2)-arc-transitive, and (1) or (2) of Lemma@ occurs for N.

Assume that (1) of Lemma occurs, that is, N, acts 2-transitively on I'(«).
Then, since N is transitive on V', we conclude that I" is (N, 2)-transitive. By Lemma

, N has at most one transitive minimal normal subgroup. Noting that 7" and 7Y
are minimal normal subgroups of N, we have T' = T"Y, a contradiction.

Assume that (2) of Lemma occurs. Recalling that N, has a normal simple
subgroup isomorphic to 79, by Lemma , T' is isomorphic to a composition factor of
either N2 or (N2 4. Tt follows that either d = 28 and T = PSLy(8), or d = p? and
T = PSLy(5), where p € {19,29,59}. The latter case forces that |V| = |T| = 60 < d,
a contradiction. Therefore, we let d = 28 and T' = PSLy(8). Since T is regular on V,
identifying V' with 7', the group N lies in the holomorph T:Aut(T") of T', where T acts
on V by right multiplication. Letting o be the vertex corresponding to the identity of
T, we have N, < Aut(T) = T.Zs3. Recall that N, has a normal subgroup isomorphic
to T. We conclude that N, = Inn(T") or Aut(7T"). Since N, # 1, by Lemma @1, I'(«)
is an N,-orbit on V. Thus I'(«), as a subset of T', is a conjugacy class of length 28
in T or under Aut(T"), which is impossible by the Atlas [§].

The argument above shows that T'=TY for all ¢ € G. Then T' <G, and the result
follows. ]

In the following, we always assume that G' contains a transitive nonabelian simple
subgroup T'. Since I is connected and 7' is transitive on V', if I" is a bipartite graph
then T has a subgroup of index 2, which is impossible. Thus I" is not bipartite. Then
the next lemma follows at once from [28, Theorem 4.1], see also (I)-(III) above.

Lemma 4.7. Assume that N < G and N contains a transitive nonabelian simple
subgroup T'. Let K be an intransitive normal subgroup of N, and o € V. If N, acts
primitively on I'(a), then K is semireqular and has at least three orbits on V; in
particular, |K| is a proper divisor of |V| and |T)|.

Lemma 4.8. Assume that G is quasiprimitive on V, and G contains a transitive
nonabelian simple subgroup T'. Then either soc(G) is simple and T < soc(G), or I’
is the complete graph on 8 vertices, T = PSL3(2) and G = AGL3(2).

Proof. Let N = soc((). By Lemma @, N is the unique minimal normal subgroup of
G. Write N =T} x Ty X -+ x T}, where k > 1 and T; are isomorphic simple groups.

Case 1. Assume first that NV is abelian. Then G is primitive on V', N = Z’; and
G < AGLg(p) for some prime p. In this case, N is regular on V and T' < GLg(p), in
particular, k > 2. If I" is (G, 2)-arc-transitive then p = 2, refer to [16, Theorem 1].
If d is an odd prime then |N| = |V is even, and so p = 2.

Since T is transitive on V, we have |T : T,| = 2* for « € V. By [15], k¥ > 3 and
either 7' = Ay, or T' = PSL,(q) with q:_—_ll = 2% Note that Ay £ GL.(2), see [17,
pp. 186, Proposition 5.3.7]. Then 7" = PSL,(¢), and % = 2% In particular, ¢" — 1
has no primitive prime divisor. By Zsigmondy’s Theorem, n = 2 and ¢ = 2¥ — 1. By

(17, pp. 188, Theorem 5.3.9], we have k > (;;_11) = 21 _ 1, yielding k < 3. Then
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k=3, N=73 T =PSL3(2), and G = AGL3(2). In particular, G is 3-transitive on
V', and thus I is the complete graph on 8 vertices.

Case 2. Now assume that N is nonabelian. Suppose that T'£ N. Then TNN =1,
and TN/N = T. Since N is the unique minimal normal subgroup of G, we have
Cs(N) =1, and thus T acts faithfully on {73, T5,...,T;} by conjugation. Then T is
isomorphic to a subgroup of the symmetric group Sg. In particular, || is a divisor of
k!. Noting that G = NG, for a € V, we have T'= TN/N_< G/N = G, /(G, N N),
and so G, is insolvable. Then I'is (G, 2)-arc-transitive, by [27, Theorem 2], G satisfies
ITI(b)(i) or I1I(c) described as in [27, Section 2]. It follows that |7} | has a prime divisor
p such that |V| is divisible by p*. Since T is transitive on V, it follows that p* is a
divisor of |T'|. Thus k! is divisible by p*, and so k < v,(k!). By Legendre’s formula,

vy (k) = %”fk) < k — 1, which lead to a contradiction. Therefore, T' < N.

