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Abstract

A path in a vertex-colored graph is a vertex-proper path if any two internal

adjacent vertices differ in color. A vertex-colored graph is proper vertex k-connected

if any two vertices of the graph are connected by k disjoint vertex-proper paths

of the graph. For a k-connected graph G, the proper vertex k-connection number

of G, denoted by pvck(G), is defined as the smallest number of colors required

to make G proper vertex k-connected. A vertex-colored graph is strong proper

vertex-connected, if for any two vertices u, v of the graph, there exists a vertex-

proper u-v geodesic. For a connected graph G, the strong proper vertex-connection

number of G, denoted by spvc(G), is the smallest number of colors required to make

G strong proper vertex-connected. These concepts are inspired by the concepts

of rainbow vertex k-connection number rvck(G), strong rainbow vertex-connection

number srvc(G), and proper k-connection number pck(G) of a k-connected graph

G. Firstly, we determine the value of pvc(G) for general graphs and pvck(G) for

some specific graphs. We also compare the values of pvck(G) and pck(G). Then,

sharp bounds of spvc(G) are given for a connected graph G of order n, that is,

0 ≤ spvc(G) ≤ n − 2. Moreover, we characterize the graphs of order n such that

spvc(G) = n − 2, n − 3, respectively. Finally, we study the relationship among

the three vertex-coloring parameters, namely, spvc(G), srvc(G) and the chromatic

number χ(G) of a connected graph G.
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1 Introduction

In this paper, all graphs considered are simple, finite and undirected. We refer to the

book [2] for undefined notation and terminology in graph theory. For simplicity, a set of

internally vertex-disjoint paths will be called disjoint. A path in an edge-colored graph

is a rainbow path if its edges have different colors. An edge-colored graph is rainbow k-

connected if any two vertices of the graph are connected by k disjoint rainbow paths of

the graph. For a k-connected graph G, the rainbow k-connection number of G, denoted

by rck(G), is defined as the smallest number of colors required to make G rainbow k-

connected. These concepts were first introduced by Chartrand et al. in [4, 5]. Since then,

a lot of results on the rainbow connection have been obtained; see [12, 13] for surveys of

related results.

As a natural counterpart of the concept of rainbow k-connection, the concept of rainbow

vertex k-connection was first introduced by Krivelevich and Yuster in [8] for k = 1, and

then by Liu et al. in [14] for general k. A path in a vertex-colored graph is a vertex-rainbow

path if its internal vertices have different colors. A vertex-colored graph is rainbow vertex

k-connected if any two vertices of the graph are connected by k disjoint vertex-rainbow

paths of the graph. For a k-connected graph G, the rainbow vertex k-connection number

of G, denoted by rvck(G), is defined as the smallest number of colors required to make G

rainbow vertex k-connected. There are many results on this topic, we refer to [6, 7, 11].

In 2011, Borozan et al. [3] introduced the concept of proper k-connection of graphs. A

path in an edge-colored graph is a proper path if any two adjacent edges differ in color. An

edge-colored graph is proper k-connected if any two vertices of the graph are connected by

k disjoint proper paths of the graph. For a k-connected graph G, the proper k-connection

number of G, denoted by pck(G), is defined as the smallest number of colors required to

make G proper k-connected. Note that

1 ≤ pck(G) ≤ min{χ′(G), rck(G)}, (1)

where χ′(G) denotes the edge-chromatic number. Recently, the case for k = 1 has been

studied by Andrews et al. [1] and Laforge et al. [9].

Inspired by the concepts above, now we introduce the concept of proper vertex k-

connection. A path in a vertex-colored graph is a vertex-proper path if any two internal

adjacent vertices differ in color. A vertex-colored graph is proper vertex k-connected if any

two vertices of the graph are connected by k disjoint vertex-proper paths of the graph. For

a k-connected graph G, the proper vertex k-connection number of G, denoted by pvck(G),

is defined as the smallest number of colors required to make G proper vertex k-connected.

