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Abstract

The proper connection number pc(G) of a connected graph G is defined as the

minimum number of colors needed to color its edges, so that every pair of distinct

vertices of G is connected by at least one path in G such that no two adjacent

edges of the path are colored the same, and such a path is called a proper path. In

this paper, we show that for every connected graph with diameter 2 and minimum

degree at least 2, its proper connection number is at most 3 and this bound is sharp.

Then, we give an upper bound 3n
δ+1 − 1 of the proper connection number for every

connected graph of order n ≥ 4 and minimum degree δ. We also show that for

every connected graph G, the proper connection number pc(G) is upper bounded

by pc(G[D]) + 2, where D is a connected two-way (two-step) dominating set of G.

Bounds of the form pc(G) ≤ 4 or pc(G) = 2, for many special graph classes follow as

easy corollaries from this result, which include connected interval graphs, asteroidal

triple-free graphs, circular arc graphs, threshold graphs and chain graphs, all with

minimum degree at least 2. Furthermore, we get the sharp upper bound 3 for

the proper connection numbers of interval graphs and circular arc graphs through

analyzing their structures.
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1 Introduction

All graphs in this paper are finite, connected and simple. An edge-coloring of a graph

is a mapping from its edge set to the set of natural numbers. A path in an edge-colored

graph with no two edges sharing the same color is called a rainbow path. An edge-colored

graph G is said to be rainbow connected if every pair of distinct vertices of G is connected

by at least one rainbow path in G. Such a coloring is called a rainbow coloring of the

graph. The concept of rainbow coloring was introduced by Chartrand et al. in [5]. Since

then, many researchers have been studied the problem on the rainbow connection and got

many nice results, see [6, 8, 9] for examples. For more details we refer to a survey paper

[7] and a book [8].

Inspired by rainbow coloring and proper coloring in graphs, Andrews et al. [1] intro-

duced the concept of proper-path coloring. Let G be an edge-colored graph. A path

P in G is called a proper path if no two adjacent edges of P are colored the same. An

edge-coloring c is a proper-path coloring of a connected graph G if every pair of distinct

vertices u, v of G are connected by a proper u-v path in G. If k colors are used, then

c is referred to as a proper-path k-coloring. The minimum number of colors needed to

produce a proper-path coloring of G is called the proper connection number of G, denoted

by pc(G). Form the definition, it is easy to check that pc(G) = 1 if and only if G = Kn

and pc(G) = m if and only if G = K1,m. For more results, we refer to [1, 3].

A dominating set for a graph G = (V,E) is a subset D of V such that every vertex

not in D is adjacent to at least one member of D. The number of vertices in a smallest

dominating set for G is called the domination number, denoted by γ(G). The dominating

set is very useful to determine some relationship between a subgraph and its supergraph.

There are many generalized dominating sets, which will be introduced in the following

section and considered in this paper.

We will use two-way dominating sets or two-way two-step dominating sets of a graph

G to help us find upper bounds of the proper connection number pc(G). In Section 2,

some definitions and properties of the proper connection number of a graph are given.

In Section 3, we give the bound pc(G) ≤ pc(G[D]) + 2, where D is a connected two-way

two-step dominating set of G. And we get the following two results as its corollaries: One

is that the proper connection number of a chain graph with minimum degree at least 2

is 2; the other is that for every connected graph of order n ≥ 4 and minimum degree δ,

its proper connection number is upper bounded by 3n
δ+1

− 1. In addition, we also get that

a graph with diameter 2 and minimum degree at least 2 has proper connection number

at most 3. In Section 4, we turn to using connected two-way dominating sets D of G.

The inequality pc(G) ≤ pc(G[D]) + 2 and upper bounds for interval graphs, asteroidal
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triple-free graphs, circular arc graphs and threshold graphs are obtained. Furthermore,

we get the sharp upper bound 3 for proper connection numbers of interval graphs and

circular arc graphs through analyzing their structures.

2 Preliminaries

In this section, we introduce some definitions and present several useful facts about the

proper connection numbers of graphs. We begin with some basic conceptions.

