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ABSTRACT. Let G be an additive finite abelian group with exponent exp(G).
Let (@) be the smallest integer ¢ such that every sequence of length ¢ has a
nonempty zero-sum subsequence of length at most exp(G). Let s(G) be the
EGZ-constant of GG, which is defined as the smallest integer ¢ such that every
sequence of length ¢ has a zero-sum subsequence of length exp(G). Let p be an
odd prime. We determine n(G) for some groups G with D(G) < 2exp(G) — 1,
including the p-groups of rank three and the p-groups G = Ceyp () EBC;m. We
also determine s(G) for the groups G above with more larger exponent than
D(G), which confirms a conjecture by Schmid and Zhuang from 2010, where
D(G) denotes the Davenport constant of G.

1. INTRODUCTION

Throughout this paper, let p denote a prime. Let G be an additive finite abelian
group with exponent exp(G). Let S =g - ... gr be a sequence over G. We call S
a zero-sum sequence if 0 = X¥_, g;. The Davenport’s constant, denoted by D(G), is
the minimal integer ¢ such that such that every sequence S over G of length |S| > ¢
has a nonempty zero-sum subsequence. Let 1n(G) be the minimal integer ¢ such
that every sequence of length ¢ has a nonempty zero-sum subsequence of length
less than or equal to exp(G). Let s(G) be the minimal integer ¢ such that every
sequence of length ¢ has a zero-sum subsequence of length exp(G).

These are classical invariants in combinatorial number theory and have received
a lot of attention(see [17], [18], [8], [2], [11]). For G is cyclic, we have n(G) = |G|,
and s(G) = 2|G| — 1 by the well known Erdés-Ginzurg-Ziv theorem [5]. For the
case that G is of rank two, the key step of determine n(G) (resp. s(G)) is to
determine 7(C?) (resp. s(C72)). In 1969, Olson [17] proved n(C?) = 3p — 2. While
the determining of s(C7) is very complicated. In 1983, Kemnitz [15] conjectured
that s(C2) = 4p — 3 and it was confirmed by C. Reiher [18] in 2007. The precise
values of 7(G) and s(G) for groups with rank at most two has been summarized in
([13, Theorem 5.8.3]) as follows.

If G =Cp, @ C,, with 1 <mjn, then s(G) =n(G) +n—1=2m+ 2n— 3.

The situation is very different for groups of higher rank. Even for the group
G = Cg’ with p being a prime, the precise value of the n(G), s(G) is unknown (for
general p). Fan, Gao, Wang, and Zhong [8] determined the n(G) and s(G) for a
special type groups with rank three. When G = C%, the precise value of n(G)
and s(G) has been determined for r < 6 (see [4]). Apart the results mentioned

above, Schmid and Zhuang [19] proved that if G is a finite abelian p-group with
D(G) = 2exp(G) — 1, then 2D(G) — 1 = n(G) + exp(G) — 1 = s(G), which has

Gao.
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been generalized recently by Geroldinger, Grynkiewcz and Schmid [12, Theorem
4.2]. Schmid and Zhuang further conjectured the following.

Conjecture 1.1. ([19]) Let G be a finite abelian p-group with D(G) < 2exp(G)—1.
Then
2D(G) — 1 =n(G) + exp(G) — 1 = s(G).

In this paper we verify this conjecture for some p-groups with D(G) < 2exp(G)—
1 and our main results are the following.

Theorem 1.2. Let a,n be positive integers, let H be a finite abelian p-group, and
let G = Copn @ H. Suppose that D(Cpn @ H)) < 2p™ — 1. If p > 2r(H) then

n(G) = 2D(G) — ap™ = ap™ + 2D(H) — 2
provided that H satisfies one of the following conditions:
(1) D(H) < 2exp(H).
(2) [(k+ 3)exp(H)] < D(H) < (k+ 1) exp(H) for some integer k > 2.

