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Abstract

Let Tn denote the set of trees with n vertices. Suppose that each tree in Tn is

equally likely. We show that the number of non-isomorphic rooted trees obtained

by rooting a tree equals (µr + o(1))n for almost every tree of Tn, where µr is a

constant. As an application, we show that in Tn the number of any given pattern,

which is a fixed small tree with internal vertices specified, is asymptotically

normally distributed with mean ∼ µMn and variance ∼ σMn, where µM and σM

are some constants related to the given pattern. This solves an open question

claimed in Kok’s thesis.
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1 Introduction

A pattern M is a prescribed tree. We say that M occurs in a tree T if M is a subtree

of T in the sense that the degree of each internal vertex (of degree more than one) of

M matches the degree of the corresponding vertex in T , while each external vertex (of

degree one) of M matches a vertex of T with an arbitrary degree. Let Tn denote the

set of trees with n vertices. If we use Xn,M(T ) to denote the number of occurrences of
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a given pattern M in T ∈ Tn, then Xn,M(T ) is a random variable with probability

P (Xn,M = k) =
tn,k
tn

,

where tn,k denotes the number of those trees in Tn that the number of occurrences of

the pattern M in each of the trees is k, and tn = |Tn|.
Moreover, let Rn denote the set of rooted trees. We can also consider the number

of occurrences of a given pattern in Rn. Denote the corresponding random variable by

Xn,M(R).

The main work of this paper is to show that some random variable Yn in Tn (or

Rn) satisfies
Yn −E(Yn)√

Var(Yn)
→w N (0, 1),

where N (0, 1) is the random variable with standard normal distribution and →w means

weak convergence. We then call this random variable Yn asymptotically normal. More-

over, if
Yn − µn√

σn
→w N (0, 1),

then Yn is asymptotically normal with mean ∼ µn and variance ∼ σn. We refer to [10]

for details.

In fact, it was shown in [3] that in Rn the number Xn,M(R) of occurrences of any

given pattern is asymptotically normal with mean ∼ µMn and variance ∼ σMn, where

µM and σM are some constants corresponding to the given pattern. But, for the set

Tn there is no such a result on normal distribution. In [9], the authors proved that

for any given pattern in Tn the limiting distribution has a density (a + bt2)ect
2
, where

a, b, c are some constants. The mean and variance of the number of occurrences of any

given pattern are still asymptotically µMn and σMn where the constants are the same

as in Rn. Clearly, if one shows that b = 0, then the distribution is normal. For some

special patterns, such as a star pattern (or a node with a given degree) [5], a double-

star pattern [11], and a path pattern [10], the corresponding limiting distributions were

proved to be normal. For some previous work we refer to Robinson and Schwenk [16].

For more details, we refer to [3, 9, 10, 16]. Moreover, Gittenberger [7], Panagiotou and

Sinha [15] considered the case for the growing star pattern (the number of vertices of

the star tending to infinity with n), which yields a non-normal limiting distribution.

However, Kok claimed in his thesis [10] that for any given pattern it seems much more

difficult to demonstrate the normality. In this paper, we will solve this problem from

a new point of view which is different from the existing ones. We study the number of

non-isomorphic rooted trees obtained by rooting a tree and get that for almost every

tree of order n the number of corresponding non-isomorphic rooted trees is (µr+o(1))n
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(the authors of [2] and [12] computed this number for other sorts of trees). Based on

this result and the normal limiting property on the number of occurrences of any given

pattern in Rn, we will show that in Tn the limiting distribution is also normal.

We organize this paper as follows. In Section 2, we will introduce some basic

knowledge that will be used in our proofs. In Section 3, we will present the detailed

proofs. Our focus is on studying the number of non-isomorphic rooted trees obtained

by rooting a tree. Section 4 is devoted to study the limiting distribution for any given

pattern.

2 Preliminaries

Let Tn be a tree in Tn. We say that two vertices u and v of Tn are in the same vertex

class if u can be mapped to v by an automorphism of Tn. Clearly, this establishes an

equivalent relation on the vertex set of Tn, and hence the vertices in Tn are partitioned

into some classes. If u and v are in the same vertex class of Tn, then rooting Tn at u

and v, respectively, yields the same rooted tree.