Definition 2.1. Let G be a connected graph. The distance between two vertices u and

v in G, denoted by d(u, v), is the length of a shortest path between them in G. The

eccentricity of a vertex v is ecc(v) := maxx∈V (G)d(v, x). The diameter of G is diam(G) :=

maxx∈V (G)ecc(x). The radius of G is rad(G) := minx∈V (G)ecc(x). The distance between

a vertex v and a set S ⊆ V (G) is d(v, S) := minx∈Sd(v, x). The k-step neighborhood of

a set S ⊆ V (G) is Nk(S) := {x ∈ V (G)|d(x, S) = k}, k ∈ {0, 1, 2, · · · }. The degree of a

vertex v is deg(v) := |N1(v)|. The minimum degree of G is δ(G) := minx∈V (G)deg(x). A

vertex is called pendant if its degree is 1 and isolated if its degree is 0. We may use Nk(v)

in place of Nk({v}).

Definition 2.2. Given a graph G, a set D ⊆ V (G) is called a k-step dominating set of G,

if every vertex in G is at a distance at most k from D. Further, if D induces a connected

subgraph of G, it is called a connected k-step dominating set of G.

Definition 2.3. A dominating set D in a graph G is called a two-way dominating set, if

every pendant vertex of G is included in D. In addition, if G[D] is connected, we call D

a connected two-way dominating set.

Definition 2.4. A two-step dominating set D of vertices in a graph G is called a two-way

two-step dominating set if

(i) every pendant vertex of G is included in D and

(ii) every vertex in N2(D) has at least two neighbors in N1(D).

Further, if G[D] is connected, D is called a connected two-way two-step dominating set

of G.

Definition 2.5. Let G and H be two finite simple graphs. The union of G and H,

denoted by G∪H, is the graph with vertex set V (G)∪V (H) and edge set E(G)∪E(H).

Definition 2.6. Let G be a graph and s a positive integer. Define sG as the union of s

graphs each of which is isomorphic to the graph G.
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Definition 2.7. A Hamiltonian path in a graph G is a path containing every vertex of

G. And a graph having a Hamiltonian path is called a traceable graph.

For other definitions and notations, we refer to [2]. As follows, we state some known

simple results on the proper-path coloring which will be useful in the sequel.

Lemma 2.1. If P is a path of length at least 2, then pc(P ) = 2.

Lemma 2.2. [1] If G is a traceable graph that is not complete, then pc(G) = 2.

Proposition 2.1. [1] If T be a nontrivial tree, then pc(T ) = χ′ = ∆.

In the same paper [1], there is a lemma which will be useful in the following proof.

Lemma 2.3. [1] If G is a nontrivial connected graph and H is a connected spanning

subgraph of G, then pc(G) ≤ pc(H). In particular, pc(G) ≤ pc(T ) for every spanning tree

T of G.

Theorem 2.1. [3] If diam(G) = 2 and G is 2-connected, then pc(G) = 2.

3 Proper connection number and connected two-way

two-step dominating set

In this section, we will give an upper bound of proper connection number of a graph G

by using the connected two-way two-step dominating sets.

Let D be a connected two-way two-step dominating set of a graph G. This implies that

every vertex v ∈ V (G) \D has two edge-disjoined paths connecting to D. Our idea is to

color G[D] first and then to color all the other edges with a constant number of colors,

ensuring a proper-path coloring of a graph G. Now we give our main theorems.

Theorem 3.1. If D is a connected two-way two-step dominating set of a graph G, then

pc(G) ≤ pc(G[D]) + 2.

Proof. Let H be a spanning subgraph of a graph G. Then pc(G) ≤ pc(H) by Lemma 2.3.

In the following, we will give a proper-path coloring of H with pc(G[D]) + 2 colors, and

then prove the theorem.

