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Abstract

A path in an edge-colored graph is called a conflict-free path if there exists

a color used on only one of its edges. An edge-colored graph is called conflict-

free connected if there is a conflict-free path between each pair of distinct

vertices. The conflict-free connection number of a connected graph G, denoted

by cfc(G), is defined as the smallest number of colors that are required to make

G conflict-free connected. In this paper, we obtain Erdös-Gallai-type results

for the conflict-free connection numbers of graphs.

Keywords: conflict-free connection coloring; conflict-free connection number;

Erdös-Gallai-type result.
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1 Introduction

All graphs mentioned in this paper are simple, undirected and finite. We fol-

low book [1] for undefined notation and terminology. Let P1 = v1v2 · · · vs and

P2 = vsvs+1 · · · vs+t be two paths. We denote P = v1v2 · · · vsvs+1 · · · vs+t by P1 ⊙ P2.

Coloring problems are important subjects in graph theory. The hypergraph version of

∗Supported by NSFC No.11871034, 11531011 and NSFQH No.2017-ZJ-790.
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conflict-free coloring was first introduced by Even et al. in [7]. A hypergraph H is a

pair H = (X,E) where X is the set of vertices, and E is the set of nonempty subsets

of X , called hyper-edges. The conflict-free coloring of hypergraphs was motivated to

solve the problem of assigning frequencies to different base stations in cellular net-

works, which is defined as a vertex coloring of H such that every hyper-edge contains

a vertex with a unique color.

Later on, Czap et al. in [6] introduced the concept of conflict-free connection

colorings of graphs motivated by the conflict-free colorings of hypergraphs. A path

in an edge-colored graph G is called a conflict-free path if there is a color appearing

only once on the path. The graph G is called conflict-free connected if there is a

conflict-free path between each pair of distinct vertices of G. The minimum number

of colors required to make a connected graph G conflict-free connected is called the

conflict-free connection number of G, denoted by cfc(G). If one wants to see more

results, the reader can refer to [3, 4, 5, 6]. For a general connected graph G of order

n, the conflict-free connection number of G has the bounds 1 ≤ cfc(G) ≤ n − 1.

When equality holds, cfc(G) = 1 if and only if G = Kn and cfc(G) = n − 1 if and

only if cfc(G) = K1,n−1.

The Erdös-Gallai-type problem is an interesting problem in extremal graph theory,

which was studied in [9, 10, 11, 12] for rainbow connection number rc(G); in [8]

for proper connection number pc(G); in [2] for monochromatic connection number

mc(G). We will study the Erdös-Gallai-type problem for the conflict-free number

cfc(G) in this paper.

2 Auxiliary results

At first, we need some preliminary results.

Lemma 2.1 [6] Let u, v be distinct vertices and let e = xy be an edge of a 2-

connected graph. Then there is a u− v path in G containing the edge e.

For a 2-edge connected graph, the authors [5] presented the following result:

Theorem 2.2 [5] If G is a 2−edge connected graph, then cfc(G) = 2.

For a tree T , there is a sharp lower bound:

Theorem 2.3 [4] Let T be a tree of order n. Then cfc(T ) ≥ cfc(Pn) = ⌈log2 n⌉.
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Lemma 2.4 Let G be a connected graph and H = G − B, where B denotes the set

of the cut-edges of G. Then cfc(G) ≤ max{2, |B|}.

Proof. If B=∅, then by Theorem 2.2, cfc(G)=2. If |B| ≥ 1, then all the blocks

are non-trivial in each component of G− B. Now we give G a conflict-free coloring:

assign one edge with color 1 and the remaining edges with color 2 in each block of

each component of G− B; for the edges e ∈ B, we assign each edge with a distinct

color from {1, 2, · · · , |B|}.

Now we check every pair of vertices. Let u and v be arbitrary two vertices.

Consider first the case that u and v are in the same component of G − B. If u and

v are in the same block, by Lemma 2.1 there is a conflict-free u− v path. If u, v are

in different blocks, let P = P1 ⊙ P2 ⊙ · · · ⊙ Pr be a u − v path, where Pi (i ∈ [r])

is the path in each block of the component. Then we can choose a conflict-free path

in one block, say P1, and choose a monochromatic path with color 2 in each block

of the remaining blocks, say Pi (2 ≤ i ≤ r − 1), clearly, P is a conflict-free u − v

path. Now consider the case that u and v are in distinct components of G − B. If

there exists one cut-edge e with color c /∈ {1, 2}, then there is a conflict-free u − v

path since the color used on e is unique. If there does not exist cut-edge with color

c /∈ {1, 2}, then suppose that there is only one cut-edge e = xy with color 1, without

loss of generality, let u, x be in a same component and v, y be in a same component.

We choose a monochromatic u−x path P1 with color 2 and choose a monochromatic

v − y path P2 with 2, then P = P1xyP2 is a conflict-free u− v path. If there is only

one cut-edge e = st colored by 2, without loss of generality, then we say u, s are in

the same component and t, v in a same component, we choose a monochromatic u−s

path P1 and a conflict-free t− v path P2 in each component. Then P = P1stP2 is a

conflict-free u−v path. If there are exactly two cut-edges e1 = st and e2 = xy colored

by 1 and 2, respectively, without loss of generality, we say that u, s are in a same

component, t, x are in a same component and y, v are in a same component. Then

we choose a monochromatic u, s path P1, t, x path P2 and y, v path P3 in the three

components, respectively, with color 2. Hence, P = P1stP2xyP3 is a conflict-free u−v

path. So, we have cfc(G) ≤ max{2, |B|}. �

Lemma 2.5 Let G be a connected graph of order n with k cut-edges. Then

|E(G)| ≤
(

n

k

)