Hence, the number of non-isomorphic rooted trees obtained by rooting a tree is

exactly the number of vertex classes of the tree. Let Xn(T ) represent the number of

vertex classes of the tree T . Clearly, Xn(T ) is also a random variable on Tn. Therefore,

we can similarly introduce the random variable Xn(R) of vertex classes in the space of

rooted trees Rn.

Notice that Xn(T ) ≥ 1. In analogy to the enumeration of patterns in [9], we

introduce the following two functions:

t(x) =
∑

n≥1

tnx
n,

t(x, u) =
∑

n≥1,k≥1

tn,kx
nuk,

where the coefficient tn,k denotes the number of trees each having k vertex classes.

Clearly,
∑

k≥1 tn,k = tn. We always assume that every tree of Tn is equally likely.

Then, P (Xn(T ) = k) =
tn,k

tn
.

If we consider Xn(R) in Rn, we also suppose that each tree in Rn is equally likely.

We can define similar generating functions on Rn, and let r(x), r(x, u) be the related

functions, respectively. One can see that r(x, 1) = r(x). Suppose

r(x, u) =
∑

n≥1,k≥1

rn,kx
nuk,
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where rn,k is the number of rooted trees in Rn each having k vertex classes. It follows

that in Rn

P (Xn = k) =
rn,k
rn

,

where rn = |Rn|.
We should notice that when we count the number of vertex classes of a rooted tree,

the root itself always forms a class with a single vertex, since any automorphism on

a rooted tree must map the root to itself. That is a bit different from the case for

non-rooted trees.

Furthermore, suppose that the radius of convergence of r(x) is x0. Otter [13] showed

that x0 satisfies that r(x0) = 1 and the asymptotic expansion of r(x) is

r(x) = 1− b1(x0 − x)1/2 + b2(x0 − x) + b3(x0 − x)3/2 + · · · , (1)

where x0 ≈ 0.3383219 and b1 ≈ 2.6811266. And t(x) has a similar expansion, namely,

t(x) = c0 + c1(x0 − x) + c2(x0 − x)3/2 + · · · . (2)

Applying the transfer theorems in [6] to Eqs.(1) and (2), we get that

tn ∼ Cx−n
0

n5/2
,

rn ∼ Dx−n
0

n3/2
,

where C and D are some constants. For this, we refer to [14, 16]. It was shown that

C = 0.5349 . . . and D = 0.4399 . . .. The book [6] gives us more details on the transfer

theorems.

In what follows, we first investigate Xn in Rn. To start with, we need the following

two lemmas. We refer to [4, 10] for detailed information.

Lemma 1. Suppose that F (x, y, u) is an analytic function around (x0, y0, 1) such that

F (x0, y0, 1) = y0, Fy(x0, y0, 1) = 1, Fyy(x0, y0, 1) 6= 0 and Fx(x0, y0, 1) 6= 0. Then

there exist a neighborhood U0 of (x0, 1), a neighborhood U1 of y0 and analytic functions

g(x, u), h(x, u) and f(u) which are defined on U0, such that the only solutions y ∈ U1

with y = F (x, y, u) and (x, u) ∈ U0 are given by

y(x, u) = g(x, u)± h(x, u)

√
1− x

f(u)
. (3)

Furthermore, g(x0, 1) = y0 and h(x0, 1) =
√

2f(1)Fx(x0,y0,1)
Fyy(x0,y0,1)

. If u is real, then f(u) is the

radius of convergence of the power series by fixed u in y(x, u).
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We refer the reader to [4, 16] for more details. In [4], the authors always assume that

F (x, y, u) has non-negative Taylor coefficients, which is not a necessary requirement.

The above result can be found in [16] where F (x, y, u) is required to be analytic around

(x0, y0, 1). The proof of it ultimately relies on Weierstrass preparation theorem. In

Flajolet-Sedgewick’s book [6], there is much information on the singular expansion of

a function as Eq.(3).

Furthermore, the following claim will be used in the sequel.

Remark 1. Here, we point out that if u is real and sufficiently close to 1, then

Fy(f(u), y(f(u), u), u) = 1. This is because if Fy(f(u), y(f(u), u), u) 6= 1, y can be

analytically continued around (f(u), u) by implicit function theorem, which contradicts

that x = f(u) is a singular point.