Theorem 1.3. Let H be a finite abelian p-group with exp(H) = p™, and let G =
Copn @ H. If p>2r(H), p" > D(H) and a > |H|p*™~", then

s(G) =n(G) + ap™ — 1 =2ap™ +2D(H) — 3
provided that H satisfies one of the following conditions:
(1) D(H) < 2exp(H).
(2) [(k+ 3)exp(H)] < D(H) < (k+ 1) exp(H) for some integer k > 2.

It is easy to see that the conditions of Theorem 1.2 are fulfilled by the following
groups H and G.
o r(H)=2and D(Cpn & H) <2p™ — 1.
e D(Cpn ®H)<2p" —1, H=C}m and p > 27 + 1.

It is easy to see that the conditions of Theorem 1.3 are fulfilled by the following
groups H and G.
e r(H)=2,D(Cpn ® H) <2p" —1and a > |H[p*™ "
e D(Cpn ®H) <2p" —1, H=C}n, p>2r+1anda>|H|p* "

2. PRELIMINARIES

Let N denote the set of positive integers, Ny = N U {0}. For a real number z,
we denote by |z] the largest integer that is less than or equals to z, and denote by
[2] the smallest integer that is greater than or equals to z.

Throughout, all abelian groups will be written additively. By the Fundamental
Theorem of Finite Abelian Groups we have

chnl@...@cm

where r = r(G) € Ny is the rank of G, ny,...,n, € N are integers with 1 <
ni|...|n,, moreover, ni,...,n, are uniquely determined by G, and n, = exp(G) is
the exponent of G. Let

D*(G) =1+ X7_, (n; — 1).
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For g1,...,g; € G(repetition allowed), we call S = g1 -...- g, a sequence over G.
We write sequences S in the form

S= ] 9% with v4(S) € N for all g € G.
geG

We call v, (S) the multiplicity of g in S.

For S=g1-...- g1 = ngGg"g(S), we call
|S] =1=23,eqvy(S) € Ny the length of S.
o(S) =319 = Xyeqvy(S)g € G the sum of S.
S is a zero-sum sequence if o(S) = 0.
S is a short zero-sum sequence if it is a zero-sum sequence of length
151 € [1, exp(G)]

Let S =g1-... g be a sequence over G of length |S| =1 € Ny and let g € G.
For every k € Ny let

Ng(S) = I C [L,1] | Siergi = g, 11| = k}|

denote the number of subsequences T of S having sum o(T") = g and length |T'| = k
(counted with the multiplicity of their appearance in S).
For convenience, let N*(S) denote N§(S).

Lemma 2.1. ([4, Lemma 3.2]) Let H be a finite abelian group, and let G = C, & H.
Ifexp(H) | n then n(G) < n+2D(H) — 2.

Lemma 2.2. ([16]) Let G be a finite abelian p-group. Then
D(G) = D*(@G).
Moreover, if S is a sequence over G with |S| =1 > D*(G), then
1— NYS) + N%(S)+ -+ (=1)'N'(S) =0 (mod p).
Lemma 2.3. Let m be a positive integer, let G be a finite abelian p-group, and let
S be a sequence over G of length |S| > D(G) +p™ — 1. Lett = LI‘%‘J Then
1+, (-1)/N?P"(S) =0 (mod p).
Proof. Let G@® Cpm = G® (e) with (€) = Cpm. Let ¢ : G — G® Cpm be defined by
o(g) =g+eforevery g€ G. Let S=g;-...-g;. Then ¢(S) = (g1+¢€)-...-(gi+e)
is a sequence over G & Cpm. Thus let ¢(T) be a subsequence of ¢(S) over G& Cpym,
o(p(T)) =0if and only if o(T) =0 and |T| =0 (mod p™).
Apply lemma 2.2 to the sequence ¢(S), we get
1+ 35 (=1 NP7 (p(8)) =0 (mod p),
hence
1+ E§:1(_1)ijpm (S)=0 (mod p).

