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Abstract

The spanning-tree packing number of a graph G is the maximum number of edge-
disjoint spanning trees contained in G. In this paper, we obtain a sharp lower bound
for the spanning-tree packing number of lexicographic product graphs.
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1 Introduction

All graphs in this paper are undirected, finite and simple. For any graph G of order
n, the spanning-tree packing number of G, denoted by o(G), is the maximum number of
edge-disjoint spanning trees contained in G. This has been used as measure of reliability
of communication network, and studied by several authors, see the surveys by Palmer
[9] and Ozeki and Yamashita [8]. It is worth pointing out that for a given graph G, the
maximum number of edge-disjoint spanning trees in G can be found in polynomial time;
see [12] (Page 879). Actually, Roskind and Tarjan [11] proposed a O(m?) time algorithm
for finding the maximum number of edge-disjoint spanning trees in a graph, where m is
the number of edges in the graph.

In [10], Peng and Tay determined the spanning-tree packing numbers of Cartesian
products of various combinations of complete graphs, cycles, complete multipartite graphs.
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Later, Ku, Wang and Hung [5] obtained the following result: o(GOH) > o(G)+o(H)—1
for two connected graphs G and H.

In this paper, we focus our attention on another graph product, called lexicographic
product. The lezicographic product (sometimes known as composition) of two graphs G
and H, written as G o H, is defined as follows: The vertex set of G o H is V(G) x V(H);
and any two distinct vertices (u,v) and (u/,v") of G o H are adjacent if and only if either
(u,u') € E(G) or u =’ and (v,v") € E(H). Note that, unlike the Cartesian product, the
lexicographic product is a non-commutative product since G o H is usually not isomorphic
to H o G. It is easy to see that |[E(G o H)| = |E(H)||V(G)| + |E(G)||V(H)|?.

Theorem 1 Let G and H be two connected nontrivial graphs, and let o(G) =k, o(H) = ¢,
[V(G)| =n1 (n1 >2), and |[V(H)| = ng (ng > 2). Then

(1) if kng = €ny, then o(G o H) > kna(= fny);
(2) if bny > knga, then o(G o H) > kng — [k’%—l} +0—1;

(3) if fny < kng, then o(Go H) > kng — 2[71/6171211 s

Moreover, the bounds are sharp.

2 Proof of Theorem 1

Throughout this paper, assume that G and H are two connected graphs with V(G) =
{u,ug, ..., up, } and V(H) = {v1,ve,...,vp,}, respectively. For v € V(H), we use G(v)
to denote the subgraph of Go H induced by the vertex set {(u;,v)|1 < j < ni}. Similarly,
for u € V(G), we use H(u) to denote the subgraph of G o H induced by the vertex set
{(u,v3) |1 <i < ng}. Werefer to the book [1] for graph theoretic notation and terminology
not described here. In the sequel, we let o(G) = k, o(H) = ¢, and T1,Ts,--- , T} be k
edge-disjoint spanning trees in G and T7,Ty,--- , T, be ¢ edge-disjoint spanning trees in
H.

The proof consists of two steps: in the first step (presented in Section 2.1), we decom-
pose G o H into small graphs; in the second step (presented in Section 2.2), we divide these
small graphs into groups and combine the small graphs in each group into a spanning tree
of G o H, thus obtaining the desired number of edge-disjoint spanning trees. After the
second step, we can obtain a lower bound of ¢(G o H).

The details are given below.
2.1 Graph decomposition

From the definition, the lexicographic product graph G o H is a graph obtained by re-
placing each vertex of G by a copy of H and replacing each edge of G by a complete bipar-



tite graph Ky, n,. For an edge e = u;u; € E(G) (1 <4,j < nq), the induced subgraph ob-
tained from the edges between the vertex set V(H (u;)) = {(ui, v1), (wi,v2),- -+, (Ui, Uny) }
and the vertex set V(H (u;)) = {(uj,v1), (uj,v2), -, (uj,vn,)} in G o H is a complete
equipartition bipartite graph of order 2ng, denoted by K. or Ky, ;. Obviously, K. can
be decomposed into ny perfect matching, denoted by Mf, Mg, ..., My, .

For each T; (1 <i < k) in G, we define a spanning subgraph 7; of G o H corresponding
to T; as follows: V(7;) = V(G o H) and E(7;) = {(up, vs)(ug, v¢) | upuy € E(T;), up,uq €
V(G), vs,vp € V(H)}. We call 7; a blow-up graph corresponding to T; in G; see Figure 1
for an example.

Figure 1: The blow-up graph 7; and parallel forest F; ; in G o H corresponding to 7} in G.