Lemma 2. Let y(x, u) denote a function defined on a neighborhood U of (x0, 1),

y(x, u) =
∑

yn,kx
nuk, where yn,k ≥ 0 and y(x, u) = F (x, y(x, u), u) = g(x, u) +

h(x, u)
√

1− x
f(u)

, where f(1) = x0. Moreover, f(u) satisfies the property as in Lemma

1. If y(x, 1) is aperiodic (a power series ỹ(x, u) is called aperiodic if it satisfies that

from y(x, 1) = xr ỹ(xd, 1) follows d = 1) and if |Fy(x, y, u)| < 1 for |x| ≤ f(u) and

x 6= f(u) where u is real and positive around 1, then there exists an η > 0 such that

y(x, u) can be analytically continued in

Ũ = {(x, u) : |x| < x0 + η, |u| < 1 + η, arg(x− f(u)) 6= 0, x 6= f(u)}.

Moreover, let y(x, u) =
∑

yn(u)x
n, then

yn(u) =
h(f(u), u)

2
√
πn3/2

f(u)−n +O(
f(u)−n−1

n5/2
).

And if h(f(1), 1) 6= 0, then the corresponding random variable Xn determined by y(x, u)

(like r(x, u) or t(x, u)) is asymptotically normal with mean ∼ µn and variance ∼
σn.

Remark 2. In [3, 4, 10], the authors always assumed that all the Taylor coefficients

of F (x, y, u) are non-negative. But from the proof procedure in [4], we find that

|Fy(x, y, u)| < 1 is sufficient to get Lemma 2. Because this condition is an initial

must when using implicit function theorem. And we can absolutely follow the entire

proof in [4] to illustrate this lemma. Hence, we do not repeat the procedure here and

refer the reader to the papers [3, 4].
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3 The number of non-isomorphic rooted trees ob-

tained by rooting a tree

Now we concentrate on the number of vertex classes of a rooted tree. Recall that an

automorphism of a rooted tree must map the root to itself, which is a bit different from

an automorphism of a non-rooted tree. We shall show that Xn(R) is asymptotically

normal with mean (µr + o(1))n and variance (σr + o(1))n in Rn.

In what follows, there appears an expression of the form Z∗(Sn; f(x, u)) (or Z(Sn; f(x))),

which is the substitution of the counting series f(x, u) (or f(x)) into the cycle index

Z(Sn) of the symmetric group Sn. This involves replacing each variable si in Z(Sn)

by f(xi, u) (or f(xi)); see [6]. For instance, if n = 3, then Z(S3) = (1/3!)(s31 +

3s1s2 + 2s3) and Z(S3; f(x)) = (1/3!)(f(x)3 + 3f(x)f(x2) + 2f(x3)), Z∗(S3; f(x, u)) =

(1/3!)(f(x, u)3 + 3f(x, u)f(x2, u) + 2f(x3, u)). We refer to [8] for details, where it was

shown that

r(x) = x ·
∑

n≥0

Z(Sn; r(x)) = x · e
∑

k≥1
r(xk)

k . (4)

The coefficient of xp in Z(Sn; r(x)) is the number of rooted trees of order p+ 1 whose

roots have degree n. Multiplication of Z(Sn; r(x)) by x corrects the power of x so

that xp in xZ(Sn; r(x)) is the number of those trees with p vertices. This expression

Z(Sn; r(x)) follows from the Pólya Enumeration Theorem; see [8]. For the case of

double variables, we refer the reader to [3, 5] on the enumeration of patterns.

Analogously, we take the same procedure for r(x, u) in this paper. But, here we

should notice that if the same two copies of a rooted tree with k vertex classes connect

to a root, then the number of vertex classes of the new rooted tree is k + 1, because

there is only one new class, i.e., the new root, which is different from the procedure for

calculating the number of occurrences of a star patten [5]. In other words, the number

of vertex classes is not an additive parameter any more. Hence, we must use r(xk, u)

to denote the generating function for rooted trees with k copies of a branch. Moreover,

when we apply Pólya Enumeration Theorem to get the expression of r(x, u) as the

form of Eq.4, we need to consider the non-additive property further.

