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Abstract

A graph G is called F -saturated if G does not contain F as a subgraph (not necessarily
induced) but the addition of any missing edge to G creates a copy of F . The saturation number
of F , denoted by sat(n, F ), is the minimum number of edges in an n-vertex F -saturated graph.
Determining the saturation number of complete bipartite graphs is one of the most important
problems in the study of saturation numbers. The value of sat(n,K2,2) was shown to be ⌊ 3n−5

2 ⌋
by Ollmann, and a shorter proof was later given by Tuza. For K2,3, there has been a series of
study aiming to determine sat(n,K2,3) over the years. This was finally achieved by Chen who
confirmed a conjecture of Bohman, Fonoberova, and Pikhurko that sat(n,K2,3) = 2n− 3 for all
n ≥ 5. Pikhurko and Schmitt conjectured that sat(n,K3,3) = (3 + o(1))n. In this paper, for
n ≥ 9, we give an upper bound of 3n− 9 for sat(n,K3,3), and prove that 3n− 9 is also a lower
bound when the minimum degree of a K3,3-saturated graph is 2 or 5, where it is trivial when
the minimum degree is greater than 5.
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1 Introduction

All graphs in this paper are finite and simple. Throughout the paper we use the terminology and
notation of [11]. Given a graph G, we use |G|, e(G), δ(G), and ∆(G) to denote the number of
vertices, the number of edges, the minimum degree and the maximum degree of G, respectively.
Let G denote the complement graph of G. For any v ∈ V (G), let dG(v) and NG(v) denote the
degree and neighborhood of v in G, respectively, and let NG[v] = NG(v) ∪ {v}. We shall omit

∗The corresponding author.
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the subscript G when the context is clear. For A,B ⊆ V (G) with A ∩ B = ∅, let A ∼ B denote
that each vertex in A is adjacent to each vertex in B and G[A,B] be the subgraph with vertex
set A ∪ B and edge set E(G[A,B]) = {xy ∈ E(G) : x ∈ A, y ∈ B}. For S ⊆ V (G), we denote by
G[S] the subgraph of G induced by S. Let n be a positive integer. For a positive integer k, we
let [k] = {1, 2, . . . , k}. We denote a path, a cycle, a star, and a complete graph with n vertices by
Pn, Cn, Sn, and Kn, respectively. For r ≥ 2 and positive integers s1, . . . , sr, let Ks1,...,sr denote the
complete r-partite graph with part sizes s1, . . . , sr. Let G and H be two disjoint graphs. Denote
by G∪H the union of G and H. The join G∨H is the graph obtained from G∪H by joining each
vertex of G to each vertex of H.

Given a family of graphs F , a graph G is F-saturated if no member of F is a subgraph of G,
but for any e ∈ E(G), some member of F is a subgraph of G + e. The saturation number of F ,
denoted by sat(n,F), is the minimum number of edges in an n-vertex F-saturated graph. Define
satδ(n,F) to be the minimum number of edges in a graph with n vertices and minimum degree δ

that is F-saturated. If F = {F}, then we also write sat(n, {F}) and satδ(n, {F}) as sat(n, F ) and
satδ(n, F ), respectively.

Saturation numbers were first studied in 1964 by Erdős, Hajnal, and Moon [4], who proved that
sat(n,Kk+1) = (k − 1)n −

(
k
2

)
. Furthermore, they proved that equality holds only for the graph

Kk−1 ∨ Kn−k+1. In 1986, Kászonyi and Tuza in [6] determined sat(n, F ) for F ∈ {Sk, kK2, Pk},
and they proved that sat(n,F) = O(n) for any family F of graphs. Since then, there has been
extensive research on saturation numbers for various graph families F .

We now mention some results for complete multipartite graphs. When all but at most one
parts have size 1, Pikhurko [8] and Chen, Faudree, and Gould [2] independently determined the
saturation number of complete multipartite graphs with sufficiently large order. When there are
at least two parts of size at least 2, the exact values were only known for K2,2 and K2,3. The exact
value for K2,2 was first determined by Ollmann [7]. Later on, a shorter proof was given by Tuza
[10]. For K2,3, there have been several papers aiming to determine sat(n,K2,3) over the years. This
was finally achieved by Chen [3] who confirmed a conjecture of Bohman, Fonoberova, and Pikhurko
[1] that sat(n,K2,3) = 2n− 3 for all n ≥ 5. For the case where the graph has r parts and all parts
have size 2, Gould and Schmitt [5] conjectured that sat(n,K2,...,2) = ⌈((4r− 5)n− 4r2+6r− 1)/2⌉,
and they proved the conjecture when the minimum degree of the K2,...,2-saturated graphs is 2r− 3.
For general complete multipartite graphs Ks1,...,sr with sr ≥ · · · ≥ s1 ≥ 1, Bohman, Fonoberova,
and Pikhurko [1] determined the asymptotic bound on sat(n,Ks1,...,sr) as n → ∞.

Theorem 1.1 ([1]) Let r ≥ 2 and sr ≥ · · · ≥ s1 ≥ 1. Define p = s1 + · · · + sr−1 − 1. Then, for
all large n,

(p+
sr − 1

2
)n−O(n3/4) ≤ sat(n,Ks1,...,sr) ≤

(
p

2

)
+ p(n− p) +

⌈(sr − 1)(n− p)

2
− s2r

8

⌉
.

In particular, sat(n,Ks1,...,sr) = (s1 + . . .+ sr−1 + 0.5sr − 1.5)n+O(n3/4).
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We continue to study the saturation number for complete multipartite graphs. In light of the
known results, studying sat(n,K3,3) is the natural next step. In 2008, Pikhurko and Schmitt [9]
conjectured that sat(n,K3,3) = (3 + o(1))n.

In this paper, we give an upper bound on sat(n,K3,3). Moreover, we consider its lower bound.
In particular, we determine the exact value of sat(n,K3,3) for 6 ≤ n ≤ 8 and provide a lower bound
on sat(n,K3,3) when the minimum degree of a K3,3-saturated graph is 2 or 5. The main results
are the following theorems.

Theorem 1.2 Let n be a positive integer and n ≥ 6. Then sat(n,K3,3) ≤

2n, 6 ≤ n ≤ 8,

3n− 9, n ≥ 9.

Theorem 1.3 (i) For 6 ≤ n ≤ 8, sat(n,K3,3) = 2n.

(ii) For n ≥ 9, sat2(n,K3,3) = 3n− 9 and sat5(n,K3,3) ≥ 3n− 9.

Let G be a K3,3-saturated graph with n vertices and n ≥ 9. If δ(G) ≥ 6, then e(G) ≥ 3n ≥ 3n−9.
Hence, for n ≥ 9, in order to determine the exact value of sat(n,K3,3), we only need to consider
K3,3-saturated graphs with the minimum degree at most 5.

An outline of this paper is as follows. To prove Theorem 1.2, we construct an n-vertex K3,3-
saturated graph with 2n edges when 6 ≤ n ≤ 8 and 3n − 9 edges when n ≥ 9 in Section 2. In
Section 3, we first prove that sat(n,K3,3) ≥ 2n when 6 ≤ n ≤ 8 in Section 3.1, then we prove
satδ(n,K3,3) ≥ 3n− 9 when δ ∈ {2, 5} in Section 3.2.

2 Proof of Theorem 1.2

In this section, for n ≥ 6, we construct an n-vertex K3,3-saturated graph Gn with 2n edges when
6 ≤ n ≤ 8, and 3n − 9 edges when n ≥ 9. Let G11 be a graph as depicted in Figure 1. Then
Gn = G11[{v1, . . . , vn}] for 6 ≤ n ≤ 11.

Figure 1: The graph G11.
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Proposition 2.1 For 6 ≤ n ≤ 11, the graph Gn is K3,3-saturated and

e(Gn) =

{
2n, 6 ≤ n ≤ 8,

3n− 9, 9 ≤ n ≤ 11.

Proof. It is easy to verify that e(Gn) = 2n when 6 ≤ n ≤ 8, and e(Gn) = 3n− 9 when 9 ≤ n ≤ 11.
Next we show that Gn contains no copy of K3,3 for 6 ≤ n ≤ 11. Suppose R is a copy of K3,3 of
G11. Then v9 /∈ V (R) because dG11(v9) = 2. For u ∈ {v7, v8, v10, v11}, since dG11(u) = 3 and there
exists v ∈ NG11(u) such that dG11(v) = 3 and |NG11(u) ∩ NG11(v)| = 2, we have u /∈ V (R). Thus
R ⊆ G6. Since v1v2 /∈ E(G6), v1 and v2 lie in the same part of R. Then R[{v3, v4, v5, v6}] contains
a copy of K1,3, a contradiction. So G11 contains no copy of K3,3. Note that Gn (6 ≤ n ≤ 10) is a
subgraph of G11. Hence Gn contains no copy of K3,3 for any 6 ≤ n ≤ 11.

Let xy be an edge in the complement of Gn. It remains to show that the graph G′
n obtained

by adding xy to Gn has a copy of K3,3. We consider the following cases.

(a) If {x, y} ∩ {v1, v2} ̸= ∅ or x, y ∈ {v7, v8, v10, v11}, then the subgraph of G′
n induced by {x, y} ∪

{v3, v5} ∪ {v4, v6} contains a copy of K3,3.

