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Abstract. A graph Γ is said to be 2-arc-transitive if its automorphism group
acts transitively on the set of 2-arcs of Γ . In this paper, we give a group-theoretic
characterization of those connected 2-arc-transitive graphs which admit a vertex-
transitive simple group.
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1. Introduction

In this paper, all groups are assumed to be finite, and all graphs are assumed to
be finite, simple and undirected.

Let Γ = (V,E) be a regular graph with vertex set V and edge set E. Denote by
Aut(Γ ) the automorphism group of Γ , and let G be a subgroup of Aut(Γ ). The graph
Γ is called G-vertex-transitive, or G is called a vertex-transitive group of Γ , if G acts
transitively on V , and called a Cayley graph of G if G acts regularly on V . Recall
that an arc of Γ is an ordered pair of adjacent vertices, and a 2-arc is a triple (α, β, γ)
of vertices with {α, β}, {β, γ} ∈ E and α 6= γ. The graph Γ is called G-arc-transitive
(or (G, 2)-arc-transitive) if it has no isolated vertex and G acts transitively on the
set of arcs (or the set of 2-arcs). Note that 2-arc-transitivity leads to arc-transitivity,
and arc-transitivity leads to vertex-transitivity.

In the literature, the solutions of quite a number of problems about arc-transitive
graphs have been reduced or partially reduced into the class of graphs arising from
(almost) simple groups. For example, the reduction for arc-transitive graphs of prime
valency [25], the reduction for 2-arc-transitive graphs established in [27], the Weiss
Conjecture [34, Conjecture 3.12] for non-bipartite locally primitive graphs [5], the
normality of Cayley graphs of simple groups [10, 11], the existence and classification
of edge-primitive graphs [13, 26], and so on. Certainly, the class of graphs admitting
(almost) simple groups plays an important role in the theory of arc-transitive graphs.

In this paper, we focus on those arc-transitive graphs which admit a vertex-
transitive simple group. One of our motivations comes from a problem in the study
of the automorphism groups or the normality of arc-transitive Cayley graphs of finite
nonabelian simple groups. Let Γ = (V,E) be a connected G-arc-transitive graph of
valency d ⩾ 3. Assume that either d is a prime or Γ is (G, 2)-arc-transitive, and
G has a nonabelian simple subgroup T which acts regularly on V . Then the Weiss
Conjecture is true for (Γ , G), that is, the orders of vertex-stabilizers have an upper
bound depending only on the valency d, refer to [5]. This ensures that T is normal in
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G with a finite number of exceptions, see [10, Theorem 1.1]. An interesting problem,
as proposed in [10], is to figure out the exceptions for T . This problem has been
solved for d ⩽ 5 in several papers, refer to [8, 9, 10, 31]. In [32], the exceptions for
T are determined under the assumption that d is a prime and a vertex-stabilizer is
solvable. The other possible exceptions for T can be read out from a recent paper
[21], which are alternating groups, simple groups with |T | − 1 = d and, possibly, the
simple orthogonal groups of minus type and characteristic 2. With these, we observe
that if T is not normal in G then G is an almost simple group. This leads to another
interesting problem. What will happen if we weaken the ‘regularity’ of T into ‘tran-
sitivity’? Thus, in this paper, we consider those arc-transitive graphs satisfying the
following assumptions:
Hypothesis 1.1. Γ is a connected G-arc-transitive graph of valency d ⩾ 3, G con-
tains a vertex-transitive nonabelian simple subgroup T , and either d is a prime or Γ
is (G, 2)-arc-transitive.

Recall that a group X is perfect if it equals to its derived subgroup. If a central
extension of some simple group is perfect then it is called a quasisimple group or
a covering group of the simple group. For a finite group X, denote by rad(X) and
Or(X), respectively, the maximal solvable normal subgroup and the maximal normal
r-subgroup of X, where r is a prime divisor of |X|.

In Section 4, the following result is proved.
Theorem 1.2. Assume that Γ , G and T are described as in Hypothesis 1.1. Then G
has at most one transitive minimal normal subgroup, and one of the following holds:

(1) G ∼= AGL3(2), and Γ is the complete graph on 8 vertices;
(2) T is contained in a characteristic perfect subgroup N of G, and either

(i) N is quasisimple; or
(ii) N/Or(N) is quasisimple, T and N/rad(N) are simple groups of Lie type

over finite fields of characteristic r, and |rad(N)| is a divisor of |T |.
In particular, if G has a transitive minimal normal subgroup M , then either G ∼=
AGL3(2) or M is simple and T ⩽ M .

Theorem 1.2 is just the first step toward characterizing those simple groups which
act transitively on the vertex set of a 2-arc-transitive graph or an arc-transitive graph
of prime valency, and then classifying those graphs in Hypothesis 1.1 with T not
normal in G. For (2)(i) and (ii) of Theorem 1.2 with T 6= N (and so N/rad(N) 6∼= T ),
we observe that the simple group N/rad(N) has a factorization N/rad(N) = XY
with X ∼= T and Y 6= 1. In a sequel, employing factorizations of finite (almost)
simple groups, we shall work out a possible list for those simple groups T which are
not normal in G.

2. Primes involved in some finite simple groups

In this section, we assume that n is a positive integer and r is a prime. Write
(2.1) n = a0 + a1r + · · ·+ akr

k, sr(n) = a0 + a1 + · · ·+ ak,

where ai are integers with 0 ⩽ ai < r. For an integer x, denote by νr(x) the highest
power of r that divides x. By Legendre’s formula,

(2.2) νr(n!) =
n− sr(n)

r − 1
.
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In particular, νr(n!) ⩽ n− 1, where the equality holds if and only if r = 2 and n is a
power of 2.

Recall that, for integers l ⩾ 2 and q ⩾ 2, a primitive prime divisor of ql − 1 is a
prime which divides ql − 1 but does not divide qi − 1 for any 0 < i < l. If r is a
primitive prime divisor of ql − 1, then q has order l modulo r, and thus l is a divisor
of r− 1, in particular, r ⩾ l+1; if further r

∣∣ (qm − 1) with m ⩾ 1 then l
∣∣ m. Thus,

by [12, Theorems 3.1 and 3.5], we have the following result, where [x] denotes the
integer part of a real number x.

Lemma 2.1. Let Λn(q) =
∏n

i=1(q
i − 1), where n and q are integers no less than 2.

Assume that r is a prime divisor of Λn(q), and let l be the order of q modulo r. Then
one of the following holds:

(1) r is odd or q ≡ 1 (mod 4), and νr(Λn(q)) = [n
l
]νr(q

l − 1) + νr([
n
l
]!);

(2) r = 2, q ≡ 3 (mod 4), and ν2(Λn(q)) = [n
2
]ν2(q + 1) + [n+a0

2
] + ν2(n!).

Corollary 2.2. Let n, q, r and Λn(q) be as in Lemma 2.1. Then either
(1) νr(Λn(q)) < n log2(q) + νr(n!) ⩽ q

n
2 + n− 1 for (r, q) 6= (2, 3); or

(2) (r, q) = (2, 3) and ν2(Λn(q)) ⩽ 5n−2
2

⩽ 3
n
2 + n− 1.

In particular, ν2(Λn(q)) = q
n
2 + n− 1 if and only if (r, q, n) = (2, 3, 2).

Proof. Let l be the order of q modulo r.
Assume that (1) of Lemma 2.1 holds. Noting that νr(n!) ⩽ n− 1, we have

νr(Λn(q)) = [
n

l
]νr(q

l − 1) + νr([
n

l
]!) ⩽ [

n

l
] logr(q

l − 1) + νr([
n

l
]!)

< [
n

l
] logr(q

l) + νr([
n

l
]!) ⩽ logr(q

n) + νr(n!) ⩽ log2(q
n) + n− 1.

It is easily shown that x 1
2 − log2(x) is nonnegative and monotonically increasing when

x ⩾ 16. It follows that either log2(q
n) ⩽ q

n
2 or qn ⩽ 15. The former case yields part

(1) of this corollary. For qn ⩽ 15, since either r is odd or q ≡ 1 (mod 4), the only
possibility is that (q, n) = (2, 2) or (2, 3); in this case, r ∈ {3, 7} and νr(Λn(q)) = 1,
which also meets (1) of the corollary.

Now let r = 2 and q ≡ 3 (mod 4). If q > 3 then n < n
2
log2 q, and so

ν2(Λn(q)) ⩽ [
n

2
]ν2(q + 1) + [

n+ a0
2

] + ν2(n)

< [
n

2
] log2(2q) + [

n+ 1

2
] + ν2(n!)

= [
n

2
] log2(q) + [

n

2
] + [

n+ 1

2
] + ν2(n!)

= [
n

2
] log2(q) + n+ ν2(n!) < n log2(q) + ν2(n!)

⩽ q
n
2 + n− 1,

desired as in (1) of this corollary. Assume that q = 3. Then

ν2(Λn(q)) = 2[
n

2
] + [

n+ a0
2

] + n− s2(n).