We write pvc(G) for pvc1(G), and similarly, rc(G), rvc(G) and pc(G) for rc1(G), rvc1(G)
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and pc1(G). We have pvc(G) ≥ 1 if G is a noncomplete graph. For a complete graph G,

we set pvc(G) = 0, this is done because we want to be in accordance with the convention

that rvc(G) = 0. For k ≥ 2, by definition we have pvck(G) ≥ 1 if G is a k-connected

graph. It is easy to see that

0 ≤ pvck(G) ≤ min{χ(G), rvck(G)}, (2)

where χ(G) denotes the chromatic number of G. By Brooks’ theorem [2], if G is a

connected graph and is neither an odd cycle nor a complete graph, then χ(G) ≤ ∆, and

so pvck(G) ≤ ∆, where ∆ denotes the maximum degree of G.

2 Proper vertex k-connection

In this section, we determine the value of pvc(G) for general graphs and pvck(G) when G

is a cycle, a wheel, and a complete multipartite graph. Moreover, we show that pck(G) ≥

pvck(G) for k = 1 and provide an example graph G such that pck(G) > pvck(G) for k ≥ 2.

2.1 Proper vertex-connection number pvc(G)

From the definition of pvc(G), the following results are immediate. Recall that the

diameter of a connected graph G, denoted by diam(G), is the maximum of the distances

among pairs of vertices of G.

Proposition 1. Let G be a nontrivial connected graph. Then

(a) pvc(G) = 0 if and only if G is a complete graph;

(b) pvc(G) = 1 if and only if diam(G) = 2.

For the case that diam(G) ≥ 3, we have the following theorem.

Theorem 1. Let G be a nontrivial connected graph. Then, pvc(G) = 2 if and only if

diam(G) ≥ 3.

Proof. The necessity can be verified by Proposition 1.

Now we prove its sufficiency. Since diam(G) ≥ 3, we have that pvc(G) ≥ 2 and then we

just need to prove that pvc(G) ≤ 2. Let T be a spanning tree of G. For a vertex v ∈ V (T ),

let eT (v) denote the eccentricity of v in T , i.e., the maximum of the distances between v

and the other vertices in T . Let Vi = {u ∈ V (T ) : dT (u, v) = i}, where 0 ≤ i ≤ eT (v).

Hence V0 = {v}. Define a 2-coloring of the vertices of T as follows: If i is odd, color the

vertices of Vi with color 1; otherwise, color the vertices of Vi with color 2. It is easy to

check that for any two vertices x and y in G, there is a vertex-proper path connecting

them. Thus, pvc(G) ≤ 2, and therefore, pvc(G) = 2.
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2.2 Proper vertex k-connection of some specific graphs

In this subsection, we shall determine the value of pvck(G) for some specific graphs.

Let κ(G) = max{k : G is k-connected} denote the vertex-connectivity of G. Note that

pvck(G) is well defined if and only if 1 ≤ k ≤ κ(G). We start with the case that G

is a cycle of order n, denoted by Cn. Observe that κ(Cn) = 2. Clearly, pvc(C3) = 0,

pvc(C4) = pvc(C5) = 1, and pvc(Cn) = 2 for n ≥ 6. Moreover, we have the following

results for pvc2(Cn).

Theorem 2. pvc2(C3) = 1, pvc2(Cn) = 2 for n ≥ 4 even, and pvc2(Cn) = 3 for n ≥ 5

odd.

Proof. The assertion can be easily verified for C3. Now, let n ≥ 4. We consider two cases,

depending on the parity of n.

Case 1. n is even. By (2), we have that pvc2(Cn) ≤ χ(Cn) = 2. If one colors the

vertices of Cn with one color, then we do not have two vertex-proper paths between any

two adjacent vertices. Hence, pvc2(Cn) = 2 for n ≥ 4 even.

Case 2. n is odd. Similarly from (2), it follows that pvc2(Cn) ≤ χ(Cn) = 3. Assume

that Cn = v1v2 · · · vnv1 (n ≥ 5). If we have a vertex-coloring for Cn with two colors, then

there must exist two adjacent vertices, say v1 and v2, colored the same. However, there

do not have two vertex-proper paths between vn and v3. Thus, pvc2(Cn) = 3 for n ≥ 5

odd.