For instance, suppose that the tree has a root of degree 2. Then, xu·Z∗(S2, r(x, u)) =

xu · 1
2
(r(x, u)2 + r(x2, u)). We have rn,k choices to form a rooted tree with the same

two branches. In r(x, u)2, suppose the coefficient of x2nu2k is rn,k,2. We should notice

that if the two branches of the rooted tree are the same, the rn,k trees counted by

error since the number of vertex classes is k rather than 2k. We should modify it

into (rn,k,2 − rn,k)x
2nu2k + rn,kx

2nuk. Hence, the generating function of trees with root

degree 2 is xu(Z∗(S2, r(x, u)) − 1
2
r(x2, u2) + 1

2
r(x2, u)). Notice that the modification
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only happens to the power of u which represents the number of vertex classes.

In general case, we need to modify xu · Z∗(Sn, r(x, u)) to get the correct expres-

sion of the generating function of trees with root degree n. The n branches of the

rooted tree with root degree n are classified by automorphisms into ki classes each

having i branches, 1 ≤ i ≤ n. By the non-additive property of vertex class, simi-

lar to the case of n = 2 (i.e., trees with root degree 2), the power of u in the term
n!

1k12k2 ···nknk1!···kn!r(x, u)
k1 · · · r(xn, u)kn must be modified. For instance, if there is a

branch class of length s+2 (s ≤ k1), the enumerating series must be · · · r(xs+2, u) · · · .
But in n!

1k12k2 ···nknk1!···kn!r(x, u)
k1 · · · r(xn, u)kn, the coefficient contains the case that s

classes of length 1 (and
(
k1
s

)
ways to choose the s branches) and one classes of length 2

are the same, but the corresponding series becomes · · · r(xs+2, u2) · · · , where the ver-

tex classes are counted twice (in the s branch classes with length 1, the vertex classes

are counted once, but in the other class with two branches they are counted again).

Hence, the correction term is − · · · r(xs+2, u2) · · ·+ · · · r(xs+2, u) · · · . Clearly, if u = 1,

the correction term equals 0. For general cases we can deal with them similarly, for

example, the correction to the case having s − 1 branch classes of length 1 and one

branch class of length 3, or at least three kinds of branch classes with different length.

Then, all the correction terms can be concluded into the form

n!

1k12k2 · · ·nknk1! · · · kn!

k1∑

s=0

(
k1
s

)
r(x, u)k1−s(φn,s(x, u)− ϕn,s(x, u)),

where φn,s(x, u), ϕn,s(x, u) are polynomial functions of r(xl, um), 2 ≤ l ≤ n, 1 ≤ m ≤ n,

and φn,s(x, 1) − ϕn,s(x, 1) = 0. In what follows, we will find that we do not need to

know the exact forms of φn,s(x, u) and ϕn,s(x, u).

Therefore, the generating function of r(x, u) is as follows:

r(x, u) = xu · (
∑

n≥0

Z∗(Sn, r(x, u))

+ xu ·
∑

1k1+···+nkn=n,n≥0

1

n!
(

n!

1k12k2 · · ·nknk1! · · ·kn!

k1∑

s=0

(
k1
s

)
r(x, u)k1−s(φn,s(x, u)− ϕn,s(x, u)))

(5)

= xu · e
∑

k≥1
1
k
r(xk,u)

+ xu ·
∑

1k1+···+nkn=n,n≥0

1

n!
(

n!

1k12k2 · · ·nknk1! · · ·kn!

k1∑

s=0

(
k1
s

)
r(x, u)k1−s(φn,s(x, u)− ϕn,s(x, u))),

Let y = y(x, u) = r(x, u), and y = F (x, y, u). Here, we notice that the Taylor coeffi-

cients of x, y and u need not be non-negative any more. However by Remark 2, Lemma

1 and Lemma 2 can still be applied.

7



Recall that r(x, 1) = r(x) and there exists a real number x0 such that r(x0) = 1,

i.e., y(x0, 1) = 0. Frequently, it is easy to see that F (x0, y0, 1) = 1 and Fx(x0, y0, 1) 6= 0.

In order to use Lemma 1, we must verify the conditions on the derivative of y. From

Eq. (5), it follows that

Fy(x, y, u) = xu · ey+
∑

k≥2
1
k
r(xk,u)

+ xu ·
∑

1k1+···+nkn=n,n≥0

1

n!
(

n!

