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Abstract. Hecke-type double sums play a crucial role in proving many identities related
to mock theta functions given by Ramanujan. In the literature, the Bailey pair machinery
is an efficient tool to derive Hecke-type double sums for mock theta functions. In this
paper, by using some Bailey pairs and conjugate Bailey pairs, and then applying the Bailey
transform, we establish some trivariate identities which imply the Hecke-type double sums
for some classical mock theta functions of orders 3, 6, and 10. Meanwhile, we generalize a
bivariate Hecke-type identity due to Garvan.

1. Introduction

Here and throughout the paper, we adopt the standard q-series notation in [25]. Let q
be a complex number such that |q| < 1. For positive integer n, we define

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1− aqk), (a; q)∞ :=
∞∏
k=0

(1− aqk).

Sometimes we use the compressed notation:
(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n, n ∈ N ∪ {∞}, m ≥ 1.

Let

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, x

)
:=

∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, b2, . . . , bs; q)n

(
(−1)nq(

n
2)
)1+s−r

xn.

Define

j(x; q) := (x, q/x, q; q)∞ =
∞∑

n=−∞

(−1)nq(
n
2)xn,

where the second equality is the Jacobi triple product identity [25, Equation (1.6.1)]. For
any positive integer m, let

Ja,m := j(qa; qm), Ja,m := j(−qa; qm), Jm := Jm,3m =
∞∏
i=1

(1− qmi).

In his last letter to Hardy, Ramanujan gave a list of 17 functions which he called “mock
theta functions” and separated them into four classes: one class of third order, two of fifth

2010 Mathematics Subject Classification. 33D15, 11F27.
Key words and phrases. Hecke-type double sums, Bailey pairs, mock theta functions, q-series identities.
*Corresponding author.

1



2 S.-P. CUI, H.-X. DU, N.S.S. GU, AND L. WANG

order, and one of seventh order. With the discovery of Ramanujan’s lost notebook, more
results related to mock theta functions came to light, such as sixth and tenth order mock
theta functions and some related identities. In the development of mock theta functions,
it is worth mentioning Hecke-type double sums which are defined as∑

(m,n)∈D

(−1)H(m,n)qQ(m,n)+L(m,n), (1.1)

where H(m,n) and L(m,n) are linear forms, Q(m,n) is an indefinite quadratic form, and
D is some subset of Z × Z such that Q(m,n) ≥ 0 for all (m,n) ∈ D. This type of
representations plays a very important role in proving Ramanujan’s mock theta function
identities, and so has been widely studied. In [30], Hickerson and Mortenson gave the
following definition of Hecke-type double sums.

Definition 1.1. Let x, y ∈ C∗ := C\{0} and define sg(r) := 1 for r ≥ 0 and sg(r) := −1
for r < 0. Then

fa,b,c(x, y, q) :=
∑

sg(r)=sg(s)

sg(r)(−1)r+sxrysqa(
r
2)+brs+c(s2). (1.2)

For the third order mock theta functions, in addition to those in Ramanujan’s last letter
to Hardy, Watson [45,46] studied the other three functions, which appeared in Ramanujan’s
lost notebook [42], and derived some interesting related identities. In 2013, Mortenson [36]
derived the Hecke-type double sums for some third order mock theta functions, such as

φ(3)(q) =
1

J1,4

(
f1,7,1(−q,−q2, q) + qf1,7,1(−q3,−q4, q)

)
=

1

J1,4

(
f4,4,1(q

3,−q2, q) + qf4,4,1(q
5,−q4, q)

)
,

ψ(3)(q) =
1

J1
f3,5,3(q

2, q3, q)− 1, (1.3)

where φ(3)(q) and ψ(3)(q) are defined as

φ(3)(q) :=
∞∑
n=0

qn
2

(−q2; q2)n
and ψ(3)(q) :=

∞∑
n=1

qn
2

(q; q2)n
. (1.4)

In 2020, Chen and Wang [12] provided a new method to establish Hecke-type double
sums for all the classical mock theta functions except for those of seventh and tenth order.
For example, they derived the following Hecke-type double sums for ψ(3)(q):

ψ(3)(q) = − 1

J1
f3,5,3(1, q, q),

which is equivalent to (1.3) by using [30, Proposition 6.3] with (`, k) = (1, 1) and [30,
Proposition 6.2].
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Recently, Chen and Garvan [11] also found a new form of ψ(3)(q), namely,

ψ(3)(q) =
J2
J2
1

∞∑
n=1

n∑
m=−n+1

(1− q2n)(−1)m−1qn(3n−1)−2m2+m

=
J2
J2
1

(
f3,3,1(−q4, q3, q2)− f3,3,1(−q2, q, q2)

)
. (1.5)

Notice that with the aid of the proof of [36, Eq. (2.5)] and [30, Theorem 1.4], one can find
the equivalence between (1.3) and (1.5).

In 1986, Andrews [3] employed the Bailey pair technology to successfully establish the
Hecke-type double sums for the fifth and seventh order mock theta functions. Then, com-
bining the Hecke-type double sums obtained by Andrews [3] and the constant term method,
Hickerson [28] proved the mock theta conjectures, which are specifically identities that ex-
press the fifth order mock theta functions in terms of g3(z; q), where

g3(z, q) :=
∞∑
n=0

qn(n+1)

(z, q/z; q)n+1

. (1.6)

In [29], Hickerson proved analogous identities for the seventh order mock theta functions,
which express the seventh order functions in terms of g3(z; q). In 2019, Garvan [24] discov-
ered some new Hecke-type double sums for the fifth and seventh order mock theta functions
by utilizing the Bailey pair method.