For each i (1 <i <k)and j (1 <j < ng), we define another spanning subgraph F; ; of
GoH corresponding to T; in G as follows: V(F; ;) = V(GoH) and E(Fi ;) = Ueepr) Mi;
where M, is a matching of K. (M{; will be chosen later). We call F; ; a parallel forest
of G o H corresponding to the tree T; in G; see Figure 1 for an example.

Similarly, for a spanning tree T]’ (1 <j<¥)in H, we define a spanning subgraph .7-"j’ of
GoH as follows: V(F}) = V(GoH) and E(F}) = {(u,vs)(u,vt) |u € V(G),vsvr € E(Tj)}.
Clearly, F; = Uy,ev(q) Tj(wi), where V(Tj(u;)) = {(us,v) [v € V(H)} and E(Tj(u;)) =
{ (i, vs) (ui, ve) | i € V(G),vs0r € E(T})}. We call each of F} (1 <i < () a vertical forest
of G o H corresponding to the tree TJ’ in H. The tree T]’(ul) is called the isomorphic tree
of T} (1 <i < ¢) in H(u;). So, for each tree T} of H there are n; edge-disjoint isomorphic



trees Tj(u;) (1 <i<n1)in Go H.

The following results are useful for our proof, which were obtained by Dirac [3]; see
Laskar and Auerbach [6].

Proposition 2 (3, 6] (1) For all even r > 2, K., is the union of its ir Hamiltonian
cycles.

(2) For all odd v > 3, K, , is the union of its %7‘ Hamiltonian cycles and one perfect
matching.

For r > 2, the complete equipartition bipartite graph K, can be decomposed into |7 |
Hamiltonian cycles for r even, or [ 5| Hamiltonian cycles and one perfect matching for r
odd. We call each Hamiltonian cycle in the decomposition a good cycle.

We now decompose the above blow-up graph 7; (1 < ¢ < k) in G o H corresponding to
T; in G into our desired ng parallel forests by Proposition 2.

Lemma 3 The blow-up graph 7; corresponding to the tree T; in G can be decomposed into
no parallel forests corresponding to the tree T;, say Fi1,Fi2, -+, Finy, such that there
exist 2x parallel forests Fi1, Fio, -+, Fioe such that Fioj 1 U F;o5 (1 < j << [22])
contains exactly n1 — 1 good cycles.

Proof. We decompose G o H as follows:

i) for every i € and e € T;, by Proposition 2, we decompose K, into ng disjoin
) f € [k] and T;, by P ition 2 d K. int disjoint
perfect matchings M, -+, M,

e
2,12

such that Mfy; 1 U Mfs; 5 is a Hamilton cycle (which
we call a good cycle) for every j < |ng2/2| — 1;

(i7) for every i € [k], we have that, for every e = ww € E(T;), ¢ = v'w’ € E(T;) and
t € [ng], the matchings {vz : {(u,v), (w,2)} € Mg} and {vz : {(v/,v), (W', 2)} € M } are
the same.

We give the definition of 7; ; as follows: Fi; = U.cp(r,) M, where 1 < j < [na/2].
For each e € E(T;), K. N (Fipj—1 U Fiaj) is a good cycle, where 1 < j < r. Since
|E(T;)] = nq — 1, this implies that, for 1 < j < |ng/2], Fiaj—1 U F;2; contains exactly
n1 — 1 good cycles. So all the edges of T; o H can be decomposed into ny parallel forests
Fir, Fi2,- -, Fin, such that there exist 2z parallel forests F; 1, Fi2,- -+, F; 2, such that
Fizj—1UFi2; (1 <j << |ng/2]) contains exactly n; —1 good cycles. The proof is now
complete. |

2.2 Graph combination

Recall that o(G) = k and T4, - - - , T} are edge-disjoint spanning trees of G (as defined
in the beginning of Section 2.1) and that Fij (1 <i <k, 1<j < ny) corresponding to



T; in H are the parallel forests obtained by Lemma 3. Similarly, o(H) = £ and T7,--- , T}
are edge-disjoint spanning trees of H (as defined in the beginning of Section 2.1) and that
.7-";- (1 < j < ¥¢) are the vertical forests corresponding to TJ’ of H.

After the above preparations, we now give the proof of Theorem 1.