Let cD be a proper-path coloring of G[D] using colors {3, 4, · · · , k := pc(G[D]), k +

1, k + 2}. For x ∈ N1(D), a neighbor of x in D is called a foot of x. Define the set of

foots of x as F (x) = {u : u is a foot of x}. And define the set of the neighbors of a vertex

v ∈ N2(D) in N1(D) to be F 1(v) = {u : u is the neighbor of v in N1(D)}.
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Case 1. For each vertex v ∈ N2(D), its neighbors in N1(D) has at least one common

foot. That is to say, the set N2(D) = {v1, v2, · · · , vt} and the neighborhood of vi in

N1(D) is F 1(vi) = {ui,1, ui,2, · · · , ui,il}, where |F 1(vi)| ≥ 2, (i = 1, 2, · · · , t). Then
il∩

a=1

F (ui,a) ̸= ∅ (i = 1, 2, · · · , t).

In this case, p(i)∪q(ii)∪r(iii)∪s(iv)∪G[D] (see Figure 1, where the (i), (ii), (iii), (iv)

are the subgraphs and p, q, r, s are the numbers of the corresponding subgraphs in G)

is a spanning subgraph of G, in which we do not exclude the case that the foots of some

vertices are in common. Since each pair of vertices x, y ∈ D has a proper x-y path in

G[D] under the coloring cD, it suffices to show that p(i) ∪ q(ii) ∪ r(iii) ∪ s(iv) ∪G[D], in

which all the vertices in N1(D) have one common root, has a proper-path coloring using

k + 2 distinct colors.

G[D]

N
1(D)

N
2(D)

G[D]

N
1(D)

N
2(D)

(i)

(ii)

(iii)

(iv)

H H0

Figure 1: Spanning subgraphs of G.

Give an edge-coloring c using colors {1, 2, · · · , k, k + 1, k + 2} for the above spanning

subgraphs H,H0 of G as follows: for the edges in G[D], we use the proper-path coloring

cD; and for the edges in (i), (ii), (iii) and (iv), color them as depicted in Figure 2. Then

for any two vertices ui, u
′
i ∈ N1(D), we can find a proper ui-u

′
i path as follows: if c(uiv) =

c(u′
iv), then uixujvu

′
i is a proper ui-u

′
i path; if c(uiv) ̸= c(u′

iv), then uivu
′
i is a proper

ui-u
′
i path. For every pair of vertices u, v ∈ N2(D) or u ∈ N1(D), v ∈ N2(D) or u ∈

N1(D) ∪N2(D), v ∈ D, there exist a proper u-v path under the coloring c as well. This

implies that c is a proper-path coloring of the graph H0 and it follows that pc(G) ≤
pc(H0) ≤ pc(G[D]) + 2.

Case 2. There exists one vertex x ∈ N2(D) whose neighbors in N1(D) has no common

roots. Note that such vertices are not necessarily unique and we can similarly prove the

same result as it for x in this theorem.
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Figure 2: The proper-path coloring for the spanning subgraphs of G.

We give a proper-path coloring c using colors {1, 2, · · · , k := pc(G[D]), k + 1, k + 2}
for a spanning subgraphs H of G as well (see Figure 3). Similarly, for the edges in

G[D], we still use the proper-path coloring cD. By the definition of connected two-

way two-step dominating sets, x has at least two distinct neighbors in N1(D) and two

edge-disjoined paths connecting to D. This implies that there exist two vertex-disjoint

paths, denoted by P1 = xuivi, P2 = xujvj, where ui, uj ∈ N1(D) and vi, vj ∈ D. We

color the edges xui with color 1 or color 2 such that {1, 2} ⊆ {c(xui) : ui ∈ N1(D)}
holds for every vertex x ∈ N2(D). And set c(uivi) ∈ {1, 2} \ c(xui). Then for any

two vertices ui, u
′
i ∈ N1(D), we can find a proper ui-u

′
i path as follows: if vi ̸= v′i,

then uiviPii′v
′
iu

′
i is a proper ui-u

′
i path, in which Pii′ is a proper vi-v

′
i path in G[D]; if

vi = v′i and c(uivi) = c(u′
iv

′
i), then uixuj(vjPji)v

′
iu

′
i is a proper ui-u

′
i path, where uj is a

neighbor of x in N1(D) such that c(uix) ̸= c(xuj) and Pji is a proper uj-vi(= v′i) path

in G[D]; if vi = v′i and c(uivi) ̸= c(u′
iv

′
i), then uiviu

′
i is a proper ui-u

′
i path. Similarly,

one can check that for every pair of vertices u, v ∈ N2(D) or u ∈ N1(D), v ∈ N2(D)

or u ∈ N1(D) ∪ N2(D), v ∈ D, there exists a proper u-v path under the coloring c.