In [7], Andrews and Hickerson studied the sixth order mock theta functions which were
found in Ramanujan’s lost notebook. The following functions are four of the sixth order
mock theta functions due to Ramanujan:

φ(6)(q) :=
∞∑
n=0

(q; q2)n(−1)nqn
2

(−q; q)2n
, ψ(6)(q) :=

∞∑
n=0

(q; q2)n(−1)nq(n+1)2

(−q; q)2n+1

, (1.7)

ρ(6)(q) :=
∞∑
n=0

(−q; q)nq(
n+1
2 )

(q; q2)n+1

, σ(6)(q) :=
∞∑
n=0

(−q; q)nq(
n+2
2 )

(q; q2)n+1

. (1.8)

By constructing a new Bailey pair, Andrews and Hickerson [7] proved some identities related
to the sixth order mock theta functions given by Ramanujan. In the proofs, Hecke-type
double sums still play an irreplaceable role. For example, they [7] established the following
Hecke-type identities, which were later given new proofs by Chen and Wang [12]. The
identities are as follows:

φ(6)(q) =
J1
J2
2

(
1 + 2

∞∑
n=1

q2n
2−n +

∞∑
n=1

n∑
j=−n

(1− q2n)(−1)n+j+1q3n
2−n−j2

)

=
J1
J2
2

f1,2,1(q,−q, q), (1.9)
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ψ(6)(q) =
J1
J2
2

∞∑
n=0

n∑
j=−n

(−1)n+jq3n
2+3n−j2+1 =

qJ1
2J2

2

f1,2,1(q
2,−q2, q), (1.10)

σ(6)(q) =
J2
J2
1

∞∑
n=0

n∑
j=0

(1− qn+1)(−1)nqn(3n+5)/2−j(j+1)/2+1 =
qJ2
J2
1

f1,2,1(q
4, q3, q2), (1.11)

ρ(6)(q) =
J2
J2
1

∞∑
n=0

n∑
j=−n

(−1)nq3n(n+1)/2−j(j+1)/2 =
J2
J2
1

f1,2,1(q
3, q2, q2). (1.12)

In 2007, Berndt and Chan [9] found two sixth order mock theta functions, one of which
appeared in [42]. They [9] established their Hecke-type double sums expressions together
with some identities related to Ramanujan’s mock theta functions. Very recently, Morten-
son [41] discovered three new identities related to the sixth order mock theta functions.

In 2000, Gordon and McIntosh [26] discovered eight eighth order mock theta functions.
Subsequently, McIntosh [34] studied three second order mock theta functions, some of
which are in Ramanujan’s lost notebook [42] and can also be found in Andrews’ paper [2]
on Mordell integrals. In [20], Hecke-type double sums expressions for those functions were
provided on the lines of the Bailey pair method.

For the tenth order mock theta functions, Choi [13–16] established their Hecke-type
double sums expressions with the aid of Bailey pairs and proved some identities given by
Ramanujan. The tenth order mock theta functions due to Ramanujan are stated as follows:

φ(10)(q) :=
∞∑
n=0

qn(n+1)/2

(q; q2)n+1

, ψ(10)(q) :=
∞∑
n=1

qn(n+1)/2

(q; q2)n
, (1.13)

X(10)(q) :=
∞∑
n=0

(−1)nqn2

(−q; q)2n
, χ(10)(q) :=

∞∑
n=1

(−1)n−1qn2

(−q; q)2n−1
. (1.14)

In 2018, Mortenson [38] rewrote the Hecke-type double sums obtained by Choi into blocks
of fa,b,c(x, y, q):

J1,2φ
(10)(q) = f2,3,2(q

2, q2, q), J1,2ψ
(10)(q) = −q2f2,3,2(q4, q4, q), (1.15)

J1,4X
(10)(q) = f2,3,2(−q3,−q3, q2), J1,4(2− χ(10)(q)) = qf2,3,2(−q−1,−q−1, q2). (1.16)

In the survey of mock theta functions, Gordon and McIntosh [27] showed that each of
the classical mock theta functions can be expressed in terms of g2(z, q) or (1.6), where

g2(z, q) :=
∞∑
n=0

(−q; q)nqn(n+1)/2

(z, q/z; q)n+1

.

These functions are usually called universal mock theta functions. Furthermore, McIntosh
[35] studied more bivariate functions. For instance,

K(z; q) =
∞∑
n=0

(q; q2)n(−1)nqn
2

(zq2, q2/z; q2)n
, (1.17)



HECKE-TYPE DOUBLE SUMS AND THE BAILEY TRANSFORM 5

which can be found on page 5 of Ramanujan’s lost notebook. See [37] for details. In 2015,
Garvan [23] gave the Hecke-type double sums for the above three functions, such as

(zq2, q2/z, q2; q2)∞K(z; q) (1.18)

=
∞∑

m=0

(
m∑

n=0

(−1)mzn−mq
1
2
(2m2−n2)+ 1

2
(2m−n) +

m∑
n=1

(−1)mzm−n+1q
1
2
(2m2−n2)+ 1

2
(2m+n)

)
.

For more interesting works on mock theta functions, one may consult [4–6, 9, 10, 17, 19,
21,27,32,36,39,42].

The object of this paper is to establish more Hecke-type double sums for mock theta
functions. By constructing some new Bailey pairs and a conjugate Bailey pair and em-
ploying the Bailey transform, we obtain some trivariate identities. In particular, we derive
several Hecke-type double sums expressions for some mock theta functions of orders 3, 6,
and 10. Meanwhile, we derive a generalization of Garvan’s identity (1.18). The main results
of the paper are stated as follows:

Theorem 1.2. We have
∞∑
n=0

(a; q2)nx
nqn

2−n

(x,−q2; q2)n
=

(a; q2)∞
(q2; q2)∞

∞∑
n=0

(1− q4n+2)(xq−2n; q4)n(−1)nqn
2+n

(x; q2)n

×
∞∑
r=0

(1 + q2n+2r+2)(q2n+4/a; q2)ra
rq2r

2+4nr+2r

(aq2n; q2)r+1

.

Corollary 1.3. We have

φ(3)(−q) = J2
J1J4

(
f4,4,1(q

5, q, q) + q2f4,4,1(q
7, q3, q)

)
, (1.19)

ψ(3)(−q) = −qJ4
J2
2

f4,4,1(q
6, q2, q), (1.20)

φ(6)(q) =
J1
J2
2

f1,2,1(−q2, q, q), (1.21)

ψ(6)(q) =
qJ1
2J2

2

f1,2,1(q
2,−q2, q), (1.22)

X(10)(q) =
1

J2

(
f6,6,1(q

8, q, q) + q2f6,6,1(q
10, q3, q)

)
, (1.23)

χ(10)(q) =
1

J2

(
qf6,6,1(q

8, q2, q) + q3f6,6,1(q
10, q4, q)

)
. (1.24)

Note that (1.22) agrees with (1.10). Using Propositions 6.2 and 6.3 in [30], we can show
that (1.21) is equivalent to (1.9).