Noting that a0 ∈ {0, 1} and s2(n) ⩾ 1, we have

ν2(Λn(q)) ⩽ 2[
n

2
] + [

n+ 1

2
] + n− 1 ⩽ 5n− 2

2
.
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It is easily shown that 3x ⩾ 3x for x ⩾ 1. Thus 5n−2
2

= 3 · n
2
+ n − 1 ⩽ 3

n
2 + n − 1,

and the corollary follows. □
For a group X, denote its derived subgroup by X ′. For a finite simple group of

Lie type in characteristic p, let e(L) denote a lower bound, given as in [17, page 188,
Table 5.3.A], on degrees of faithful projective s-modular representations of L with
s 6= p.

Lemma 2.3. Let L be a finite simple group of Lie type defined over a field of order
q = pf , where p is a prime. Assume that r is a prime divisor of |L| with r 6= p. Then
νr(|L|) < e(L) with the following exceptions:

(1) L = PSL2(9), r = 2, νr(|L|) = 3 = e(L);
(2) L = Sp4(2)

′, r = 3, νr(|L|) = 2 = e(L);
(3) L = PSU4(2), r = 3, νr(|L|) = 4 = e(L);
(4) L = PSU4(3), r = 2, νr(|L|) = 7 and e(L) = 6;
(5) L = PSL2(5), r = 2, νr(|L|) = 2 = e(L);
(6) L = PSL2(7), r = 2, νr(|L|) = 3 = e(L);
(7) L = PSp4(3), r = 2, νr(|L|) = 6 and e(L) = 4.

Proof. Suppose first that (L, e(L)) is a pair given as in the third column of [17,
page 188, Table 5.3.A]. Then L, p, e(L) and |L| are listed in Table 2.1. Inspecting

L p e(L) |L|
PSL2(4) 2 2 p2 · 3 · 5
PSL2(9) 3 3 p2 · 23 · 5
PSL3(2) 2 2 p3 · 3 · 7
PSL3(4) 2 4 p6 · 32 · 5 · 7
Sp4(2)

′ 2 2 p3 · 32 · 5
PSp6(2)

′ 2 7 p9 · 34 · 5 · 7
PSU4(2) 2 4 p6 · 34 · 5
PSU4(3) 3 6 p6 · 27 · 5 · 7
PΩ+

8 (2) 2 8 p12 · 35 · 52 · 7
Ω7(3) 3 27 p9 · 29 · 5 · 7 · 13
F4(2) 2 ⩾ 44 p24 · 36 · 52 · 72 · 13 · 17
G2(3) 3 14 p6 · 36 · 7 · 13
G2(4) 2 12 p12 · 33 · 52 · 7 · 13
Sz(8) 2 8 p6 · 5 · 7 · 13

Table 2.1. Exceptions for e(L)

the groups in Table 2.1, we have νr(|L|) < e(L) unless (L, r, νr(|L|), e(L)) is one of
(PSL2(9), 2, 3, 3), (Sp4(2)

′, 3, 2, 2), (PSU4(2), 3, 4, 4) and (PSU4(3), 2, 7, 6).
We next deal with the case where e(L) is listed in the second column of [17, page

188, Table 5.3.A]. We fix a Sylow r-subgroup R of L. Then νr(|L|) = νr(|R|).
Case 1. Assume that L = PSL2(q) and e(L) = q−1

(2,q−1)
, where 4 < q 6= 9. In

this case, |R| is a divisor of Λ2(q), and so νr(|L|) = νr(|R|) ⩽ νr(Λ2(q)). Since
q 6= 3, by (1) of Corollary 2.2, νr(|L|) < 2 log2(q) + 1. If q ⩽ 15 then q = 5 or 7,
which gives (5) or (6) of this lemma. Now let q > 15. Then log2(q) ⩽ q

1
2 , and so

νr(|L|) < 2 log2(q) + 1 ⩽ 2q
1
2 + 1. Suppose that νr(|L|) ≥ e(L). Then 2q

1
2 + 1 > q−1

2
,
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and so q2 − 22q + 9 < 0, yielding q < 22. Thus q = 16, 17 or 19, and then e(L) ⩾ 8;
however, r8 is not a divisor of |PSL2(16)|, |PSL2(17)| or |PSL2(19)|, a contradiction.
Then νr(|L|) < e(L), as desired.

Case 2. Assume that L = PSLn(q) and e(L) = qn−1−1, where n > 2 and (n, q) 6=
(3, 2), (3, 4). Suppose that q

n−1
4 − 1 ⩽ 1. Then qn−1 ⩽ 16, and so (n, q) = (3, 3),

(4, 2) or (5, 2). We have e(L) ⩾ 7, and (|L|, p) = (24 · 33 · 13, 3), (26 · 32 · 5 · 7, 2) or
(210 · 32 · 5 · 7 · 31, 2). It follows that νr(|L|) < e(L).

Now let q
n−1
4 − 1 > 1. Then qn−1 − 1 = (q

n−1
2 + 1)(q

n−1
4 + 1)(q

n−1
4 − 1) > (q

n−1
2 +

1)(q
n−1
4 + 1), and so

e(L) > (q
n−1
2 + 1)(q

n−1
4 + 1) = q

3(n−1)
4 + q

n−1
2 + q

n−1
4 + 1 > q

n
2 + 2

n−1
2 + 2.

Noting that |R| is a divisor of Λn(q), we have νr(|L|) = νr(|R|) ⩽ νr(Λn(q)). By
Corollary 2.2, νr(|L|) < q

n
2 + n− 1. If n = 4 then e(L) > q

n
2 + 4 > νr(|L|). If n 6= 4

then 2
n−1
2 ⩾ n− 1, and thus e(L) > q

n
2 + n− 1 + 2 > νr(|L|).

Case 3. Assume that L = PSp2m(q), where m > 1 and (m, q) 6= (2, 2), (3, 2).
Noting that |R| is a divisor of Λm(q

2), we have νr(|L|) = νr(|R|) ⩽ νr(Λm(q
2)). By

(1) of Corollary 2.2, since q2 6= 3, we have

νr(|L|) < m log2(q
2) + νr(m!) = 2 log2(q

m) + νr(m!).

If qm ⩽ 15 then (m, q) = (2, 3); in this case, r = 2, L = PSp4(3), νr(|L|) = 6
and e(L) = qm−1

2
= 4, as in part (7). Thus we assume next that qm > 15. Then

log2(q
m) ⩽ q

m
2 and so νr(|L|) < 2q

m
2 +m− 1.

Suppose that q is odd. Then e(L) = qm−1
2

. If m > 3 then m ⩽ 2
m
2 , and so

νr(|L|) < 2q
m
2 +m− 1 ⩽ 2q

m
2 + 2

m
2 − 1 < q

m+2
2 − 1 ⩽ qm−1 − 1 < e(L).

Assume that m ⩽ 3. Then either (m, q) = (3, 3) or q ⩾ 5. For (m, q) = (3, 3), we
have νr(|L|) ⩽ 9 < 13 = e(L). Now let q ⩾ 5. If m = 2 then νr(|L|) < 2q + 1,
yielding νr(|L|) ⩽ 2q ⩽ q−1

2
q < q2−1

2
= e(L). If m = 3 then νr(|L|) < 2q

3
2 + 2, and

thus νr(|L|) ⩽ 2q
3
2 + 1 < q2 + q + 1 ⩽ q3−1

2
= e(L).

Suppose that q is even. Then e(L) = qm−1(qm−1−1)(q−1)
2

. If m > 3 then

νr(|L|) < 2q
m
2 +m− 1 ⩽ 2q

m
2 + 2

m
2 − 1 ⩽ 3q

m
2 − 1 < q

m
2
+ 7

4 − 1 < qm < e(L).

If m = 2 then q ⩾ 4 and qm > 15, and so νr(|L|) < 2q + 1 < q(q−1)2

2
= e(L). If m = 3

then q ⩾ 4, and so νr(|L|) < 2q
3
2 + 2 < q2 + q + 2 < 2q2 < q2(q2−1)(q−1)

2
= e(L).

Case 4. Assume that L = PSUn(q), where n > 2 and (n, q) 6= (3, 2), (4, 2), (4, 3).
Then e(L) = qn−1

q+1
or qn−q

q+1
, where n is even or odd respectively. Since |R| is a divisor

of Λn(q
2), we have νr(|L|) = νr(|R|) ⩽ νr(Λn(q

2)). Since q2 6= 3, by (1) of Corollary
2.2, νr(|L|) < log2(q

2n) + n − 1. If n = 4 then q ⩾ 4, and so νr(|L|) < 8q + 3 <
(q2 +1)(q− 1) = e(L). If n = 3 then νr(|L|) < 6q+2 < q(q− 1) = e(L) unless q < 8;
for q < 8, we also have νr(|L|) < e(L) by calculation of the order of L. If n = 5
then νr(|L|) < 10q + 4 < (q2 + 1)q(q − 1) = e(L) unless q = 2; for the exception
(n, q) = (5, 2), we have r ∈ {3, 5, 11}, and νr(|L|) ⩽ 5 < 10 = e(L). If n = 6 then
νr(|L|) < 12q + 5 < (q3 − 1)(q2 − q + 1) = e(L) unless q = 2; for the exception
(n, q) = (6, 2), we have r ∈ {3, 5, 7, 11}, and νr(|L|) ⩽ 6 < 21 = e(L). Now let n > 6.
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Then log2(q
n) < q

n
2 and n < 2

n
2 , and so

νr(|L|) < 2q
n
2+2

n
2−1 < 3q

n
2−2

3
=

2

3
(
9

2
q

n
2−1) <

2

3
(q

2n+9
4 −1) <

q

q + 1
(qn−1−1) ⩽ e(L).

