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Abstract. Let G be an additive finite abelian group with exponent exp(G).
Let η(G) be the smallest integer t such that every sequence of length t has a

nonempty zero-sum subsequence of length at most exp(G). Let s(G) be the

EGZ-constant of G, which is defined as the smallest integer t such that every
sequence of length t has a zero-sum subsequence of length exp(G). Let p be an

odd prime. We determine η(G) for some groups G with D(G) ≤ 2 exp(G)− 1,

including the p-groups of rank three and the p-groups G = Cexp(G)⊕Cr
pm . We

also determine s(G) for the groups G above with more larger exponent than

D(G), which confirms a conjecture by Schmid and Zhuang from 2010, where
D(G) denotes the Davenport constant of G.

1. Introduction

Throughout this paper, let p denote a prime. Let G be an additive finite abelian
group with exponent exp(G). Let S = g1 · . . . · gk be a sequence over G. We call S
a zero-sum sequence if 0 = Σk

i=1gi. The Davenport’s constant, denoted by D(G), is
the minimal integer t such that such that every sequence S over G of length |S| ≥ t
has a nonempty zero-sum subsequence. Let η(G) be the minimal integer t such
that every sequence of length t has a nonempty zero-sum subsequence of length
less than or equal to exp(G). Let s(G) be the minimal integer t such that every
sequence of length t has a zero-sum subsequence of length exp(G).

These are classical invariants in combinatorial number theory and have received
a lot of attention(see [17], [18], [8], [2], [11]). For G is cyclic, we have η(G) = |G|,
and s(G) = 2|G| − 1 by the well known Erdős-Ginzurg-Ziv theorem [5]. For the
case that G is of rank two, the key step of determine η(G) (resp. s(G)) is to
determine η(C2

p) (resp. s(C2
p)). In 1969, Olson [17] proved η(C2

p) = 3p− 2. While
the determining of s(C2

p) is very complicated. In 1983, Kemnitz [15] conjectured
that s(C2

p) = 4p − 3 and it was confirmed by C. Reiher [18] in 2007. The precise
values of η(G) and s(G) for groups with rank at most two has been summarized in
([13, Theorem 5.8.3]) as follows.

If G = Cm ⊕ Cn with 1 ≤ m|n, then s(G) = η(G) + n− 1 = 2m + 2n− 3.

The situation is very different for groups of higher rank. Even for the group
G = C3

p with p being a prime, the precise value of the η(G), s(G) is unknown (for
general p). Fan, Gao, Wang, and Zhong [8] determined the η(G) and s(G) for a
special type groups with rank three. When G = Cr

3 , the precise value of η(G)
and s(G) has been determined for r ≤ 6 (see [4]). Apart the results mentioned
above, Schmid and Zhuang [19] proved that if G is a finite abelian p-group with
D(G) = 2 exp(G) − 1, then 2D(G) − 1 = η(G) + exp(G) − 1 = s(G), which has

Gao.
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been generalized recently by Geroldinger, Grynkiewcz and Schmid [12, Theorem
4.2]. Schmid and Zhuang further conjectured the following.

Conjecture 1.1. ([19]) Let G be a finite abelian p-group with D(G) ≤ 2 exp(G)−1.
Then

2D(G)− 1 = η(G) + exp(G)− 1 = s(G).

In this paper we verify this conjecture for some p-groups with D(G) < 2 exp(G)−
1 and our main results are the following.

Theorem 1.2. Let a, n be positive integers, let H be a finite abelian p-group, and
let G = Capn ⊕H. Suppose that D(Cpn ⊕H)) ≤ 2pn − 1. If p > 2r(H) then

η(G) = 2D(G)− apn = apn + 2D(H)− 2

provided that H satisfies one of the following conditions:
(1) D(H) ≤ 2 exp(H).
(2) d(k + 1

2 ) exp(H)e < D(H) ≤ (k + 1) exp(H) for some integer k ≥ 2.

