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Abstract. Let D be a digraph with skew-adjacency matrix S(D). The skew energy of D is defined

as the sum of the norms of all eigenvalues of S(D). Two digraphs are said to be skew equienergetic if

their skew energies are equal. We establish an expression for the characteristic polynomial of the skew

adjacency matrix of the join of two digraphs, and for the respective skew energy, and thereby construct

non-cospectral, skew equienergetic digraphs on n vertices, for all n ≥ 6. Thus we arrive at the solution

of some open problems proposed in [X. Li, H. Lian, A suvey on the skew energy of oriented graphs,

arXiv:1304.5707].

1. Introduction

Let D be a digraph with vertex set V (D) = {v1, v2, ..., vn} and arc set Γ(D). The skew-adjacency

matrix of D is the n × n matrix S(D) = [sij ] in which sij = 1 if (vi, vj) is an arc of D, sij = −1, if

(vj , vi) is an arc of D, and sij = 0, otherwise. The characteristic polynomial of S(D) is defined as

ϕs(D : λ) = det(λI − S(D)), where I is an identity matrix of order n. The eigenvalues of S(D) are

denoted by λ1, λ2, . . . , λn . These are all pure imaginary or zeros, since S(D) is skew symmetric. Two

digraphs are said to be cospectral if they have same eigenvalues. The skew energy of the digraph D,

denoted by Es(D), is defined as the sum of the norms of all eigenvalues of S(D), that is,

Es(D) =
n∑

i=1

|λi| .
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Two digraphs D1 and D2 are said to be skew equienergetic if Es(D1) = Es(D2). If two digraphs

are cospectral, then in a trivial manner, they are skew equienergetic. Therefore, in what follows, we

are interested in finding skew equienergetic non-cospectral digraphs.

The energy of a simple undirected graph was introduced by one of the present authors [8]; for details

of the theory of graph energy see [9, 20] and the references cited therein. In theoretical chemistry, the

energy of a given molecular graph is related to the total π-electron energy of the molecule represented

by that graph [10]. Recently, other graph energies were considered, such as the Laplacian energy [11],

signless Laplacian energy [2], incidence energy [15], distance energy [14], and skew energy [1].

Adiga et al. [1] introduced the concept of skew energy of a simple digraph and obtained bounds for

it. They have also calculated the skew energy of directed trees and directed cycles. For other results

on the skew energy, see [3, 4, 5, 6, 7, 12, 13, 16, 21, 19, 22, 23, 24, 25, 26] and the survey [18].

Adiga et al. [1] showed that the skew energy of an oriented tree is independent of its orientation.

With this, Li and Lian [18] proposed the following problem:

Problem 1. [18] How to construct families of oriented graphs such that they have equal skew energy,

but they do not have the same spectra?

In this paper we establish expressions for the characteristic polynomial of the skew adjacency matrix

of a join of digraphs and for the skew energy of join of digraphs. Further, we construct non-cospectral

skew equienergetic digraphs on n vertices for all n ≥ 6. By this we get the complete solution of the

Problem 1 from [18].

2. Spectra and skew energy of join of digraphs

The indegree of a vertex u, denoted by idD(u) in a digraph D is the number of arcs coming to u.

The outdegree of u, denoted by odD(u) is the number of arcs going out from u.

Definition: The join of a digraph D1 to D2, denoted by D1 → D2, is a graph obtained from D1 and

D2 by adding an arcs from each vertex of D1 to all vertices of D2 . An example is depicted in Fig. 1.
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Theorem 2.1. Let for i = 1, 2, Di be a digraph on ni vertices and idDi(u) = odDi(u) for all

u ∈ V (Di). Then the characteristic polynomial of the skew adjacency matrix of D1 → D2 is

(2.1) ϕs(D1 → D2 : λ) =
λ2 + n1 n2

λ2
ϕs(D1 : λ)ϕs(D2 : λ) .

Proof.