(b) If {x, y} ∩ {v3, v5} ̸= ∅ or x = v9, y ∈ {v8, v11}, then the subgraph of G′
n induced by {x, y} ∪

{v1, v2} ∪ {v4, v6} contains a copy of K3,3.

(c) If {x, y} ∩ {v4, v6} ̸= ∅ or x = v9, y ∈ {v7, v10}, then the subgraph of G′
n induced by {x, y} ∪

{v1, v2} ∪ {v3, v5} contains a copy of K3,3.

For 6 ≤ n ≤ 11, in all cases, G′
n contains a copy of K3,3, hence Gn is K3,3-saturated.

Definition 2.2 For n ≥ 12, let H = K2 ∨ (C4 ∪ Cn−9 ∪ K1), where V (K2) = {v1, v2}, C4 =

v3v4v5v6v3, Cn−9 = v7v8 . . . vn−3v7, V (K1) = {vn−2}. Let Gn be the graph obtained from H by
adding new vertices {vn−1, vn} and new edges {vn−1v3, vn−1v5, vnv4, vnv6}.

Proposition 2.3 For n ≥ 12, the graph Gn defined in Definition 2.2 is K3,3-saturated and has
3n− 9 edges.

Proof. Clearly, e(G) = 2(n− 4)+ (n− 5)+ 4 = 3n− 9. Firstly, We show that Gn has no subgraph
isomorphic to K3,3. Suppose R is a copy of K3,3 of Gn. From the structure of Gn, we see that
d(vn−1) = d(vn) = 2 and hence vn−1, vn /∈ V (R). Thus R ⊆ H. Since each vertex of C4∪Cn−9∪K1

has at most two neighbors in C4 ∪ Cn−9 ∪K1, v1, v2 ∈ V (R) and they lie in different parts of R.
This contradicts v1v2 /∈ E(Gn). So Gn contains no copy of K3,3.

Let xy be an edge in the complement of Gn. It remains to show that the graph G′′ obtained by
adding xy to Gn has a copy of K3,3. We consider the following cases.
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(a) If x, y ∈ {v1, v2, vn−1, vn}, then the subgraph of G′′ induced by {x, y} ∪ {v3, v5} ∪ {v4, v6}
contains a copy of K3,3.

(b) If x = vn−1, y ∈ {v4, v6, v7, . . . , vn−2} or x = v4, y = v6 or x ∈ {v4, v6}, y ∈ {v7, . . . , vn−2},
then the subgraph of G′′ induced by {x, v1, v2} ∪ {y, v3, v5} contains a copy of K3,3.

(c) If x = vn, y ∈ {v3, v5, v7, . . . , vn−2} or x = v3, y = v5 or x ∈ {v3, v5}, y ∈ {v7, . . . , vn−2}, then
the subgraph of G′′ induced by {x, v1, v2} ∪ {y, v4, v6} contains a copy of K3,3.

(d) If x, y ∈ {v7, . . . , vn−2} and x ̸= vn−2, let N(x) ∩ {v7, . . . , vn−3} = {x′, x′′}, then the subgraph
of G′′ induced by {x, v1, v2} ∪ {y, x′, x′′} contains a copy of K3,3.

In all cases, G′′ contains a copy of K3,3. Hence Gn is K3,3-saturated.

By Proposition 2.1 and Proposition 2.3, we complete the proof of Theorem 1.2.

3 Proof of Theorem 1.3

In the rest of the paper, we consider the lower bound on sat(n,K3,3). Let G = (V,E) be a K3,3-
saturated graph. We firstly choose a vertex a such that d(a) = δ(G) and e(G[N(a)]) is as small as
possible. We partition V into four parts V1, V2, V3 and V4, where V1 = N [a], V2 = {x ∈ V \V1 :

|N(x) ∩ N(a)| ≥ 2}, V3 = {y ∈ V \(V1 ∪ V2) : |N(y) ∩ N(a)| = 1} and V4 = V \(V1 ∪ V2 ∪ V3).
Let NG(a) = {a1, a2, . . . , ad(a)}. For i1, i2, . . . , is ∈ [d(a)], let Vi1i2...is = {x ∈ V2 : N(x) ∩ V1 =

{ai1 , ai2 , . . . , ais}}.
In the following, we will first describe some useful properties of the K3,3-saturated graph G.

Proposition 3.1 The following statements hold.

(i) For any x, y ∈ V , if xy /∈ E, then there are {x1, x2} ⊆ N(x) and {y1, y2} ⊆ N(y) such that
{x1, x2} ∼ {y1, y2}. (We usually say there is a copy of K2,2 between N(x) and N(y).)

(ii) For any x ∈ V \ V1 , we have |N(x) ∩N(ai) ∩N(aj)| ≤ 2 for any i, j ∈ [d(a)] with i ̸= j, and
there exist i, j ∈ [d(a)] with i ̸= j such that |N(x) ∩N(ai) ∩N(aj)| = 2.

(iii) For any x ∈ V3, we have |N(x) ∩ V2| ≥ 1. For any x ∈ V4, we have |N(x) ∩ V2| ≥ 2.

(iv) When G[V1\{a}] contains no copy of K1,2, we have |N(x) ∩ V2| ≥ 2 for any x ∈ V \ V1, and
|V2| ≥ 3. When G[V1 \{a}] contains no copy of K2,2, we have |N(x)∩V2| ≥ 1 for any x ∈ V2,
and |V2| ≥ 2.

Proof. Suppose xy /∈ E. Then there is a copy of K3,3 in G+xy, and (i) follows. For any x ∈ V \V1,
if there is a vertex x ∈ V \V1 such that |N(x)∩N(ai)∩N(aj)| ≥ 3 for some i, j ∈ [d(a)] with i ̸= j,
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then we would obtain a copy of K3,3 of G, a contradiction. So |N(x) ∩N(ai) ∩N(aj)| ≤ 2 for any
x ∈ V \ V1 and i, j ∈ [d(a)] with i ̸= j. Since ax /∈ E for any x ∈ V \V1, there exist i, j ∈ [d(a)]

such that |N(x) ∩ N(ai) ∩ N(aj)| = 2 by (i). This proves (ii). Let x ∈ V \ V1 and i, j ∈ [d(a)]

with i ̸= j such that |N(x) ∩ N(ai) ∩ N(aj)| = 2, we say {u, v} = N(x) ∩ N(ai) ∩ N(aj). Then
u, v ∈ (V1 ∪ V2) \ {a}. If x ∈ V3, then we have |N(x) ∩ V2| ≥ 1 by the definition of V3. If x ∈ V4,
then we have |N(x)∩V2| ≥ 2 by the definition of V4. This proves (iii). Suppose G[V1\{a}] contains
no copy of K1,2. Then u, v ∈ V2. Hence we have |N(x) ∩ V2| ≥ 2 for any x ∈ V \ V1, and |V2| ≥ 3.
Suppose G[V1\{a}] contains no copy of K2,2. Then {u, v}∩V2 ̸= ∅. Hence we have |N(x)∩V2| ≥ 1

for each x ∈ V2, and |V2| ≥ 2. This proves (iv).

Proposition 3.1(i) implies δ(G) ≥ 2 for each K3,3-saturated graph G. Thus we consider δ(G) ≥ 2.

3.1 Proof of Theorem 1.3(i)

By Theorem 1.2, to prove sat(n,K3,3) = 2n for 6 ≤ n ≤ 8, it suffices to prove sat(n,K3,3) ≥ 2n. We
consider the minimum degree of G. If δ(G) ≥ 4, then we have e(G) ≥ 2n. So we assume that 2 ≤
δ(G) ≤ 3. For i ∈ {2, 3, 4} and x ∈ Vi, we define f(x) = |N(x)∩(V1∪· · ·∪Vi−1)|+0.5|N(x)∩Vi|−2.
Let si =

∑
x∈Vi

f(x), where i ∈ {2, 3, 4}.
We first observe that one can relate the number of edges to s2, s3 and s4 in the following way:

e(G) = e(G[V1]) + e(G[V2]) + e(G[V1, V2]) + e(G[V3]) + e(G[V1, V3]) + e(G[V2, V3]) + e(G[V4])

+ e(G[V4, V2 ∪ V3])

= e(G[V1]) + 2(|V2|+ |V3|+ |V4|) + s2 + s3 + s4

= e(G[V1]) + 2(n− |V1|) + s2 + s3 + s4. (1)

Lemma 3.2 For 6 ≤ n ≤ 8,

(i) if δ(G) = 2, then s2 + s3 + s4 ≥ |V2|+ |V3|.

(ii) if δ(G) = 3, then s2 + s3 + s4 ≥ |V2| + |V3| + |V4| when e(G[V1\{a}]) ≤ 1 and s2 + s3 + s4 ≥
0.5(|V2|+ |V3|+ |V4|) when e(G[V1\{a}]) ≥ 2.