Case 5. Assume that L = PΩϵ
2m(q), where ϵ = ±, m > 3 and (m, q, ϵ) 6= (4, 2,+).

Then

e(L) = (qm−1 − 1)(qm−2 + 1), (qm−1 − 1)qm−2 or (qm−1 + 1)(qm−2 − 1);

in particular, e(L) > 3qm−2. Since |R| is a divisor of Λm(q
2), we have νr(|L|) =

νr(|R|) ⩽ νr(Λm(q
2)). Since q2 6= 3, by (1) of Corollary 2.2, νr(|L|) < m log2(q

2) +
m− 1 = 2 log2(q

m)+m− 1. Noting that qm ⩾ 16 and m > 3, we have log2(q
m) ⩽ q

m
2

and m ⩽ 2
m
2 , and then

νr(|L|) < 2 log2(q
m) +m− 1 ⩽ 3q

m
2 − 1 < 3qm−2 < e(L).

Case 6. Assume that L = Ω2m+1(q), where q is odd, m > 2 and (m, q) 6= (3, 3).
Then e(L) = qm−1(qm−1 − 1) or q2m−2 − 1. Since |R| is a divisor of Λm(q

2), we have
νr(|L|) = νr(|R|) ⩽ νr(Λm(q

2)). By (1) of Corollary 2.2, νr(|L|) < m log2(q
2)+m−1 =

2 log2(q
m) +m − 1. Since m > 2, we have m < 3

m
2 . Noting that qm ⩾ 27, we have

log2 q
m < q

m
2 , and thus

νr(|L|) < 2 log2 q
m +m− 1 < 2q

m
2 + 3

m
2 − 1 ⩽ 3q

m
2 − 1 ⩽ q

m+2
2 − 1 < e(L).

Case 7. Assume that L is an exceptional simple group of Lie type. Then |R| is a
divisor of Λm(q

2) with m listed as follows:
L G2(q) F4(q) E6(q) E7(q) E8(q)

2B2(q)
2G2(q)

2F4(q)
3D4(q)

2E6(q)
m 3 6 9 9 15 2 3 6 6 9

.

Noting that q2 6= 3, by (1) of Corollary 2.2, νr(|L|) < m log2(q
2) + 2 ⩽ 2mq +m− 1.

Comparing 2mq +m− 1 and the values of e(L) given in [17, page 188, Table 5.3.A],
we have νr(|L|) < e(L), the details are omitted here. □

3. Simple subgroups in extensions of a simple group

Let X and Y be groups. Denote by X.Y an extension of X by Y , while X:Y stands
for a split extension. By X ⩽ Y , X � Y , X char Y and X ≲ Y we mean that X is a
subgroup, a normal subgroup, a characteristic subgroup and isomorphic to a subgroup
of Y , respectively. When X ⩽ Y or X � Y but X 6= Y , we write X < Y or X � Y ,
respectively. We call X a section of Y if X is isomorphic a quotient group of some
subgroup of Y . The automorphism group and inner automorphism group of X are
denoted by Aut(X) and Inn(X), respectively, and let Out(X) = Aut(X)/Inn(X). As
a consequence of the Classification of Finite Simple Groups, the Schreier Conjecture
is true, see [7, Appendix A] for example. Thus, if X is a finite simple group then
Out(X) is solvable. In addition, Inn(X) ∼= X/Z(X), where Z(X) is the center of X.

In the following, N is assumed to be a finite group. For Y,X ⩽ N , denote by
CX(Y ) and NX(Y ) the centralizer and normalizer of Y in X, respectively. Clearly,
CX(Y ) = CN(Y )∩X and NX(Y ) = NN(Y )∩X. It is easily shown that both CX(Y )
and NX(Y ) are normal (or characteristic) subgroups of N provided that X and Y
are normal (or characteristic) in N .
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Lemma 3.1. Assume that K �N and N/K is a nonabelian simple group. Suppose
that |K|2 divides of |N |. Then one of the following holds:

(1) N ∼= K ×K;
(2) K charN and N = KC, where C charN , C = C ′ and rad(C) = K ∩ C.

Proof. Assume first that Kσ 6= K for some σ ∈ Aut(N). Clearly, Kσ �Nσ = N , and
so KσK/K�N/K. Since N/K is simple, we have N/K = (KσK)/K ∼= Kσ/(K∩Kσ).
In particular, |N | = |K||Kσ : (K ∩ Kσ)|. Noting that |K|2 divides |N |, it follows
that K ∩Kσ = 1 and N = KKσ = K ×Kσ. Then part (1) of this lemma follows.

Now let K charN . Choose a minimal member C among those characteristic sub-
groups of N with N = KC. Then N/K = KC/K ∼= C/(K ∩ C), and N/K =
(N/K)′ = (KC ′)/K. In particular, N = KC ′, and so C = C ′ by the choice of C. We
next show that K ∩ C is solvable. Note that (K ∩ C) charN .

Suppose that K ∩ C is insolvable. Choose I, J char (K ∩ C) with I < J and
J/I ∼= T l, where l ⩾ 1 and T is a nonabelian simple group. Clearly, I, J charN ,
and CC/I(J/I) ∩ (J/I) = 1. Set C1/I = CC/I(J/I). Then C1 charN , C1 < C, and
N 6= KC1 by the choice of C. Since N/K is simple, we have (KC1)/K = 1, and so
C1 ⩽ K ∩ C. Considering the action of C/I on J/I by conjugation, we have

C/(C1J) ∼= (C/I)/(C1J/I) ≲ Out(T l) = Out(T )l:Sl,

where Sl is the symmetric group of degree l. Note that
N/K = KC/K ∼= C/(K ∩ C) ∼= (C/(C1J))/((K ∩ C)/(C1J)).

It follows that N/K is a section of Out(T )l:Sl. Noting that Out(T ) is solvable, it
follows that N/K is a section of Sl, and so |N/K| divides l!. Since |K|2 divides |N |,
we conclude that |T |l divides |N/K|, and thus |T |l divides l!. Then, for a prime divisor
r of |T |, we have l ⩽ νr(|T |l) ⩽ νr(l!). By Legendre’s formula, νr(l!) = l−sr(l)

r−1
⩽ l− 1,

and so l ⩽ l− 1, a contradiction. Then K ∩C is solvable, and part (2) of this lemma
is true. □

For a finite group X, denote by X(∞) the intersection of all subgroups appearing
in the derived series of X.

Lemma 3.2. Assume that N contains a normal subgroup I ∼= Zk
r and a nonabelian

simple subgroup T such that rk is a divisor of |T |, where r is a prime and k ⩾ 1.
Suppose that N/I is a covering group of some simple group L. Then either N =
CN(I), or CN(I) ⩽ rad(N), T ≲ N/CN(I) ≲ SLk(r) and one of the following holds:

(1) N = I:T = Zk
2:A2e, where e ⩾ 3, and either k = 2e−2 or e = 3 and k ∈ {4, 5};

(2) either N = I:T ∼= AGL3(2), or N = I:T = Z6
2:PSp4(3) ≲ AGL6(2);

(3) L is a simple group of Lie type over a finite field of characteristic 2, N 6=
I:T = Zk

2:A2e, where e ⩾ 3, and either k = 2e − 2 or k ∈ {4, 5} and e = 3;
(4) T and L are simple groups of Lie type over finite fields of characteristic r.

Proof. Note that CN(I)/I � N/I. Since N/I is quasisimple, either CN(I)/I ⩽
Z(N/I) or CN(I)/I = N/I, refer to [1, page 157, (31.2)]. For the latter, we have N =
CN(I). Thus we assume that CN(I)/I ⩽ Z(N/I). In particular, CN(I) ⩽ rad(N).

Now consider the action of N on I by conjugation, and let N̂ be the resulting
subgroup of Aut(I). We have N̂ ∼= N/CN(I) ∼= (N/I)/(CN(I)/I). Then N̂ is a
covering group of L, and N/I is a central extension of N̂ . Let T̂ be the image
of T in N̂ . Since T ∩ rad(N) = 1, we have T̂ ∼= TCN(I)/CN(I) ∼= T , and so
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T ≲ N̂ ≲ SLk(r). Since rk is a divisor of |T |, noting that T ∼= T rad(N)/rad(N) ⩽
N/rad(N) ∼= L, we have k ⩽ νr(|T |) ⩽ νr(|L|). Further, if T ∼= L then N = rad(N):T
and N/I = (rad(N)/I):(TI/I), since N/I is a covering group of L ∼= TI/I , we
have N/I = (N/I)(∞) = TI/I , yielding rad(N)/I = 1, and so I = rad(N), and
L ∼= T ∼= TI/I = N/CN(I) ∼= N̂ .

Case 1. Assume that L ∼= An for some n ≥ 5. Then

k ⩽ νr(|L|) = νr(
n!

2
) = νr(n!)− (2− (2, r − 1)).

By Legendre’s formula, we have k ⩽ n−sr(n)
r−1

− (2 − (2, r − 1)). On the other hand,
since N̂ ≲ SLk(r), a lower bound for k is given by [17, Propositions 5.3.2 and 5.3.7].