This completes the proof.
O

The following congruence is first used by Lucas [14], we give a proof for the
convenience of the reader.
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Lemma 2.4. Let a,b be positive integers with a = app™ + -+ + a1p + ag and
b = byp" + -+ + bip + by be the p-adic expansions, where p is a prime, define
(g) =1 fork>0. Then

() =) G+ (o) moam:

(1+z)* = (14 z)mp"+Fartao
=(1+2P")% . (1 +2P)" (1 + )™ (mod p)

Proof. We have

Since 0 < a; < p — 1, comparing the coefficient of 2°, we get the desired result.
O

Lemma 2.5. Let n and k be positive integers with 1 < 2k < n, and let A =
((n;]))ogmgk’ that is

1 1 1
I
P UL I
@ ) o O e

Then we have

det(A)z% I G-

H T 1<i<j<k

1<t<k
Proof. Let
1 1 1
n n—1 n—k
B = n(n—1) (n—1)(n—2) (n—k)(n—-k-1)
e (e k+1) (1) (m—k) ... (n—k)-(n—2k+1)

In what follows, we denote the ith row of B by Rowp(i).
Firstly, replace Rowgp(3) by Rowp(3)+ Rowp(2), and we get the following matrix

1 1 1
n n—1 n—=k
n? (n—1)2 (n — k)2
e k41) (ne1)e-(—k) ... (n—k)--(n—2k+1)

by abuse of language we also denote the corresponding new matrix by B.
Similarly, let f;(z) =z(z—1)---(x —i+2) = 2" ' +a;_22""? +--- +a1z. Then
replace Rowp (i) by Rowp (i) —a;—aRowp(i —1) — - - - — a3 Rowp(2) successively for
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4 <1 < k+1 and after each step also denote the corresponding new matrix by B,
we can get the following matrix

1 1 1
n n—1 ... n-—k
C— n? (n—1)2 (n — k)2
n* (n—-1DF ... (n—k)*
It is well known that det(C) is a Vandermonde determinant, then clearly
1 1 1 .
1<t<k 1<t<k 1<t<p 1SI<ysk

O

Lemma 2.6. [8, Theorem 1.2] Let H be an arbitrary finite abelian group with
exp(H) =u > 2, and let G = Cy, ® H. If v > max{u|H|+ 1,4|H| + 2u}, then
s(G) = n(G) + exp(G) — 1.

Lemma 2.7. ([12, Page 7, (4.1)]) Let K be subgroup of a finite abelian group G.
Then, n(G) < exp(G/K)(n(K) — 1) + n(G/K).

Lemma 2.8. ([3]) Let a,n be a positive integer, let H be a finite abelian p-group
with D(H) <p"™ —1, and let G = Cypn ® H. Then, D(G) = ap™ + D(H) — 1.

3. PROOF OF THE MAIN THEOREMS

Let G = Cpn» @ H be a finite abelian p-group with exp(H) = p™. Let k be the
integer with
kp™ < D(H) — 1< (k+ )™,
and let
v=(k+1)p™ —D(H).

The following technical result is crucial in the proof of Theorem 1.2.

Lemma 3.1. Let G = Cpn @ H be a finite p-group with exp(H) = p™, and let S be
a sequence over G of length s = |S| = p™ +2D(H) — 2. Suppose that S has no short
zero-sum subsequence. If p™ > 2D(H) — 2, then we have the following congruences:

h . n, o m
(3.1) 14+3h_ (u) Sh_ (1) INPTHPTN(8) =0 (mod p)

holds for every h € [0,v], and

(3.2) SE_ (=17 TINPTHPT I (S) = 0 (mod p)

for every h € [1,v], and

() + Sy (S (S () N )
=0 (mod p)

for every i € [0, k].

(3.3)
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Proof. We first have the following claim.

Claim. N*(S) =0 for every i € [1,p"] U [p™ + D(H),|S|].