Proof. Suppose that δ(G) = 2. Then G[V1\{a}] contains no K1,2. Thus f(x) ≥ 1 for each x ∈ V2∪V3

and f(x) ≥ 0 for each x ∈ V4 by Proposition 3.1 (iii). So s2 + s3 + s4 ≥ |V2| + |V3|. Suppose that
δ(G) = 3. If e(G[V1\{a}]) ≤ 1, then |V4| ≤ 1 because n ≤ 8 and |V2| ≥ 3 by Proposition 3.1(iv).
Thus f(x) ≥ 1 for each x ∈ V \ V1 by Proposition 3.1 (iii). So s2 + s3 + s4 ≥ |V2|+ |V3|+ |V4|. If
e(G[V1\{a}]) ≥ 2, then we have |N(x) ∩ V2| ≥ 1 for each x ∈ V2 ∪ V3 and |N(x) ∩ V2| ≥ 2 for each
x ∈ V4 by Proposition 3.1 (iii). Thus for x ∈ V2, f(x) ≥ 0.5; for y ∈ V3, f(y) ≥ 0.5 or f(y) = 0 and
there exists a vertex z ∈ V4 such that f(z) = 1; for z ∈ V4, f(z) ≥ 0.5. Proposition 3.1(iv) implies
|V2| ≥ 2 and so |V3 ∪ V4| ≤ 2, we have s2 + s3 + s4 ≥ 0.5(|V2|+ |V3|+ |V4|).
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Suppose that δ(G) = 2. If a1a2 ∈ E, then e(G) ≥ 2n+|V2|+|V3|−3 by Lemma 3.2(i) and (1). By
Proposition 3.1(iii), we have |V2| ≥ 3. So e(G) ≥ 2n. If a1a2 /∈ E(G), then e(G) ≥ 2n+|V2|+|V3|−4

by Lemma 3.2(i) and (1). Proposition 3.1(i) implies that there is a copy of K2,2 between N(a1)

and N(a2), we have |V2 ∪ V3| ≥ 4. So e(G) ≥ 2n.

Suppose that δ(G) = 3. If n = 6, then |V2| = 2, |V3| = |V4| = 0 and e(V1) = 6 by Proposition
3.1(i). Otherwise, aiaj /∈ E where i, j ∈ [3] with i ̸= j, Proposition 3.1(i) implies that there is a copy
of K2,2 between N(ai) and N(aj), which contradicts the fact that |V2 ∪ V3| = 2. Let V2 = {x1, x2}.
Proposition 3.1(iv) implies x1x2 ∈ E. If x1ai /∈ E for some i ∈ [3], then x2 ∈ V123 by Proposition
3.1 (i). Thus e(G) ≥ 12 = 2n.

If n = 7 and e(G[V1]) ≤ 4, then G[V1 \ {a}] contains no copy of K1,2. Proposition 3.1(iv)
implies |V2| = 3 and e(G[V2]) = 3. Since aiaj /∈ E for some i, j ∈ [3], Proposition 3.1(i) implies
there is a copy of K2,2 between N(ai) and N(aj). Since |V2 ∪ V3| = |V2| = 3, e(G[V1]) ≥ 4. We see
|V123| ≤ 1, else G contains a copy of K3,3. There exists a vertex x such that |N(x) ∩ V1| = 2 and
xak /∈ E for some k ∈ [3]. Proposition 3.1(i) implies that there is a copy of K2,2 between N(x) and
N(ak), say {x1, x2} ∼ {ak1, ak2}. When {ak1, ak2} ⊆ V2, then {x1, x2} ⊆ V1 and {ak1, ak2} ⊆ V123,
a contradiction. When {ak1, ak2} ∩ V1 ̸= ∅, since e(G[V1]) ≤ 4, |{ak1, ak2} ∩ {a1, a2, a3}| ≤ 1. If
ak1 ∈ {a1, a2, a3}, then ak2 ∈ V2. By |V2| = 3, {xk1, xk2} ∩ V1 ̸= ∅, which contradicts e(G[V1]) ≤ 4.
If a ∈ {ak1, ak2}, say ak1 = a, then {x1, x2} ⊆ V1, ak2 ∈ V2 and ak2 ∈ V123. Then e(G) =

e(G[V1]) + e(G[V2]) + e(G[V1, V2]) ≥ 4 + 3 + 7 = 14 = 2n.
If n = 7 and e(G[V1]) = 6, by Lemma 3.2(ii), then e(G) ≥ 2n− 0.5, that is e(G) ≥ 2n. Suppose

n = 7 and e(G[V1]) = 5. Let E(G[V1 \ {a}]) = {a1a2, a1a3}. If |V2| = 2, then let V2 = {x1, x2}.
Applying Proposition 3.1(i) to ax1 /∈ E (ax2 /∈ E), we have the K2,2 between N(a) and N(x1)

(N(x2)) is {a2, a3} ∼ {a1, x2}({a1, x1}). Then {x1, x2} ⊆ V123, and so {a1, a2, a3} ∼ {a, x1, x2} is
a copy of K3,3 of G, a contradiction. If |V2| ≥ 3, then |V2| = 3 by n = 7. Let V2 = {x1, x2, x3}.
Note that f(xi) ≥ 0.5 for each i ∈ [3]. If there exists a vertex xi ∈ V123 or there are two vertices
xi, xj ∈ V2 such that f(xi) ≥ 1 and f(xj) ≥ 1, then e(G) ≥ 2n−0.5 by (1), and so e(G) ≥ 2n. Thus
we may assume V123 = ∅ and there is at most one vertex xi ∈ V2 such that f(xi) ≥ 1. Since there is
a copy of K2,2 between N(x) and N(a) for each x ∈ V2, there is some vertex xi ∈ V2 with f(xi) = 1,
say x1. Then x1 ∈ V23 and {x2, x3} ⊆ V1i for some i ∈ {2, 3}, say i = 2. Then N(a3) = {a, a1, x1},
but e(G[N(a3)]) ≤ 1, which contradicts the minimality of e(G[N(a)]). So e(G) ≥ 2n.

If n = 8, then e(G) ≥ 2n when e(G[V1\{a}]) = 1 or 3 by Lemma 3.2(ii). Suppose n = 8 and
e(G[V1\{a}]) = 0, then e(G) = 2n + s2 + s3 + s4 − 5. So we need to show s2 + s3 + s4 ≥ 4.5.
If |V123| ≥ 1, then f(x) ≥ 2 for each x ∈ V123. So s2 + s3 + s4 ≥ |V2| + |V3| + |V4| + 1 ≥ 5

by the proof of Lemma 3.2(ii). Now we consider |V123| = 0. Since a1a2 /∈ E, Proposition 3.1(i)
implies that there is a copy of K2,2 between N(a1) and N(a2), say {x1, x2} ∼ {x3, x4}. Then
{x1, x2, x3, x4} ⊆ V2 ∪ V3. Since n = 8, |V2 ∪ V3| = 4. If x1 ∈ V3, then we can not find a copy
of K2,2 between N(a2) and N(a3) because |(N(a2) ∪N(a3)) ∩ (V2 ∪ V3)| ≤ 3, a contradiction. By
symmetry, we have {x1, x2, x3, x4} ⊆ V2. If there exists i ∈ [4] such that |N(xi) ∩ V2| ≥ 3, then
e(G) = e(G[V1])+e(G[V2])+e(G[V1, V2]) ≥ 3+5+8 = 16 = 2n. If |N(xi)∩V2| = 2 for each i ∈ [4],
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then E(G[V2]) = {xixj |i ∈ {1, 2}, j ∈ {3, 4}}. Since x1x2 /∈ E, Proposition 3.1(i) implies that
there is a copy of K2,2 between N(x1) and N(x2). Note that N(x1) ∪N(x2) ⊆ {a1, a2, a3, x3, x4},
e(G[{a1, a2, a3}]) = 0 and x3x4 /∈ E. So the K2,2 between N(x1) and N(x2) must be {a1, a2} ∼
{x3, x4}. Then d(a3) = 1, this contradicts δ(G) ≥ 2. Suppose n = 8 and e(G[V1\{a}]) = 2. Then
e(G) = 2n+ s2 + s3 + s4 − 3. So we need to show s2 + s3 + s4 ≥ 2.5. If f(x) ≥ 1 for some x ∈ V2,
then s2+s3+s4 ≥ 2.5 by the proof of Lemma 3.2(ii). If f(x) = 0.5 for some x ∈ V2, then f(x′) ≥ 1

where {x′} = N(x) ∩ V2. So s2 + s3 + s4 ≥ 2.5.
This completes the proof of the lower bound on sat(n,K3,3) for 6 ≤ n ≤ 8.

3.2 Proof of Theorem 1.3(ii)

Note that for n ≥ 9, the minimum degree of the K3,3-saturation graph we constructed in Section 2
with 3n−9 edges is 2. Thus sat2(n,K3,3) ≤ 3n−9 for n ≥ 9. Hence, to prove sat2(n,K3,3) = 3n−9,
it suffices to prove sat2(n,K3,3) ≥ 3n − 9 for n ≥ 9. In this section, we give the lower bound of
3n − 9 for satδ(n,K3,3) for δ ∈ {2, 5} and n ≥ 9. We first consider the case where the minimum
degree of G is 2.