A graph obtained from Cn by joining a new vertex v to every vertex of Cn is the wheel

Wn. The vertex v is the center of Wn. Note that κ(Wn) = 3. Obviously, pvc(W3) = 0

and pvc(Wn) = 1 for n ≥ 4.

Theorem 3.

(a) pvc2(W3) = 1 and pvc2(Wn) = pvc(Cn) for n ≥ 4.

(b) pvc3(W3) = 1 and pvc3(Wn) = pvc2(Cn) for n ≥ 4.

Proof. (a) The assertion can be easily verified for W3. Now, let n ≥ 4. Take a proper

vertex connected coloring for the cycle Cn in Wn with pvc(Cn) colors and then color the

center with any used color. Clearly, Wn is proper vertex 2-connected. Thus, pvc2(Wn) ≤

pvc(Cn). On the other hand, consider a vertex-coloring for Wn with fewer than pvc(Cn)

colors. Then, there exist two vertices u, v in the cycle Cn of Wn such that we do not have

a vertex-proper u-v path along the cycle. Hence, there is at most one vertex-proper u-v

path in Wn (using the center of Wn). Thus, pvc2(Wn) ≥ pvc(Cn).

(b) This can be proved by a similar way as the proof of Theorem 3(a).
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For the complete graph Kn, we have that pvc(Kn) = 0 and pvc2(Kn) = pvc3(Kn) =

· · · = pvcn−1(Kn) = 1. Let Kn1,n2
denote the complete bipartite graph, where 2 ≤ n1 ≤

n2. Clearly, κ(Kn1,n2
) = n1. Then, we have pvc(Kn1,n2

) = 1 and pvck(Kn1,n2
) = 2 for

2 ≤ k ≤ n1. Let G = Kn1,...,nt
be a complete multipartite graph, where 1 ≤ n1 ≤ · · · ≤ nt

with t ≥ 3 and nt ≥ 2. In [14], Liu, Mestre and Sousa determined the rainbow vertex

k-connection number of Kn1,...,nt
. By the same method as the proof of Theorem 4 in [14]

and the fact that pvck(G) ≤ rvck(G), we deduce the following results.

Theorem 4. Let 1 ≤ n1 ≤ · · · ≤ nt, where t ≥ 3,nt ≥ 2 and m =
∑t−1

i=1
ni.

(a) If 1 ≤ k ≤ m− 2, then we have the following:

(i) pvck(Kn1,...,nt
) = 1 if 1 ≤ k ≤ m− nt−1 + 1.

(ii) pvck(Kn1,...,nt
) = 2 if m− nt−1 + 2 ≤ k ≤ m− 2.

(b) (i) pvcm−1(Kn1,...,nt
) = 1 if nt−1 ≤ 2.

(ii) pvcm−1(Kn1,...,nt
) = 2 if nt−1 ≥ 3 and we do not have nt = nt−1 = nt−2 odd.

(iii) pvcm−1(Kn1,...,nt
) = 3 if nt = nt−1 = nt−2 ≥ 3 are odd.

(c) (i) pvcm(Kn1,...,nt
) = 1 if nt−1 = 1.

(ii) pvcm(Kn1,...,nt
) = 2 if 2 ≤ nt−1 ≤ nt − 2.

(iii) pvcm(Kn1,...,nt
) = 2 if nt−1 = nt − 1 ≥ 2 and nt−2 ≤ 2, or nt−1 = nt ≥ 2

and nt−2 = 1.

(iv) pvcm(Kn1,...,nt
) = 3 if nt−1 = nt − 1 and nt−2 ≥ 3, or nt−1 = nt ≥ 3, nt−2 ≥ 2

and we do not have nt = nt−1 = nt−2 = nt−3 = 4 and t ≥ 4.

(v) pvcm(Kn1,...,nt
) = 4 if t ≥ 4 and nt = nt−1 = nt−2 = nt−3 = 4.

(vi) pvcm(Kn1,...,nt
) = s if nt = nt−1 = · · · = nt−s+1 = 2 and nt−s = nt−s−1 = · · · =

n1 = 1, for 1 ≤ s ≤ t.