Suppose that n ⩽ 8. Check the subgroups of An with order divisible by rk for all
possible values of k. Using GAP [29], computation shows that T ∼= L = A8, r = 2
and k ∈ {4, 5, 6}. Then N = I:T , desired as in (1) of this lemma.

Now let n ≥ 9. Then k ⩾ n − 2 by [17, page 186, Proposition 5.3.7], and thus
n− 2 ⩽ k ⩽ n−sr(n)

r−1
− (2− (2, r− 1)). It follows that k = n− 2, r = 2, n is a power of

2, and |L|
2k

is odd. In particular, T is isomorphic to a simple subgroup of An with odd
index. By [18, Theorem 1.2], we have T ∼= L = An, and thus N = Zn−2

2 :An as in (1).
Case 2. Assume that L is one of the 26 sporadic simple groups. Then the lower

bound for k is given as in [17, page 187, Proposition 5.3.8]. Checking the orders
of sporadic simple groups, we conclude that r = 2 and one of the following holds:
L = M12 with k = 6, L = M22 with k ∈ {6, 7}, L = J2 with k ∈ {6, 7}, L = Suz with
k ∈ {12, 13}. Recall that N̂ ≲ SLk(2) and N̂ is a covering group of L. Then |L| is a
divisor of |SLk(2)|, and so |L : Q| is a divisor of Λk(2), where Q is a Sylow 2-subgroup
of L. If k ∈ {6, 7} then Λk(2) is not divisible by 52 or 11, and thus L 6= M12, M22

or J2. This forces that L = Suz and k ∈ {12, 13}. By [23, Corollary 4.3], since
N̂ ≲ SLk(2), we have |Suz| ⩽ |N̂ | < 22k+4 ⩽ 230, which is impossible.

Case 3. Assume that L is a simple group of Lie type over a finite field of charac-
teristic p, and L 6∼= An for any n ⩾ 5.

Subcase 3.1. Suppose first that r 6= p. Recalling that N̂ ≲ SLk(r), by [17, Propo-
sition 5.3.2 and Theoren 5.3.9], k ⩾ e(L), where e(L) is given as in [17, Table 5.3.A].
Then e(L) ⩽ k ⩽ νr(|T |) ⩽ νr(|L|). Thus L appears in the exceptions listed in
Lemma 2.3. Note that |L| is a divisor of |SLk(r)|; in particular, |L : Q| is a divisor of
Λk(r), where Q is a Sylow r-subgroup of L. In view this, the groups in (1), (2), (4)
and (5) of Lemma 2.3 are easily excluded.

Assume that L is described as in (3), (6) or (7) of Lemma 2.3. Checking simple
subgroups of L with order divisible by rk, we conclude that L ∼= T ≲ SLk(r), and
thus N = I:T . For (3) of Lemma 2.3, we have r = 3 and k = 4; however, computation
using GAP shows that SL4(3) has no subgroup isomorphic to PSU4(2). For (6) of
Lemma 2.3, we have r = 2, k = 3 and L = PSL2(7) ∼= GL3(2). For (7) of Lemma
2.3, we have r = 2, k = 6 and L = PSp4(3). Then part (2) of this lemma follows.

Subcase 3.2. Now let r = p. Assume that T is an alternating group or a sporadic
simple group. Similarly as Cases 1 and 2, we have r = 2, T ∼= A2e for some e ⩾ 3,
and either k = 2e − 2 or k ∈ {4, 5} and e = 3. This gives part (3) of this lemma.

Assume that T is a simple group of Lie type over a finite field of characteristic p′.
If p′ = r then part (4) of this lemma occurs. Now let r 6= p′. Then, by Lemma 2.3,
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T and r are known. By a similar argument as in the case where r 6= p, we conclude
that N is desired as in part (2) of this lemma. This completes the proof. □

Lemma 3.3. Let N be a perfect group with L := N/rad(N) simple. Assume that N
contains a nonabelian simple subgroup T such that |rad(N)| is a divisor of |T |. Then
N/Or(N) is a covering group of L for some prime divisor r of |T |, and either N is
a covering group of L or one of the following holds:

(1) N = rad(N)T = [2k]:A8 or Zn−2
2 :An, where k ∈ {4, 5, 6} and n = 2m for some

integer m ⩾ 4;
(2) N = IT = Z3

2:PSL3(2) ∼= AGL3(2) or N = IT = Z6
2:PSp4(3) ≲ AGL6(2);

(3) L is a simple group of Lie type over a finite field of characteristic 2, L 6∼= T ,
and Or(N)T = [2k]:A8 or Zn−2

2 :An, where k and n are as in part (1);
(4) T and L are simple groups of Lie type with characteristic r.

Proof. Let K = rad(N), and choose J charK such that N/J is a covering group of L
with maximal order as possible. If J = 1 then the lemma is true. Thus we assume
that J 6= 1 in the following.

Let J0 char J with J/J0
∼= Zk

r for some prime r and integer k ⩾ 1. Then Lemma
3.2 works for N/J0, J/J0 and TJ0/J0. Suppose that N/J0 = CN/J0(J/J0). Then
N/J0 is a perfect central extension of N/J . It follows that N/J0 is a perfect central
extension of L, refer to [1, page 167, (33.5)]. Thus N/J0 is a covering group of L,
which contradicts the choice of J . Therefore, N/J0 6= CN/J0(J/J0). Let N = N/J0,
T = TJ0/J0 and J = J/J0. Then T ∼= T ≲ N/CN(J) ≲ SLk(r), N/J ∼= N/J and
one of the following holds:

(i) N = J T = Zk
2:An, where n = 2m for some m ⩾ 3, and either k = n − 2 or

k ∈ {4, 5} with n = 8;
(ii) N = J T = Z3

2:PSL3(2) or Z6
2:PSp4(3) with k = 3 or 6, respectively;

(iii) L is a simple group of Lie type over a finite field of characteristic 2, J T =
Zk

2:An, where n = 2m for some m ⩾ 3, and either k = n− 2 or k ∈ {4, 5} with
n = 8;

(iv) T and L are simple groups of Lie type over finite fields of characteristic r.

Case 1. Suppose that J is an r-group. Then N/Or(N) ∼= (N/J)/(Or(N)/J),
and so N/Or(N) is a covering group of L. For (iv), we get part (4) of this lemma.
Assume that one of (i)-(iii) holds, in particular, r = 2. Then Zk

2
∼= J = J/J0 =

O2(N) = O2(N)/J0, and so |O2(N)| = 2k|J0| = |J |. Note that ν2(|An|) = n − 2,
ν2(|PSL3(2)|) = 3 and ν2(|PSp4(3)|) = 6. It follows that either ν2(|T |) = k, or T = A8

and k ∈ {4, 5}. Since |O2(N)| is a divisor of |T |, we conclude that either |O2(N)| =
2k, yielding J0 = 1 and O2(N) = J ∼= Zk

2, or T ∼= A8 and 24 ⩽ |O2(N)| ⩽ 26. Then
one of (1)-(3) of this lemma holds.

Case 2. Suppose that J is not an r-group. Let I = Or(J), the normal subgroup
of J such that J/I is an r-group with maximal order. Then 1 6= I charN . Choose
I0 char I such that I/I0 ∼= Zl

p for some prime p and integer l ≥ 1. By the choice
of I, we have r 6= p. Assume that TI0/I0 ⩽ CN/I0(I/I0). Since (N/I0)/(K/I0) is
simple and N/I0 is perfect, we have N/I0 = (K/I0)CN/I0(I/I0) = CN/I0(I/I0). In
particular, I/I0 lies in the center of J/I0. Then J/I0 = Or(J/I0) × I/I0. Setting
Or(J/I0) = J1/I0, we have

N/J1
∼= (N/I0)/(J1/I0) = C(N/I0)/((J1/I0))((I/I0)(J1/I0)/(J1/I0))

∼= CN/J1(J/J1).
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Thus N/J1 is a perfect central extension of N/J . It follows that N/J1 is a per-
fect central extension of L, which contradicts the choice of J . Therefore, TI0/I0 6⩽
CN/I0(I/I0), and so TI0/I0 6⩽ CTI/I0(I/I0). We have T ∼= TI0/I0 ≲ SLl(p).

Now consider the group TI/I0 = (I/I0):(TI0/I0). Applying Lemma 3.2 to the
triple (TI/I0, T I0/I0, I/I0), we conclude that one of the following holds:

(v) p = 2 and TI0/I0 is isomorphic to one of A2e , PSL3(2) and PSp4(3);
(vi) T is isomorphic to a simple group of Lie type with characteristic p.
Assume first that p is odd. Then T is isomorphic to a simple group of Lie type

with characteristic p. Recall that either r = 2 and T is one of A2m , PSL3(2) and
PSp4(3), or T is a simple group of Lie type with characteristic r, see (i)-(iv) above.
It follows from [17, Proposition 2.9.1 and Theorem 5.1.1] that r = 2, and (T, p) is one
of (PSL2(4), 5), (PSL3(2), 7), (Sp4(2)

′, 3), (PSU4(2), 3), (PSL2(8), 3) and (G2(2)
′, 3).