3.2.1 δ(G) = 2

We prove sat2(n,K3,3) ≥ 3n− 9 for n ≥ 9 in this part. According to the partition of V , we define
h(x) = |N(x) ∩ (V1 ∪ . . . ∪ Vi−1)| + 0.5|N(x) ∩ Vi| − 3 for each x ∈ Vi and qi =

∑
x∈Vi

h(x) where
i ∈ {2, 3, 4}. For each x ∈ V , we say that the h-value of x is k if h(x) = k.

e(G) = e(G[V1]) + e(G[V2]) + e(G[V1, V2]) + e(G[V3]) + e(G[V1, V3]) + e(G[V2, V3]) + e(G[V4])

+ e(G[V4, V2 ∪ V3])

= e(G[V1]) + 3(|V2|+ |V3|+ |V4|) + q2 + q3 + q4

= e(G[V1]) + 3(n− |V1|) + q2 + q3 + q4. (2)

By (2), we have e(G) ≥ 3n− 7 + q2 + q3 + q4. Therefore, it suffices to prove

q2 + q3 + q4 ≥ −2.5. (3)

By Proposition 3.1(iv), we have |N(x)∩V2| = 2 for each x ∈ V \V1. So h(z) ≥ 0 for each z ∈ V2∪V3

and h(z) ≥ −1 for each z ∈ V4. Thus, q2 ≥ 0 and q3 ≥ 0. Therefore, to prove (3), it suffices to
show q4 ≥ −2.5.

Let V −
4 = {z ∈ V4 : h(z) < 0} = {z1, z2, . . . , z|V −

4 |} and n−
4 (x) = |N(x) ∩ V −

4 | for each
x ∈ V . By Proposition 3.1(iii), each vertex z ∈ V −

4 has exactly two neighbors in V2, so we let
N(zi)∩ V2 = {xi1, xi2}. Note that if h(zi) = −1, then N(zi) = {xi1, xi2} and so zi has no neighbor
in V −

4 , and if h(zi) = −0.5, then d(zi) = 3 and zi has one neighbor in V4, saying N4(zi) = {ci}.
For each zi, zj ∈ V −

4 with zizj /∈ E, there is a K2,2 between N(zi) and N(zj) by Proposition
3.1(i), we define four different types of K2,2 as follows.
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Type 1 : {xi1, xi2} ∼ {xj1, xj2};

Type 2 : {xi1, xi2} ∼ {xjt, cj}, where t ∈ {1, 2};

Type 3 : {xis, ci} ∼ {xj1, xj2}, where s ∈ {1, 2};

Type 4 : {xis, ci} ∼ {xjt, cj}, where s, t ∈ {1, 2}.

If there are three vertices in V4 with an h-value of −1, then there are six distinct vertices
x1, x2, . . . , x6 ∈ V2 such that {x1, x2} ∼ {x3, x4}, {x3, x4} ∼ {x5, x6} and {x1, x2} ∼ {x5, x6}.
Thus G contains a copy of K3,3 as {a1, a2, x1} ∼ {x3, x4, x5}, a contradiction. So there are at most
two vertices in V4 with an h-value of −1. Thus q4 ≥ −2.5 when |V −

4 | ≤ 3. In the following, we
assume that |V −

4 | ≥ 4.

Claim 1 There is at most one vertex in V −
4 with an h-value of −1.

Proof. Suppose that, by contradiction, there are exactly two vertices with an h-value −1, say z1

and z2. Then z1z2 /∈ E and the K2,2 between N(z1) and N(z2) is Type 1. Since |V −
4 | ≥ 4, there

exists a vertex, say z3, such that d(z3) = 3 and z1z3 /∈ E, z2z3 /∈ E. Applying Proposition 3.1(i)
to z1z3 /∈ E and z2z3 /∈ E, we obtain that there exists b ∈ N(z3) such that b ∼ {x11, x12, x21, x22}.
Then G contains a copy of K3,3 as {a1, a2, b} ∼ {x11, x12, x21}, a contradiction. Hence there is at
most one vertex in V −

4 with an h-value of −1.

By Claim 1, if |V −
4 | ≤ 4, then q4 ≥ −2.5. So we assume that |V −

4 | ≥ 5 in the following.

Claim 2 If there exists a vertex in V −
4 with an h-value of −1, then q2 + q3 + q4 ≥ −2.5.

Proof. Without loss of generality, we assume that h(z1) = −1. For each zi ∈ V −
4 \ {z1}, since

z1zi /∈ E, {x11, x12} ̸⊆ N(zi). We first prove that there is at most one vertex zi ∈ V −
4 such

that {x11, x12} ∼ {xi1, xi2}. Suppose not. Then there exist two vertices, say z2 and z3, such
that {x11, x12} ∼ {xt1, xt2} for each t ∈ {2, 3}. Since |N(x) ∩ V2| = 2 for each x ∈ V \ V1,
{x21, x22} = {x31, x32}. Note that z2z3 ∈ E for otherwise the non-edge z2z3 contradicts Proposition
3.1(i). Since |V −

4 | ≥ 5, there exists a vertex, say z4, such that z4zp /∈ E for each p ∈ [3]. By
applying Proposition 3.1(i) to z1z4, we have {x4i, c4} ∼ {x11, x12} for some i ∈ {1, 2} and thus
x4i ∈ {x21, x22}. Since c2 = z3, there is no K2,2 between N(z2) and N(z4), contradicting Proposition
3.1(i). This proves the statement. Thus for i ∈ {3, 4, . . . , |V −

4 |}, without loss of generality, we
assume {x11, x12} ∼ {xij , ci}, where j ∈ [2]. Applying Proposition 3.1(i) to ciz1 /∈ E, we know that
ci has at least two neighbors other than x11, x12 and zi and thus h(ci) ≥ 0.5. Now we show that
ci ̸= cj for i, j ∈ {3, 4, . . . , |V −

4 |} with i ̸= j. Since ci /∈ V −
4 , we have zizj /∈ E. By Proposition 3.1

(i), there is a K2,2 between N(zi) and N(zj). By considering the K2,2 between N(zk) and N(z1)
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for k ∈ {i, j}, we see N(ck) ∩ V2 = {x11, x12}. It follows that the K2,2 between N(zi) and N(zj)

must be Type 4. So ci ̸= cj . Now we have

q4 ≥ h(z1) + h(z2) +

|V −
4 |∑

i=3

(h(zi) + h(ci)) ≥ −1.5.

This completes the proof.

By Claim 2, we assume h(z) = −0.5 for each vertex z ∈ V −
4 . If |V −

4 | ≤ 5, then q4 ≥ −2.5. So
we assume |V −

4 | ≥ 6 in the following.

Claim 3 If h(z) = −0.5 for each vertex z ∈ V −
4 and there exist two non-adjacent vertices in V −

4

satisfying the K2,2 between their neighborhood is Type 1, then q2 + q3 + q4 ≥ −2.5.

Proof. Suppose z1z2 /∈ E and the K2,2 between N(z1) and N(z2) is Type 1. Let U = {z ∈
V −
4 \ {z1, z2} with zz1, zz2 /∈ E}. Since |V −

4 | ≥ 6, we have |U | ≥ 2. Let zi ∈ U . By applying
Proposition 3.1 (i) to ziz1 /∈ E, there is a copy of K2,2 between N(z1) and N(zi). Note that
|N(v) ∩ V2| = 2 for each v ∈ V \ V1. If the K2,2 is Type 1 or Type 3, then {xi1, xi2} = {x21, x22}.
If the K2,2 is Type 2, then N(c3) ∩ V2 = {x11, x12} and xis ∈ {x21, x22} for some s ∈ [2]. In each
case, we cannot find a K2,2 between N(z2) and N(zi). So the K2,2 between N(z1) and N(zi) is
Type 4. Similarly, the K2,2 between N(z2) and N(zi) is Type 4. So we have xis ∈ {x11, x12} and
xit ∈ {x21, x22}, where {s, t} = [2], and c1, c2, ci /∈ V −

4 . Hence for each zi, zj ∈ U , the K2,2 between
N(zi) and N(zj) is Type 4. So ci ̸= cj . This means that for each z ∈ U , its unique neighbor c ∈ V4

has at least 3 neighbors in V4 \ V −
4 , so h(z) + h(c) ≥ 0. And for any zi, zj ∈ U , ci ̸= cj , so q4 ≥ −2.