2.3 Comparing pck(G) and pvck(G)

In [8], Krivelevich and Yuster compared the values of rc(G) and rvc(G). They observed

that one of rc(G) and rvc(G) cannot be bounded in terms of the other, by providing

example graphs G where rc(G) is much larger than rvc(G), and vice versa. In [14], Liu

et al. compared the values of rck(G) and rvck(G), similarly.

Here, we will compare the values of pck(G) and pvck(G). Note that pc(G) = 1 if

and only if G is a complete graph. In addition, by Proposition 1 we have the following

assertion: if diam(G) = 1, then pc(G) = 1 and pvc(G) = 0; if diam(G) = 2, then

pc(G) ≥ 2 and pvc(G) = 1; if diam(G) ≥ 3, then pc(G) ≥ 2 and pvc(G) = 2. Thus,
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we have pc(G) ≥ pvc(G). For k ≥ 2, the following theorem shows that there exists an

example graph G such that pck(G) > pvck(G).

Theorem 5. Let G be a complete bipartite graph with classes U and V , where U =

{u1, ..., ut} and V = {v1, ..., vk} (2 ≤ k < t). Then, pck(G) = t and pvck(G) = 2.

Proof. Clearly, pvck(G) = 2. Next we just need to prove pck(G) = t. Since G is a complete

bipartite graph, it follows that χ′(G) = ∆. Moreover, pck(G) ≤ χ′(G) in (1) and ∆ = t.

Then, pck(G) ≤ t. If one colors the edges of G with fewer than t colors, then there exist

two edges of {v1ui : ui ∈ U}, say v1u1 and v1u2, colored the same. Thus, we can not have

k disjoint proper paths between u1 and u2. Therefore, pck(G) = t.

We observe that pck(G) ≥ pvck(G) for k = 1. Moreover from Theorem 5, we find an

example such that pck(G) > pvck(G) for k ≥ 2. Note that pc2(G) = pvc2(G) if G is a

cycle of order n ≥ 4. However, we cannot show whether there exists a graph G such that

pck(G) < pvck(G). Thus, we pose the following problem.

Problem 1. Let k ≥ 2. Does it hold that pck(G) ≥ pvck(G) for any connected graph G?

3 Strong proper vertex-connection

In [10], Li et al. introduced the concept of strong rainbow vertex-connection. A vertex-

colored graph is strong rainbow vertex-connected, if for any two vertices u, v of the graph,

there exists a vertex-rainbow u-v geodesic, i.e., a u-v path of length d(u, v). For a con-

nected graph G, the strong rainbow vertex-connection number of G, denoted by srvc(G),

is the smallest number of colors required to make G strong rainbow vertex-connected.

A natural idea is to introduce the concept of the strong proper vertex-connection. A

vertex-colored graph is strong proper vertex-connected, if for any two vertices u, v of the

graph, there exists a vertex-proper u-v geodesic. For a connected graph G, the strong

proper vertex-connection number of G, denoted by spvc(G), is the smallest number of

colors required to make G strong proper vertex-connected. For a noncomplete graph

G, we have spvc(G) ≥ 1. Similar reason to the parameters rvc(G) and pvc(G), we set

spvc(G) = 0 if G is a complete graph. It is easy to see that if G is a nontrivial connected

graph, then

0 ≤ pvc(G) ≤ spvc(G) ≤ min{χ(G), srvc(G)}. (3)

The following results on spvc(G) are immediate from definition.
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Proposition 2. Let G be a nontrivial connected graph of order n. Then

(a) spvc(G) = 0 if and only if G is a complete graph;

(b) spvc(G) = 1 if and only if diam(G) = 2.

It is easy to obtain the following consequences.

Observation 1.

(1) spvc(P3) = 1 and spvc(Pn) = 2 for n ≥ 4;

(2) spvc(C4) = spvc(C5) = 1, spvc(Cn) = 2 for n ≥ 6 even, and spvc(Cn) = 3 for

n ≥ 7 odd;

(3) spvc(Ks,t) = 1 for s ≥ 2 and t ≥ 1;

(4) spvc(Kn1,n2,...,nk
) = 1 for k ≥ 3 and (n1, n2, . . . , nk) 6= (1, 1, . . . , 1);

(5) spvc(Wn) = 1 for n ≥ 4.