To complete the proof it remains to show that £ = 1. Suppose on the contrary
that £ > 1, and consider the projections:

¢i N —=Txy-ap—a, 25 €T, 1<, <k

Without loss of generality, we may let ¢1(T) # 1. Then T = ¢,(T) < T). Note
that T # N, and so N is not regular on V. Let o € V. By Lemma #.1, N, acts
transitively on I'(«). Since N is transitive on V', we know that I" is N-arc-transitive.

Recall that either I" is (G, 2)-arc-transitive or the valency d of I" is a prime. Suppose
that d is a prime. Then Lemma @ holds for the pair (N, I"), and so N has at most
one transitive minimal normal subgroup. Noting that N =T} x --- x T}, with k > 1,
it follows that every T; is intransitive on V. Considering the quadruple (I, N, T, T}),
by Lemma @, |T7| is a proper divisor of |T'|, which contradicts that T' = ¢, (T') < T7.
Therefore, d is not a prime, and I" is (G, 2)-arc-transitive.

Since N is not regular on V', by [27, Theorem 2|, N satisfies III(b)(i) described as
in [27, Section 2]. Then N, < Ry X -+ X Ry for a« € V, where R; = ¢;(N,) < T;
for 1 <i <k, and Ry & Ry = --- = R;. In particular, |N,| divides |R;|*. On
the other hand, since T" < N and T is transitive on V|, we have N = T'N,, and so
N/T =TN,/T = N,/(No,NT). In particular, |[N/T| divides |N,|. Recalling that
T < T and |N| = |T}|*, it follows that |T}|*~! divides | N,|, and hence T3]~ divides
|R1|k. Since k > 1, we have that |T}| divides |R;|*. Since R; < T}, we conclude
that a prime r is a divisor of |T3| if and only if 7 is a divisor of |Ry|. It follows from
[24, Corollary 5 and Table 10.7] that R; is insolvable. Thus N, is insolvable, and so

@. Then N, acts primitively on I'(a) by Lemma @
Recalling that N is the unique minimal normal subgroup of GG, we have N char G.
If T is transitive on V' then, applying Corollary @gto the pair (G,T7), we have
Ty < G, contrary to the minimality of N. Thus 77 is intransitive on V. Considering
the quadruple (I', N,T,Ty), by Lemma @, |T1| is a proper divisor of |T'|, which
contracts that T' < Tj. Therefore, K = 1. This completes the proof. U

NI is insolvable by Lemma

Corollary 4.9. Assume that G contains a transitive minimal normal subgroup N
and a transitive nonabelian simple subgroup T. Then either d = 7, |V| = 8 and
G =2 AGL3(2), or T < N and N is simple.

Proof. Choose a maximal intransitive normal subgroup K of G. Then T'N K =
NN K =1; in particular, KN = K x N. If K =1 then G is quasiprimitive on V,
and so the corollary is true by Lemma {1.§.
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Assume that K # 1. Since K < Cg(N) # N, by [7, Theorem 4.2A], N is
nonabelian. Write N = T} x- - - x T}, for some integer £ > 1 and isomorphic nonabelian
simple groups 7;. Then G acts transitively on {77, ...,T;} by conjugation. It follows
that G/K acts transitively on {T1K/K, ..., T, K/K} by conjugation. Thus NK/K
is a minimal normal subgroup of G/K. By Lemma {.7, K has at least three orbits
on V. Now consider the quotient graph I'c/x. Identifying G/K_with a subgroup of
Aut(I'c/k), by Lemma @ (1) and (4), we know that Lemma works for I'c/k,
G/K and TK/K. Noting that N = T3 x --- x T, 2 NK/K < G/K, we have

K 22 AGL3(2), and hence NK/K is simple and TK/K < NK/K. By Lemma

, | K| is a proper divisor of |T'|. If 7€ N then NNT =1 as T is simple, and so
T=TN/N < KN/N = K, a contradiction. Thus N > T, and our result is true. [

Lemma 4.10. Assume that G contains a transitive nonabelian simple subgroup T.
Let K be a mazimal intransitive normal subgroup of G. Then either
(1) G=AGL;(2), K=1,|V|=8andd=7; or
(2) T is contained in a characteristic perfect subgroup N of G such that N/rad(N)
is simple, K N N = rad(N) and K/rad(IN) = Cg/raa(nv)(IN/rad(N)).