By Claim 3, we suppose there are no two vertices zi, zj ∈ V −
4 with zizj /∈ E such that the K2,2

between N(zi) and N(zj) is Type 1. Suppose that c ∈ V −
4 for each z ∈ V −

4 . Let zi, zj ∈ V −
4 with

zizj /∈ E. By Proposition 3.1(i), Claim 3, and ci, cj ∈ V −
4 , we may assume the K2,2 between N(zi)

and N(zj) is Type 2. Then there is no copy of K2,2 between N(zi) and N(cj), a contradiction.
So we choose z ∈ V −

4 with c /∈ V −
4 as z1. Let A0 = ∅. Let Aℓ = {z|z ∈ V −

4 \ (A0 ∪ . . . ∪
Aℓ−1) and the K2,2 between N(z1) and N(z) is Type ℓ } and Bℓ = {ci : zi ∈ Aℓ} for ℓ ∈ [4]. By
Claim 3, we have A1 = B1 = ∅. Thus |A2|+ |A3|+ |A4| = |V −

4 | − 1. Let B = {c1} ∪B2 ∪B3 ∪B4

and B′ = {c1} ∪B2 ∪B4. Note that Bj and Bk may intersect when j ̸= k and j, k ∈ [4].
For any z ∈ A2, we have c /∈ V −

4 for otherwise there is no copy of K2,2 between N(z1) and N(c).
Thus for each zi, zj ∈ A2, we have zizj /∈ E. Since zi, zj ∈ A2, we have N(ci) ∩ V2 = N(cj) ∩ V2 =

{x11, x12} and there exist s, t ∈ [2] such that xis /∈ {x11, x12} and xjt /∈ {x11, x12}. If the K2,2

between N(zi) and N(zj) is Type 2 or Type 3, then N(cj)∩V2 = {xi1, xi2} or N(ci)∩V2 = {xj1, xj2},
a contradiction. So the K2,2 between N(zi) and N(zj) is Type 4. This implies that C2 is a clique.
For each two vertices zi, zj ∈ A3, we have N(zi) ∩ V2 = N(zj) ∩ V2 since |N(c1) ∩ V2| = 2. If
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zizj /∈ E, then the K2,2 between N(zi) and N(zj) is Type 4. If zizj ∈ E, then cicj ∈ E. This
implies that B3 is a clique. Thus if |A3| ≥ 3, then for each z ∈ A3, we have c /∈ V −

4 .
Let |B2| = p, |B3 \ B2| = q and |B4 \ (B3 ∪ B2)| = r. Note that |B| ≤ p + q + r + 1 and the

equation |B| = p+ q + r + 1 implies that c1 /∈ C2 ∪ C3. Note that

q4 ≥
∑

v∈C\V −
4

h(v) +
∑
v∈V −

4

h(v) =
∑

v∈C\V −
4

h(v)− 0.5|V −
4 |. (4)

To prove q4 ≥ −2.5, it suffices to prove
∑

v∈C\V −
4
h(v) ≥ 0.5|V −

4 | − 2.5 by (4). Recall that B2 and
B3 are two cliques of G, (B2 ∪B4) ∩ V −

4 = ∅ and B3 ∩B−
4 = ∅ if |A3| ≥ 3.

Case 1: |B3| = |A3| ≥ 3.
In this case, we have (B2 ∪B3 ∪B4) ∩ V −

4 = ∅. Thus
∑

v∈B\V −
4
h(v) =

∑
v∈B h(v).

If B2 ∩B3 ̸= ∅, then∑
v∈B

h(v) ≥2|B|+ e(G[B]) + 0.5e(G[B, V −
4 ])− 3|B|

≥2|B|+
(
p

2

)
+

(
q

2

)
+ q + r + 0.5|V −

4 | − 3|B|

=

(
p

2

)
+

(
q

2

)
+ q + r + 0.5|V −

4 | − |B|

≥max{0, p− 1}+max{0, q − 1}+ q + r + 0.5|V −
4 | − (p+ q + r + 1)

≥0.5|V −
4 | − 2.

If B2 ∩B3 = ∅, then q ≥ 3 and∑
v∈B

h(v) ≥2|B|+ e(G[B]) + 0.5e(G[B, V −
4 ])− 3|B|

≥2|B|+
(
p

2

)
+

(
q

2

)
+ r + 0.5|V −

4 | − 3|B|

=

(
p

2

)
+

(
q

2

)
+ r + 0.5|V −

4 | − (p+ q + r + 1)

≥p− 1 + q + r + 0.5|V −
4 | − (p+ q + r + 1)

=0.5|V −
4 | − 2.
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Case 2: |A3| ≤ 2 and |A2| = p ≥ 3.∑
v∈B\V −

4

h(v) ≥
∑
v∈B′

h(v) ≥ 2|B′|+ e(G[B′]) + 0.5e(G[B′, V −
4 ])− 3|B′|

≥2|B′|+
(
p

2

)
+ |B4 \B2|+ 0.5(|V −

4 | − 2)− 3|B′|

≥
(
p

2

)
+ |B4 \B2|+ 0.5|V −

4 | − 1− (p+ |B4 \B2|+ 1)

≥
(
p

2

)
− p+ 0.5|V −

4 | − 2

≥0.5|V −
4 | − 2.

Case 3: |A2| ≤ 2 and |A3| ≤ 2.
Note that ({c1} ∪B4) ∩ ({z1} ∪A4) = ∅. We have∑
v∈{c1}∪B4

h(v) ≥2(|B4|+ 1) + e(G[{c1} ∪B4]) + 0.5e(G[{c1} ∪B4, {z1} ∪A4])− 3(|B4|+ 1)

≥2(|B4|+ 1) + |B4|+ 0.5(|A4|+ 1)− 3(|B4|+ 1) = 0.5(|A4| − 1). (5)

Then

q4 ≥
∑

v∈{c1}∪B4

h(v) +
∑
v∈V −

4

h(v)

≥0.5(|A4| − 1)− 0.5(|A2|+ |A3|+ |A4|+ 1) = −0.5(|A2|+ |A3|)− 1.

Observe that q4 ≥ −2.5 when |A2|+|A3| ≤ 3. Thus we just need to consider the case |A2| = |A3| = 2.
Note that B′ ∩ V −

4 = ∅. Suppose B2 ∩ ({c1} ∪ B4) ̸= ∅. Then G[B′] is a connected graph, and
so e(G[B′]) ≥ |B′| − 1. We see∑

v∈B\V −
4

h(v) ≥
∑
v∈B′

h(v) ≥2|B′|+ e(G[B′]) + 0.5e(G[B′, V −
4 \A3])− 3|B′|

≥e(G[B′])− |B′|+ 0.5(|V −
4 | − 2)

≥|B′| − 1− |B′|+ 0.5|V −
4 | − 1

≥0.5|V −
4 | − 2.

Suppose B2 ∩ ({c1} ∪B4) = ∅. Let B2 = {c2, c3}. If h(c2) > 0 or h(c3) > 0, by (5), then

q4 ≥
∑

v∈{c1}∪B4

h(v) +
∑
v∈B2

h(v) +
∑
v∈V −

4

h(v)

≥0.5(|A4| − 1) + 0.5− 0.5(1 + 4 + |A4|) = −2.5.

If h(c2) = h(c3) = 0, then N(c2) = {x11, x12, c3, z2} and N(c3) = {x11, x12, c2, z3}. Since
z1c2 /∈ E, the K2,2 between N(z1) and N(c2) must be Type 4, which contradicts c3c1 /∈ E.

In a conclusion, q4 ≥ −2.5 and so e(G) ≥ 3n− 9. This completes the proof of the lower bound
on sat2(n,K3,3) for ≥ 9.
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3.2.2 δ(G) = 5

We prove sat5(n,K3,3) ≥ 3n−9 for n ≥ 9 in this part. Since δ(G) = 5, we have e(G) ≥ 2.5n. Then
e(G) ≥ 3n− 9 when n ≤ 19. Thus we assume n ≥ 20 in the following.

We define a new function g as follows.

• For x ∈ V2, let g(x) = |N(x) ∩ V1|+ 0.5|N(x) ∩ (V2 ∪ V3)|+ 0.25|N(x) ∩ V4| − 3.

• For x ∈ V3, let g(x) = |N(x) ∩ V1|+ 0.5|N(x) ∩ (V2 ∪ V3 ∪ V4)| − 3.

• For x ∈ V4, let g(x) = 0.75|N(x) ∩ V2|+ 0.5|N(x) ∩ (V3 ∪ V4)| − 3.

Observe that

e(G) = e(G[V1]) + e(G[V2]) + e(G[V1, V2]) + e(G[V3]) + e(G[V1, V3]) + e(G[V2, V3]) + e(G[V4])

+ e(G[V4, V2 ∪ V3])

= e(G[V1]) + 3(|V2|+ |V3|+ |V4|) +
∑

x∈V \V1

g(x)

= e(G[V1]) + 3(n− |V1|) +
∑

x∈V \V1

g(x). (6)

Note that δ(G) = 5. Then g(x) ≥ −0.25 for each x ∈ V2 because |N(x) ∩ V1| ≥ 2; g(x) ≥ 0 for
each x ∈ V3 because |N(x) ∩ V1| = 1; g(x) ≥ 0 for each x ∈ V4 because |N(x) ∩ V2| ≥ 2. If there
exists a vertex x0 ∈ V2 such that g(x0) < 0, then g(x0) = −0.25, d(x0) = 5, N(x0) ∩ (V2 ∪ V3) = ∅,
|N(x0) ∩ V1| = 2 and |N(x0) ∩ V4| = 3. We may assume that N(x0) = {ai, aj , z1, z2, z3}, where
i, j ∈ [5], i ̸= j and {z1, z2, z3} ⊆ V4. Since ax0 /∈ E(G), Proposition 3.1(ii) implies that there is a
copy of K2,2 in G[V1 \{a}]. Let s = 1 if aiaj ∈ E and s = 0 if aiaj /∈ E. Thus e(G[V1 \{a}]) ≥ 4+s.
But e(G[N(x0)]) ≤ 3 + s because N(zi) ∩ V1 = ∅ for each i ∈ [3], which contradicts the minimality
of e(G[N(a)]). Hence, g(x) ≥ 0 for each x ∈ V \ V1 and so

∑
x∈V \V1

g(x) ≥ 0. When e(G[V1]) ≥ 9,
by (6), we have e(G) ≥ 3n − 9 . Thus we next consider e(G[V1]) ≤ 8. Note that |N(x) ∩ V2| ≥ 1

for each x ∈ V2 when e(G[V1]) ≤ 8. The following discussion is split into three cases below.