Theorem 1.3. Let H be a finite abelian p-group with exp(H) = pm, and let G =
Capn ⊕H. If p > 2r(H), pn ≥ D(H) and a > |H|p2m−n, then

s(G) = η(G) + apn − 1 = 2apn + 2D(H)− 3

provided that H satisfies one of the following conditions:
(1) D(H) ≤ 2 exp(H).
(2) d(k + 1

2 ) exp(H)e < D(H) ≤ (k + 1) exp(H) for some integer k ≥ 2.

It is easy to see that the conditions of Theorem 1.2 are fulfilled by the following
groups H and G.

• r(H) = 2 and D(Cpn ⊕H) ≤ 2pn − 1.
• D(Cpn ⊕H) ≤ 2pn − 1, H = Cr

pm and p ≥ 2r + 1.

It is easy to see that the conditions of Theorem 1.3 are fulfilled by the following
groups H and G.

• r(H) = 2, D(Cpn ⊕H) ≤ 2pn − 1 and a > |H|p2m−n.
• D(Cpn ⊕H) ≤ 2pn − 1, H = Cr

pm , p ≥ 2r + 1 and a > |H|p2m−n

2. Preliminaries

Let N denote the set of positive integers, N0 = N ∪ {0}. For a real number x,
we denote by bxc the largest integer that is less than or equals to x, and denote by
dxe the smallest integer that is greater than or equals to x.

Throughout, all abelian groups will be written additively. By the Fundamental
Theorem of Finite Abelian Groups we have

G ∼= Cn1 ⊕ · · · ⊕ Cnr

where r = r(G) ∈ N0 is the rank of G, n1, . . . , nr ∈ N are integers with 1 <
n1| . . . |nr, moreover, n1, . . . , nr are uniquely determined by G, and nr = exp(G) is
the exponent of G. Let

D∗(G) = 1 + Σr
i=1(ni − 1).
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For g1, . . . , gl ∈ G(repetition allowed), we call S = g1 · . . . · gl a sequence over G.
We write sequences S in the form

S =
∏
g∈G

gvg(S) with vg(S) ∈ N0 for all g ∈ G.

We call vg(S) the multiplicity of g in S.
For S = g1 · . . . · gl =

∏
g∈G gvg(S), we call

• |S| = l = Σg∈Gvg(S) ∈ N0 the length of S.
• σ(S) = Σl

i=1gi = Σg∈Gvg(S)g ∈ G the sum of S.
• S is a zero-sum sequence if σ(S) = 0.
• S is a short zero-sum sequence if it is a zero-sum sequence of length
|S| ∈ [1, exp(G)]

Let S = g1 · . . . · gl be a sequence over G of length |S| = l ∈ N0 and let g ∈ G.
For every k ∈ N0 let

Nk
g (S) = |{I ⊂ [1, l] | Σi∈Igi = g, |I| = k}|

denote the number of subsequences T of S having sum σ(T ) = g and length |T | = k
(counted with the multiplicity of their appearance in S).

For convenience, let Nk(S) denote Nk
0 (S).

Lemma 2.1. ([4, Lemma 3.2]) Let H be a finite abelian group, and let G = Cn⊕H.
If exp(H) | n then η(G) ≤ n + 2D(H)− 2.

Lemma 2.2. ([16]) Let G be a finite abelian p-group. Then

D(G) = D∗(G).

Moreover, if S is a sequence over G with |S| = l ≥ D∗(G), then

1−N1(S) + N2(S) + · · ·+ (−1)lN l(S) ≡ 0 (mod p).

Lemma 2.3. Let m be a positive integer, let G be a finite abelian p-group, and let
S be a sequence over G of length |S| ≥ D(G) + pm − 1. Let t = b |S|pm c. Then

1 + Σt
j=1(−1)jN jpm

(S) ≡ 0 (mod p).

Proof. Let G⊕Cpm = G⊕〈e〉 with 〈e〉 = Cpm . Let ϕ : G → G⊕Cpm be defined by
ϕ(g) = g + e for every g ∈ G. Let S = g1 · . . . ·gl. Then ϕ(S) = (g1 + e) · . . . · (gl + e)
is a sequence over G⊕Cpm . Thus let ϕ(T ) be a subsequence of ϕ(S) over G⊕Cpm ,
σ(ϕ(T )) = 0 if and only if σ(T ) = 0 and |T | ≡ 0 (mod pm).