Theorem 1.4. We have
∞∑
n=0

(a; q)nx
−nqn(n+5)/2

(q; q2)n+1

=
(−q3/x, a; q)∞

(q; q2)∞

∞∑
n=0

(1− xq2n)(−1)nq(
n+1
2 )

(q; q)n
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×
∞∑
j=0

(q−2n+3/x2; q2)jx
jqnj

(q,−q3/x; q)j

∞∑
r=0

(1− xq2n+2r+1)(xqn+1/a, xqn; q)ra
rqr

2+2nr+r

(qn+1, aqn; q)r+1

.

Corollary 1.5. We have

σ(6)(q) =
qJ2
J2
1

f1,2,1(q
3, q4, q2), (1.25)

ρ(6)(q) =
J2
J2
1

f1,2,1(q
3, q2, q2), (1.26)

ψ(10)(q) =
q

J1

(
f3,6,2(q

4, q4, q) + qf3,6,2(q
5, q6, q)

)
, (1.27)

φ(10)(q) =
1

J1

(
f3,6,2(q

5, q2, q) + qf3,6,2(q
5, q4, q)

)
. (1.28)

Note that the identities (1.25) and (1.26) are (1.11) and (1.12), respectively. See also [30,
Example 1.2]. In contrast, the expressions (1.23), (1.24), (1.27), and (1.28) are new and it
is not easy to show the equivalence between them and those known expressions in (1.15)
and (1.16).

Theorem 1.6. We have

(aq2, q2/a, q2; q2)∞

∞∑
n=0

(q2; q4)nx
nqn

2−n

(x, aq2, q2/a; q2)n

=
∞∑
n=0

(xq−2n; q4)n(−1)nqn
2+n

(x; q2)n

(
1 +

∞∑
r=1

(−1)r(ar + a−r)qr
2+2nr+r

)
.

It should be pointed out that the above theorem is a generalization of Garvan’s identity
(1.18).

The rest of this paper is organized as follows. In Section 2, some preliminaries are
provided. In particular, we establish some new Bailey pairs and a conjugate Bailey pair.
Section 3 is devoted to the proofs of the main results. We end our paper with some
concluding remarks in Section 4.

2. Preliminaries

In this section, we recall some q-series identities, and then establish some new Bailey pairs
and a conjugate Bailey pair. Finally, we present some properties related to fa,b,c(x, y, q).

Lemma 2.1. ( [25, Appendix (II.3)]) (the q-binomial theorem) For |z| < 1,
∞∑
j=0

(a; q)jz
j

(q; q)j
=

(az; q)∞
(z; q)∞

. (2.1)
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Lemma 2.2. ( [22, p. 15]) (the Rogers-Fine identity) For |τ | < 1,
∞∑
r=0

(α; q)rτ
r

(β; q)r
=
∞∑
r=0

(α; q)r(ατq/β; q)rβ
rτ rqr

2−r(1− ατq2r)
(β; q)r(τ ; q)r+1

. (2.2)

Lemma 2.3. ( [25, Appendix (III.1)]) (the Heine transformation formula) For |z| < 1 and
|b| < 1,

2φ1

(
a, b
c

; q, z

)
=

(b, az; q)∞
(c, z; q)∞

2φ1

(
c/b, z
az

; q, b

)
. (2.3)

Lemma 2.4. ( [25, Appendix (III.10)]) For |de/abc| < 1 and |b| < 1,

3φ2

(
a, b, c
d, e

; q,
de

abc

)
=

(b, de/ab, de/bc; q)∞
(d, e, de/abc; q)∞

3φ2

(
d/b, e/b, de/abc
de/ab, de/bc

; q, b

)
. (2.4)

Lemma 2.5. ( [25, Appendix (III.13)]) For any nonnegative integer n,

3φ2

(
q−n, b, c
d, e

; q,
deqn

bc

)
=

(e/c; q)n
(e; q)n

3φ2

(
q−n, c, d/b
cq1−n/e, d

; q, q

)
. (2.5)

Next, we state the definitions of Bailey pairs, conjugate Bailey pairs, and the Bailey
transform.

Definition 2.6. The pair of sequences (αn, βn) is called a Bailey pair relative to (a, q) if
(αn, βn) satisfies

βn =
n∑

r=0

αr

(q; q)n−r(aq; q)n+r

.

Moreover, Andrews [1] proved that (αn, βn) forms a Bailey pair relative to (a, q) if and
only if

αn =
(1− aq2n)(a; q)n(−1)nq(

n
2)

(1− a)(q; q)n

n∑
j=0

(q−n, aqn; q)jq
jβj. (2.6)

Definition 2.7. The pair of sequences (δn, γn) is called a conjugate Bailey pair relative to
(a, q) if (δn, γn) satisfies

γn =
∞∑
r=n

δr
(q; q)r−n(aq; q)r+n

.

The following lemma plays an important role in the proofs of the main results.

Lemma 2.8. ( [8]) (the Bailey transform) If (αn, βn) is a Bailey pair relative to (a, q) and
(δn, γn) is a conjugate Bailey pair relative to (a, q), then

∞∑
n=0

αnγn =
∞∑
n=0

βnδn. (2.7)
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Lemma 2.9. ( [31, Lemma 2.2]) The following pair of sequences (δn, γn) forms a conjugate
Bailey pair relative to (ab, q), where

δn = (aq, b, q; q)∞
(ab; q)2nq

n

(aq, b; q)n
,

γn =
(1− ab)qn

1− abq2n

(
1 +

∞∑
r=1

(−1)rq(
r
2)
(
(aqn+1)r + (bqn)r

))
.

In addition to the above known results, we also need the following two new Bailey pairs
and a conjugate Bailey pair.