It means that c is a proper-path coloring of a spanning subgraph H of G, and then

pc(G) ≤ pc(H) ≤ pc(G[D]) + 2.

A bipartite graph G(A,B) is called a chain graph, if the vertices of A can be ordered

as A = (a1, a2, . . . , ak) such that N(a1) ⊆ N(a2) ⊆ · · · ⊆ N(ak). Applying Theorem 3.1,

we can give the proper connection number of a connected chain graph as follows.

Corollary 3.1. If G is a connected chain graph with minimum degree at least 2, pc(G) =

2.

Proof. Let G = G(A,B) be a connected chain graph, where A = (a1, a2, . . . , ak), B =
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Figure 3: An example for the proper-path coloring of the spanning subgraph.

(b1, b2, . . . , bs) such that b1 ∈ N(a1) ⊆ N(a2) ⊆ · · · ⊆ N(ak). Obviously, N(ak) = B since

G = G(A,B) is connected. It is easy to verify that D = {b1} is a connected two-way

two-step dominating set of G and N1(D) = A, N2(D) = B\{b1} (see Figure 4). Applying
the result in Theorem 3.1, we obtain that pc(G) ≤ 2. On the other hand, pc(G) = 1 if

and only if G = Kn and then pc(G) ≥ 2. Therefore, pc(G) = 2.

B \ {b1} = N2(D)

A = N1(D)

{b1} = D

ak

Figure 4: Graph for Corollary 3.1.

In [4], there is a lemma giving the size of a connected two-way two-step dominating set,

which is stated as follows.

Lemma 3.1. [4] Every connected graph G of order n ≥ 4 and minimum degree δ has a

connected two-way two-step dominating set D of size at most 3n
δ+1

− 2.

Then, we get the following corollary.

Corollary 3.2. Let G be a connected graph of order n ≥ 4 and minimum degree δ. Then

we have

pc(G) ≤ 3n

δ + 1
− 1.
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Proof. By Lemma 3.1, the graph G has a connected two-way two-step dominating set D

such that |D| ≤ 3n
δ+1

−2. Since G[D] is connected, pc(G[D]) ≤ |D|−1 ≤ 3n
δ+1

−3. Together

with the result in Theorem 3.1, we obtain that

pc(G) ≤ pc(G[D]) + 2 ≤ 3n

δ + 1
− 1.

Remark 1. This upper bound of proper connection number is not always good. It is

easy to check that the complete graphs support this fact. Further effort is needed to find

a better upper bound.

Remark 2. If the minimum degree of a graph is at least n
2
, then the graph is Hamilto-

nian, and then pc(G) = 2. But the corollary shows that if there exists some k such that

δ = kn, then the proper connection number can be upper bounded by 3
k
−1, where k ≤ 1

2
.

Remark 3. Since G[D] is a connected subgraph of a graph G, by Proposition 2.1 we

know that pc(G) ≤ χ′(T ) + 2, where T is a spanning tree of G[D].

4 Proper connection number and connected two-way

dominating set

The definition of a two-way dominating set (D) implies that every vertex in V (G) \D
has at least two edge-disjoint paths connecting to D. Similar with the idea in Section 3,

we also obtain the following upper bound for proper connection number.

Theorem 4.1. If D is a connected two-way dominating set of a graph G and |D| ≥ 2 ,

then

pc(G) ≤ pc(G[D]) + 2.