1k12k2 · · ·nknk1! · · · kn!
k1∑

s=0

(
k1
s

)
(k1 − s)yk1−s−1(φn,s(x, u)− ϕn,s(x, u)))

(6)

= xu · ey+
∑

k≥2
1
k
r(xk,u)

+ xu ·
∑

1k1−1+···+nkn=n−1,n≥1

1

n!
(

n!

1k12k2 · · ·nkn(k1 − 1)! · · ·kn!
k1∑

s=0

(
k1 − 1

s

)
yk1−s−1(φn,s(x, u)− ϕn,s(x, u)))

= F (x, y(x, u), u)

= F (x, r(x, u), u)

= r(x, u)

=
∑

n≥1,k≥1

rn,kx
nuk.

Then, we have Fy(x0, y(x0, 1), 1) = r(x0, 1) = 1 and Fyy(x0, y(x0, 1), 1) 6= 0 which

implies that all the conditions in Lemma 1 hold. That is, for the generating function

y = F (x, y, u), there exist a neighborhood U0 of (x0, 1), a neighborhood U1 of y0 and

analytic functions g(x, u), h(x, u) and f(u) which are defined on U0, such that the

only solutions y ∈ U1 with y = F (x, y, u) and (x, u) ∈ U0 are given by y(x, u) =

g(x, u) + h(x, u)
√

1− x
f(u)

. Clearly, this expression is coincident with Eq.(1) if we set

u = 1.

Moreover, by the definition of r(x, u), we know rn,k ≥ 0. By Remark 1, for |x| ≤
f(u) and x 6= f(u) where u is real and sufficiently close to 1,

|Fy(x, y, u)| = |F (x, y, u)| = |F (x, r(x, u), u)| = |r(x, u)| = |
∑

n≥1,k≥1

rn,kx
nuk|

<
∑

n≥1,k≥1

rn,k|x|n|u|k

≤
∑

n≥1,k≥1

rn,kf(u)
nuk

= Fy(f(u), y(f(u), u), u)

= 1.

Thus, by Lemma 2, we have that the random variable Xn(R) is asymptotically normal
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with mean

E(Xn(R)) ∼ µrn (n → ∞)

and variance

Var(Xn(R)) ∼ σrn (n → ∞),

where µr and σr are some constants. Here, we just concentrate on the rooted trees.

Some researchers considered the number of vertex classes of other kind of trees, for

example phylogenetic trees [2], and the conclusion also points to an asymptotically

normal distribution.

In this paper, we mainly focus on the overall property of a probability space. Fol-

lowing the book [1], we will say that almost every (a.e.) graph in a graph space Gn has

a certain property Q if the probability P (Q) in Gn converges to 1 as n tends to infinity.

Occasionally, we will say almost all instead of almost every.

From Chebyshev inequality

P
[∣∣Xn − E(Xn)

∣∣ > n3/4
]
≤ VarXn

n3/2
→ 0 as n → ∞,

it follows that for almost all rooted trees, E(Xn)−n3/4 ≤ Xn ≤ E(Xn) +n3/4, namely,

Xn = (1 + o(1))E(Xn). We can get the following conclusion.

Theorem 3. For almost all rooted trees in Rn, the number of vertex classes under

automorphisms is (µr + o(1))n.

Therefore, we can study the number of vertex classes in a tree. To get the final

result, we need another property as follows. We have defined the number of vertex

classes of a tree. We call a vertex fixed if this single vertex forms a class.

Lemma 4. Almost every tree in Tn has more than ⌊ 1
24
n⌋ fixed vertices.

Proof. We prove this result by contradiction. Suppose that T ′
n is a subset of Tn such

that every tree T ′
n in T ′

n has at most ⌊ 1
24
n⌋ fixed vertices. We first show that these fixed

vertices form a subtree in T ′
n. In fact, for any two fixed vertices v1 and v2, they can

only map to v1 and v2 among themselves, respectively. Thus, any (v1, v2)-path maps to

the (v1, v2)-path under any automorphism. So, all vertices in the (v1, v2)-path are fixed

ones, that is, all the fixed vertices form a connected subgraph of T ′
n. Consequently, the

fixed vertices induce a subtree T ′′
n of T ′

n and |T ′′
n | ≤ ⌊ 1

24
n⌋.