Since S has no short zero-sum subsequence, we obtain N¢(S) = 0 for every
i € [1,p"]. Assume that N¢(S) # 0 for some i € [p" + D(H),|S|], then S has a
zero-sum subsequence W of length |W| =4 > p”+D(H) = D(G) + 1, which implies
W can be divided into two nonempty zero-sum subsequences W = W; W, with
|[W1| < |Wa]. Since 2D(H) — 2 < p™, we have

M<@:pn+2D(H)—2
2 — 2 2
it is a contradiction completing the proof of the Claim.
Consider the following homomorphism

QDZ G:Cpn@H—)Cpn@H@Cpm:G@<6>

(Wil < <p" = exp(G),

with ¢(g) = g + e for every g € G, where (¢) = Cpm. Let S = g1 ... gs. Then
©(S)=(g1+¢€) ... - (gs +e) is a sequence over G & Cpm.
For i € [0, k], let T be an arbitrary subsequence of S of length
7| = [S] —ip™.
Note that
|TO" =|T|+h=p"+2D(H)—2—ip™ +h>p"+D(H)—1+p™
=D(G)+pm -1

holds for i € [0,k — 1] and h € [0,v], or ¢ = k and h = v. Applying Lemma 2.3 to
the sequence (T0") with i € [0,k — 1] and h € [0,], or i = k and h = v, we get

(3.4) 14+ X5, (=1)/N7P" (o(T0") =0 (mod p).
where ¢t = L‘:;?:lj. Therefore,

. B\ o
(35) 4 3 (-1 (oo ()4 @) =0 nod ),

since N7P" (o(T0")) = Xh_, (") NIP"~4(T) for every j € [1,].

Note that N*(T) < N%(S). Applying the claim above we obtain, N*(T) = 0 for
every i € [1,p"]U[p" +D(H),|T|]. Since p" +D(H) =p" + (k+ 1)p™ — v, by (3.5),
we obtain

h 5 n s T
(3.6) 1+3h_, (u) SF_ (=1 TINPTHPT T =0 (mod p)
holds for every pair of (h,4) with h € [0,v] and i € [0,k — 1], or h = v and ¢ = k.
Taking T'= S in (3.6) we obtain (3.1).

Let F(h) = 1+ 3h_(1)5h_, (—1)7~1NP"+P" ~u(S). By (3.1), we obtain that
F(h+1)— F(h) =0 (mod p). That is,
2;?:1(,1)J’71Np"+jpmf(h+1)(5) =
=Shoo ("3 = ()Ehoy (1T INPTHRT () (mod p).

Taking h = 0 in (3.7), we obtain
SE_ (1) INPTHPTEL(S) =0 (mod p).

(3.7)
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This proves (3.2) for h = 1. Suppose that (3.2) is true for all h < £ (< v). Again
by (3.7) taking h = £ — 1, we obtain $¥_,(=1)I=!NP"+ir" ~£(S) = 0 (mod p)
completing the proof of (3.2). Now it remains to prove (3.3).

By (3.6) we have
v j— "4jp" —u _
38 Sirimisam (14 i) S5 (-1 N D) =0 (mod ),

where the sum is taken over all T'|S of length |T'| = |S| — ip™.

Note that each subsequence W of S of length |[W| < |S| — ip™ can be extended
to a subsequence T of length |T| = |S| — ip™ in (‘lfw\:\v‘;ll) = (II%I‘—_\‘VTZ‘I) = (lSL;LW|)
way. Therefore, the left side of (3.8) equals

N k i1 |S] —p™ — jp™ 4+ )\ (v s
(=1 NP HIPT (g,
R e e . (5)

Now (3.3) follows. O

Remark 3.2. Note that v could be 0 and the list of (3.2) is empty.

Proposition 3.3. Let H be a finite abelian p-group with 2r(H) < p, and let G =
Cpn ® H with D(G) < 2p™ —1. Let exp(H) = p™, and let D(H) — 1 = kp™ +t with
k a integer and t € [0,p™ — 1]. If k =1 or 2t > p™, then

n(G) =2D(G) —p" =p" + 2D(H) — 2.

Proof. By Lemma 2.1, it suffices to prove that n(G) < p™ +2D(H) — 2.

Let S be a sequence over G of length s = |S| = p" +2D(H) —2 = p" +2kp™ + 2t.
We need to show S has a short zero-sum subsequence. Assume to the contrary that
S has no short zero-sum sequence.

Case 1 k£ =1.