Lemma 2.10. The following pair of sequences (αn, βn) forms a Bailey pair relative to
(q2, q2), where

αn =
(1− q4n+2)(xq−2n; q4)n(−1)nqn

2−n

(1− q2)(x; q2)n
,

βn =
xnqn

2−3n

(q4; q4)n(x; q2)n
. (2.8)

Proof. Based on (2.6) and (2.8), it suffices to prove that

αn =
(1− q4n+2)(−1)nqn2−n

1− q2
n∑

j=0

(q−2n, q2n+2; q2)jx
jqj

2−j

(q2,−q2, x; q2)j
. (2.9)

Replacing q by q2 and setting b = q2n+2, d = −q2, and e = x in (2.5), and then letting
c→∞ in the resulting equation, we deduce that

n∑
j=0

(q−2n, q2n+2; q2)jx
jqj

2−j

(q2,−q2, x; q2)j
=

1

(x; q2)n

n∑
j=0

(q−2n,−q−2n; q2)jxjq2nj

(q2,−q2; q2)j

=
1

(x; q2)n

n∑
j=0

(q−4n; q4)j(xq
2n)j

(q4; q4)j
=

(xq−2n; q4)n
(x; q2)n

, (2.10)

where the last equality follows from (2.1). Substituting (2.10) into (2.9), we see that (2.9)
holds and thus complete the proof. �

Lemma 2.11. The following pair of sequences (αn, βn) forms a Bailey pair relative to
(a, q), where

αn =
(1− aq2n)(aq,−xq/a; q)∞(−1)nq(

n
2)

(q; q)n(xq; q2)∞

∞∑
j=0

(xq−2n+1/a2; q2)ja
jqnj

(q,−xq/a; q)j
,

βn =
xna−nq(

n
2)

(q; q)n(xq; q2)n
. (2.11)
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Proof. In view of (2.6) and (2.11), it suffices to prove that

αn =
(1− aq2n)(a; q)n(−1)nq(

n
2)

(1− a)(q; q)n

n∑
j=0

(q−n, aqn; q)jx
ja−jqj(j+1)/2

(q, (xq)1/2,−(xq)1/2; q)j
. (2.12)

Replacing a, b, d, and e by q−n, aqn, (xq)1/2, and −(xq)1/2 in (2.4), respectively, and then
letting c→∞, we find that

n∑
j=0

(q−n, aqn; q)jx
ja−jqj(j+1)/2

(q, (xq)1/2,−(xq)1/2; q)j

=
(aqn,−xq/a; q)∞

(xq; q2)∞

∞∑
j=0

(x1/2q−n+1/2/a,−x1/2q−n+1/2/a; q)ja
jqnj

(q,−xq/a; q)j

=
(a,−xq/a; q)∞
(a; q)n(xq; q2)∞

∞∑
j=0

(xq−2n+1/a2; q2)ja
jqnj

(q,−xq/a; q)j
. (2.13)

Substituting (2.13) into (2.12), we see that (2.12) holds and thus complete the proof. �

Lemma 2.12. The following pair of sequences (δn, γn) forms a conjugate Bailey pair rela-
tive to (a, q), where

δn = (q, b; q)nq
n, (2.14)

γn =
(b; q)∞q

n

(1− qn+1)(aq; q)∞

∞∑
r=0

(1− aq2n+2r+1)(aqn+1/b, aqn; q)rb
rqr

2+2nr+r

(qn+2; q)r(bqn; q)r+1

.

Proof. With the aid of the definition of conjugate Bailey pairs and (2.14), it suffices to
prove that

γn =
∞∑
r=n

δr
(q; q)r−n(aq; q)r+n

=
∞∑
r=0

δr+n

(q; q)r(aq; q)r+2n

=
(q, b; q)nq

n

(aq; q)2n

∞∑
r=0

(qn+1, bqn; q)rq
r

(q, aq2n+1; q)r
. (2.15)

Replacing a, b, c, and z by qn+1, bqn, aq2n+1, and q in (2.3), respectively, we deduce that

∞∑
r=0

(qn+1, bqn; q)rq
r

(q, aq2n+1; q)r
=

(qn+2, bqn; q)∞
(q, aq2n+1; q)∞

∞∑
r=0

(aqn+1/b; q)r(bq
n)r

(qn+2; q)r
. (2.16)
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Furthermore, we derive the following identity by invoking (2.2) with α = aqn+1/b, β = qn+2,
and τ = bqn:

∞∑
r=0

(aqn+1/b; q)r(bq
n)r

(qn+2; q)r
=
∞∑
r=0

(1− aq2n+2r+1)(aqn+1/b, aqn; q)rb
rqr

2+2nr+r

(qn+2; q)r(bqn; q)r+1

. (2.17)

Substituting (2.16) and (2.17) into (2.15), we see that (2.15) holds and thus complete the
proof. �

Some identities containing Bailey pairs have appeared in the literature [33, 43, 44]. For
example, Lovejoy [33, Equation (1.6)] found that

∞∑
n=0

(a; q)nq
nβn =

(a; q)∞
(a2q, q; q)∞

∞∑
n=0

∞∑
r=0

(1− a2q2n+2r+1)(−1)na3nqn(3n+1)/2+3nr+r

1− aqr
αr,

where (αn, βn) is a Bailey pair relative to (a2, q). In this paper, inserting the conjugate
Bailey pair in Lemma 2.12 into (2.7), we derive the following analog which is a key identity
to prove the main theorems.

Lemma 2.13. For a Bailey pair (αn, βn) relative to (a, q), we have
∞∑
n=0

(q, b; q)nq
nβn =

(b; q)∞
(aq; q)∞

∞∑
n=0

∞∑
r=0

(1− aq2n+2r+1)(aqn+1/b, aqn; q)rb
rqr

2+2nr+n+r

(qn+1, bqn; q)r+1

αn.

(2.18)

The following lemmas provide some properties of fa,b,c(x, y, q).

Lemma 2.14. ( [30, Propositions 6.2]) For x, y ∈ C∗,

fa,b,c(x, y, q) = −
qa+b+c

xy
fa,b,c(q

2a+b/x, q2c+b/y, q). (2.19)

Lemma 2.15. We have

fa,b,c(x, y, q
m) = fma,mb,mc(x, y, q), (2.20)

fa,b,c(x, y, q) =
m−1∑
k=0

(−1)kqa(
k
2)xkfam2,bm,c

(
(−1)m−1qam(m+2k−1)/2xm, qbky, q

)
. (2.21)

Proof. Based on the definition of fa,b,c(x, y, q), the first assertion is easy to obtain.
Separating the sum with r being mr + k (k = 0, 1, . . . ,m− 1) in (1.2), we get

fa,b,c(x, y, q) =
m−1∑
k=0

∑
sg(r)=sg(s)

sg(r)(−1)mr+k+sxmr+kysqa(
mr+k

2 )+b(mr+k)s+c(s2).

This proves the second assertion. �
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In particular, when m = 2, we obtain that

fa,b,c(x, y, q) = f4a,2b,c(−qax2, y, q)− xf4a,2b,c(−q3ax2, qby, q). (2.22)

The identities in the following lemma appeared in [18].