Noting that rkpl is a divisor of |T |, it follows that none of these groups satisfies both
T ≲ SLk(r) and T ≲ SLl(p), a contradiction. Now let p = 2. Then r is odd as r 6= p,
and so T is a simple group of Lie type over a finite field of characteristic r, which
leads to a similar contradiction as above. This completes the proof. □

4. Proof of Theorem 1.2

In this section, we assume that Γ = (V,E) is a connected G-arc-transitive graph
of valency d ⩾ 3, and either d is a prime or Γ is (G, 2)-arc-transitive. For α ∈ V ,
let Gα = {g ∈ G | αg = α} and Γ (α) = {β ∈ V | {α, β} ∈ E}, called the stabilizer
and neighborhood of α in G and in Γ , respectively. Then Γ is (G, 2)-arc-transitive if
and only if Gα acts 2-transitively on Γ (α). Denote by G

Γ (α)
α the permutation group

induced by Gα on Γ (α). Then either G
Γ (α)
α is 2-transitive on Γ (α), or d is a prime

and G
Γ (α)
α ⩽ AGL1(d), refer to [7, page 99, Corollary 3.5B]. In particular, by [7,

page 107, Theorem 4.1B], the socle soc(G
Γ (α)
α ) is either simple or regular on Γ (α),

and thus soc(G
Γ (α)
α ) is the unique minimal normal subgroup of GΓ (α)

α . In addition,
C

G
Γ(α)
α

(soc(G
Γ (α)
α )) = 1 or soc(G

Γ (α)
α ) by [7, page 114, Theorem 4.3B].

We shall proceed by analyzing the actions on V of normal subgroups of the group
G. Let N �G. By [28, Theorem 4.1], only one of the following holds:

(I) Γ is a bipartite graph, and the N -orbits are the two parts of the bipartition;
(II) N is semiregular and has at least three orbits on V , in particular, |N | is a

proper divisor of |V |;
(III) N is transitive on V ; in this case, if K is an intransitive normal subgroup of

N and Nα acts primitively on Γ (α) then (I) or (II) holds for Γ with G and
N replaced by N and K, respectively.

In particular, if Nα 6= 1 for some α ∈ V then N has at most two orbits on V .
Lemma 4.1. Assume that N � G and Nα 6= 1, where α ∈ V . Then N has at most
two orbits on V , Nα acts transitively on Γ (α), soc(NΓ (α)

α ) = soc(G
Γ (α)
α ), and one of

the following holds:
(1) Nα acts 2-transitively on Γ (α);
(2) Nα acts primitively on Γ (α), and either

(i) d = 28, NΓ (α)
α = PSL2(8), GΓ (α)

α = PΓL2(8); or
(ii) d = p2, Z2

p:SL2(5) � N
Γ (α)
α � G

Γ (α)
α � Z2

p:(Zp−1.PSL2(5)), where p ∈
{19, 29, 59};
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(3) d = pk, NΓ (α)
α = Zk

p:H, where H is solvable and acts faithfully and semiregu-
larly on Zk

p \ {1} by conjugation, where p is a prime and k ⩾ 1.

Proof. Since Nα 6= 1, by [20, Lemma 2.5], N has at most two orbits on V , and
Nα acts transitively on Γ (α). Note that N

Γ (α)
α is a transitive normal subgroup of

G
Γ (α)
α . Since soc(N

Γ (α)
α ) is a characteristic subgroup of NΓ (α)

α , we have soc(N
Γ (α)
α )�

G
Γ (α)
α , and so soc(N

Γ (α)
α ) ∩ soc(G

Γ (α)
α ) � G

Γ (α)
α . Recall that soc(G

Γ (α)
α ) is the unique

minimal normal subgroup of G
Γ (α)
α . We have soc(N

Γ (α)
α ) ⩾ soc(G

Γ (α)
α ). Let K be

an arbitrary minimal normal subgroup of NΓ (α)
α . Since soc(G

Γ (α)
α ) ∩K � N

Γ (α)
α , we

have either K ⩽ soc(G
Γ (α)
α ) or K ∩ soc(G

Γ (α)
α ) = 1. The latter case implies that

K ⩽ C
G

Γ(α)
α

(soc(G
Γ (α)
α )) = 1 or soc(G

Γ (α)
α ), a contradiction. Thus K ⩽ soc(G

Γ (α)
α ).

It follows that soc(N
Γ (α)
α ) ⩽ soc(G

Γ (α)
α ), and so soc(N

Γ (α)
α ) = soc(G

Γ (α)
α ).

Now we show that one of (1)-(3) holds. If G
Γ (α)
α is not 2-transitive, then d is a

prime, and part (3) occurs with k = 1, refer to [7, Corollary 3.5B]. Thus assume that
G

Γ (α)
α is 2-transitive. By [1, page 191, (35.25)] and [7, page 215, Theorem 7.2C], either

N
Γ (α)
α is a primitive subgroup of GΓ (α)

α , or N
Γ (α)
α = K:H with K = soc(G

Γ (α)
α ) ∼= Zk

p

and H acting semiregularly on K \{1} by conjugation, where p is a prime and k ⩾ 2.
Then the lemma follows from checking one by one the 2-transitive permutation groups
listed in [3, pages 195-197, Tables 7.3 and 7.4], see also [22, Corollary 2.5]. □

Let N � G. For α ∈ V , let N
[1]
α be the kernel of Nα acting on Γ (α). Then

N
Γ (α)
α

∼= Nα/N
[1]
α . Let β ∈ Γ (α). We have (N

Γ (α)
α )β = (Nαβ)

Γ (α) ∼= Nαβ/N
[1]
α .

Lemma 4.2. Let N �G and {α, β} ∈ E. Then every insolvable composition factor
of Nα is (isomorphic to) an insolvable composition factor of either N

Γ (α)
α or (N

Γ (α)
α )β.

In particular, Nα is solvable if and only if NΓ (α)
α is solvable.

Proof. Pick x ∈ G with (α, β)x = (β, α). Then

Γ (α)x = Γ (β), Nβ = x−1Nαx, N
[1]
β = x−1N [1]

α x and Nαβ = x−1Nαβx.

It follows that
(NΓ (α)

α )β ∼= Nαβ/N
[1]
α

∼= Nαβ/N
[1]
β

∼= (Nαβ)
Γ (β) = (N

Γ (β)
β )α.

Noting that N
[1]
α � Nαβ, we have (N

[1]
α )Γ (β) � (Nαβ)

Γ (β) = (N
Γ (β)
β )α. Put N

[1]
αβ =

N
[1]
α ∩N

[1]
β . Then (N

[1]
α )Γ (β) ∼= N

[1]
α N

[1]
β /N

[1]
β

∼= N
[1]
α /N

[1]
αβ. Thus,

(4.1) N [1]
α /N

[1]
αβ

∼= (N [1]
α )Γ (β) � (N

Γ (β)
β )α ∼= (NΓ (α)

α )β.

By [14, Corollary 2.3], G[1]
αβ has a prime power order. Then G

[1]
αβ is solvable, and so

is N
[1]
αβ. Recalling that N

Γ (α)
α

∼= Nα/N
[1]
α , the lemma follows from (4.1). □

Let N � G, and suppose that N has at least three orbits on V . Set VN = {αN |
α ∈ V }. Define the quotient graph ΓG/N with vertex set VN and edge set EN :=
{{αN , βN} | {α, β} ∈ E}. For X ⩽ G, let XVN be the subgroup of Aut(ΓN) induced
by X. By [28, Theorem 4.1], N is semiregular on V , and N is the kernel of G acting
on VN . Then XVN ∼= NX/N ∼= X/(X ∩N). Further, we have the following lemma.

Lemma 4.3. Let N �G and X ⩽ G. Assume that N has at least three orbits on V .
Then the following statements hold:
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(1) XVN ∼= NX/N , N is semiregular on V , and ΓG/N has valency d; in particular,
|N | is a proper divisor of |V |; and

(2) (NX)α ∼= (XVN )αN
∼= XαN/(N ∩X), and if X is transitive on V then |N | is

a divisor of |(XVN )αN ||N ∩X|; and
(3) ΓG/N is (XVN , 2)-arc-transitive if and only if Γ is (NX, 2)-arc-transitive; and
(4) ΓG/N is (GVN , 2)-arc-transitive, or d is a prime and ΓG/N is GVN -arc-transitive.

Proof. In view of [28, Theorem 4.1], we need only prove (2). Noting that (NX)αN =
NXαN and N ∩XαN = N ∩X, we have (XVN )αN

∼= NXαN/N ∼= XαN/(N ∩X). Since
(NX)αN = N(NX)α, we get

(NX)α ∼= N(NX)α/N = (NX)αN/N ∼= (XVN )αN
∼= XαN/(N ∩X).

If X is transitive on V then NX = X(NX)α, and so
|N : N ∩X| = |NX : X| = |X(NX)α : X| = |(NX)α : Xα|,

yielding |N | = |(NX)α : Xα||N ∩X| = |(XVN )
αN ||N∩X|
|Xα| . Thus (2) holds. □

Lemma 4.4. Let K,N �G and I = K ∩N . Assume that K has at least three orbits
on V , and N is transitive on V . Then K/I is a homomorphic image of (NVK )αK .