Apply lemma 2.2 to the sequence ϕ(S), we get

1 + Σt
j=1(−1)jN jpm

(ϕ(S)) ≡ 0 (mod p),

hence
1 + Σt

j=1(−1)jN jpm

(S) ≡ 0 (mod p).

This completes the proof.
�

The following congruence is first used by Lucas [14], we give a proof for the
convenience of the reader.
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Lemma 2.4. Let a, b be positive integers with a = anpn + · · · + a1p + a0 and
b = bnpn + · · · + b1p + b0 be the p-adic expansions, where p is a prime, define(
k
0

)
= 1 for k ≥ 0. Then(

a

b

)
≡

(
an

bn

)(
an−1

bn−1

)
· · ·

(
a0

b0

)
(mod p).

Proof. We have

(1 + x)a = (1 + x)anpn+···+a1p+a0

= (1 + xpn

)an · · · (1 + xp)a1(1 + x)a0 (mod p)

Since 0 ≤ ai ≤ p− 1, comparing the coefficient of xb, we get the desired result.
�

Lemma 2.5. Let n and k be positive integers with 1 ≤ 2k ≤ n, and let A =((
n−j

i

))
0≤i,j≤k

, that is

A =


1 1 . . . 1(
n
1

) (
n−1

1

)
. . .

(
n−k

1

)(
n
2

) (
n−1

2

)
. . .

(
n−k

2

)
...

...
. . .

...(
n
k

) (
n−1

k

)
. . .

(
n−k

k

)


(k+1)×(k+1)

.

Then we have

det(A) =
1∏

1≤t≤k

t!

∏
1≤i<j≤k

(j − i).

Proof. Let

B =


1 1 1
n n− 1 . . . n− k

n(n− 1) (n− 1)(n− 2) (n− k)(n− k − 1)
...

...
. . .

...
n · · · (n− k + 1) (n− 1) · · · (n− k) . . . (n− k) · · · (n− 2k + 1)

.

In what follows, we denote the ith row of B by RowB(i).
Firstly, replace RowB(3) by RowB(3)+RowB(2), and we get the following matrix


1 1 1
n n− 1 . . . n− k
n2 (n− 1)2 (n− k)2
...

...
. . .

...
n · · · (n− k + 1) (n− 1) · · · (n− k) . . . (n− k) · · · (n− 2k + 1)

.

by abuse of language we also denote the corresponding new matrix by B.
Similarly, let fi(x) = x(x− 1) · · · (x− i+2) = xi−1 +ai−2x

i−2 + · · ·+a1x. Then
replace RowB(i) by RowB(i)−ai−2RowB(i−1)−· · ·−a1RowB(2) successively for
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4 ≤ i ≤ k + 1 and after each step also denote the corresponding new matrix by B,
we can get the following matrix

C =


1 1 1
n n− 1 . . . n− k
n2 (n− 1)2 (n− k)2
...

...
. . .

...
nk (n− 1)k . . . (n− k)k

.

It is well known that det(C) is a Vandermonde determinant, then clearly

det(A) =
1∏

1≤t≤k

t!
det(B) =

1∏
1≤t≤k

t!
det(C) =

1∏
1≤t≤k

t!

∏
1≤i<j≤k

(j − i).

�

Lemma 2.6. [8, Theorem 1.2] Let H be an arbitrary finite abelian group with
exp(H) = u ≥ 2, and let G = Cvu ⊕ H. If v ≥ max{u|H| + 1, 4|H| + 2u}, then
s(G) = η(G) + exp(G)− 1.

Lemma 2.7. ([12, Page 7, (4.1)]) Let K be subgroup of a finite abelian group G.
Then, η(G) ≤ exp(G/K)(η(K)− 1) + η(G/K).

Lemma 2.8. ([3]) Let a, n be a positive integer, let H be a finite abelian p-group
with D(H) ≤ pn − 1, and let G = Capn ⊕H. Then, D(G) = apn + D(H)− 1.