(2.2) ϕs(D1 → D2 : λ) = det(λI − S(D1 → D2)) =

∣∣∣∣∣ λIn1 − S(D1) −Jn1×n2

Jn2×n1 λIn2 − S(D2)

∣∣∣∣∣
where J is a matrix whose all entries are equal to one.

The determinant (2.2) can be written as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 . . . −s1n1 −1 −1 . . . −1

−s21 λ . . . −s2n1 −1 −1 . . . −1
...

...
...

−sn11 −sn12 . . . λ −1 −1 . . . −1

1 1 . . . 1 λ −s′12 . . . −s′1n2

1 1 . . . 1 −s′21 λ . . . −s′2n2

...
...

...

1 1 . . . 1 −s′n21
−s′n22

. . . λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.3)

where sij is the (i, j)-th entry in D1, i, j = 1, 2, . . . , n1 and s′ij is the (i, j)-th entry in D2, i, j =

1, 2, . . . , n2.

Since idDi(u) = odDi(u) for all u ∈ V (Di), i = 1, 2 , it easily follows that

n1∑
j=1

sij = 0 for i = 1, 2, . . . , n1(2.4)

n2∑
j=1

s′ij = 0 for i = 1, 2, . . . , n2 .(2.5)

We now perform the number of operations on the determinant (2.3).

Subtract the row (n1 + 1) from the rows (n1 + 2), (n1 + 3), . . . , (n1 + n2) of (2.3) to obtain (2.6):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 . . . −s1n1 −1 −1 . . . −1

−s21 λ . . . −s2n1 −1 −1 . . . −1
...

...
...

−sn11 −sn12 . . . λ −1 −1 . . . −1

1 1 . . . 1 λ −s′12 . . . −s′1n2

0 0 . . . 0 −s′21 − λ λ+ s′12 . . . −s′2n2
+ s′1n2

...
...

...

0 0 . . . 0 −s′n21
− λ −s′n22

+ s′12 . . . λ+ s′1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.(2.6)



4 Trans. comb. x no. x (201x) xx-xx H. S. Ramane et al.

Adding the columns (n1+2), (n1+3), . . . , (n1+n2) to the column (n1+1) of (2.6), using Eq. (2.5),

and noting that s′ij = −s′ji we arrive at the determinant (2.7):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 . . . −s1n1 −n2 −1 . . . −1

−s21 λ . . . −s2n1 −n2 −1 . . . −1
...

...
...

−sn11 −sn12 . . . λ −n2 −1 . . . −1

1 1 . . . 1 λ −s′12 . . . −s′1n2

0 0 . . . 0 0 λ+ s′12 . . . −s′2n2
+ s′1n2

...
...

...

0 0 . . . 0 0 −s′n22
+ s′12 . . . λ+ s′1n2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.7)

which is equal to (2.8):

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 . . . −s1n1 −n2

−s21 λ . . . −s2n1 −n2

...
...

−sn11 −sn12 . . . λ −n2

1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
|B|(2.8)

where

|B| =

∣∣∣∣∣∣∣∣∣∣∣

λ+ s′12 −s′23 + s′13 . . . −s′2n2
+ s′1n2

−s′32 + s′12 λ+ s′13 . . . −s′3n2
+ s′1n2

...
...

−s′n22
+ s′12 −s′n23

+ s′13 . . . λ+ s′1n2

∣∣∣∣∣∣∣∣∣∣∣
.(2.9)

The first determinant in (2.8) is of order (n1+1) . Subtract the first row from the rows 2, 3, . . . , n1 ,

in (2.8) to obtain (2.10):

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 . . . −s1n1 −n2

−s21 − λ λ+ s12 . . . −s2n1 + s1n1 0
...

...

−sn11 − λ −sn12 + s12 . . . λ+ s1n1 0

1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
|B| .(2.10)
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Adding columns 2, 3, . . . , n1 to the first column of (2.10) and using Eq. (2.4) we get (2.11):∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 . . . −s1n1 −n2

0 λ+ s12 . . . −s2n1 + s1n1 0
...