Lemma 2.16. ( [18, Equations (3.12) and (3.13)]) For any nonnegative integer n, we have

(−q−2n+1; q4)n = (−q; q2)nq−(
n+1
2 ), (2.23)

(−q−2n+3; q4)n = (−q; q2)nq−(
n
2). (2.24)

3. Proofs of the main results

In this section, we prove the main results.

Proof of Theorem 1.2. Inserting the Bailey pair in Lemma 2.10 into (2.18) with (q, a) →
(q2, q2), and then replacing b by a, we complete the proof. �

Proof of Corollary 1.3. Set a = x = −q in Theorem 1.2 and then make use of (2.23) to
derive that

φ(3)(−q) = J2
J1J4

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(1− q2n+1)(−q−2n+1; q4)n(−1)r+nq2r
2+4rn+3r+n2+n

(−q; q2)n

=
J2
J1J4

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(1− q2n+1)(−1)r+nq2r
2+4rn+3r+n(n+1)/2 (3.1)

=
J2
J1J4

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)r+nq2r
2+4rn+3r+n(n+1)/2

− J2
J1J4

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)r+nq2r
2+4rn+3r+n(n+5)/2+1. (3.2)

Then shifting r → −r − 1 and n → −n − 1 in the second term on the right-hand side of
(3.2) yields that

φ(3)(−q) = J2
J1J4

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(1 + q2r+2n+2)(−1)r+nq2r

2+4rn+3r+n(n+1)/2

=
J2
J1J4

∑
sg(r)=sg(n)

sg(r)(1 + q2r+2n+2)(−1)r+nq2r
2+4rn+3r+n(n+1)/2

=
J2
J1J4

∑
sg(r)=sg(n)

sg(r)(−1)r+nq4(
r
2)+4rn+(n2)+5r+n

+
J2
J1J4

∑
sg(r)=sg(n)

sg(r)(−1)r+nq4(
r
2)+4rn+(n2)+7r+3n+2.

Hence, using (1.2), we prove (1.19).
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Next, we prove (1.20). Applying Theorem 1.2 with a = −q2 gives
∞∑
n=0

xnqn
2−n

(x; q2)n
=
J4
J2
2

∞∑
r=0

∞∑
n=0

(1− q4n+2)(xq−2n; q4)n(−1)r+nq2r
2+4rn+4r+n2+n

(x; q2)n
. (3.3)

Then invoking (2.24) and (3.3) with x = −q3 yields that
∞∑
n=0

(−1)nqn2+2n

(−q3; q2)n
=

(1 + q)J4
J2
2

∞∑
r=0

∞∑
n=0

(1− q2n+1)(−1)r+nq2r
2+4rn+4r+n(n+3)/2. (3.4)

Notice that after replacing (r, n) by (−r − 1,−n− 1), we have
∞∑
r=0

∞∑
n=0

(−1)r+nq2r
2+4rn+4r+n(n+7)/2+1 =

−1∑
r=−∞

−1∑
n=−∞

(−1)r+nq2r
2+4rn+4r+n(n+3)/2. (3.5)

So, substituting (3.5) into (3.4), multiplying both sides by q/(1 + q), and then changing
n→ n− 1 on the left-hand side of the resulting identity, we obtain that

ψ(3)(−q) = −qJ4
J2
2

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(−1)r+nq2r

2+4rn+4r+n(n+3)/2

= −qJ4
J2
2

∑
sg(r)=sg(n)

sg(r)(−1)r+nq2r
2+4rn+4r+n(n+3)/2.

Finally, combining (1.2) and the above identity, we derive (1.20).
To prove (1.21), setting a = q in Theorem 1.2 gives

∞∑
n=0

(q; q2)nx
nqn

2−n

(x,−q2; q2)n
=
J1
J2
2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(1 + q2n+1)(xq−2n; q4)n
(x; q2)n

× (−1)nq2r2+4rn+3r+n2+n. (3.6)

Invoke (3.6) with x = −q and then apply (2.23) to arrive at

φ(6)(q) =
J1
J2
2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(1 + q2n+1)(−1)nq2r2+4rn+3r+n(n+1)/2

=
J1
J2
2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)nq2r2+4rn+3r+n(n+1)/2

+
J1
J2
2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)nq2r2+4rn+3r+n(n+5)/2+1. (3.7)

Then replacing n by −n− 1 and r by −r − 1 in the second term on the right-hand side of
(3.7), we derive that

φ(6)(q) =
J1
J2
2

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(1 + q2r+2n+2)(−1)nq2r2+4rn+3r+n(n+1)/2
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=
J1
J2
2

∑
sg(r)=sg(n)

sg(r)(1 + q2r+2n+2)(−1)nq2r2+4rn+3r+n(n+1)/2

=
J1
J2
2

(
f4,4,1(−q5, q, q) + q2f4,4,1(−q7, q3, q)

)
.

Therefore, using (2.22) with (a, b, c, x, y) = (1, 2, 1,−q2, q) and the above identity, we prove
(1.21).

To obtain (1.22), we employ (3.6) with x = −q3, multiply both sides by q/(1 + q) and
then invoke (2.24) to find that

2ψ(6)(q) =
2J1
J2
2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)nq2r2+4rn+3r+n(n+3)/2+1

=
J1
J2
2

(
∞∑
r=0

∞∑
n=0

+
∞∑
r=0

∞∑
n=0

)
(1 + q2r+2n+2)(−1)nq2r2+4rn+3r+n(n+3)/2+1

=
J1
J2
2

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(1 + q2r+2n+2)(−1)nq2r2+4rn+3r+n(n+3)/2+1

=
J1
J2
2

∑
sg(r)=sg(n)

sg(r)(1 + q2r+2n+2)(−1)nq2r2+4rn+3r+n(n+3)/2+1

=
qJ1
J2
2

(
f4,4,1(−q5, q2, q) + q2f4,4,1(−q7, q4, q)

)
. (3.8)

So, using (2.22) with (a, b, c, x, y) = (1, 2, 1,−q2, q2) and (3.8), we deduce (1.22).
To prove the last two identities in the corollary, we need Theorem 1.2 with a → 0,

namely,
∞∑
n=0

xnqn
2−n

(x,−q2; q2)n
=

1

(q2; q2)∞

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(1− q4n+2)(xq−2n; q4)n
(x; q2)n

× (−1)r+nq3r
2+6rn+5r+n2+n. (3.9)

Utilizing (3.9) with x = −q and applying (2.23), we have

X(10)(q) =
1

J2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(1− q4n+2)(−1)r+nq3r
2+6rn+5r+n(n+1)/2

=
1

J2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)r+nq3r
2+6rn+5r+n(n+1)/2

− 1

J2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)r+nq3r
2+6rn+5r+n(n+9)/2+2
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=
1

J2

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(1 + q2r+2n+2)(−1)r+nq3r

2+6rn+5r+n(n+1)/2

=
1

J2

∑
sg(r)=sg(n)

sg(r)(1 + q2r+2n+2)(−1)r+nq3r
2+6rn+5r+n(n+1)/2.