Proof. For X ⩽ G, let X = XI/I , and identify X with a subgroup of Aut(ΓG/I).
Then Lemma 4.3 (1) and (4) work for the triples (Γ , G, I) and (ΓG/I , G,K). Let
α ∈ V and α = αI . Then K is regular on αK , and N

αK acts transitively on αK .
Noting that (KN)

αK = KN
αK = K ×N

αK , it follows from [7, Theorem 4.2A] that
N

αK induces a regular permutation group isomorphic to K on αK . Then N
αK has a

quotient group isomorphic to K. Clearly, αK equals to the union of I-orbits involved
in αK . It follows that N

αK = NαK/I. Then
N

αK
∼= KN

αK/K = (K/I)(NαK/I)/(K/I) ∼= KNαK/K ∼= (NVK )αK ,

and the lemma follows. □
Recall that a permutation group is quasiprimitive if its minimal normal subgroups

are all transitive.

Lemma 4.5. The group G has at most one transitive minimal normal subgroup.
Proof. Suppose that G has distinct transitive minimal normal subgroups M and N .
Then M ∩ N = 1, and so M and N centralize each other. Thus M and N are
nonabelian and regular on V , and CG(N) = M , refer to [7, pp.108-109, Lemma 4.2A
and Theorem 4.2A]. In particular, M and N are the only minimal normal subgroups
of G. Then G is quasiprimitive on V . By [27, Theorem 2], Γ is not (G, 2)-transitive;
otherwise, G should have a unique minimal normal subgroup. Thus d is a prime
and G

Γ (α)
α is solvable, and hence Gα is solvable by Lemma 4.2, where α ∈ V . Set

X = MN . Then X = MXα, and we have N ∼= X/M = MXα/M ∼= Xα. Thus Xα

and hence Gα is insolvable, a contradiction. This completes the proof. □
By Lemma 4.5, we have the following corollary.

Corollary 4.6. Assume that G contains a transitive simple subgroup T . If T is
normal in a normal subgroup of G then T is normal in G.
Proof. Let T �N �G. Then T g �N for each g ∈ G. Since T is simple, both T and
T g are minimal normal subgroup of N . It follows that either T = T g or T ∩ T g = 1.
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Suppose that T 6= T g for some g ∈ G. Then T ∩ T g = 1, and TT g = T × T g.
Since T is transitive on V , it follows from [7, pp.109, Theorem 4.2A] that both T
and T g are nonabelian and regular on V , and so |T | = |V | > d. Let α ∈ V . Then
TT g � N = TNα, and so T g ∼= TT g/T � TNα/T ∼= Nα. Thus Nα is insolvable, and
so is NΓ (α)

α by Lemma 4.2. Of course, GΓ (α)
α is insolvable, and so G

Γ (α)
α is 2-transitive

on Γ (α). Then Γ is (G, 2)-arc-transitive, and (1) or (2) of Lemma 4.1 occurs for N .
Assume that (1) of Lemma 4.1 occurs, that is, Nα acts 2-transitively on Γ (α).

Then, since N is transitive on V , we conclude that Γ is (N, 2)-transitive. By Lemma
4.5, N has at most one transitive minimal normal subgroup. Noting that T and T g

are minimal normal subgroups of N , we have T = T g, a contradiction.
Assume that (2) of Lemma 4.1 occurs. Recalling that Nα has a normal simple

subgroup isomorphic to T g, by Lemma 4.2, T is isomorphic to a composition factor of
either NΓ (α)

α or (NΓ (α)
α )β. It follows that either d = 28 and T ∼= PSL2(8), or d = p2 and

T ∼= PSL2(5), where p ∈ {19, 29, 59}. The latter case forces that |V | = |T | = 60 < d,
a contradiction. Therefore, we let d = 28 and T = PSL2(8). Since T is regular on V ,
identifying V with T , the group N lies in the holomorph T :Aut(T ) of T , where T acts
on V by right multiplication. Letting α be the vertex corresponding to the identity of
T , we have Nα ⩽ Aut(T ) ∼= T.Z3. Recall that Nα has a normal subgroup isomorphic
to T . We conclude that Nα = Inn(T ) or Aut(T ). Since Nα 6= 1, by Lemma 4.1, Γ (α)
is an Nα-orbit on V . Thus Γ (α), as a subset of T , is a conjugacy class of length 28
in T or under Aut(T ), which is impossible by the Atlas [6].

The argument above shows that T = T g for all g ∈ G. Then T �G, and the result
follows. □

In the following, we always assume that G contains a transitive nonabelian simple
subgroup T . Since Γ is connected and T is transitive on V , if Γ is a bipartite graph
then T has a subgroup of index 2, which is impossible. Thus Γ is not bipartite. Then
the next lemma follows at once from [28, Theorem 4.1], see also (I)-(III) above.

Lemma 4.7. Assume that N � G and N contains a transitive nonabelian simple
subgroup T . Let K be an intransitive normal subgroup of N , and α ∈ V . If Nα acts
primitively on Γ (α), then K is semiregular and has at least three orbits on V ; in
particular, |K| is a proper divisor of |V | and |T |.

Lemma 4.8. Assume that G is quasiprimitive on V , and G contains a transitive
nonabelian simple subgroup T . Then either soc(G) is simple and T ⩽ soc(G), or Γ
is the complete graph on 8 vertices, T ∼= PSL3(2) and G ∼= AGL3(2).

Proof. Let N = soc(G). By Lemma 4.5, N is the unique minimal normal subgroup of
G. Write N = T1 × T2 × · · · × Tk, where k ⩾ 1 and Ti are isomorphic simple groups.

Case 1. Assume first that N is abelian. Then G is primitive on V , N ∼= Zk
p and

G ≲ AGLk(p) for some prime p. In this case, N is regular on V and T ≲ GLk(p), in
particular, k ⩾ 2. If Γ is (G, 2)-arc-transitive then p = 2, refer to [16, Theorem 1].
If d is an odd prime then |N | = |V | is even, and so p = 2.

Since T is transitive on V , we have |T : Tα| = 2k for α ∈ V . By [15], k ⩾ 3 and
either T = A2k , or T = PSLn(q) with qn−1

q−1
= 2k. Note that A2k 6≲ GLk(2), see [17,

pp. 186, Proposition 5.3.7]. Then T ∼= PSLn(q), and qn−1
q−1

= 2k. In particular, qn − 1

has no primitive prime divisor. By Zsigmondy’s Theorem, n = 2 and q = 2k − 1. By
[17, pp. 188, Theorem 5.3.9], we have k ⩾ q−1

(2,q−1)
= 2k−1 − 1, yielding k ⩽ 3. Then
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k = 3, N ∼= Z3
2, T ∼= PSL3(2), and G ∼= AGL3(2). In particular, G is 3-transitive on

V , and thus Γ is the complete graph on 8 vertices.
Case 2. Now assume that N is nonabelian. Suppose that T 6⩽ N . Then T∩N = 1,

and TN/N ∼= T . Since N is the unique minimal normal subgroup of G, we have
CG(N) = 1, and thus T acts faithfully on {T1, T2, . . . , Tk} by conjugation. Then T is
isomorphic to a subgroup of the symmetric group Sk. In particular, |T | is a divisor of
k!. Noting that G = NGα for α ∈ V , we have T ∼= TN/N ⩽ G/N ∼= Gα/(Gα ∩N),
and so Gα is insolvable. Then Γ is (G, 2)-arc-transitive, by [27, Theorem 2], G satisfies
III(b)(i) or III(c) described as in [27, Section 2]. It follows that |T1| has a prime divisor
p such that |V | is divisible by pk. Since T is transitive on V , it follows that pk is a
divisor of |T |. Thus k! is divisible by pk, and so k ⩽ νp(k!). By Legendre’s formula,
νp(k!) =

k−sp(k)

p−1
⩽ k − 1, which lead to a contradiction. Therefore, T ⩽ N .

To complete the proof it remains to show that k = 1. Suppose on the contrary
that k > 1, and consider the projections:

ϕi : N → Ti, x1 · · · xk 7→ xi, xj ∈ Tj, 1 ⩽ i, j ⩽ k.

Without loss of generality, we may let ϕ1(T ) 6= 1. Then T ∼= ϕ1(T ) ⩽ T1. Note
that T 6= N , and so N is not regular on V . Let α ∈ V . By Lemma 4.1, Nα acts
transitively on Γ (α). Since N is transitive on V , we know that Γ is N -arc-transitive.

Recall that either Γ is (G, 2)-arc-transitive or the valency d of Γ is a prime. Suppose
that d is a prime. Then Lemma 4.5 holds for the pair (N,Γ ), and so N has at most
one transitive minimal normal subgroup. Noting that N = T1 × · · · × Tk with k > 1,
it follows that every Ti is intransitive on V . Considering the quadruple (Γ , N, T, T1),
by Lemma 4.7, |T1| is a proper divisor of |T |, which contradicts that T ∼= ϕ1(T ) ⩽ T1.
Therefore, d is not a prime, and Γ is (G, 2)-arc-transitive.