Case 1: e(G[V1]) = 8.

If
∑

x∈V \V1
g(x) > 0, then e(G) = 3n−10+

∑
x∈V \V1

g(x) > 3n−10 by (6) and so e(G) ≥ 3n−9

because e(G) is an integer. Next we prove
∑

x∈V \V1
g(x) > 0. If there exists a vertex x ∈ V2 with

|N(x) ∩ V1| ≥ 3, then g(x) > 0 and so
∑

x∈V \V1
g(x) > 0. So we may assume that |N(x) ∩ V1| = 2

for each x ∈ V2. Since e(G[V1 \ {a}]) = 3, there is a vertex ai such that N(ai) ∩ N(a) = ∅ or
N(ai) ∩ N(a) = {aj} with N(aj) ∩ N(a) = {ai}, where i, j ∈ [5] and i ̸= j. We denote such a
vertex by a1. There is a vertex ak such that a1ak /∈ E for k ∈ [5] and k ̸= 1. Since a1ak /∈ E,
by Proposition 3.1(i), N(a1) ∩ (V2 ∪ V3) ̸= ∅. Let x ∈ N(a1) ∩ (V2 ∪ V3) and x1 ∈ N(x) ∩ V2. If
x ∈ V3, then |N(x1)∩ (V2 ∪ V3)| ≥ 2. If x ∈ V2, by the choice of a1, then we have |N(x1)∩ V2| ≥ 2,
else there is no K2,2 between N(x1) and N(a). So g(x1) ≥ 0.25, which implies

∑
x∈V \V1

g(x) > 0.
Hence e(G) ≥ 3n− 9.
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Case 2: e(G[V1]) = 7 and there is a copy of K1,2 in G[V1 \ {a}].

We may assume that E(G[V1 \ {a}]) = {a1a2, a1a3}. If
∑

x∈V \V1
g(x) > 1, by (6), then

e(G) = e(G[V1]) + 3(n− |V1|) +
∑

x∈V \V1

g(x) > 7 + 3(n− 6) + 1 = 3n− 10.

Since e(G) is an integer, e(G) ≥ 3n− 9. Thus we just need to prove
∑

x∈V \V1
g(x) > 1. Let V 1

2 =

{x ∈ V2 : |N(x) ∩ V2| = 1} and V 2
2 = {x ∈ V2 : |N(x) ∩ V2| ≥ 2}. Let x ∈ V 1

2 and xx1 ∈ E(G[V2]).
Applying Proposition 3.1(i) to ax /∈ E(G), we have x ∈ N(a1) and x1 ∈ N(a2)∩N(a3). If x1 ∈ V 1

2 ,
then x1 ∈ N(a1) and x ∈ N(a2) ∩ N(a3) by x1a /∈ E(G). Thus {a1, a2, a3} ⊆ (N(x) ∩ V1) ∩
(N(x1) ∩ V1). There is a copy of K3,3 in G, that is {a, x, x1} ∼ {a1, a2, a3}, a contradiction. This
implies that e(G[V 1

2 ]) = 0, V 2
2 ̸= ∅ and |V2| ≥ 3. Since a4a5 /∈ E, there is a copy of K2,2 between

N(a4) and N(a5), say {x41, x42} ∼ {x51, x52}. Notice that N(a4) ∩ V1 = N(a5) ∩ V1 = {a}. Thus
{x41, x42, x51, x52} ⊆ V2 ∪ V3. For each y ∈ {x41, x42, x51, x52} ∩ V3, by Proposition 3.1(i), then
|N(y) ∩ V2| ≥ 2. By the definition of g-function, for each x ∈ V2, we have

g(x) =|N(x) ∩ V1|+ 0.25|N(x) ∩ (V2 ∪ V3 ∪ V4)|+ 0.25|N(x) ∩ (V2 ∪ V3)| − 3

=|N(x) ∩ V1|+ 0.25|N(x) ∩ (V2 ∪ V3 ∪ V4)|+ 0.25|N(x) ∩ V2| − 3 + 0.25|N(x) ∩ V3|.

If x ∈ V 1
2 , then

g(x) ≥ 2 + 0.25× 3 + 0.25× 1− 3 + 0.25|N(x) ∩ V3| = 0.25|N(x) ∩ V3|.

If x ∈ V 2
2 , then

g(x) ≥ 2 + 0.25× 3 + 0.25× 2− 3 + 0.25|N(x) ∩ V3| = 0.25 + 0.25|N(x) ∩ V3|.

If |N(x) ∩ V1| ≥ 3, then

g(x) ≥ 3 + 0.25× 2 + 0.25× 1− 3 + 0.25|N(x) ∩ V3| = 0.75 + 0.25|N(x) ∩ V3|.

Suppose |{x41, x42, x51, x52} ∩ V3| ≥ 2. Then e(G[V2, V3]) ≥ 2|{x41, x42, x51, x52} ∩ V3| ≥ 4. Note
that V 2

2 ̸= ∅. Thus∑
x∈V \V1

g(x) ≥
∑
x∈V2

g(x) ≥ 0.25 +
∑
x∈V2

0.25|N(x) ∩ V3| = 0.25 + 0.25e(G[V2, V3]) ≥ 1.25.

Suppose |{x41, x42, x51, x52} ∩ V3| = 1, say x41 ∈ V3. Then {x42, x51, x52} ⊆ V2 and x42 ∈ V 2
2 . We

see {x51, x52} ⊆ V 2
2 or x42 ∈ N(a2)∩N(a3). Note that |N(x42)∩V1| ≥ 3 when x42 ∈ N(a2)∩N(a3).

Thus ∑
x∈V \V1

g(x) ≥
∑
x∈V2

g(x) ≥ 0.75 +
∑
x∈V2

0.25|N(x) ∩ V3| = 0.75 + 0.25e(G[V2, V3]) ≥ 1.25.
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It remains to consider the case {x41, x42, x51, x52} ⊆ V2, that is {x41, x42, x51, x52} ⊆ V 2
2 . If V3 ̸= ∅,

then e(G[V2, V3]) ≥ 1 and∑
x∈V \V1

g(x) ≥
∑
x∈V2

g(x) ≥ 0.25|V 2
2 |+

∑
x∈V2

0.25|N(x) ∩ V3| ≥ 1 + 0.25e(G[V2, V3]) ≥ 1.25.

If |N(x) ∩ V1| ≥ 3 for some x ∈ V2, then∑
x∈V \V1

g(x) ≥
∑
x∈V2

g(x) ≥ 0.75 + 0.25(|V 2
2 | − 1) +

∑
x∈V2

0.25|N(x) ∩ V3| ≥ 1.5.

Next we assume that |N(x) ∩ V1| = 2 for each x ∈ V2 and |V3| = 0. Note that for each x ∈ V 1
2 ,

let xx1 ∈ E(G[V2]), we have x1 ∈ N(a2) ∩ N(a3). Thus x1 /∈ {x41, x42, x51, x52}. If |V2| ≥ 5,
then V 2

2 \ {x41, x42, x51, x52} ̸= ∅. Thus |V 2
2 | ≥ 5 and

∑
x∈V \V1

g(x) ≥ 1.25. If |V2| ≤ 4, that is
V2 = {x41, x42, x51, x52}, then we have |V4| ≥ n − |V2| − |V3| − 6 = n − 10 because |V3| = 0. Note
that n ≥ 20. Thus

e(G) =e(G[V1]) + e(G[V2]) + e(G[V1 ∪ V4, V2]) + e(G[V4])

≥7 + 4 + 8 + 2|V4|+
3|V4|
2

> 3n− 9

Case 3: e(G[V1]) = 7 and there is no copy of K1,2 in G[V1 \ {a}] or 5 ≤ e(G[V1]) ≤ 6.

In this case, we define a new function g′ as follows.

• For x ∈ V2, let g′(x) = |N(x) ∩ V1|+ 0.5|N(x) ∩ V2| − 3.

• For x ∈ V3 ∪ V4, let g′(x) = |N(x) ∩ (V1 ∪ V2)|+ 0.5|N(x) ∩ (V3 ∪ V4)| − 3.

We see

e(G) = e(G[V1]) + e(G[V2]) + e(G[V1, V2]) + e(G[V3]) + e(G[V1, V3]) + e(G[V2, V3]) + e(G[V4])

+ e(G[V4, V2 ∪ V3])

= e(G[V1]) + 3(|V2|+ |V3|+ |V4|) +
∑

x∈V \V1

g′(x)

= e(G[V1]) + 3(n− |V1|) +
∑

x∈V \V1

g′(x). (7)

For each x ∈ V2, by Proposition 3.1(iv), |N(x) ∩ V2| ≥ 2. Thus g(x) ≥ 0.25 because d(x) ≥ 5.
It follows that

∑
x∈V \V1

g(x) ≥ 0.25|V2|. It suffices to consider the following two subcases.