Therefore, using (1.2) and the above identity, we obtain (1.23).
To derive (1.24), we set x = −q3 in (3.9) and then use (2.24) to obtain that
∞∑
n=0

(−1)nq(n+1)2

(−q; q)2n+1

=
1

J2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(1− q2n+1)(−1)r+nq3r
2+6rn+5r+n(n+3)/2+1.

Thus,

χ(10)(q) =
1

J2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)r+nq3r
2+6rn+5r+n(n+3)/2+1

− 1

J2

∞∑
r=0

∞∑
n=0

(1 + q2r+2n+2)(−1)r+nq3r
2+6rn+5r+n(n+7)/2+2

=
1

J2

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(1 + q2r+2n+2)(−1)r+nq3r

2+6rn+5r+n(n+3)/2+1

=
1

J2

∑
sg(r)=sg(n)

sg(r)(1 + q2r+2n+2)(−1)r+nq3r
2+6rn+5r+n(n+3)/2+1. (3.10)

Therefore, combining (1.2) and (3.10), we complete the proof. �

Proof of Theorem 1.4. Substituting the Bailey pair in Lemma 2.11 into (2.18) and then
letting (x, a, b)→ (q2, x, a), we complete the proof. �

Proof of Corollary 1.5. Setting a = −q in Theorem 1.4, we obtain that
∞∑
n=0

(−q; q)nx−nqn(n+5)/2

(q; q2)n+1

=
(−q3/x,−q; q)∞

(q; q2)∞

∞∑
n=0

(1− xq2n)(−1)nqn(n+1)/2

(q; q)n

×
∞∑
j=0

(q−2n+3/x2; q2)jx
jqnj

(q,−q3/x; q)j

∞∑
r=0

(1− xq2n+2r+1)(x2q2n; q2)r(−1)rqr
2+2nr+2r

(q2n+2; q2)r+1

. (3.11)

To prove (1.25), apply (3.11) with x = q. So,
∞∑
n=0

(−q; q)nqn(n+3)/2

(q; q2)n+1

=
J3
2

(1 + q)J3
1

∞∑
r=0

∞∑
n=0

(1− q2n+1)(−1)r+nqr
2+2rn+2r+n(n+1)/2

(q; q)n

×
∞∑
j=0

(q−2n+1; q2)jq
j(n+1)

(q,−q2; q)j
. (3.12)
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Notice that
∞∑
j=0

(q−2n+1; q2)jq
j(n+1)

(q,−q2; q)j
= −(1 + q)q2n+1

1− q2n+1

∞∑
j=0

(q−2n−1; q2)j+1(1− qj+1)qj(n+1)

(q2; q2)j+1

= −(1 + q)q2n+1

1− q2n+1

∞∑
j=1

(q−2n−1; q2)j(1− qj)q(j−1)(n+1)

(q2; q2)j

= − (1 + q)qn

1− q2n+1

∞∑
j=1

(q−2n−1; q2)j(1− qj)qj(n+1)

(q2; q2)j

= − (1 + q)qn

1− q2n+1

(
∞∑
j=1

(q−2n−1; q2)jq
j(n+1)

(q2; q2)j
−
∞∑
j=1

(q−2n−1; q2)jq
j(n+2)

(q2; q2)j

)

= − (1 + q)qn

1− q2n+1

(
∞∑
j=0

(q−2n−1; q2)jq
j(n+1)

(q2; q2)j
−
∞∑
j=0

(q−2n−1; q2)jq
j(n+2)

(q2; q2)j

)

= − (1 + q)qn

1− q2n+1

(
(q−n; q2)∞
(qn+1; q2)∞

− (q−n+1; q2)∞
(qn+2; q2)∞

)
, (3.13)

where the last step follows by the q-binomial theorem (2.1). Define

Ln :=
(q−n; q2)∞
(qn+1; q2)∞

− (q−n+1; q2)∞
(qn+2; q2)∞

. (3.14)

Then combining (3.12), (3.13), and (3.14) yields that
∞∑
n=0

(−q; q)nqn(n+3)/2

(q; q2)n+1

= −J
3
2

J3
1

∞∑
r=0

∞∑
n=0

(−1)r+nqr
2+2rn+2r+n(n+3)/2

(q; q)n
Ln. (3.15)

According to the parity of n, we consider the following two cases for Ln. For even n,
replacing n by 2n in (3.14), we have

L2n = −(q−2n+1; q2)∞
(q2n+2; q2)∞

=
(q; q)2n(−1)n+1q−n

2
J1

J2
2

. (3.16)

Similarly, for odd n, replacing n by 2n+ 1 in (3.14) yields that

L2n+1 =
(q−2n−1; q2)∞
(q2n+2; q2)∞

=
(q; q)2n+1(−1)n+1q−n

2−2n−1J1
J2
2

. (3.17)

Thus, substituting (3.16) and (3.17) into (3.15) and then multiplying both sides of the
resulting identity by q, we derive that

σ(6)(q) =
qJ2
J2
1

∞∑
r=0

∞∑
n=0

(−1)r+nqr
2+4rn+2r+n2+3n − qJ2

J2
1

∞∑
r=0

∞∑
n=0

(−1)r+nqr
2+4rn+4r+n2+3n+1
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=
qJ2
J2
1

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(−1)r+nqr

2+4rn+2r+n2+3n

=
qJ2
J2
1

∑
sg(r)=sg(n)

sg(r)(−1)r+nqr
2+4rn+2r+n2+3n

=
qJ2
J2
1

f2,4,2(q
3, q4, q).