Proof. By the choice of K, we know that GV¥ is a quasiprimitive permutation group
on Vi. By Lemma #.7, K is semiregular and has at least three orbits on V. It
follows from (4) of Lemma and Lemma that either d = 7, |Vk| = 8 and
GVE = AGL3(2), or soc(G'¥) is a nonabelian simple group and T'% < soc(GV%).

Case 1. Assume that GY% = AGL3(2). Then (GV¥),x = T = PSL3(2), where
a €V. Let I <G with K < I and I/K = Z3. Then G = I:T and I is regular
on V. In particular, |V| = 8| K| = |I|. Noting that |V| = |T" : T,], it follows that
|K| is a divisor of 21, and so K is solvable. Since G/K = G'¥ = AGL3(2), we have
G /(G® NK) 2 KG™®/K = (G/K)™) = AGL3(2) & G/K. It follows that
G = KG®™) and G is a perfect extension of (G N K):Z3 by PSL3(2). Noting
that (G(>) N K):Z3 is solvable, it follows from Lemma B.3 that G(*) = AGL3(2), and
G N K =1. Since G = KG™), we have ((G©™))V&) x = (GV¥),x = PSL3(2).
By Lemma Y.4, K is isomorphic to a quotient group of PSL3(2), and so K = 1 as
|K| <|T|. Then G = G = AGL3(2), and part (1) of this lemma follows.

Case 2. Assume that TV < soc(G'%) and soc(G"%) is simple. In this case, we
have soc(GV%) = soc(G/K) and, letting I = K NG,

T=TK/K <soc(G/K) = (G/K)* = G®K/K = G>/].

By Lemma @, | K| is a proper divisor of |T'|. Then |I| is a proper divisor of |T|.
Since T' = G(*) /I, we know that |I|? is a proper divisor of |G(*)|. In particular,
G(>®) £ [ x I. Then, by Lemma B.1|, we may choose N char G(*) such that G(®) = IN
and I NN = rad(N). Clearly, NcharG, and rad(N) = INN = KN N. Let
G = G/rad(N), N = N/rad(N) and K = K/rad(N). We have K N = K x N, that

Note that rad(/N) < G and rad(N) is intransitive on V. By (1) and (4) of Lemma

, TG /rad(ny has valency d and, identifying G with a subgroup of Aut(IG /rad(N)),

either d is a prime or I'g/raq(n) is (G, 2)-arc-transitive. By the choice of N, we have
N = N/rad(N) = G /I =2 G K/K = soc(G/K).

Then N is simple, and so N is a minimal normal subgroup of G. Noting that T <
G we have T2 TK/K < G K/K = N. In particular, |T| divides |N]|.
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Let T = Trad(N)/rad(N). Then T = T. Since T is transitive on V, it is easy
to see that T acts transitively on Viad(ny; in particular, |Vi.avy| is a divisor of T)|.
If N is intransitive on Viad(ny then, by (1) of Lemma @ |N| is a proper divisor of
[Viadvy|, and so |N| < [Viaavy| < |T] < |NJ, a contradiction. Thus N is a transitive
minimal normal subgroup of G. By Corollary , we have T < N, yielding T < N.

Suppose that Cz(N) is transitive on Viad(N Then both N and Cz(N) are regular
on Viaq(n), see [, Theorem 4.2A]. This 1mphes that N =2 C5(N), refer to [, Lemma
4.2A]. Thus Cz(N) is simple, and hence C#(N) is a transitive minimal normal sub-
group of G. It follows from Lemma @ that N = Cg(ﬁ), and so N is abelian, a
contradiction.

Suppose that Cg(N) is intransitive on Viagn). Set Cg(N) = C/rad(N). Then C
is intransitive on V. Recalling that K < Cg(ﬁ), we have K < C, and hence K = C
by the choice of K. Then part (2) of this lemma follows. U

Lemma 4.11. Assume that G contains_a transitive nonabelian simple subgroup T'.
Let N and K be as in (2) of Lemma . Then either N is quasisimple or (4) of
Lemma @ holds for N and T'.

Proof. By Lemma @, |K| is a divisor of |T|, and so |rad(N)| is a divigsor of |T| as
rad(N) = K N N. Then N, rad(N) and T are described as in Lemma B.3. Thus it
suffices to show N and 7" do not satisfy one of (1)-(3) given as in Lemma

Again by Lemma @, K has at least three orbits on V. Then Lemma holds for
(I',G, K, X), where X < G. For convenience, we put X = XK/K and identify X
with a subgroup of Aut(I'g/x). Then T = T, K N N = rad(N) and N_= N/rad(N).
Fix « € V, and let B = . Since KNT = 1, applying (2) of Lemma {3 to the pair
(K, T), we conclude that |T'g| is divisible by | K|, and so |Np| is divisible by |K].