Case 1: If |T ′′
n | = 0, then the structure of T ′

n is determined by one half of the

vertices in T ′
n. Hence, the number of trees in Tn having a symmetrical edge is at most

|Tn
2
|, and |Tn

2
|

|Tn| → 0, which completes the proof.

Case 2: We suppose |T ′′
n | > 0. Let u be a vertex in T ′′

n . Suppose that Hu is a

subtree of T ′
n attached to u such that all the vertices in Hu are not in T ′′

n . Suppose
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there are m copies of Hu after deleting u. We have m ≥ 2; otherwise the vertex in

Hu connecting to u is also a fixed vertex, a contradiction. If m is even, we get rid of

m/2 copies of Hu, and if m is odd, we get rid of (m + 1)/2 copies of Hu. We repeat

this operation on all vertices in T ′′
n . At the end, this produces a new tree A with at

most ⌊1
2
(n + 1/24 · n)⌋ vertices, and we denote the set of these new trees by A 25

48
n.

Moreover, we replace these ⌊m
2
⌋ copies of Hu by a vertex, that is, we add some vertices

to u and different copies of Hu correspond to different vertices. Thus, we constructed

another tree A′. An example of this is shown in Figure 1. Observe that T ′′
n is a subtree

of A′. We shall show that A′ has at most ⌊n/3⌋ vertices. Color the vertices in A′

corresponding to T ′′
n black and the others gray. We already know that there are at

most ⌊ 1
24
n⌋ black vertices. Let u be a black vertex. Recall that a gray vertex being

neighbor of u in A′ corresponds to a set of subtrees in A. We claim that if the set

contains only one subtree with a single vertex of A, then for each u this kind of gray

vertex must be unique. Otherwise, if for a black vertex u there are two different such

kinds of gray vertices v′1, v
′
2 in A′, then these two vertices correspond to two leaves

in A, and so they should be contained in a same set of subtrees, and hence the two

leaves will be replaced by one gray vertex by the construction of A′ from A, which

contradicts the assumption that v′1 and v′2 are two different gray vertices. Therefore,

in A′ there are at most ⌊ 1
24
n⌋ gray vertices such that each of them corresponds to a

set containing a single vertex of A. Moreover, there are at most ⌊1
2
· 1
2
n⌋ gray vertices

such that each of them corresponds to a set containing at least two single vertices or

subtrees (or forests) having at least two vertices. Consequently, we get that A′ has at

most ⌊n/3⌋ vertices.

Figure 1: An example of A′ and A.

In the above, we have built a map from T ′
n to A 25

48
n. Suppose A is a tree in A 25

48
n.

Then |A| ≤ ⌊25
48
n⌋. There are at most

(⌊ 25
48

n⌋
k

)
ways of choosing k vertices to form a
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subtree of A. We color these vertices in A by black. Notice that any tree in T ′′
n has at

most ⌊ 1
24
n⌋ vertices. Then, the number of all subtrees of A with order k is less than

(⌊ 25
48

n⌋
k

)
≤

(⌊ 25
48

n⌋
⌊ 1
24

n⌋
)
.

We select one subtree T ′′
n , and color the vertices by black. Suppose that A′ is the

corresponding tree defined as above. For u ∈ T ′′
n , each gray vertex in A′ connecting

to u corresponds to a kind of subtree Hu. Moreover, the number of Hu can be odd or

even in T ′
n. From the structure of A, we reconstruct the tree T ′

n from A by deciding

the number of Hu to be odd or even. Since the number of gray vertices is less than

|V (A′)| ≤ ⌊n/3⌋, we can get that there exist at most 2⌊
n
3
⌋ different T ′

n’s mapped to the

same A.

Therefore, for trees in T ′′
n with k vertices, at most 2⌊

n
3
⌋ · 2C · x− 25

48
n

0 ·
(⌊ 25

48
n⌋

k

)
trees in

T ′
n map to them. Recall that each T ′

n corresponds to some T ′′
n . Moreover, we need the

fact that the order of Tn is asymptotically
C·x−n

0

n5/2 . So, the number of trees with at most

n vertices is asymptotically less than 2 · Cx−n
0 . Then we have

|T ′
n| ≤

⌊1/24n⌋∑

k=1

2
n
3 · 2C · x− 25

48
n

0 ·
(⌊25

48
n⌋
k

)

≤ 1

24
n2

n
3 · 2C · x− 25

48
n

0 ·
(⌊25

48
n⌋

⌊ 1
24
n⌋

)

=
C

12
n · 2n

3 · x− 25
48

n

0 ·
(⌊25

48
n⌋

⌊ 1
24
n⌋

)
.