3. Proof of the main theorems

Let G = Cpn ⊕ H be a finite abelian p-group with exp(H) = pm. Let k be the
integer with

kpm ≤ D(H)− 1 < (k + 1)pm,

and let
v = (k + 1)pm − D(H).

The following technical result is crucial in the proof of Theorem 1.2.

Lemma 3.1. Let G = Cpn ⊕H be a finite p-group with exp(H) = pm, and let S be
a sequence over G of length s = |S| = pn +2D(H)−2. Suppose that S has no short
zero-sum subsequence. If pn ≥ 2D(H)− 2, then we have the following congruences:

(3.1) 1 + Σh
u=0

(
h

u

)
Σk

j=1(−1)j−1Npn+jpm−u(S) ≡ 0 (mod p)

holds for every h ∈ [0, v], and

(3.2) Σk
j=1(−1)j−1Npn+jpm−h(S) ≡ 0 (mod p)

for every h ∈ [1, v], and

(3.3)
( |S|
ipm

)
+ Σk

j=1(−1)j−1Σv
u=0

(|S|−pn−jpm+u
ipm

)(
v
u

)
Npn+jpm−u(S)

≡ 0 (mod p)

for every i ∈ [0, k].
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Proof. We first have the following claim.

Claim. N i(S) = 0 for every i ∈ [1, pn] ∪ [pn + D(H), |S|].
Since S has no short zero-sum subsequence, we obtain N i(S) = 0 for every

i ∈ [1, pn]. Assume that N i(S) 6= 0 for some i ∈ [pn + D(H), |S|], then S has a
zero-sum subsequence W of length |W | = i ≥ pn +D(H) = D(G)+1, which implies
W can be divided into two nonempty zero-sum subsequences W = W1W2 with
|W1| ≤ |W2|. Since 2D(H)− 2 ≤ pn, we have

|W1| ≤
|W |
2

≤ |S|
2

=
pn + 2D(H)− 2

2
≤ pn = exp(G),

it is a contradiction completing the proof of the Claim.
Consider the following homomorphism

ϕ : G = Cpn ⊕H → Cpn ⊕H ⊕ Cpm = G⊕ 〈e〉
with ϕ(g) = g + e for every g ∈ G, where 〈e〉 = Cpm . Let S = g1 · . . . · gs. Then
ϕ(S) = (g1 + e) · . . . · (gs + e) is a sequence over G⊕ Cpm .

For i ∈ [0, k], let T be an arbitrary subsequence of S of length

|T | = |S| − ipm.

Note that
|T0h| = |T |+ h = pn + 2D(H)− 2− ipm + h ≥ pn + D(H)− 1 + pm

= D(G) + pm − 1

holds for i ∈ [0, k − 1] and h ∈ [0, v], or i = k and h = v. Applying Lemma 2.3 to
the sequence ϕ(T0h) with i ∈ [0, k − 1] and h ∈ [0, v], or i = k and h = v, we get

(3.4) 1 + Σt
j=1(−1)jN jpm

(ϕ(T0h)) ≡ 0 (mod p).

where t = b |T0h|
pm c. Therefore,

(3.5) 1 + Σt
j=1(−1)j(Σh

u=0

(
h

u

)
N jpm−u(T )) ≡ 0 (mod p),

since N jpm

(ϕ(T0h)) = Σh
u=0

(
h
u

)
N jpm−u(T ) for every j ∈ [1, t].

Note that N i(T ) ≤ N i(S). Applying the claim above we obtain, N i(T ) = 0 for
every i ∈ [1, pn]∪ [pn +D(H), |T |]. Since pn +D(H) = pn +(k +1)pm − v, by (3.5),
we obtain

(3.6) 1 + Σh
u=0

(
h

u

)
Σk

j=1(−1)j−1Npn+jpm−u(T ) ≡ 0 (mod p)

holds for every pair of (h, i) with h ∈ [0, v] and i ∈ [0, k − 1], or h = v and i = k.
Taking T = S in (3.6) we obtain (3.1).