...

0 −sn12 + s12 . . . λ+ s1n1 0

n1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
|B| .(2.11)

Expand it along the first column to obtain (2.12):

(2.12) {λ∆1 + (−1)n1 n1∆2} |B|

where

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ+ s12 −s23 + s13 . . . −s2n1 + s1n1 0

−s32 + s12 λ+ s13 . . . −s3n1 + s1n1 0
...

...

−sn12 + s12 −sn13 + s13 . . . λ+ s1n1 0

1 1 . . . 1 λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
and

∆2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−s12 −s13 . . . −s1n1 −n2

λ+ s12 −s23 + s13 . . . −s2n1 + s1n1 0

−s32 + s12 λ+ s13 . . . −s3n1 + s1n1 0
...

...

−sn12 + s12 −sn13 + s13 . . . λ+ s1n1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The expression (2.12) can be rewritten as

(2.13) {λ2|A|+ (−1)n1n1 (−1)n1n2|A|}|B| = (λ2 − n1 n2)|A||B|

where

|A| =

∣∣∣∣∣∣∣∣∣∣∣

λ+ s12 −s23 + s13 . . . −s2n1 + s1n1

−s32 + s12 λ+ s13 . . . −s3n1 + s1n1

...
...

−sn12 + s12 −sn13 + s13 . . . λ+ s1n1

∣∣∣∣∣∣∣∣∣∣∣
.(2.14)

The determinant (2.14) can be written as

(2.15) |A| = 1

λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 −s13 . . . −s1n1

0 λ+ s12 −s23 + s13 . . . −s2n1 + s1n1

0 −s32 + s12 λ+ s13 . . . −s3n1 + s1n1

...
...

0 −sn12 + s12 −sn13 + s13 . . . λ+ s1n1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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From Eq. (2.4), the sum of the i-th row in (2.15) is λ + si1 for i = 2, 3, . . . , n1 . Therefore, by

subtracting the columns 2, 3, . . . , n1 of (2.15) from the first column, we obtain (2.16):

(2.16) |A| = 1

λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 −s13 . . . −s1n1

−λ− s21 λ+ s12 −s23 + s13 . . . −s2n1 + s1n1

−λ− s31 −s32 + s12 λ+ s13 . . . −s3n1 + s1n1

...
...

−λ− sn11 −sn12 + s12 −sn13 + s13 . . . λ+ s1n1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Add the first row of (2.16) to the rows 2, 3, . . . , n1 to obtain (2.17):

(2.17) |A| = 1

λ

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ −s12 −s13 . . . −s1n1

−s21 λ −s23 . . . −s2n1

−s31 −s32 λ . . . −s3n1

...
...

−sn11 −sn12 −sn13 . . . λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

λ
ϕs(D1 : λ) .

In a similar manner we can show that from (2.9) it follows

(2.18) |B| = 1

λ
ϕs(D2 : λ) .

Substituting (2.17) and (2.18) back into (2.13) gives Eq. (2.1). �

Let W be a subset of the vertex set V (D) of a digraph D and W = V (D) \ W . Let D′ be the

digraph obtained from D by reversing the directions of all arcs between W and W . As usual [18], we

say that D′ has been obtained from D by switching with respect to W .

Two digraphs D and D′ are said to be switching equivalent if D′ can be obtained from D by a

sequence of switching. Hou, Shen and Zhang [13] showed that if D and D′ are switching equivalent,

then D and D′ have the same spectra and equal skew energy. Thus for any two digraphs D1 and

D2, the joins D1 → D2 and D2 → D1 are switching equivalent and therefore have same characteristic

polynomials and Es(D1 → D2) = Es(D2 → D1).