By Stirling’s approximation, i.e., n!√
2πn(n

e
)n

→ 1 as n → ∞, we can get that when n

is large enough, (⌊25
48
n⌋

⌊ 1
24
n⌋

)
<

C0√
n
1.2n,

where C0 is a constant. Then,

|T ′
n| < C1n

1/2 · 2n
3 x

− 25
48

n

0 1.2n,

where C1 is some real number for large n. It is known that |Tn| ∼ C·x−n
0

n
5
2

. Recall that

x0 ≈ 0.3383219. Consequently, |T ′
n|

|Tn| → 0.

Hence, in conclusion we get that almost all trees do not belong to T ′
n. The proof is

thus complete.

Next, we proceed to estimate the number of non-isomorphic rooted trees obtained

by rooting a tree from Theorem 3 and Lemma 4. The following theorem is established.

Theorem 5. For almost all trees in Tn, the number of non-isomorphic rooted trees

obtained by rooting a tree is (µr + o(1))n.

11



Proof. By Lemma 4, we know that almost every tree has at least 1
24
n fixed vertices,

and denote the set of these trees by T ∗
n . Clearly, T ∗

n ⊆ Tn and |T ∗
n |

|Tn| → 1. Let T be a

tree in T ∗
n . If we pick up one of the fixed vertices as the root, we can get a rooted tree

having the same number of vertex classes. There are at least 1
24
n rooted trees in which

the roots of the rooted trees correspond to the fixed vertices of T . And the number of

vertex classes equals that in T . Hence, there are at least |T ∗
n | · 1

24
n rooted trees in Rn

such that the roots are fixed vertices in the associated tree. These rooted trees form a

set R∗
n. Notice that |Rn| ∼ D·x−n

0

n
3
2

and |T ∗
n | ∼ C·x−n

0

n
5
2

. We get |R∗
n|

|Rn| 9 0. Combining this

with Theorem 3, we have that the number of vertex classes is (µr + o(1))n for almost

all rooted trees in R∗
n.

According to whether the number of vertex classes is (µr + o(1))n or not, we divide

R∗
n into two parts R∗

n,1 and R∗
n,2. There are at most

|R∗
n,2|
1
24

n
trees in T ∗

n corresponding

to R∗
n,2. Since |R∗

n,2| = o(|R∗
n|) = o(|Rn|), then |R∗

n,2|
1
24

n
= o(|Tn|) = o(|T ∗

n |).
Therefore, almost all trees in T ∗

n correspond to the rooted trees in R∗
n,1. And recall

that the root of the tree in R∗
n,1 is a fixed vertex. That is, almost all trees in T ∗

n also

have (µr+o(1))n vertex classes. Consequently, almost every tree in Tn has (µr+o(1))n

vertex classes. The proof is complete.

From Theorem 5, we have an intuitive grasp that the rooted tree space is just the

tree space with a scale (µr + o(1))n. Not rigorously to say, if we consider any special

structure in trees, the case that this structure will appear (µr + o(1))n times in rooted

trees is in a large probability, and the probabilities of appearances in tree space and

rooted tree space seem to be the same. Moreover, by the asymptotical values of |Rn|
and |Tn|, we can get that µr ≈ 0.8210.

4 The distribution for any pattern in Tn
In this section, we shall focus on the distribution of the number of occurrences Xn,M(T )

of a pattern M on tree space Tn. It is known that the distribution of the number of

occurrences of a pattern in Rn is asymptotically normal. We refer to [9] for this. We

show that the corresponding distribution in Tn is also asymptotically normal. It has

been shown that Xn,M(T ) has mean (µM + o(1))n and variance (σM + o(1))n and for

almost every tree, and the number of non-isomorphic rooted trees obtained by rooting

a tree is (µr + o(1))n. The constants µ and σ are the same as those for the case of

rooted trees, namely, E(Xn,M(T )) ∼ µMn ∼ E(Xn,M(R)) andVar(Xn,M(T )) ∼ σMn ∼
Var(Xn,M(R)). Based on these two results, we proceed to get our final result.