Case 1. Suppose that (1) or (2) of Lemma @ holds for N and 7. Then N =
rad(N):T, and so soc(G) = N = T = T. In this case, |G : N| < 2, we have
|Gp : Np| < 2. Thus [Np| is divisible by every odd divisor of |Gp|. In particular,
Np # 1, and so Lemma works for (Fg/K,@, N).

Subcase 1.1. Assume N = [2¥]:Ag with k € {4,5,6}. Then |[KNN| = |rad(N)| = 2,
soc(G) = N =T = Ag, and [Np| is divisible by 2F.

Suppose that N p is insolvable. Using GAP [29], we search the insoluble subgroups
of Ag with order divisible by 2. It follows that Np = Sg or Z3:PSL3(2). Assume
that N = Sg. Then the action of N on Vi is equivalent to the rank three action
of Ag on the 2-subsets of a 8-set. It follows that d = 12 or 15. In this case, I'g/k is
(G, 2)-arc-transitive and of valency d, and then d — 1 is a divisor of |Gp|. Recalling
that | N | is divisible by every odd divisor of |G|, it follows that |N 5| has a divisor
11 or 7, which is impossible as Ny = Sg. Thus, we have N p = Z3:PSL3(2). Then the
action of N on Vi is equivalent to the 2-transitive action of PSL4( ) on the projective
points or on hyperplanes. This implies that I'g/x is the complete graph of order 15,
and then G acts 3-transitively on V. Noting that N is not 3-transitive on Vi, we
have N # G. Then G = Sg; however, Sg has no transitive permutation representation
of degree 15, a contradiction.

Next we suppose that N3 is solvable. By (3) of Lemma @, d is a prime power.
Since N = T 2 Ag, considering the prime divisors of Ag, we conclude that d €
{21,3,5,7,9}, where 2 <1 < 6. Let m = 2*d if d is odd, or m = 2¥(d — 1) if d is even.
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Then |Np| is divisible by m. Searching by GAP the solvable subgroups of Ag with
order divisible by m, we conclude that Nz has the form of [2°]:S3 or Z3:7Z2:Z!, where
s >3 and 0 <t < 2. In particular, d € {3,4,9}. Checking the vertex-stabilizers for
connected arc-transitive graphs of valency 4, refer to [19, Lemma 2.6], we have d # 4.
If d = 3 then [Np| = 48 by [33], and thus |Vx| = 420; however, by [4], there is no
connected arc-transitive cubic graph of order 420.

Assume that d = 9. Then |O5(Np)| > 2*. Noting that Oy(N ) char N, it follows
that O5(Np) < Gp, and then Oy(Np) lies in the kernel of G acting on I'c/k(B).

Since Gy acts 2-transitively on I'g/x(B), we know that 72 is a divisor of \GFG/K(B)],

and so |G'g| is divisible by 72\02(]\73)\ Then |G p| has a divisor 27 - 32. Noting that
G < S, it follows that |G : G| is odd. Then I'g /i has odd order and odd valency,
Wthh is impossible.

Subcase 1.2. Assume that N = Z5 %:A,, where n = 2¢ for some e > 4. Then
soc(G) = N =T = A, and |K N N| = |rad(N)| = 2"~2. By (2) of Lemma [t.3, [T4|
is divisible by 272, it follows that T’z has odd index in T, and so |Vi| = |T : Tp| is
odd. Then I/ is a (G, 2)-arc-transitive graph of odd order. By [18, Theorem 1.1]ﬂ,
n is odd, a contradiction.

Subcase 1.3. Assume that N =2 AGL3(2). Then soc(G) = N = T = PSL3(2), and
|[KNN|=|rad(N)| = 2%. By (2) of Lemma @, |N | is divisible by 23. Checking the
subgroups of PSL3(2) with order divisible by 8, we have Np = S, or Dg. If Ng = Dy
then, noting that |G : N| < 2, we have |G| € {8, , 16}, which is impossible as I'x
is (G, , 2)-arc-transitive. Thus Np = S, and, since [N : Ng| = |Vx| = |G : Gp|, we
have G = N by checking the subgroups of G. Thus I a/K is the complete graph of
order 7. From the 2-arc-transitivity of G on I a/k» we conclude that PSL3(2) has a
3-transitive permutation representation of degree 7, which is impossible.