This proves (1.25) upon using (2.20).
Next, invoking (3.11) with x = q2, we deduce that

ρ(6)(q) =
J3
2

J3
1

∞∑
r=0

∞∑
n=0

(1− q2r+2n+3)(−1)r+nqr
2+2rn+2r+n(n+1)/2

(q; q)n
L′n, (3.18)

where

L′n :=
∞∑
j=0

(q−2n−1; q2)jq
j(n+2)

(q2; q2)j
=

(q−n+1; q2)∞
(qn+2; q2)∞

. (3.19)

Here the last step follows by (2.1). It is easy to see that when n is any odd positive integer,
the rightmost side of (3.19) is equal to 0. Hence, we only need to consider the even case
for n. By (3.16), we have

L′2n = −L2n =
(q; q)2n(−1)nq−n

2
J1

J2
2

. (3.20)

Thus, combining (3.18), (3.19), and (3.20) gives

ρ(6)(q) =
J2
J2
1

∞∑
r=0

∞∑
n=0

(1− q2r+4n+3)(−1)r+nqr
2+4rn+2r+n2+n.

This implies

2ρ(6)(q) =
J2
J2
1

(
∞∑
r=0

∞∑
n=0

+
∞∑
r=0

∞∑
n=0

)
(1− q2r+4n+3)(−1)r+nqr

2+4rn+2r+n2+n

=
J2
J2
1

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(1− q2r+4n+3)(−1)r+nqr

2+4rn+2r+n2+n

=
J2
J2
1

∑
sg(r)=sg(n)

sg(r)(1− q2r+4n+3)(−1)r+nqr
2+4rn+2r+n2+n

=
J2
J2
1

(
f2,4,2(q

3, q2, q)− q3f2,4,2(q5, q6, q)
)

=
2J2
J2
1

f2,4,2(q
3, q2, q). (3.21)
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Here the last equality follows by (2.19). Hence, we complete the proof of (1.26) by using
(2.20) and (3.21).

To prove the last two identities (1.27) and (1.28), we let a→ 0 in Theorem 1.4. Hence,

∞∑
n=0

x−nqn(n+5)/2

(q; q2)n+1

=
(−q3/x; q)∞
(q; q2)∞

∞∑
n=0

(1− xq2n)(−1)nq(
n+1
2 )

(q; q)n

×
∞∑
j=0

(q−2n+3/x2; q2)jx
jqnj

(q,−q3/x; q)j

∞∑
r=0

(1− xq2n+2r+1)(xqn; q)r(−1)rxrq3r
2/2+3nr+3r/2

(qn+1; q)r+1

. (3.22)

Applying (3.22) with x = q yields that
∞∑
n=0

qn(n+3)/2

(q; q2)n+1

=
J2
2

(1 + q)J2
1

∞∑
r=0

∞∑
n=0

(1 + qr+n+1)(1− q2n+1)

(q; q)n

× (−1)r+nqr(3r+5)/2+3rn+n(n+1)/2

∞∑
j=0

(q−2n+1; q2)jq
j(n+1)

(q,−q2; q)j

= −J
2
2

J2
1

∞∑
r=0

∞∑
n=0

(1 + qr+n+1)(−1)r+nqr(3r+5)/2+3rn+n(n+3)/2

(q; q)n
Ln, (3.23)

where the last step follows by (3.13) and Ln is defined in (3.14). Substituting (3.16) and
(3.17) into (3.23), we arrive at

∞∑
n=0

qn(n+3)/2

(q; q2)n+1

=
1

J1

∞∑
r=0

∞∑
n=0

(1 + qr+2n+1)(−1)r+nqr(3r+5)/2+6rn+n2+3n

− 1

J1

∞∑
r=0

∞∑
n=0

(1 + qr+2n+2)(−1)r+nqr(3r+11)/2+6rn+n2+3n+1

=
1

J1

∑
sg(r)=sg(n)

sg(r)(1 + qr+2n+1)(−1)r+nqr(3r+5)/2+6rn+n2+3n

=
1

J1

(
f3,6,2(q

4, q4, q) + qf3,6,2(q
5, q6, q)

)
. (3.24)

Therefore, multiplying q on both sides of (3.24) and changing n→ n− 1 on the left-hand
side, we prove (1.27).

To prove (1.28), set x = q2 in (3.22). So,

φ(10)(q) =
J2
2

J2
1

∞∑
r=0

∞∑
n=0

(1− q2r+2n+3)(1 + qn+1)(−1)r+nqr(3r+7)/2+3rn+n(n+1)/2

(q; q)n

×
∞∑
j=0

(q−2n−1; q2)jq
j(n+2)

(q2; q2)j
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=
J2
2

J2
1

∞∑
r=0

∞∑
n=0

(1− q2r+2n+3)(1 + qn+1)(−1)r+nqr(3r+7)/2+3rn+n(n+1)/2

(q; q)n
L′n, (3.25)

where L′n is defined in (3.19). Since L′n = 0 when n is any positive odd integer, inserting
(3.20) into (3.25) leads to

φ(10)(q) =
1

J1

∞∑
r=0

∞∑
n=0

(1− q2r+4n+3)(1 + q2n+1)(−1)r+nqr(3r+7)/2+6rn+n2+n

=
1

J1

∞∑
r=0

∞∑
n=0

(
(1− q2r+6n+4) + (q2n+1 − q2r+4n+3)

)
(−1)r+nqr(3r+7)/2+6rn+n2+n

=
1

J1

∞∑
r=0

∞∑
n=0

(1− q2r+6n+4)(−1)r+nqr(3r+7)/2+6rn+n2+n

+
1

J1

∞∑
r=0

∞∑
n=0

(1− q2r+2n+2)(−1)r+nqr(3r+7)/2+6rn+n2+3n+1

=
1

J1

∑
sg(r)=sg(n)

sg(r)(−1)r+nqr(3r+7)/2+6rn+n2+n

+
1

J1

∑
sg(r)=sg(n)

sg(r)(−1)r+nqr(3r+7)/2+6rn+n2+3n+1.