Theorem 6. For any given pattern, the number of occurrences of the pattern in trees
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is asymptotically normally distributed.

Proof. Recall that for each given patternM , E(Xn,M(T )) ∼ µMn andVar(Xn,M(T )) ∼
σMn, where µM and σM are some constants. Let T 1

n be the subset of Tn such that the

number of occurrences Xn,M(T ) satisfies that
Xn,M (T )−µMn√

σMn
≤ t, where t is some real

number. Then, the probability

P

(
Xn,M(T )− µMn√

σMn
≤ t

)
=

|T 1
n |

|Tn|
,

where T 1
n is the subset of Tn. For Rn, we shall try to show that

lim
n→∞

P

(
Xn,M(R)− µMn√

σMn
≤ t

)
= lim

n→∞
P

(
Xn,M(T )− µMn√

σMn
≤ t

)
.

We knew that

lim
n→∞

P

(
Xn,M(R)− µMn√

σMn
≤ t

)
= N(0, 1, t),

where N(0, 1, t) denotes the probability value of the normal distribution at t. Denote

by R1
n the set of rooted trees satisfying

Xn,M (R)−µMn√
σMn

≤ t. The last equation holds from

the fact that any pattern in Rn is asymptotically normally distributed.

If R is a rooted tree in R1
n corresponding to T ∈ Tn, then Xn,M(R) = Xn,M(T ). So,

a tree T is in T 1
n if and only if all the associated rooted trees are in R1

n. We split T 1
n into

two subsets, T 1′

n and T 1′′

n , one is the collection of trees corresponding to (µr + o(1))n

rooted trees, and the other is not, respectively. By Theorem 5, the number of rooted

trees corresponding to T 1′

n is |T 1′

n | ·(µ(R)+o(1))n, and |T 1′′

n | = o(|T 1
n |), i.e., the number

of rooted trees associated with T 1′′

n is at most o(|T 1
n |) · n. Then, it follows that

|T 1′

n | · (µr + o(1))n ≤ |R1
n| ≤ |T 1′

n | · (µr + o(1))n+ o(|T 1
n |) · n.

Since o(|T 1
n |) ·n = o(|R1

n|) and |T 1′
n |

|T 1
n | ∼ 1, we have |R1

n| = (µr + o(1))n · |T 1
n |. Therefore,

we get that

P

(
Xn,M(R)− µMn√

σMn
≤ t

)
=

|R1
n|

|Rn|

∼ |T 1
n |

|Tn|

= P

(
Xn,M(T )− µMn√

σMn
≤ t

)
.

Consequently,

lim
n→∞

P

(
Xn,M(T )− µMn√

σMn
≤ t

)
= lim

n→∞
P

(
Xn,M(R)− µMn√

σMn
≤ t

)

= N(0, 1, t).
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Then the variable Xn,M(T ) is also asymptotically normal with mean ∼ µMn and vari-

ance ∼ σMn. The proof is now complete.

Now, we have established that for any pattern the limiting distribution of the

number of occurrences in Tn is also normal, which solves an open question raised in

[10].

5 Conclusion

In this paper, we explored the limiting distribution on the number of different rooted

trees obtained by rooting a tree, and get the mean ∼ µrn and variance ∼ σrn. By the

asymptotical values of |Rn| and |Tn|, one can readily see that µr ≈ 0.8210. But we

do not focus on how to calculate the two constants µr and σr in detail. We refer the

readers to [16, 12] for more information, in which the authors did the computation for

some other cases. Surely, in this paper, µr and σr can be expressed by the derivatives

of f(u) or F (x, y, u) as in [3, 10], but we think that it is still much more complicated

to get the numerical value.

Acknowledgement: The authors are very grateful to the referees for useful sugges-

tions and comments, which are helpful for improving the presentation of the paper.
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[14] G. Pólya, Kombinatorische Anzahlbestimmungen fur Cruppcn, Graphen und

chemische, Acta Math 68(1937),145–254.

[15] K. Panagiotou, M.Sinha, Vertices of degree k in random unlabeled trees, J. Graph

Theory 69(2012), 114–130.

[16] R.W. Robinson, A.J. Schwenk, The distribution of degrees in a large random tree,

Discrete Math. 12(1975), 359–372.

15