Subcase 1.4. Assume that N = Z5:PSp,(3) < AGLg(2). Then soc(G) = N =T =
PSp,(3), and |[K N N| = |rad(N)| = 25. By (2) of Lemma [.3, [Np| is divisible by
26, In particular, |Vx| = |N : Np| is odd, and so d is even. It follows that I'g/x is
(G, 2)-arc-transitive, and I' is (G, 2)-arc-transitive. If d = 4 or 6 then, by [19, Lemma
2.6] and [20, Theorem 3.4], |G| is indivisible by 2¢, a contradiction.

Now let d > 8. Checking the subgroups of PSp,(3) with order divisible by 25, we
conclude that |Oo(Ng)| > 2%, and Z3:Z2 < N < Z3:As. Recalling that |[Np| is
divisible by every odd divisor of |G 5|, it follows that | N | is divisible by d — 1. Then
the only possibility is that d = 16 and Np = Zi:A5. By Lemma , N;G/K(B) is
insolvable. It follows from Lemma @ that NZG/ w(B)
so I'q/k is (N, 2)-arc-transitive as N is transitive on V. Then, by (3) of Lemma
I' is (KN, 2)-arc-transitive.

By Lemma @, K/(KNN) is isomorphic to a quotient group of Np, it follows that
K/(KNN)=1,and so K = KN N = rad(N). Thus I" is an (NN, 2)-arc-transitive
graph of valency 16. By (2) of Lemma @, N, = Np, and so N, = Z3:A5. Let
g € I'(a), and = € N with (o, 3)" = (o, ). Then Nop = A;, © € Ny(Nyp) and
z? € N,g. Since I' is connected, N = (z, N,), refer to [2, page 118, 17B]. Recall
that N = Oy(N):T = Z5:PSp,(3) < AGLg(2). By the Atlas [6], for 1 < 1 < 5, we

is 2-transitive on I'q/x(B), and

'In part (ii) of [18, Theorem 1.1], the value of n should be 2¢*! — 1 but not ( 11).
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conclude that SL;(2) has no subgroup isomorphic to 7" = PSp,(3). It follows that 7" is
an irreducible subgroup of GLg(2), and thus we may consider N as an affine primitive
permutation group of degree 2. Confirmed by GAP, N has a unique conjugacy class
of subgroups isomorphic to N,. This allows us the choose N, as a subgroup of T'.
Then, by a further computation using GAP, we conclude that there is no desired x
with N = (z, N,), a contradiction.

Case 2. Suppose that N and T satisfy (3) of Lemma @ Then N is a simple
group of Lie type with characteristic 2, and N # T =T = Ay for some e > 3.
Noting that N = T N, by [30, Theorem 1.1], T = Ag and one of the following holds:

(1) N = PSp4(2), and Np 22 [3%]:Zg:Zy, [3%]:2S4, PSLy(8), PSLy(8):3, PSU3(3):2
or PSU4(2):2;
(ii) N = PSpg(2), and Ny = PQ;5 (2).2;
(i) N = PQF(2), and Ny = Spy(2), PSU4(2), PSU4(2):2, 3 x PSU4(2), (3 x
PSU4(2))2 or Ag.

By Lemma @, N < PSLy(2) for some [ with 2! < |Oy(N)| € {24,25,25}. Tt follows
from [17, page 200, Proposition 5.4.13] that [ = 6 and N = PSpy(2). Then G = N.
Recalling that [rad(V)| is a divisor of |T5|, it follows that 26 is a divisor of |G Bl
This forces that Gz = PSUs3(3):2 or PSU4(2):2. By the 2-arc-transitivity of G' on
I'c/k, either PSU3(3):2 or PSU4(2):2 has a 2-transitive permutation representation
of degree d, which is impossible by [3, Table 7.4]. This completes the proof. O

Proof of Theorem @ Let I' = (V, F) be a connected G-arc-transitive graph of va-
lency d > 3. Assume that GG contains a vertex-transitive nonabelian simple subgroup
T, and that either d is a prime or I" is (G, 2)-arc-transitive. By Lemma {.5, G has at
most one transitive minimal normal subgroup. If G' has a transitive mmlmal normal
subgroup M then, by Corollary {.9, either (1) of Theorem [1.2 holds or M is simple
and T < M. In the general case, taking a maximal 1ntran51t1ve normal subgroup
K of G, by Lemma @, either (I',G) is described as in (1) of Theorem , or
G has a characteristic perfect subgroup N such that T < N, N/rad(N) is simple,
KNN =rad(N) and K/rad(N) = Cgragnv)(INV/rad(N)). For the latter case, [rad(/NV)]
is a divisor_of |T'| by Lemma }.7, and we obtain (2)(i) or (ii) of Theorem ! from
Lemma .11 This completes the proof. U
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