Since N is not regular on V , by [27, Theorem 2], N satisfies III(b)(i) described as
in [27, Section 2]. Then Nα ⩽ R1 × · · · × Rk for α ∈ V , where Ri = ϕi(Nα) < Ti

for 1 ⩽ i ⩽ k, and R1
∼= R2

∼= · · · ∼= Rk. In particular, |Nα| divides |R1|k. On
the other hand, since T ⩽ N and T is transitive on V , we have N = TNα, and so
N/T = TNα/T ∼= Nα/(Nα ∩ T ). In particular, |N/T | divides |Nα|. Recalling that
T ≲ T1 and |N | = |T1|k, it follows that |T1|k−1 divides |Nα|, and hence |T1|k−1 divides
|R1|k. Since k > 1, we have that |T1| divides |R1|k. Since R1 < T1, we conclude
that a prime r is a divisor of |T1| if and only if r is a divisor of |R1|. It follows from
[24, Corollary 5 and Table 10.7] that R1 is insolvable. Thus Nα is insolvable, and so
N

Γ (α)
α is insolvable by Lemma 4.2. Then Nα acts primitively on Γ (α) by Lemma 4.1.
Recalling that N is the unique minimal normal subgroup of G, we have N charG.

If T1 is transitive on V then, applying Corollary 4.6 to the pair (G, T1), we have
T1 �G, contrary to the minimality of N . Thus T1 is intransitive on V . Considering
the quadruple (Γ , N, T, T1), by Lemma 4.7, |T1| is a proper divisor of |T |, which
contracts that T ≲ T1. Therefore, k = 1. This completes the proof. □

Corollary 4.9. Assume that G contains a transitive minimal normal subgroup N
and a transitive nonabelian simple subgroup T . Then either d = 7, |V | = 8 and
G ∼= AGL3(2), or T ⩽ N and N is simple.

Proof. Choose a maximal intransitive normal subgroup K of G. Then T ∩ K =
N ∩K = 1; in particular, KN = K × N . If K = 1 then G is quasiprimitive on V ,
and so the corollary is true by Lemma 4.8.
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Assume that K 6= 1. Since K ≤ CG(N) 6= N , by [7, Theorem 4.2A], N is
nonabelian. Write N = T1×· · ·×Tk for some integer k ⩾ 1 and isomorphic nonabelian
simple groups Ti. Then G acts transitively on {T1, . . . , Tk} by conjugation. It follows
that G/K acts transitively on {T1K/K, . . . , TkK/K} by conjugation. Thus NK/K
is a minimal normal subgroup of G/K. By Lemma 4.7, K has at least three orbits
on V . Now consider the quotient graph ΓG/K . Identifying G/K with a subgroup of
Aut(ΓG/K), by Lemma 4.3 (1) and (4), we know that Lemma 4.8 works for ΓG/K ,
G/K and TK/K. Noting that N = T1 × · · · × Tk

∼= NK/K � G/K, we have
G/K 6∼= AGL3(2), and hence NK/K is simple and TK/K ⩽ NK/K. By Lemma
4.7, |K| is a proper divisor of |T |. If T 6⩽ N then N ∩ T = 1 as T is simple, and so
T ∼= TN/N ⩽ KN/N ∼= K, a contradiction. Thus N ⩾ T , and our result is true. □
Lemma 4.10. Assume that G contains a transitive nonabelian simple subgroup T .
Let K be a maximal intransitive normal subgroup of G. Then either

(1) G ∼= AGL3(2), K = 1, |V | = 8 and d = 7; or
(2) T is contained in a characteristic perfect subgroup N of G such that N/rad(N)

is simple, K ∩N = rad(N) and K/rad(N) = CG/rad(N)(N/rad(N)).
Proof. By the choice of K, we know that GVK is a quasiprimitive permutation group
on VK . By Lemma 4.7, K is semiregular and has at least three orbits on V . It
follows from (4) of Lemma 4.3 and Lemma 4.8 that either d = 7, |VK | = 8 and
GVK ∼= AGL3(2), or soc(GVK ) is a nonabelian simple group and T VK ⩽ soc(GVK ).

Case 1. Assume that GVK ∼= AGL3(2). Then (GVK )αK
∼= T ∼= PSL3(2), where

α ∈ V . Let I � G with K < I and I/K ∼= Z3
2. Then G = I:T and I is regular

on V . In particular, |V | = 8|K| = |I|. Noting that |V | = |T : Tα|, it follows that
|K| is a divisor of 21, and so K is solvable. Since G/K ∼= GVK ∼= AGL3(2), we have
G(∞)/(G(∞) ∩ K) ∼= KG(∞)/K ∼= (G/K)(∞) ∼= AGL3(2) ∼= G/K. It follows that
G = KG(∞), and G(∞) is a perfect extension of (G(∞) ∩K):Z3

2 by PSL3(2). Noting
that (G(∞)∩K):Z3

2 is solvable, it follows from Lemma 3.3 that G(∞) ∼= AGL3(2), and
G(∞) ∩ K = 1. Since G = KG(∞), we have ((G(∞))VK )αK = (GVK )αK

∼= PSL3(2).
By Lemma 4.4, K is isomorphic to a quotient group of PSL3(2), and so K = 1 as
|K| < |T |. Then G = G(∞) ∼= AGL3(2), and part (1) of this lemma follows.

Case 2. Assume that T VK ⩽ soc(GVK ) and soc(GVK ) is simple. In this case, we
have soc(GVK ) ∼= soc(G/K) and, letting I = K ∩G(∞),

T ∼= TK/K ⩽ soc(G/K) = (G/K)(∞) = G(∞)K/K ∼= G(∞)/I.

By Lemma 4.7, |K| is a proper divisor of |T |. Then |I| is a proper divisor of |T |.
Since T ∼= G(∞)/I, we know that |I|2 is a proper divisor of |G(∞)|. In particular,
G(∞) 6∼= I×I. Then, by Lemma 3.1, we may choose N charG(∞) such that G(∞) = IN
and I ∩ N = rad(N). Clearly, N charG, and rad(N) = I ∩ N = K ∩ N . Let
G = G/rad(N), N = N/rad(N) and K = K/rad(N). We have KN = K × N , that
is, K ⩽ CG(N).

Note that rad(N)� G and rad(N) is intransitive on V . By (1) and (4) of Lemma
4.3, ΓG/rad(N) has valency d and, identifying G with a subgroup of Aut(ΓG/rad(N)),
either d is a prime or ΓG/rad(N) is (G, 2)-arc-transitive. By the choice of N , we have

N = N/rad(N) ∼= G(∞)/I ∼= G(∞)K/K = soc(G/K).

Then N is simple, and so N is a minimal normal subgroup of G. Noting that T ⩽
G(∞), we have T ∼= TK/K ⩽ G(∞)K/K ∼= N . In particular, |T | divides |N |.
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Let T = T rad(N)/rad(N). Then T ∼= T . Since T is transitive on V , it is easy
to see that T acts transitively on Vrad(N); in particular, |Vrad(N)| is a divisor of |T |.
If N is intransitive on Vrad(N) then, by (1) of Lemma 4.3, |N | is a proper divisor of
|Vrad(N)|, and so |N | < |Vrad(N)| ⩽ |T | ⩽ |N |, a contradiction. Thus N is a transitive
minimal normal subgroup of G. By Corollary 4.9, we have T ⩽ N , yielding T ⩽ N .

Suppose that CG(N) is transitive on Vrad(N). Then both N and CG(N) are regular
on Vrad(N), see [7, Theorem 4.2A]. This implies that N ∼= CG(N), refer to [7, Lemma
4.2A]. Thus CG(N) is simple, and hence CG(N) is a transitive minimal normal sub-
group of G. It follows from Lemma 4.5 that N = CG(N), and so N is abelian, a
contradiction.

Suppose that CG(N) is intransitive on Vrad(N). Set CG(N) = C/rad(N). Then C

is intransitive on V . Recalling that K ⩽ CG(N), we have K ⩽ C, and hence K = C
by the choice of K. Then part (2) of this lemma follows. □
Lemma 4.11. Assume that G contains a transitive nonabelian simple subgroup T .
Let N and K be as in (2) of Lemma 4.10. Then either N is quasisimple or (4) of
Lemma 3.3 holds for N and T .
Proof. By Lemma 4.7, |K| is a divisor of |T |, and so |rad(N)| is a divisor of |T | as
rad(N) = K ∩ N . Then N , rad(N) and T are described as in Lemma 3.3. Thus it
suffices to show N and T do not satisfy one of (1)-(3) given as in Lemma 3.3.

Again by Lemma 4.7, K has at least three orbits on V . Then Lemma 4.3 holds for
(Γ , G,K,X), where X ⩽ G. For convenience, we put X = XK/K and identify X
with a subgroup of Aut(ΓG/K). Then T ∼= T , K ∩N = rad(N) and N ∼= N/rad(N).
Fix α ∈ V , and let B = αK . Since K ∩T = 1, applying (2) of Lemma 4.3 to the pair
(K,T ), we conclude that |TB| is divisible by |K|, and so |NB| is divisible by |K|.

Case 1. Suppose that (1) or (2) of Lemma 3.3 holds for N and T . Then N =
rad(N):T , and so soc(G) = N = T ∼= T . In this case, |G : N | ⩽ 2, we have
|GB : NB| ⩽ 2. Thus |NB| is divisible by every odd divisor of |GB|. In particular,
NB 6= 1, and so Lemma 4.1 works for (ΓG/K , G,N).