Proof. We will give a proper-path coloring of a spanning subgraph H of the graph G with

pc(G[D])+2 colors, which implies this theorem. Let cD be a proper-path coloring of G[D]

using colors {3, 4, · · · , k := pc(G[D]), k + 1, k + 2}.
For any x ∈ G \D, we call a neighbor of x in D a foot of x. Define the set of the foots

of x as F (x) = {u : u is a foot of x}. We focus on the case that |F (x)| = 1 for every

vertex x ∈ G \D. Since D is a connected two-way dominating set, every pendant vertex

of G is included in D. Additionally, each pair of vertices x, y ∈ D has a proper x-y path

in G[D] under the coloring cD and two colors are enough to ensure that a path is proper.

Consequently, we only need to show the case that p(i) ∪ q(ii) ∪ G[D] (see Figure 5) is a

spanning subgraph of G, where we allow that the foots of some vertices are in common. It
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suffices to show that p(i)∪ q(ii)∪G[D], in which all the vertices in G \D have a common

root, has a proper-path coloring using k + 2 distinct colors.

G[D]

(ii)

(i)

H

G[D]

H0

Figure 5: Spanning subgraphs of G.

Now we give an edge-coloring c using colors {1, 2, · · · , k, k + 1, k + 2} for the above

spanning subgraphs H,H0 of G as follows: for the edges in G[D], we use the proper-path

coloring cD; and for the edges in (i), (ii), color them as depicted in Figure 6. Then for any

two vertices ui, uj ∈ G\D, a proper ui-uj path can be found in H0 under the coloring c as

follows: if uiuj ∈ H0, then uiuj is a proper ui-uj path; if uiuj /∈ H0, ui ∈ (i) and uj ∈ (i),

then uivuj or uivukuj (ukuj ∈ H0) is a proper ui-uj path; if uiuj /∈ H0, ui ∈ (ii) and

uj ∈ (ii), then uivuj or uivukuj (ukuj ∈ H0) or uivukuℓuj (ukuℓ, uℓuj ∈ H0) is a proper

ui-uj path; if uiuj /∈ H0, ui ∈ (i) and uj ∈ (ii), then uivuj or uiukvuj (uiuk ∈ H0) is a

proper ui-uj path. One can find a proper u-v path for every pair of vertices u ∈ D and

v ∈ G \D in similarly way. This implies that c is a proper-path coloring of the graph H0,

and then pc(G) ≤ pc(H0) ≤ pc(G[D]) + 2.

G[D]

(ii)

(i)

H

G[D]

H0

1

2

32

3

2

1

1
2

2

2

1

1
1

2

2

2 2

1 2

12 1

3

2 2

1

2
2

1
1 3

Figure 6: The proper-path coloring for the spanning subgraphs of G.

Next we consider that there exist some vertices xi ∈ G \D such that |F (xi)| ≥ 2. Let

ui1 , ui2 ∈ F (xi) for every such vertex xi. On the basis of the coloring in the above case,
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color ui1xi, ui2xi with color 1 if they have not been colored. This provides a proper path

for xi and every other vertices in G.

Summarizing the above analysis, this theorem holds.

Using the above theorem, we obtain the following corollary, which extends the result

of Theorem 2.1.

Corollary 4.1. Let G be a graph with diameter 2 and minimum degree at least 2. Then

pc(G) ≤ 3, and this bound is sharp.

Proof. By Theorem 2.1, it suffices to show the case when there is a cut-vertex v in G. The

cut-vertex v is a dominating vertex, and then it forms a two-way dominating set, since G

is a graph with diameter 2 and minimum degree at least 2. The result pc(G) ≤ 3 follows

from the proof of Theorem 4.1. To show the sharpness of this bound, consider the graph

H composed of at least 3 triangles sharing exactly one common vertex. It is easy to see

that H has a diameter 2 and minimum degree 2, and pc(H) = 3.

As consequences of Theorem 4.1, the upper bounds for the proper connection numbers

of interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs, and

chain graphs are followed. Before presenting the upper bounds, we state the definitions

of all these graphs first.