Subcase 3.1: |V2| ≥ 13 or |V3 ∪ V4| ≥ 7

Suppose |V2| ≥ 13. Then

e(G) = e(G[V1]) + 3(n− |V1|) +
∑

x∈V \V1

g(x) ≥ 5 + 3n− 18 + 0.25|V2| ≥ 3n− 9.75
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and so e(G) ≥ 3n− 9 because e(G) is an integer.
Suppose |V3 ∪ V4| ≥ 7. By Proposition 3.1(iv), |N(x) ∩ V2| ≥ 2 for each x ∈ V \ V1. Thus

g′(x) ≥ 0 for each x ∈ V2, g′(x) ≥ 1 for each x ∈ V3, and g′(x) ≥ 0.5 for each x ∈ V4. It follows
that

e(G) = e(G[V1]) + 3(n− |V1|) +
∑

x∈V \V1

g′(x) ≥ 5 + 3n− 18 + 0.5|V3 ∪ V4| ≥ 3n− 9.5.

Since e(G) is an integer, e(G) ≥ 3n− 9.

Subcase 3.2: |V2| ≤ 12 or |V3 ∪ V4| ≤ 6

Since n ≥ 20, |V3 ∪ V4| ≥ 2. We first prove the following claim.

Claim 4 If there is no copy of K1,2 in G[V1 \ {a}] and |V3 ∪ V4| ≥ 2, then
∑

x∈V3∪V4
g′(x) ≥ 2. In

particular, if |V3| ≥ 1 or |N(z) ∩ V2| ≥ 3 for some z ∈ V4, then
∑

x∈V3∪V4
g′(x) ≥ 3.

Proof. By the definition of g′-function and δ(G) = 5, we have for each x ∈ V3, g′(x) ≥ 1 and for
each x ∈ V4, g′(x) ≥ 0.5. When |V3 ∪ V4| ≥ 4,

∑
x∈V3∪V4

g′(x) ≥ 2. When 2 ≤ |V3 ∪ V4| ≤ 3, for
each x ∈ V3 ∪ V4, we have |N(x) ∩ (V1 ∪ V2)| ≥ 5− (|V3 ∪ V4| − 1). Thus

g′(x) ≥ (6− |V3 ∪ V4|) + 0.5(|V3 ∪ V4| − 1)− 3 = 2.5− 0.5(|V3 ∪ V4|

and ∑
x∈V3∪V4

g′(x) ≥ (2.5− 0.5(|V3 ∪ V4|))|V3 ∪ V4| ≥ 3.

Next we assume that |V3| ≥ 1 or |N(z) ∩ V2| ≥ 3 for some z ∈ V4. To prove
∑

x∈V3∪V4
g′(x) ≥ 3,

it suffices to consider the case |V3 ∪ V4| ≥ 4 by the above discussion. If |V3 ∪ V4| ≥ 5 or |V3| ≥ 2,
then

∑
x∈V3∪V4

g′(x) ≥ 3. Suppose |V3 ∪ V4| = 4 and |V3| ≤ 1. Let V3 ∪ V4 = {y1, y2, y3, y4} and
{y1, y2, y3} ⊆ V4. Let y4 ∈ V3 or |N(y4) ∩ V2| ≥ 3 when y4 ∈ V4. If g′(yi) ≥ 1 for some i ∈ [3], then∑

x∈V3∪V4
g′(x) ≥ 3. So we assume g′(yi) = 0.5 for each i ∈ [3], then we have |N(yi)∩(V3∪V4)| = 3.

Thus G[{y1, y2, y3, y4}] is a clique. It follows that g′(y4) ≥ 1.5 and
∑

x∈V3∪V4
g′(x) ≥ 3.

Since |V3 ∪ V4| ≥ 2,
∑

v∈V3∪V4
g′(v) ≥ 2 by Claim 4. When e(G[V1]) ≥ 7, by inequality

(7), e(G) ≥ 3n − 9. Now we consider the case e(G[V1]) = 6. If we can show
∑

v∈V2
g′(v) > 0

or
∑

v∈V3∪V4
g′(v) > 2, by Claim 4 and (7), then e(G) > 3n − 10 and so e(G) ≥ 3n − 9. If

there exists a vertex u ∈ V2 such that |N(u) ∩ V1| ≥ 3, then g′(u) ≥ 1 and so
∑

v∈V2
g′(v) > 0.

If V3 ̸= ∅, then
∑

v∈V3∪V4
g′(v) ≥ 3 by Claim 4. Thus we may assume that |N(v) ∩ V1| = 2

for each v ∈ V2 and V3 = ∅. We choose a vertex x ∈ V2. Without loss generality, suppose
x ∈ N(a1) ∩ N(a2). Since xai /∈ E for each i ∈ {3, 4, 5}, there is a copy of K2,2 between N(ai)

and N(x), say {ai1, ai2} ∼ {xi1, xi2}. Note that there is no copy of K1,2 in G[V1 \ {a}]. Thus
{ai1, ai2} ∩ V2 ̸= ∅ for each i ∈ {3, 4, 5}. Recall that |N(v) ∩ V1| = 2 for each v ∈ V2 and
V3 = ∅. We have {xi1, xi2} ∩ (V2 ∪ V4) ̸= ∅ for each i ∈ {3, 4, 5}. By Proposition 3.1(ii), we have
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|N(w) ∩ V2| ≥ 3 for each w ∈ (
∪

i∈{3,4,5}{xi1, xi2}) ∩ (V2 ∪ V4). Thus
∑

v∈V3∪V4
g′(v) ≥ 3 by Claim

4 or
∑

v∈V2
g′(v) ≥ 0.5.

Next we consider e(G[V1]) = 5. If
∑

v∈V \V1
g′(v) > 3, by (7), then e(G) > 3n − 10 and so

e(G) ≥ 3n − 9. Thus we prove
∑

v∈V \V1
g′(v) > 3 in the following. Recall

∑
v∈V3∪V4

g′(v) ≥ 2. If
there is a vertex x ∈ V2 with |N(x) ∩ V1| ≥ 4, then g′(x) ≥ 2 and∑

v∈V \V1

g′(v) ≥ g′(x) +
∑

v∈V3∪V4

g′(v) ≥ 4.

If there are two different vertices x, y ∈ V2 with |N(x) ∩ V1| = |N(y) ∩ V1| = 3, then g′(x) ≥ 1,
g′(y) ≥ 1 and ∑

v∈V \V1

g′(v) ≥ g′(x) + g′(y) +
∑

v∈V3∪V4

g′(v) ≥ 4.

Suppose x ∈ V2 with |N(x) ∩ V1| = 3, and |N(v) ∩ V1| = 2 for each v ∈ V2 \ {x}. Let N(x) ∩ V1 =

{a1, a2, a3}. Since xa4 /∈ E, there is a copy of K2,2 between N(x) and N(a4), say {x11, x12} ∼
{a41, a42}. If V3 ̸= ∅, by Claim 4, then

∑
v∈V3∪V4

g′(v) ≥ 3. Thus∑
v∈V \V1

g′(v) ≥ g′(x) +
∑

v∈V3∪V4

g′(v) ≥ 4.

So we may assume that V3 = ∅. Then {a41, a42} ⊆ V2 and {x11, x12} ∩ (V2 ∪ V4) ̸= ∅. Let
w ∈ {x11, x12} ∩ (V2 ∪ V4). By Proposition 3.1(ii), |N(w) ∩ V2| ≥ 3. Thus g′(w) ≥ 0.5. If w ∈ V2,
then ∑

v∈V \V1

g′(v) ≥ g′(x) + g′(w) +
∑

v∈V3∪V4

g′(v) ≥ 3.5.

If w ∈ V4, by Claim 4, then
∑

v∈V \V1
g′(v) ≥ 4.

Suppose |N(v) ∩ V1| = 2 for each v ∈ V2. Since |V3 ∪ V4| ≤ 6 and n ≥ 20, |V2| ≥ 8. Recall the
definition of g-function, for each v ∈ V2, we have g(v) ≥ 0.25 and if g(v) > 0.25, then g(v) ≥ 0.5. We
see there exists a vertex x ∈ V2 such that g(x) = 0.25, otherwise, g(v) ≥ 0.5 for each v ∈ V2 and so∑

v∈V2
g(v) ≥ 0.5|V2| ≥ 4. By (6), e(G) ≥ 5+3(n−6)+4 = 3n−9. We choose such a vertex x ∈ V2

such that g(x) = 0.25. Then d(x) = 5 and let N(x) = {a1, a2, x11, x12, z}, where {a1, a2} ⊆ V1,
{x11, x12} ⊆ V2 and z ∈ V4. Note that xaj /∈ E for each j ∈ {3, 4, 5}. By Proposition 3.1(i), there
is a copy of K2,2 between N(x) and N(aj), say {xj1, xj2} ∼ {aj1, aj2}. We see {aj1, aj2} ⊆ V2 ∪ V3

for each j ∈ {3, 4, 5}. Since |N(v) ∩ V1| = 2 for each v ∈ V2, {xj1, xj2} ⊈ V1 for each j ∈ {3, 4, 5}.
Otherwise, {xj1, xj2, aj} ⊆ N(aj1) ∩ V1, a contradiction.