Let F (h) = 1 + Σh
u=0

(
h
u

)
Σk

j=1(−1)j−1Npn+jpm−u(S). By (3.1), we obtain that
F (h + 1)− F (h) ≡ 0 (mod p). That is,

(3.7)
Σk

j=1(−1)j−1Npn+jpm−(h+1)(S) =
−Σh

u=0(
(
h+1

u

)
−

(
h
u

)
)Σk

j=1(−1)j−1Npn+jpm−u(S) (mod p).

Taking h = 0 in (3.7), we obtain

Σk
j=1(−1)j−1Npn+jpm−1(S) ≡ 0 (mod p).
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This proves (3.2) for h = 1. Suppose that (3.2) is true for all h < ` (≤ v). Again
by (3.7) taking h = ` − 1, we obtain Σk

j=1(−1)j−1Npn+jpm−`(S) ≡ 0 (mod p)
completing the proof of (3.2). Now it remains to prove (3.3).

By (3.6) we have

(3.8) Σ|T |=|S|−ipm

(
1 + Σv

u=0

(
v

u

)
Σk

j=1(−1)j−1Npn+jpm−u(T )
)
≡ 0 (mod p),

where the sum is taken over all T |S of length |T | = |S| − ipm.
Note that each subsequence W of S of length |W | ≤ |S| − ipm can be extended

to a subsequence T of length |T | = |S| − ipm in
(|S|−|W |
|T |−|W |

)
=

(|S|−|W |
|S|−|T |

)
=

(|S|−|W |
ipm

)
way. Therefore, the left side of (3.8) equals(

|S|
ipm

)
+ Σk

j=1(−1)j−1Σv
u=0

(
|S| − pn − jpm + u

ipm

)(
v

u

)
Npn+jpm−u(S).

Now (3.3) follows. �

Remark 3.2. Note that v could be 0 and the list of (3.2) is empty.

Proposition 3.3. Let H be a finite abelian p-group with 2r(H) < p, and let G =
Cpn ⊕H with D(G) ≤ 2pn − 1. Let exp(H) = pm, and let D(H)− 1 = kpm + t with
k a integer and t ∈ [0, pm − 1]. If k = 1 or 2t ≥ pm, then

η(G) = 2D(G)− pn = pn + 2D(H)− 2.

Proof. By Lemma 2.1, it suffices to prove that η(G) ≤ pn + 2D(H)− 2.
Let S be a sequence over G of length s = |S| = pn +2D(H)−2 = pn +2kpm +2t.

We need to show S has a short zero-sum subsequence. Assume to the contrary that
S has no short zero-sum sequence.

Case 1 k = 1.
Since p > 2r(H), we know that p is a odd prime and D(H) = D∗(H) is odd.

Therefore,
v = 2pm − D(H) ≥ 1.

In this case, (3.2) becomes

(3.9) Npn+pm−h(S) ≡ 0 (mod p)

for every h ∈ [1, v].
By (3.3) taking i = 1, we obtain

(
pn + 2pm + 2t

pm

)
+ Σv

u=0

(
pm + 2t + u

pm

)
Npn+pm−u(S) ≡ 0 (mod p).

This together with (3.9) gives that(
pn + 2pm + 2t

pm

)
+

(
pm + 2t

pm

)
Npn+pm

(S) ≡ 0 (mod p).

It follows from Lemma 2.4 that

(3.10)
(

2pm + 2t

pm

)
+

(
pm + 2t

pm

)
Npn+pm

(S) ≡ 0 (mod p).
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Again by Lemma 2.4 and according to 2t < pm or not, from (3.10) we know that
either

2 + Npn+pm

(S) ≡ 0 (mod p)
or

3 + 2Npn+pm

(S) ≡ 0 (mod p).
Both contradict to 1 + Npn+pm

(S) ≡ 0 (mod p) by (3.1).
Case 2: 2t ≥ pm

From the assumption that 2r(H) < p we infer that kpm + t = D(H) − 1 =
D∗(H)− 1 < r(H)pm < p

2 × pm. Therefore,

2k < p.