In this section, sharp upper and lower bounds of spvc(G) are given for a connected

graph G of order n, that is, 0 ≤ spvc(G) ≤ n − 2. We also characterize the graphs of

order n such that spvc(G) = n − 2, n − 3, respectively. Furthermore, we investigate the

relationship among the three vertex-coloring parameters, namely spvc(G), srvc(G) and

χ(G) of a connected graph G.

3.1 Bounds and characterization of extremal graphs

The problem of finding general bounds of srvc(G) has been solved completely by Li et

al. [10].

Lemma 1. [10] Let G be a connected graph of order n (n ≥ 3). Then 0 ≤ srvc(G) ≤ n−2.

Moreover, the bounds are sharp.

Lemma 2. [10] Let G be a nontrivial connected graph of order n. Then srvc(G) = n− 2

if and only if G = Pn.

Theorem 6. Let G be a nontrivial connected graph of order n. Then 0 ≤ spvc(G) ≤ n−2.

Equality on the right-hand side is attained if and only if G ∈ {P3, P4}.

Proof. By (3) and Lemma 1, it is obvious that 0 ≤ spvc(G) ≤ srvc(G) ≤ n− 2. On one

hand, we know that spvc(P3) = 1 = n− 2 and spvc(P4) = 2 = n− 2. On the other hand,

if spvc(G) = n− 2, then srvc(G) = n− 2. It follows that G ∈ {P3, P4} from Observation

1 and Lemma 2.

Theorem 7. Let G be a nontrivial connected graph of order n. Then spvc(G) = n− 3 if

and only if G is one of the twelve graphs in Figure 1.
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G1

G12G11G10

G9G8G7G6

G5G4G3G2

Figure 1: The twelve graphs in Theorem 7.

In order to prove Theorem 7, we need the lemma below.

Lemma 3. If G is a connected graph with order n ≥ 7, then spvc(G) < n− 3.

Proof. Let G be a connected graph with order n ≥ 7 and ∆ be the maximum degree of

G.

Case 1. ∆ = n − 1. Then, we have diam(G) ≤ 2. By Proposition 2, it follows that

spvc(G) ≤ 1 < n− 3.

Case 2. ∆ = n − 2. Let v be a vertex with the maximum degree ∆ and N(v) =

{v1, v2, . . . , vn−2} denote its neighborhood. Let v′ be the only vertex not adjacent to v

and N(v′) denote its neighborhood. Color the vertices of N(v′) with color 1 and all other

vertices with color 2. Now, we will show that for any two vertices u and w in G, there

exists a vertex-proper geodesic between them. Clearly, d(u, w) ≤ 3. Since G is connected,

there exists a vertex vi (i ∈ {1, 2, . . . , n−2}) such that v′ is adjacent to vi. If d(u, w) = 3,

then u = v′ and w ∈ N(v) by symmetry. Thus they are connected by a vertex-proper

geodesic uvivw. For the other cases, d(u, w) ≤ 2 and then there must be a vertex-proper

u-w geodesic. Therefore, spvc(G) ≤ 2 < n− 3.

Case 3. ∆ = n − 3. Let v be a vertex with the maximum degree ∆ and N(v) =

{v1, v2, . . . , vn−3} denote its neighborhood. Let v′ and v′′ be the vertices not adjacent to

v.

Subcase 3.1. N(v′) ∩ N(v′′) 6= ∅. Then, there exists a vertex vi (i ∈ {1, 2, . . . , n − 3})
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such that v′ and v′′ are adjacent to vi. Color the vertex vi with color 1 and all the other

vertices with color 2. Next, we shall show that there exists a vertex-proper geodesic

between any two vertices u and w in G. If d(u, w) = 3, then u ∈ {v′, v′′} and w ∈ N(v) by

symmetry. Thus they are connected by a vertex-proper path uvivw. For the other cases,

d(u, w) ≤ 2. Therefore, spvc(G) ≤ 2 < n− 3.