Proof of (1): Since the union of any tree in {7}(u;) |1 <i <ni,1 <j </} with any
parallel forest in {F; ;|1 < i < k,1 < j < no} is a spanning tree of G o H, we can get
kng = ¢n; edge-disjoint spanning trees in G o H. Thus, (G o H) > kny (= fny). |

Proof of (2): Note that {F; ;|1 < i < k,1 < j < no} \ {Fin,} is a set of kng — 1
edge-disjoint parallel forests and, for 1 < z < ¢, {Ti’J |1<i<z,1<j<n;}isasetof zng
edge-disjoint trees. The union of any forest in {F; ;|1 <i <k, 1 <j <no}\ {Fpn,} with
any tree in {TZ-’J |1 <i<uz,1<j<mn;}isaspanning tree of Go H. We set z = [k”rfil_l}
so that xny > kng — 1. Since ¢nq > kns, it follows that [k"#_l] < ¢ and hence z < /.
Thus, we can obtain kno — 1 edge-disjoint spanning tree of G o H.

Recall that we also have ¢ — x vertical forests F,,  ,F, 5, - ,F;. We now find some
spanning trees of G o H from the union of Fj,, and the above ¢ — x vertical forests.
By the definition of the vertical forest Fy p,, it is the union of ny vertex-disjoint trees
isomorphic to Ty, say Ty 1,1k 2, - ;Tkn,. Note that the union of any vertical forest in
{Fri1, Frpor- -+, Fy} and any tree in {Tj 1, Tk2,- - , Tk, } is a spanning tree of G o H.
Since £ —x < £ < [%] < ng, we can obtain ¢ — x edge-disjoint spanning trees of G o H.

From the above arguments, the total number of the edge-disjoint spanning trees is at
least (kng — 1) + ({ — z). Thus, o(Go H) > kng — 14 £ —x =kng — [*2=1] 4 ¢ — 1. W

Proof of (3): Let F;; (1 < i < k,1 < j < ng) be the kny parallel forests in
G o H corresponding to T; (1 < ¢ < k) in Lemma 3. Pick up 2z parallel forests from
{ffm“l < 1 < k,l < ] < ng}, say fal,blafal,cl7fa2,b27fa2,027'” 7faz,bzvfax,cx where
a; € {1,2,---,k} (1 < i < z) and bj,¢; € {1,2,---,n2} (1 < i < z), such that
Fa;pi U Fa;e; (1 < i < x) contains (n; — 1) good cycles. Note that we have to choose
x < k|na/2|. Thus we can obtain x(n; —1) good cycles from the above 2z parallel forests.
Now we still have kno—2x parallel forests. Note that the union of any of these kno—2z par-
allel forests with any of those x(n1 —1) good cycles is a spanning subgraph of Go H, which

contains a spanning tree of G o H. If z(n; — 1) > kng — 2z, then we can obtain kny — 2z
k
nlifl

integer satisfying x(ny — 1) > kng — 2. Since kng > ¢ng, it follows that x = [n’i’fﬁ > 1.

Since x < k|n2/2], we need to show that [nkl’fﬂ < k%2 ]. Therefore, it suffices to prove

that k:ﬁfl“ < k"1 that is, k(ng — 1)(ny — 1) — 2ny — 2k > 0. Since k < |%], we
need to show that k(n; — 1)(ng — 1) —3n; > 0. Since k£ > 1 and ny > 2, it follows that
k(n1—1)(n2—1)—3n; = (n1—1)(k(ne—1)—3)—3 > k(ng—1-3)—3>ny—1-3-3>0
for no > 7. So, the above inequality holds for ny > 7, as desired. One can check that the

equality [Tﬁ’fl] < k%] also holds for 2 < ny < 6. Thus we get kng — Q(n’ﬁ_?l] spanning

tree of G o H from the parallel forests.

edge-disjoint spanning trees of Go H. We set = = | | so that x is the smallest possible




From the above arguments we can see that by combining a parallel forest and a good
cycle (Hamiltonian cycle) we form a spanning subgraph of size (n; + 1)ng, which contains
a spanning tree of G o H of size ning — 1. Clearly, some edges of such a spanning subgraph
are not used in the construction of a spanning tree of G o H. Our aim is to choose some
of such unused edges and combine them with all the n; copies H(u1), H(u2),--- , H(up,)
of H in G o H to form ¢ edge-disjoint spanning trees of G o H. Without loss of generality,
assume that a; = 1, by = 1 and ¢; = 2. Then F;; U Fj 2 contains (n; — 1) good cycles.
Let C7; be a good cycle in Fy 1 U F 2, where e € E(T1). Suppose that F; ; be a parallel
forest that is not used to construct good cycles. Then we have the following claim.

Claim 1. For each edge e € E(T1), there exists a subset Ef; of E(Cy;) such that
|EY 1| = n2 — 1 and F; ; U EY; is a spanning tree of G o H.