Suppose V3 ̸= ∅. Then we have
∑

v∈V3∪V4
g′(v) ≥ 3 by Claim 4. We have |V3| ≤ 3, otherwise∑

v∈V3
g′(v) ≥ 4 and we are done. Note that {aj1, aj2} ⊆ V2 ∪ V3 for any j ∈ {3, 4, 5}. When

|
∪

j∈{3,4,5}{aj1, aj2}| ≤ 5, we may assume a31 = a41. When |
∪

j∈{3,4,5}{aj1, aj2}| = 6, we have
|
∪

j∈{3,4,5}{aj1, aj2}∩V2| ≥ 3 because |V3| ≤ 3, so we may assume {a31, a41} ⊆
∪

j∈{3,4,5}{aj1, aj2}∩
V2. In two cases, we have {a31, a41} ⊆ V2. Let k ∈ {3, 4}. If {xk1, xk2} ∩ V2 ̸= ∅, let w ∈

17



{xk1, xk2} ∩ V2, then {x, ak1} ⊆ N(w)∩ V2, Proposition 3.1(ii) implies that |N(w)∩ V2| ≥ 3 and so
g′(w) ≥ 0.5. Thus ∑

v∈V \V1

g′(v) ≥ g′(w) +
∑

v∈V3∪V4

g′(v) ≥ 3.5.

So we assume {xk1, xk2} ∩ V2 = ∅. Note that {xk1, xk2} ⊈ V1. Since d(x) = 5, {xk1, xk2} = {a1, z}
or {a2, z}, and so N(ak1)∩N(ak2)∩ V1 = {ak, aℓk} for some ℓk ∈ [2]. Then {x, a31, a32, a41, a42} ⊆
N(z) ∩ V2. Note that |N(v) ∩ V1| = 2 for any v ∈ V2. Since x ∈ V12, {a31, a32} ⊆ V1ℓ3 and
{a41, a42} ⊆ V1ℓ4 , |{x, a31, a32, a41, a42}| = 5, which follows that g′(z) ≥ 2. Note that V3 ̸= ∅ and
g′(y) ≥ 1 for each y ∈ V3 and g′(v) ≥ 0.5 for each v ∈ V4. Recall z ∈ V4 and |V3 ∪ V4| ≥ 2. So∑

v∈V3∪V4
g′(v) > 3 when |V3 ∪V4| ≥ 3. If |V3 ∪V4| = 2, then g′(y) > 1 for y ∈ V3 because d(y) ≥ 5.

Therefore
∑

v∈V3∪V4
g′(v) > 3.

It remains to consider V3 = ∅. Then {aj1, aj2} ⊆ V2 for any j ∈ {3, 4, 5}. When {xj1, xj2}∩V2 =

∅ for any j ∈ {3, 4, 5}, then {xj1, xj2} = {a1, z} or {a2, z}. Note that |N(v) ∩ V1| = 2 for each
v ∈ V2. Since {aj1, aj2} ⊆ Vjℓj for ℓj ∈ [2], |(

∪
j∈{3,4,5}{aj1, aj2})∪ {x}| = 7. Thus |N(z)∩ V2| ≥ 7,

which implies that
∑

v∈V2
g′(v) ≥ 4. When there exists j ∈ {3, 4, 5} such that {xj1, xj2} ∩ V2 ̸= ∅,

then g′(w) ≥ 0.5 for w ∈ {xj1, xj2} ∩ V2 because |N(w) ∩ V2| ≥ 3 by Proposition 3.1(ii). In this
case, we have z /∈ {xj1, xj2}∩V4. Otherwise, Proposition 3.1(ii) implies |N(z)∩V2| ≥ 3. By Claim
4, ∑

v∈V \V1

g′(v) ≥ g′(w) +
∑

v∈V3∪V4

g′(v) ≥ 3.5.

Thus we are done. If |N(x11) ∩ V2|+ |N(x12) ∩ V2| ≥ 7, then we have

g′(x11)+g′(x12) = e(G[{x11, x12}, V1])+0.5(e(G[{x11}, V2])+e(G[{x12}, V2]))−6 ≥ 4+3.5−6 = 1.5.

Thus
∑

v∈V \V1
g′(v) ≥ 3.5, and we are done. So it suffices to prove |N(x11)∩V2|+ |N(x12)∩V2| ≥ 7

in the following. Since z /∈ {xj1, xj2}, we have {xj1, xj2} ∩ V2 ̸= ∅ for any j ∈ {3, 4, 5}. Recall
N(x) = {a1, a2, x11, x12, z} and x ∈ N(x11) ∩ N(x12) ∩ V12. Then {a31, a32, a41, a42, a51, a52} ⊆
N(x11) ∪N(x12). If |{a31, a32, a41, a42, a51, a52}| ≥ 5, then

|N(x11) ∩ V2|+ |N(x12) ∩ V2| = |(N(x11) ∪N(x12)) ∩ V2|+ |(N(x11) ∩N(x12)) ∩ V2| ≥ 7.

Suppose that |{a31, a32, a41, a42, a51, a52}| ≤ 4. Note that |N(x) ∩ V1| = 2 for each x ∈ V2.
We obtain |{a31, a32, a41, a42, a51, a52}| ≥ 3. When {x31, x32} ∩ V1 ̸= ∅, say aℓ ∈ {x31, x32} for
some ℓ ∈ [2], then {a31, a32} ⊆ V3ℓ and {a31, a32} ∩ {ak1, ak2} = ∅ for each k ∈ {4, 5}. Since
|{a31, a32, a41, a42, a51, a52}| ≤ 4, we have {xk1, xk2} = {x11, x12} for each k ∈ {4, 5}, that is
|N(x11) ∩N(x12) ∩

∪
j∈{3,4,5}{aj1, aj2}| ≥ 2. Thus

|N(x11) ∩ V2|+ |N(x12) ∩ V2| =|(N(x11) ∪N(x12)) ∩ V2|+ |(N(x11) ∩N(x12)) ∩ V2|

≥|
∪

j∈{3,4,5}
{aj1, aj2} ∪ {x}|+ 3 ≥ 7.
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When {xj1, xj2}∩V1 = ∅ for each j ∈ {3, 4, 5}, then {xj1, xj2} = {x11, x12} for each j ∈ {3, 4, 5} and∪
j∈{3,4,5}{aj1, aj2} ⊆ N(x11) ∩ N(x12). By |

∪
j∈{3,4,5}{ai1, ai2}| ≥ 3 and x /∈

∪
j∈{3,4,5}{ai1, ai2},

we have |N(x11) ∩ V2|+ |N(x12) ∩ V2| ≥ 8.
As a result, we have e(G) ≥ 3n− 9 for n ≥ 9 in each case and so sat5(n,K3,3) ≥ 3n− 9.

This completes the proof of Theorem 1.3.

4 Conclusion

Based on above results, we make the following conjecture, which proposes an exact value for
sat(n,K3,3).

Conjecture 4.1 For n ≥ 9, sat(n,K3,3) = 3n− 9.

By Theorem 1.2, sat(n,K3,3) ≤ 3n − 9 for n ≥ 9. To confirm Conjecture 4.1, it suffices to
prove sat(n,K3,3) ≥ 3n− 9 for n ≥ 9. Let G be a K3,3-saturated graph with n vertices and n ≥ 9.
Proposition 3.1(i) implies δ(G) ≥ 2. If δ(G) ≥ 6, then e(G) ≥ 3n ≥ 3n − 9. Thus we only need
to consider 2 ≤ δ(G) ≤ 5. We have proved satδ(n,K3,3) ≥ 3n − 9 when δ ∈ {2, 5}. Actually, for
δ ∈ {3, 4}, we can also apply the method in this paper, but it is more complex and there are quite
a few cases to consider.

Acknowledgments. Huang was partially supported by the National Natural Science Foun-
dation of China (No. 12171256). Lei was partially supported by the National Natural Science
Foundation of China (No. 12371351). Shi and Zhang were partially supported by the National
Natural Science Foundation of China (No. 12161141006), the Natural Science Foundation of Tianjin
(No. 20JCJQJC00090).

References

[1] T. Bohman, M. Fonoberova and O. Pikhurko, The saturation function of complete partite
graphs, J. Combin. 1(2010), 149–170.

[2] G. Chen, R. Faudree and R. Gould, Saturation numbers of books, Electron. J. Combin.
15(2008), # 118.

[3] Y. Chen, Minimum K2,3-saturated graphs, J. Graph Theory 76(4)(2014),309–322.

[4] P. Erdős, A. Hajnal and J. Moon, A problem in graph theory, Amer. Math. Monthly, 71(1964),
1107–1110.

[5] R. Gould and J. Schmitt, Minimum degree and the minimum size of Kt
2-saturated graphs,

Discrete Math. 307(2007), 1108–1114.

19



[6] L. Kászonyi and Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory
10(1986), 203–210.

[7] L. Ollmann, K2,2-saturated graphs with a minimal number of edges, in Combinatorics, Graph
Theory and Computing, Proc. 3rd Southeast. Conf., Boca Raton, (Utilitas Math., Winnipeg),
(1972), 367–392.

[8] O. Pikhurko, The minimum size of saturated hypergraphs, Combin. Probab. Comput. 8(1999),
483–492.

[9] O. Pikhurko and J. Schmitt, A note on minimum K2,3-saturated graphs, Australas J Combin.
40(2008), 211–215.

[10] Z. Tuza, C4-saturated graphs of minimum size, Acta Univ. Carolin. Math. Phys. 30(1989),
161–167.

[11] D. West, Introduction to Graph Theory, Prentice hall, Upper Saddle River, 2001.

20