Subcase 3.2. N(v′) ∩ N(v′′) = ∅. Color the vertices of N(v′) with color 1, the vertices

of N(v′′) with color 2 and all the others with color 3. Firstly, suppose that v′v′′ is an

edge of G. If N(v′′) = {v′}, then there exists a vertex vi (i ∈ {1, 2, . . . , n− 3}) such that

v′ is adjacent to vi. By a similar discussion of Case 2, we obtain that G − v′′ is strong

proper vertex-connected. Furthermore, the color of v′ which is the unique neighbor of

v′′, is distinct from others. Thus, there exists a vertex-proper geodesic between any two

vertices in G. Similarly, the case that |N(v′′)| ≥ 2 can be proved. Now, assume that v′ is

not adjacent to v′′. If there is an edge between N(v′) and N(v′′), say v1v2 with v1 ∈ N(v′)

and v2 ∈ N(v′′), then v′v1v2v
′′ is a vertex-proper v′-v′′ geodesic; otherwise, v′v1vv2v

′′ is

a vertex-proper v′-v′′ geodesic. It can be verified for any other pair of vertices in G that

there exists a vertex-proper geodesic between them. Hence, spvc(G) ≤ 3 < n− 3.

Case 4. ∆ ≤ n − 4. By (3), we have spvc(G) ≤ χ(G). If G is an odd cycle, then

χ(G) = 3, and so spvc(G) ≤ 3 < n− 3; otherwise, χ(G) ≤ ∆ by Brook’ theorem [2], and

so spvc(G) ≤ ∆ < n− 3.

The proof is complete.

Now, we are ready to prove Theorem 7.

Proof of Theorem 7. By Proposition 2, we obtain that spvc(G) = n − 3 for G = Gi

(1 ≤ i ≤ 5). If G = Gi (6 ≤ i ≤ 11), then diam(G) ≥ 3, and so spvc(G) ≥ 2. A

2-coloring of the vertices of G = Gi (6 ≤ i ≤ 11) is shown in Figure 2 to make G strong

proper vertex-connected. Thus, spvc(G) = n − 3 for G = Gi (6 ≤ i ≤ 11). For the

graph G12, color the three non-leaves with distinct colors. Then, we can see that there

exists a vertex-proper geodesic for any two vertices. Hence, spvc(G12) ≤ 3. However,

if one colors the vertices of G12 with two colors, there exist two non-leaves having the

same color and then we can not find a vertex-proper geodesic between the corresponding

pendant vertices. Thus, spvc(G12) = 3.

1 112 2 1 2 1 2

1

1

1 1

12

2

1
1

1

1 1

1

2

2
2

2
2

2

1

1

Figure 2: A 2-coloring of vertices of G = Gi (6 ≤ i ≤ 11).
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It remains to verify the converse. Let G be a connected graph of order n ≥ 3 such that

spvc(G) = n − 3. By Lemma 3, we have that n ∈ {3, 4, 5, 6}. Firstly, suppose n = 6.

Then, spvc(G) = 3. By Proposition 2, we get diam(G) ≥ 3. Moreover, G contains a cycle;

otherwise, G is a tree and spvc(G) = 2. If G 6= G12, it follows that G contains a subgraph

isomorphic to one of the graphs H1, H2, H3, H4, H5, H6 in Figure 3, where a minimum

vertex-coloring is also shown for each graph to make it strong proper vertex-connected.

Moreover, color the remaining vertices of G with any used color if there exist. It is easy

to check that G is strong proper vertex-connected. Thus, spvc(G) ≤ 2 < 3, which is a

contradiction. If n = 5, then spvc(G) = 2. By Proposition 2, diam(G) ≥ 3. However, for

G 6= Gi (6 ≤ i ≤ 11), the diameter of G is at most two, which is a contradiction. Namely,

the graphs labeled as G6, G7, . . . , G11 are all of the graphs on 5 vertices with diameter

at least 3. Similarly, we deduce that G = Gi (2 ≤ i ≤ 5) for n = 4 and G = G1 for

n = 3.

H1 H6H5H4H3H2

1

1 1
1 1

1 1

1

1 1

1
1

1

2 2

2

2 2

2

2
2

2 2

2
2

2 2 2

2 2

22

Figure 3: Subgraphs H1, H2, . . . , H6 in the proof of Theorem 7.