Proof of Claim 1: Let u and w denote the endpoints of e. Recall that the parallel forest
Fi ; consists of ng vertex-disjoint isomorphic trees, each containing exactly one vertex of
H(u) for every u € V(H). Let Ry, -, Ry, be such trees, and let P be the path joining
uw and w in T; and P = { Py 0)(w,z) * Pluw)(w,z) 1 the path joining (u,v) and (w, 2) in R;
for i € [n2]}. Then P consists of ng isomorphic paths. The connected components of the
graph formed by P U M7 ; consist of a collection of disjoint cycles, say Ci,---,Cp,. For
every i € [m], let f; denote an arbitrary edge in C; and let D; = C; \ {f;}. Since the
spanning subgraph of K. with edge set M{; U M7, is connected (it is a Hamilton cycle),
there is a set of 5S¢ C MY, of size m — 1 such that the S¢ U J;Z, D; is connected. Thus,
by defining EY; = (S°U M7\ {fi : i € [m]}, we have that |EY ;[ =n2 —1 and B ; UF; ;
is a spanning tree of G o H. |

From Claim 1, for each good cycle Cf; in Fi1 U Fy2, we can find a subset ET; of
E(Cf,) such that |EY ;| =ng —1 and F; ;U EY | is a spanning tree of G o H, where F; j is
a parallel forest that was not used in the construction of good cycles. For the good cycle
Cf’l of F11 UFi 2 where e € E(T}), we define a set Eil of edges as follows: if it was used
in the construction of a spanning tree of G o H, then Eil = E(C{,) \ Ef;; otherwise,
EY, =E(Cf,). Then |E,| >ny+12> L.

We are now in a position to combine some edges of the set |J . E(Tl)Eil of edges
with all the ny copies H(uy), H(uz), -+, H(up,) of H in G o H to form ¢ edge-disjoint
spanning trees of G o H. Since o(H) = ¢, there exist ¢ edge-disjoint spanning trees in
H, say T7,T3,--- ,T;. Then there exist vertical forests 7 = U, ey () Tj(uwi) (1 <j <€)
in G o H corresponding to Tj, where T/(u;) is the isomorphic tree of 77. Recall that
\Eil\ > ( for each edge e € E(T1). Choose ¢ edges in Eil, say fr,fs,---,ff. Let
Ei = Ueepry [f (1 < i< (). Note that any of the sets {E; |1 <14 < £} of edges with any
of the vertical forests Fi,F3,--- ,F, is a spanning tree of G o H. It is clear that we can
find ¢ edge-disjoint spanning trees of G o H from the edges of | J, o BE(TY) Eil and the ny
copies of H in Go H.

From the above arguments, the total number of the edge-disjoint spanning trees of

G o H is at least kny — Q[n’?fﬂ +0. So o(Go H) > kng — 2[71’?3311 ) 1




To show the sharpness of the above lower bounds of Theorem 1, we consider the
following three examples.

Example 1. Let G and H be two connected graphs with |V(G)| = ny and |[V(H)| = na
which can be decomposed into exactly k and ¢ edge-disjoint spanning trees of G and H,
respectively, satisfying kng = ¢n;. From (1) of Theorem 1, 0(G o H) > kny = ¢n;. Since
|E(GoH)| = |E(H)|n1+|E(G)|n3 = £(ng—1)n1+k(n1—1)n3 = kna(na—1)+k(n;—1)n3 =

kng(ning — 1), we have o(G o H) < EESQOi)' = kngy. Then o(G o H) = kny = ¢ny. So the

lower bound of (1) is sharp.

Example 2. Consider the graphs G = P3 and H = Ky. Clearly, 0(G) = k=1, o(H) =
=2, V(G)|=n1 =3, |[V(H)| =n2 =4, |E(G)| =2, |[E(H)| = 6 and 6 = ¢n; > kng = 4.
On one hand, we have 0(G o H) > kng — [#2=1] + ¢ —1 =4 —142—[451] = 4 by (2) of
Theorem 1. On the other hand, |E(GoH)| = 50 and hence o(GoH) < |§ES§£{1)‘ =20 =4.
So 0(G o H) = 4. So the lower bound of (2) is sharp.

Example 3. Consider the graphs G = P, and H = P5;. Clearly, o(G) = k = 1,
oH) =0 =1, |V(G)| =n1 =2, |[V(H)| = ne =3, |[E(G)] =1, |[E(H)| = 2 and
2 = Iny < kng = 3. On one hand, o(G o H) > kny — 2[751’121} + ¢ = 2 by (3)
of Theorem 1. On the other hand, |E(G o H)| = |E(H)|n1 + |E(G)|n3 = 13. Then

o(GoH) < ‘E(G°H1)| = |12] =2. So ¢(G o H) = 2 and the lower bound of (3) is sharp.

— ning—
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