Thus, we complete the proof of (1.28) upon using (1.2). �

Proof of Theorem 1.6. In Lemma 2.9, replace q by q2 and then set b = q2/a to obtain the
following conjugate Bailey pair relative to (q2, q2):

δn = (aq2, q2/a, q2; q2)∞
(q2; q2)2nq

2n

(aq2, q2/a; q2)n
, (3.26)

γn =
(1− q2)q2n

1− q4n+2

(
1 +

∞∑
r=1

(−1)rqr2−r
(
(aq2n+2)r + (q2n+2/a)r

))
. (3.27)

Then combining (3.26), (3.27), and Lemma 2.10, and applying the Bailey transform, we
complete the proof. �

Proof of (1.18). Setting x = −q in Theorem 1.6, and then making use of (2.23), we obtain
that

(aq2, q2/a, q2; q2)∞

∞∑
n=0

(q; q2)n(−1)nqn
2

(aq2, q2/a; q2)n

=
∞∑
r=0

∞∑
n=0

(−1)r+na−rqr
2+2nr+r+n(n+1)/2 +

∞∑
r=1

∞∑
n=0

(−1)r+narqr
2+2nr+r+n(n+1)/2
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=
∞∑

m=0

m∑
n=0

(−1)man−mq(m−n)2+2n(m−n)+(m−n)+n(n+1)/2

+
∞∑

m=1

m−1∑
n=0

(−1)mam−nq(m−n)2+2n(m−n)+(m−n)+n(n+1)/2

=
∞∑

m=0

m∑
n=0

(−1)man−mqm2+m−n(n+1)/2 +
∞∑

m=1

m−1∑
n=0

(−1)mam−nqm2+m−n(n+1)/2, (3.28)

where the second equality follows by setting m = r + n. So, Garvan’s identity (1.18) can
be derived by shifting n to n− 1 in the second term on the right-hand side of (3.28). �

4. Concluding remarks

We may express the same Hecke-type double sums in different forms such as (1.1) and
(1.2). In this paper, we express all the results in Corollaries 1.3 and 1.5 in terms of
fa,b,c(x, y, q). We may also express them in other forms which might be useful for future
investigation. For example, in the proof of (1.19), shifting r to r − n in (3.1) yields that

φ(3)(−q) = J2
J1J4

∞∑
n=0

∞∑
r=n

(1 + q2r+2)(1− q2n+1)(−1)rq2r2+3r−n(3n+5)/2

=
J2
J1J4

∞∑
r=0

r∑
n=0

(1 + q2r+2)(1− q2n+1)(−1)rq2r2+3r−n(3n+5)/2

=
J2
J1J4

∞∑
r=1

r∑
n=1

(1 + q2r)(1− q2n−1)(−1)r−1q2r2−r−n(3n−1)/2, (4.1)

where we derive the last equality by setting r → r − 1 and n→ n− 1. Since
r∑

n=1

(1− q2n−1)q−n(3n−1)/2 =
r∑

n=1

q−n(3n−1)/2 −
r∑

n=1

q−n(3n−5)/2−1

=
r∑

n=1

q−n(3n−1)/2 −
0∑

n=−r+1

q−n(3n−1)/2 =
r∑

n=−r+1

sg′(n)q−n(3n−1)/2, (4.2)

where sg′(n) = 1 if n > 0 and sg′(n) = −1 otherwise, combining (4.1) and (4.2), we have

φ(3)(−q) = J2
J1J4

∞∑
r=1

r∑
n=−r+1

sg′(n)(1 + q2r)(−1)r−1q2r2−r−n(3n−1)/2. (4.3)

Of course, once we have a representation of Hecke-type double sums like (4.3), we can
also rewrite it in the form of fa,b,c(x, y, q). For instance, from (4.3), we back to the step
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(4.1). We have

φ(3)(−q) = J2
J1J4

∞∑
r=1

r∑
n=1

(1 + q2r)(−1)r−1q2r2−r−n(3n−1)/2

− J2
J1J4

∞∑
r=1

r∑
n=1

(1 + q2r)(−1)r−1q2r2−r−n(3n−5)/2−1

=
J2
J1J4

∞∑
r=1

r∑
n=1

(1 + q2r)(−1)r−1q2r2−r−n(3n−1)/2

− J2
J1J4

∞∑
r=1

0∑
n=−r+1

(1 + q2r)(−1)r−1q2r2−r−n(3n−1)/2

=
J2
J1J4

∞∑
n=1

∞∑
r=n

(1 + q2r)(−1)r−1q2r2−r−n(3n−1)/2

− J2
J1J4

0∑
n=−∞

∞∑
r=−n+1

(1 + q2r)(−1)r−1q2r2−r−n(3n−1)/2.

For the first part on the right-hand side of the above identity, we replace (n, r) by (n +
1, r + n+ 1), and for the second part, we replace (n, r) by (n+ 1,−r − n− 1). Thus,

φ(3)(−q) = J2
J1J4

(
∞∑
r=0

∞∑
n=0

−
−1∑

r=−∞

−1∑
n=−∞

)
(1 + q2r+2n+2)

× (−1)r+nq2r
2+4rn+3r+n(n+1)/2,

which implies (1.19).
In 2019, Garvan [24] found some Hecke-type double sums for the seventh order mock

theta functions

F (7)
0 (q) :=

∞∑
n=0

qn
2

(qn+1; q)n
, F (7)

1 (q) :=
∞∑
n=1

qn
2

(qn; q)n
, F (7)

2 (q) :=
∞∑
n=0

qn
2+n

(qn+1; q)n+1

. (4.4)

Arguing similarly as above, we can express Garvan’s identities [24, Theorem 1.2] in terms
of fa,b,c(x, y, q):

F (7)
0 (q) =

1

J1

(
f1,3,2(q

4,−q4, q3) + qf1,3,2(q
5,−q7, q3)

−qf1,3,2(q4,−q10, q3)− q2f1,3,2(q5,−q13, q3)
)
, (4.5)

F (7)
1 (q) =

q

J1

(
f1,3,2(q

4,−q8, q3) + qf1,3,2(q
5,−q11, q3)

−qf1,3,2(q7,−q8, q3)− q3f1,3,2(q8,−q11, q3)
)
, (4.6)

F (7)
2 (q) =

1

J1

(
f1,3,2(q

4,−q5, q3) + qf1,3,2(q
5,−q8, q3)
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−qf1,3,2(q7,−q7, q3)− q3f1,3,2(q8,−q10, q3)
)
. (4.7)

Note that Hickerson [29, Theorem 2.0] derived that

F (7)
0 (q) =

1

J1
f3,4,3(q

2, q2, q),

F (7)
1 (q) =

q

J1
f3,4,3(q

4, q4, q),

F (7)
2 (q) =

1

J1
f3,4,3(q

3, q3, q).

It would be interesting to find more properties of fa,b,c(x, y, q) to show the equivalence of
these two types of expressions.
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