3.2 Relationship of spvc(G), srvc(G) and χ(G)

By (3), if G is a nontrivial connected graph with diam(G) ≥ 3 such that spvc(G) = a

and srvc(G) = b, then 2 ≤ a ≤ b. Actually, this is the only restriction on the two

parameters.

Theorem 8. For every pair a, b of integers where 2 ≤ a ≤ b, there exists a connected

graph G such that spvc(G) = a and srvc(G) = b.

Proof. LetH be the corona cor(Ka) of the complete graphKa with V (Ka) = {v1, v2, . . . , va}

and V (H\Ka) = {v
′

1, v
′

2, . . . , v
′

a}, where v
′

i is the corresponding pendant vertex of vi for

1 ≤ i ≤ a. Let F = Pb−a with V (F ) = {w1, w2, . . . , wb−a}. Now let G be the graph

obtained from H and F by adding the edge v
′

aw1.

Firstly, we show that spvc(G) = a. Define a vertex-coloring of G as follows: Assign

the color j to vj for 1 ≤ j ≤ a and the color 1 to v
′

a. For 1 ≤ k ≤ b− a, if k is even,
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assign the color 1 to wk; otherwise, assign the color 2 to wk. We can see that every two

vertices x and y are connected by a vertex-proper x-y geodesic. Hence, spvc(G) ≤ a. If

one colors the vertices of G with fewer than a colors, then there must be two vertices vs

and vt, where 1 ≤ s, t ≤ a, such that they have the same color. However, we can not find

a vertex-proper geodesic between v
′

s and v
′

t. Thus, spvc(G) = a.

Next, we prove that srvc(G) = b. Define a vertex-coloring of G by assigning (1) the

color j to vj for 1 ≤ j ≤ a, (2) the color a + 1 to v
′

a and (3) the color a + 1 + k to wk

for 1 ≤ k ≤ b− a− 1. Since all non-leaves of G have distinct colors, G is strong rainbow

vertex-connected. Hence, srvc(G) ≤ b. If one colors the vertices of G with fewer than

b colors, then there must be two vertices of {v1, v2, . . . , va, v
′

a, w1, w2, . . . , wb−a−1} having

the same color. Furthermore, the colors of {v
′

a, w1, w2, . . . , wb−a−1} must be distinct since

there is only one path between va and wb−a. If the colors of vi and vj (1 ≤ i, j ≤ a) are

the same, then there does not exist a vertex-rainbow geodesic between v
′

i and v
′

j. If the

colors of vi and wk, where 1 ≤ i ≤ a− 1 and 1 ≤ k ≤ b− a− 1, are the same, then we

can not find a vertex-rainbow geodesic between v
′

i and wk+1. If the colors of va and vk

(1 ≤ k ≤ b− a− 1) are the same, then there does not exist a vertex-rainbow geodesic

between v1 and wk+1. Thus srvc(G) = b.

We saw in (3) that if G is a nontrivial connected graph with diam(G) ≥ 3 which is not

an odd cycle such that spvc(G) = a, χ(G) = b and ∆(G) = c, then 2 ≤ a ≤ b ≤ c. In

fact, this is the only restriction on the three parameters.

Theorem 9. For every triple a, b, c of integers where 2 ≤ a ≤ b ≤ c, there exists a

connected graph G such that spvc(G) = a, χ(G) = b and ∆(G) = c.

Proof. Let H = Kb with V (Kb) = {v1, v2, . . . , vb}. Then, add c− b+ 1 pendant vertices,

denoted by {v11, v
2
1, . . . , v

c−b+1

1 }, to v1, and a pendant vertex v1i to vi for 2 ≤ i ≤ a. Write

G as the resulting graph. It is easy to check that χ(G) = b and ∆(G) = c.

In the following, we show that spvc(G) = a. Define a vertex-coloring of G by assigning

the color j to vj for 1 ≤ j ≤ a. Moreover, color the remaining vertices of G with any used

color. It is easy to check that every two vertices x and y are connected by a vertex-proper

x-y geodesic. Hence, spvc(G) ≤ a. If one colors the vertices of G with fewer than a

colors, then there must be two vertices vj and vk (1 ≤ j, k ≤ a) such that they have the

same color. However, we can not find a vertex-proper geodesic between v1j and v1k. Thus

spvc(G) = a.
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