Since

|S| − pn − jpm = pn + 2kpm + 2t− pn − jpm = (2k − j)pm + 2t

and
|S| − pn − jpm + v = pn + 2kpm + 2t− pn − jpm + (k + 1)pm − (kpm + t + 1)

= (2k − j)pm + pm + t− 1.

By Lemma 2.4,
(|S|−pn−jpm+u

ipm

)
=

(|S|−pn−jpm

ipm

)
for every u ∈ [0, v]. Thus in

(3.3), we can treat Σv
u=0

(
v
u

)
Npn+jpm−u(S) as one variable.

Set i = 0, . . . , k respectively in (3.3), we get a group of linear equations in
variables 1,Σv

u=0

(
v
u

)
Npn+pm−u(S), . . . , (−1)k−1Σv

u=0

(
v
u

)
Npn+kpm−u(S). That is

(3.11)
(
2kpm+2t

ipm

)
+ Σk

j=1(−1)j−1
(
(2k−j)pm+2t

ipm

)
Σv

u=0

(
v
u

)
Npn+pm−u(S)

≡ 0 (mod p)

for every i ∈ [0, k].
Let 2t = pm + d and l = 2k + 1, where 0 ≤ d ≤ pm − 1. Note that 2k < p. By

Lemma 2.4 we have(
(2k − j)pm + 2t

ipm

)
=

(
2k + 1− j

i

)
=

(
l − j

i

)
for all i ∈ [0, k] and j ∈ [0, k].

So, the coefficient matrix of the group of linear equations of (3.11) is A =((
l−j

i

))
0≤i,j≤k

, that is

A =


1 1 1(
l
1

) (
l−1
1

)
. . .

(
l−k
1

)(
l
2

) (
l−1
2

)
. . .

(
l−k
2

)
. . .(

l
k

) (
l−1
k

)
. . .

(
l−k
k

)


(k+1)×(k+1)

.

By lemma 2.5 we have

det(A) =
1∏

1≤t≤k

t!

∏
1≤i<j≤k

(j − i) 6≡ 0 (mod p).

Therefore the linear equations above has only trivial solution

1 ≡ Σv
u=0

(
v
u

)
Npn+pm−u(S) ≡ · · · ≡ (−1)k−1Σv

u=0

(
v
u

)
Npn+kpm−u(S)

≡ 0 (mod p),
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a contradiction. �

Proof of Theorem 1.2. By Lemma 2.1 and Lemma 2.8, we only need to prove
that η(G) ≤ apn + 2D(H) − 2. Note that if η(G) ≤ apn + 2D(H) − 2 for a = 1,
then by Lemma 2.7 taking K ' Ca as a subgroup of G, we obtain that η(G) ≤
exp(G/K)(η(K)− 1) + η(G/K) = pn(a− 1) + pn + 2D(H)− 2 = apn + 2D(H)− 2.
So, it suffices to prove the theorem for a = 1 which we now assume.

(1): D(H) ≤ 2 exp(H).
Since D(H)− 1 ≤ 2 exp(H)− 1, we have

k = 1.

Hence by Proposition 3.3, we get the desired result.

(2): d(k + 1
2 ) exp(H)e < D(H) ≤ (k + 1) exp(H) for some integer k ≥ 2.

Let D(H)− 1 = kpm + t. Since d(k + 1
2 ) exp(H)e < D(H) ≤ (k + 1) exp(H), we

have
2t ≥ pm.

Hence by Proposition 3.3, we get the desired result.
�

Proof of Theorem 1.3. If H is cyclic, then G is of rank at most two and the result
is true as mentioned in the introduction. Now we assume that r(H) ≥ 2. Since
p > 2r(H), we have p ≥ 5 and |H| ≥ 25 follows. Let u = pm and v = apn−m. Then
uv = apn. By a > p2m−n|H| we obtain v ≥ m|H|+1 = max{m|H|+1, 4|H|+2m}.
It follows from Lemma 2.6 that s(G) = η(G) + exp(G)− 1. Now the result follows
from Theorem 1.2.

�
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