+ k

.
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Proof. Clearly, it holds for k = 0. Assuming that k ≥ 1. Let G be a maximal

graphs with k cut-edges. Let B be the set of all the bridges. And let G − B be

the graph by deleting all the cut-edges. Let C1, C2, · · · , Ck+1 be the components of

G−B and ni be the orders of Ci. Then E(G) =
∑k+1

i=1

(

ni

2

)

+k. Let Ci and Cj be two

components of G − B with 1 < ni ≤ nj. Now we construct a graph G′ by moving

a vertex v from Ci to Cj, replace v with an arbitrary vertex in V (Ck) \ v for the

cut-edges incident with v, add the edges between v and the vertices in Cj, and delete

the edges between v and the vertices in Ci, where v is not adjacent to the vertices

of Ci. Now we have |E(G′)| =
∑k+1

s=16=i,j

(

ns

2

)

+
(

ni−1

2

)

+
(

nj+1

2

)

+k=
∑k+1

s=16=i,j

(

ns

2

)

+
(

ni

2

)

-

ni − 1+
(

nj

2

)

+nj + k=|E(G)| + nj − ni + 1> |E(G)|. When we do repetitively the

operation, we have |E(G)| ≤
(

n

k

)

+ k. �

3 Main results

Now we consider the Erdös-Gallai-type problems for cfc(G). There are two types,

see below.

Problem 3.1 For each integer k with 2 ≤ k ≤ n − 1, compute and minimize the

function f(n, k) with the following property: for each connected graph G of order n,

if |E(G)| ≥ f(n, k), then cfc(G) ≤ k.

Problem 3.2 For each integer k with 2 ≤ k ≤ n − 1, compute and maximize the

function g(n, k) with the following property: for each connected graph G of order n,

if |E(G)| ≤ g(n, k), then cfc(G) ≥ k.

Clearly, there are two parameters which are equivalent to f(n, k) and g(n, k)

respectively. For each integer k with 2 ≤ k ≤ n − 1, let s(n, k) = max{|E(G)| :

|V (G)| = n, cfc ≥ k} and t(n, k) = min{|E(G)| : |V (G)| = n, cfc ≤ k}. By the

definitions, we have g(n, k) = t(n, k − 1)− 1 and f(n, k) = s(n, k + 1) + 1.

Using Lemma 2.4 we first solve Problem 3.1.

Theorem 3.3 f(n, k) =
(

n−k−1

2

)

+k + 2 for 2 ≤ k ≤ n− 1.

Proof. At first, we show the following claims.

Claim 1: For k ≥ 2, f(n, k) ≤
(

n−k−1

2

)

+k + 2.

Proof of Claim 1: We need to prove that for any connected graphG, if E(G) ≥
(

n−k−1

2

)

+k+

2, then cfc(G) ≤ k. Suppose to the contrary that cfc(G) ≥ k+1. By Lemma 2.4, we

have |B| ≥ k + 1. By Lemma 2.5, E(G) ≤
(

n−k−1

2

)

+k + 1, which is a contradiction.
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Claim 2: For k ≥ 2, f(n, k) ≥
(

n−k−1

2

)

+k + 2.

Proof of Claim 2: We construct a graph Gk by identifying the center vertex of a

star Sk+2 with an arbitrary vertex of Kn−k−1. Clearly, E(Gk) =
(

n−k−1

2

)

+k+1. Since

cfc(Sk+2) = k + 1, then cfc(Gk) ≥ k + 1. It is easy to see that cfc(Gk) = k + 1.

Hence, f(n, k) ≥
(

n−k−1

2

)

+k + 2.

The conclusion holds from Claims 1 and 2. �

Now we come to the solution for Problem 3.2, which is divided as three cases.

Lemma 3.4 For k = 2, g(n, 2)=
(

n

2

)

−1.

Proof. Let G be a complete graph of order n. The number of edges in G is
(

n

2

)

, i.e.,

E(G) =
(

n

2

)

. Clearly, when g(n, 2) =
(

n

2

)

−1 for every G, cfc(G) ≥ 2. �

Lemma 3.5 For every integer k with 3 ≤ k < ⌈log2 n⌉, g(n, k) = n− 1.

Proof. We first give an upper bound of t(n, k). Let Cn be a cycle. Then t(n, k) ≤ n

since cfc(Cn) = 2 ≤ k. And then, we prove that t(n, k) = n. Suppose t(n, k) ≤ n−1.

Let Pn be a path with size n − 1. Since cfc(Pn) = ⌈log2 n⌉ by Theorem 2.3, it

contradicts the condition the k < ⌈log2 n⌉. So t(n, k) = n. By the relation that

g(n, k) = t(n, k − 1)− 1, we have g(n, k) = n− 1. �

Lemma 3.6 For k ≥ ⌈log2 n⌉, g(n, k) does not exist.

Proof. Let Pn be a path. Then we have t(n, k) ≤ n − 1 since cfc(Pn) = ⌈log2 n⌉.

And since t(n, k) ≥ n − 1, it is clear that t(n, k) = n − 1. Since every graph G is

connected, g(n, k) ≥ n − 1. By the relation that g(n, k) = t(n, k − 1) − 1, we have

g(n, k) = n− 2 for k ≥ ⌈log2 n⌉, which contradicts the connectivity of graphs. �

Combining Lemmas 3.4, 3.5 and 3.6, we get the solution for Problem 3.2.

Theorem 3.7 For k with 2 ≤ k ≤ n− 1,

g(n, k) =











(

n

2

)

− 1, k = 2

n− 1, 3 ≤ k < ⌈log2 n⌉

does not exist, ⌈log2 n⌉ ≤ k ≤ n− 1.
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