Definition 4.1. An intersection graph of a family of sets F is a graph whose vertices can

be mapped to sets in F such that there is an edge between two vertices in the graph if

and only if the corresponding two sets in F have a nonempty intersection. An interval

graph is an intersection graph of intervals on the real line. A circular arc graph is an

intersection graph of arcs on a circle.

Definition 4.2. An independent triple of vertices x, y, z in a graph G is an asteroidal

triple (AT), if between every pair of vertices in the triple, there is a path that does not

contain any neighbor of the third. A graph without asteroidal triples is called an asteroidal

triple-free (AT-free) graph.

Definition 4.3. A graph G is a threshold graph, if there exists a weight function w :

V (G) → R and a real constant t such that two vertices u, v ∈ V (G) are adjacent if and

only if w(u) + w(v) ≥ t.

For a graph G with δ(G) ≥ 2, every (connected) dominating set of G is a (connected)

two-way dominating set. Next, we will give some upper bounds for the proper connection

numbers of the above classes of graphs.

Corollary 4.2. Let G be a connected non-complete graph with δ(G) ≥ 2. Then
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(i) if G is an interval graph, pc(G) ≤ 4,

(ii) if G is AT-free, pc(G) ≤ 4,

(iii) if G is a circular arc graph, pc(G) ≤ 4,

(iv) if G is a threshold graph, pc(G) = 2.

Remark. There are four well-known results on the dominating sets of the graphs

in Corollary 4.2, which are stated as follows: (i) every interval graph G which is not

isomorphic to a complete graph has a dominating path of length at most diam(G) − 2,

(ii) every AT-free graph G has a dominating path of length at most diam(G), (iii) every

circular arc graph G, which is not an interval graph, has a dominating cycle of diameter

at most diam(G), (iv) a maximum weight vertex in a connected threshold graph G with

δ(G) ≥ 2 is a dominating vertex and K2,n−2 is a spanning subgraph of G. Together with

Theorem 4.1 and Lemma 2.1, we obtain the upper bounds in Corollary 4.2.

Furthermore, we can get a better and sharp bounds on their proper connection numbers

by analyzing the structure of the connected interval graph and circular arc graph, which

can be stated as follows.

Theorem 4.2. Let G be a connected interval or circular arc graph with δ(G) ≥ 2. Then

the proper connection number pc(G) ≤ 3, and this bound is sharp.

Proof. The proofs for connected interval graph and circular arc graph are similar, since the

circular arc graph is a generalization. So we only give the details for G being a connected

interval graph with minimum degree at least 2. We will give a proper-path coloring of G

using colors 1, 2, 3 and as well some graphs attaining this bound.

G

v

G0

v

G1

C

︷︸︸︷

P

v

Figure 7: Graphs for Theorem 4.2.

Let P be a dominating path of length at most diam(G)−2 in G. We color the edges of

P using colors 1 and 2, alternately. Additionally, by the definition of an interval graph,
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for every vertex v ∈ P the subgraph of G[G \ P ∪ {v}] containing v is the union of some

maximal cliques having at least one common vertex v (see Figure 7). For convenience, we

call the vertex v the root of those maximal cliques. For a fixed vertex v ∈ P , we give a

coloring for the edges in those maximal cliques containing v and for any other vertices the

same. Let Q1, Q2, · · · , Qt denote the maximal cliques whose common root is v. In each

clique, we color the edges adjacent to v with color 2 or 3 such that each color appears at

least once. And color all the other edges with color 1. One can check that such a coloring

is a proper-path coloring of G.

Actually, there are many connected interval graphs (or circular arc graphs) with proper

connection number 3, which implies that this bound is sharp. Here we give an infinite

class of such graphs. As depicted in Figure 7, G0 (or G1), for the vertex v ∈ P (or C),

the subgraph of G0[G0 \ P ∪ {v}] (or G1[G1 \ C ∪ {v}]) containing v has at least 2 (or

3) edge-disjoint triangles. And for any other vertices on P (or C), those cliques are

arbitrary. It is easy to verify that two colors are not enough to make the coloring proper

for G0 (or G1).

Acknowledgement: The authors would like to thank the reviewers for helpful comments

and suggestions.
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