Subcase 1.1. Assume N = [2k]:A8 with k ∈ {4, 5, 6}. Then |K∩N | = |rad(N)| = 2k,
soc(G) = N = T ∼= A8, and |NB| is divisible by 2k.

Suppose that NB is insolvable. Using GAP [29], we search the insoluble subgroups
of A8 with order divisible by 2k. It follows that NB

∼= S6 or Z3
2:PSL3(2). Assume

that NB
∼= S6. Then the action of N on VK is equivalent to the rank three action

of A8 on the 2-subsets of a 8-set. It follows that d = 12 or 15. In this case, ΓG/K is
(G, 2)-arc-transitive and of valency d, and then d − 1 is a divisor of |GB|. Recalling
that |NB| is divisible by every odd divisor of |GB|, it follows that |NB| has a divisor
11 or 7, which is impossible as NB

∼= S6. Thus, we have NB
∼= Z3

2:PSL3(2). Then the
action of N on VK is equivalent to the 2-transitive action of PSL4(2) on the projective
points or on hyperplanes. This implies that ΓG/K is the complete graph of order 15,
and then G acts 3-transitively on VK . Noting that N is not 3-transitive on VK , we
have N 6= G. Then G ∼= S8; however, S8 has no transitive permutation representation
of degree 15, a contradiction.

Next we suppose that NB is solvable. By (3) of Lemma 4.1, d is a prime power.
Since N = T ∼= A8, considering the prime divisors of A8, we conclude that d ∈
{2l, 3, 5, 7, 9}, where 2 ⩽ l ⩽ 6. Let m = 2kd if d is odd, or m = 2k(d− 1) if d is even.
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Then |NB| is divisible by m. Searching by GAP the solvable subgroups of A8 with
order divisible by m, we conclude that NB has the form of [2s]:S3 or Z4

2:Z2
3:Zt

2, where
s ⩾ 3 and 0 ⩽ t ⩽ 2. In particular, d ∈ {3, 4, 9}. Checking the vertex-stabilizers for
connected arc-transitive graphs of valency 4, refer to [19, Lemma 2.6], we have d 6= 4.
If d = 3 then |NB| = 48 by [33], and thus |VK | = 420; however, by [4], there is no
connected arc-transitive cubic graph of order 420.

Assume that d = 9. Then |O2(NB)| ⩾ 24. Noting that O2(NB) charNB, it follows
that O2(NB) � GB, and then O2(NB) lies in the kernel of GB acting on ΓG/K(B).
Since GB acts 2-transitively on ΓG/K(B), we know that 72 is a divisor of |GΓG/K(B)

B |,
and so |GB| is divisible by 72|O2(NB)|. Then |GB| has a divisor 27 · 32. Noting that
G ≲ S8, it follows that |G : GB| is odd. Then ΓG/K has odd order and odd valency,
which is impossible.

Subcase 1.2. Assume that N = Zn−2
2 :An, where n = 2e for some e ⩾ 4. Then

soc(G) = N = T ∼= An, and |K ∩N | = |rad(N)| = 2n−2. By (2) of Lemma 4.3, |TB|
is divisible by 2n−2, it follows that TB has odd index in T , and so |VK | = |T : TB| is
odd. Then ΓG/K is a (G, 2)-arc-transitive graph of odd order. By [18, Theorem 1.1]1,
n is odd, a contradiction.

Subcase 1.3. Assume that N ∼= AGL3(2). Then soc(G) = N = T ∼= PSL3(2), and
|K ∩N | = |rad(N)| = 23. By (2) of Lemma 4.3, |NB| is divisible by 23. Checking the
subgroups of PSL3(2) with order divisible by 8, we have NB

∼= S4 or D8. If NB
∼= D8

then, noting that |G : N | ⩽ 2, we have |GB| ∈ {8, 16}, which is impossible as ΓK

is (G, 2)-arc-transitive. Thus NB
∼= S4 and, since |N : NB| = |VK | = |G : GB|, we

have G = N by checking the subgroups of G. Thus ΓG/K is the complete graph of
order 7. From the 2-arc-transitivity of G on ΓG/K , we conclude that PSL3(2) has a
3-transitive permutation representation of degree 7, which is impossible.

Subcase 1.4. Assume that N = Z6
2:PSp4(3) ≲ AGL6(2). Then soc(G) = N = T ∼=

PSp4(3), and |K ∩ N | = |rad(N)| = 26. By (2) of Lemma 4.3, |NB| is divisible by
26. In particular, |VK | = |N : NB| is odd, and so d is even. It follows that ΓG/K is
(G, 2)-arc-transitive, and Γ is (G, 2)-arc-transitive. If d = 4 or 6 then, by [19, Lemma
2.6] and [20, Theorem 3.4], |GB| is indivisible by 26, a contradiction.

Now let d ⩾ 8. Checking the subgroups of PSp4(3) with order divisible by 26, we
conclude that |O2(NB)| ⩾ 24, and Z4

2:Z2
2 ⩽ NB ⩽ Z4

2:A5. Recalling that |NB| is
divisible by every odd divisor of |GB|, it follows that |NB| is divisible by d− 1. Then
the only possibility is that d = 16 and NB = Z4

2:A5. By Lemma 4.2, N
ΓG/K(B)

B is
insolvable. It follows from Lemma 4.1 that NΓG/K(B)

B is 2-transitive on ΓG/K(B), and
so ΓG/K is (N, 2)-arc-transitive as N is transitive on VK . Then, by (3) of Lemma 4.3,
Γ is (KN, 2)-arc-transitive.

By Lemma 4.4, K/(K∩N) is isomorphic to a quotient group of NB, it follows that
K/(K ∩ N) = 1, and so K = K ∩ N = rad(N). Thus Γ is an (N, 2)-arc-transitive
graph of valency 16. By (2) of Lemma 4.3, Nα

∼= NB, and so Nα
∼= Z4

2:A5. Let
β ∈ Γ (α), and x ∈ N with (α, β)x = (α, β). Then Nαβ

∼= A5, x ∈ NN(Nαβ) and
x2 ∈ Nαβ. Since Γ is connected, N = 〈x,Nα〉, refer to [2, page 118, 17B]. Recall
that N = O2(N):T = Z6

2:PSp4(3) ≲ AGL6(2). By the Atlas [6], for 1 ⩽ l ⩽ 5, we

1In part (ii) of [18, Theorem 1.1], the value of n should be 2e+1 − 1 but not
(
2e+1−1
2e−1

)
.
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conclude that SLl(2) has no subgroup isomorphic to T = PSp4(3). It follows that T is
an irreducible subgroup of GL6(2), and thus we may consider N as an affine primitive
permutation group of degree 26. Confirmed by GAP, N has a unique conjugacy class
of subgroups isomorphic to Nα. This allows us the choose Nα as a subgroup of T .
Then, by a further computation using GAP, we conclude that there is no desired x
with N = 〈x,Nα〉, a contradiction.

Case 2. Suppose that N and T satisfy (3) of Lemma 3.3. Then N is a simple
group of Lie type with characteristic 2, and N 6= T ∼= T = A2e for some e ⩾ 3.
Noting that N = T NB, by [30, Theorem 1.1], T = A8 and one of the following holds:

(i) N ∼= PSp6(2), and NB
∼= [33]:Z8:Z2, [33]:2S4, PSL2(8), PSL2(8):3, PSU3(3):2

or PSU4(2):2;
(ii) N ∼= PSp8(2), and NB

∼= PΩ−
8 (2).2;

(iii) N ∼= PΩ+
8 (2), and NB

∼= Sp6(2), PSU4(2), PSU4(2):2, 3 × PSU4(2), (3 ×
PSU4(2)):2 or A9.

By Lemma 3.3, N ≲ PSLl(2) for some l with 2l ⩽ |O2(N)| ∈ {24, 25, 26}. It follows
from [17, page 200, Proposition 5.4.13] that l = 6 and N ∼= PSp6(2). Then G = N .
Recalling that |rad(N)| is a divisor of |TB|, it follows that 26 is a divisor of |GB|.
This forces that GB

∼= PSU3(3):2 or PSU4(2):2. By the 2-arc-transitivity of G on
ΓG/K , either PSU3(3):2 or PSU4(2):2 has a 2-transitive permutation representation
of degree d, which is impossible by [3, Table 7.4]. This completes the proof. □

Proof of Theorem 1.2. Let Γ = (V,E) be a connected G-arc-transitive graph of va-
lency d ⩾ 3. Assume that G contains a vertex-transitive nonabelian simple subgroup
T , and that either d is a prime or Γ is (G, 2)-arc-transitive. By Lemma 4.5, G has at
most one transitive minimal normal subgroup. If G has a transitive minimal normal
subgroup M then, by Corollary 4.9, either (1) of Theorem 1.2 holds or M is simple
and T ⩽ M . In the general case, taking a maximal intransitive normal subgroup
K of G, by Lemma 4.10, either (Γ , G) is described as in (1) of Theorem 1.2, or
G has a characteristic perfect subgroup N such that T ⩽ N , N/rad(N) is simple,
K∩N = rad(N) and K/rad(N) = CG/rad(N)(N/rad(N)). For the latter case, |rad(N)|
is a divisor of |T | by Lemma 4.7, and we obtain (2)(i) or (ii) of Theorem 1.2 from
Lemma 4.11. This completes the proof. □
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