Theorem 2.2. Let for i = 1, 2, Di be a digraph on ni vertices and idDi(u) = odDi(u) for all

u ∈ V (Di). Then

(2.19) Es(D1 → D2) = Es(D1) + Es(D2) + 2
√
n1 n2 .

Proof. From Theorem 2.1,

ϕs(D1 → D2 : λ) =
(λ2 + n1 n2)

λ2
ϕs(D1 : λ)ϕs(D2 : λ)

which yields

λ2 ϕs(D1 → D2 : λ) = (λ2 + n1 n2)ϕs(D1 : λ)ϕs(D2 : λ) .
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Let

P1(λ) = λ2 ϕs(D1 → D2 : λ)

and

P2(λ) = (λ2 + n1 n2)ϕs(D1 : λ)ϕs(D2 : λ) .

The roots of the equation P1(λ) = 0 are 0 (2 times) and the eigenvalues of S(D1 → D2) . Therefore

the sum of the absolute values of the roots of P1(λ) = 0 is

(2.20) Es(D1 → D2) .

The roots of P2(λ) = 0 are
√
n1 n2 , −√

n1 n2 , and the eigenvalues of S(D1) and S(D2). Therefore

the sum of the absolute values of the roots of P2(λ) = 0 is

Es(D1) + Es(D2) + 2
√
n1 n2 .(2.21)

Since P1(λ) = P2(λ) , equating Eqs. (2.20) and (2.21) we arrive at Eq. (2.19). �

Let Kn be the totally disconncted graph on n vertices, that is a graph without edges.

Corollary 2.3. Es(Kp → Kq) = 2
√
pq.

Corollary 2.4. If H1 and H2 are non cospectral, skew-equienergetic digraphs on n vertices such that

idHi(u) = odHi(u) for all u ∈ V (Hi), i = 1, 2 , then for any digraph G with idG(v) = odG(v), v ∈ V (G),

Es(H1 → G) = Es(H2 → G).

3. Construction of skew equienergetic digraphs

Theorem 3.1. There exist pairs of non cospectral, skew equienergetic digraphs on n vertices for all

n ≥ 6 .

Proof. Consider the digraphs Da and Db as depicted in Fig. 2.
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By direct computation,

ϕs(Da : λ) = λ4 (λ2 + 12)(3.1)

ϕs(Db : λ) = λ2 (λ4 + 6λ2 + 9) .(3.2)
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Both Da and Db are digraphs on 6 vertices. Also idDi(u) = odDi(u), for all u ∈ Di, i = a, b , and

Es(Da) = Es(Db) = 4
√
3 .

Let D be any digraph on p ≥ 1 vertices and idD(u) = odD(u), u ∈ V (D) . Then by Theorem 2.2,

Es(Da → D) = Es(Db → D) = 4
√
3 + Es(D) + 2

√
6p .

Thus, Da → D and Db → D are skew equienergetic. By Eqs. (3.1) and (3.2), Da and Db are non-

cospectral. Then by Theorem 2.1, Da → D and Db → D are also non cospectral. Further Da → D

and Db → D possesses equal number of vertices n = 6 + p , p = 0, 1, 2, . . . . �

Let Kp be the totally disconnected digraph on p vertices. In this idKp
(u) = odKp

(u) = 0 for all

u ∈ V (Kp) and ϕs(Kp : λ) = λp. Therefore Es(Kp) = 0. Using this in Theorem 2.2 we have following

result.

Corollary 3.2. If Da and Db are the digraphs shown in Fig. 2, then

Es(Da → Kp) = Es(Db → Kp) = 4
√
3 + 2

√
6p , p ≥ 0 .

4. Conclusions

Using Corollary 2.4, it is easy to construct a pair of non cospectral, skew equienergetic digraphs.

In particular by means of Theorem 3.1 and Corollary 3.2 pairs of non-cospectral, skew equienergetic

n-vertex digraphs can be constructed for all n ≥ 6 . Thus Problem 1. from [18] has been completely

solved.
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