Since p > 2r(H), we know that p is a odd prime and D(H) = D*(H) is odd.
Therefore,

v=2p" —D(H) > 1.
In this case, (3.2) becomes
(3.9) NP"+P"=h(§) =0 (mod p)

for every h € [1,v].
By (3.3) taking ¢ = 1, we obtain

o 2p™ 2t m 12t n, . m
(p +p{’n + >+zg_o(p Zm”)zvp " (§) =0 (mod p).

This together with (3.9) gives that
4 2p™ 4 2t m 4 2t n o m
<p e )+<p + )NP +"($) =0 (mod p).
pm p'ffL
It follows from Lemma 2.4 that

2p™ + 2t O am
(3.10) <pp7j >+ (p p; )Np " ($)=0 (mod p).
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Again by Lemma 2.4 and according to 2t < p™ or not, from (3.10) we know that
either

24+ NP'FP7(S) =0 (mod p)
or
34+ 2NP"P7(S) =0 (mod p).
Both contradict to 1 + N?"+P"(8) =0 (mod p) by (3.1).
Case 2: 2t > p™
From the assumption that 2r(H) < p we infer that kp™ +t = D(H) — 1 =
D*(H) —1<r(H)p™ < & x p™. Therefore,
2k < p.
Since
|S| = p" = jp™ =p" + 2kp™ + 2t — p" — jp™ = (2k — j)p™" + 2t
and
S| =p" —jp™ +v =p" 4 2kp™ + 2t —p" —jp™ + (k+ 1)p™ — (kp™ +t+ 1)
=Q2k—j)pm+pm+t—1
By Lemma 2.4, (‘SFPZP’WZIPM’*“) = (‘S"f;;jpm) for every u € [0,v]. Thus in
(3.3), we can treat XU_, (7)) NP"+7P" ~(S) as one variable.
Set ¢ = 0,...,k respectively in (3.3), we get a group of linear equations in
variables 1, 54_o (V) NP P =u(8) L (=1)k=18y_ (V) NP ThP" ~v(S). That is

(2kp’”+2t) + Eé_c:l(_l)j—l((2k—j)pmr+2t)zz:0( )an+pm_“(5)

v
ip™ ip™ u

(3:.11) =0 (mod p)

for every i € [0, k].
Let 2t = p™ +d and | = 2k + 1, where 0 < d < p™ — 1. Note that 2k < p. By
Lemma 2.4 we have

(@k—ggn+27::Cm+;—j)zzczj>

for all ¢ € [0, k] and j € [0, k].
So, the coefficient matrix of the group of linear equations of (3.11) is A =

(7)) gz yps that is

1 1 1
(1 (7 ('3")
A= G (5 (5")
G (%) (G RS
By lemma 2.5 we have
MMb—%? [T G-i)#0 (modp).
1<i<k T 1<i<j<k

Therefore the linear equations above has only trivial solution

1= 8o () NPT T(S) = = ()RS () NPT ()
=0 (mod p),
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a contradiction. O

Proof of Theorem 1.2. By Lemma 2.1 and Lemma 2.8, we only need to prove
that n(G) < ap™ + 2D(H) — 2. Note that if n(G) < ap™ + 2D(H) — 2 for a = 1,
then by Lemma 2.7 taking K ~ C, as a subgroup of G, we obtain that n(G) <
exp(G/K)n(K)—1)+n(G/K) =p™(a—1)+p" +2D(H) — 2 = ap" + 2D(H) — 2.
So, it suffices to prove the theorem for a = 1 which we now assume.

(1): D(H) < 2exp(H).
Since D(H) — 1 < 2exp(H) — 1, we have

k=1.
Hence by Proposition 3.3, we get the desired result.

(2): [(k+ 3)exp(H)] < D(H) < (k + 1) exp(H) for some integer k > 2.
Let D(H) — 1 = kp™ +t. Since [(k + 3)exp(H)] < D(H) < (k + 1) exp(H), we
have
2t > p™.

Hence by Proposition 3.3, we get the desired result.
O

Proof of Theorem 1.3. If H is cyclic, then G is of rank at most two and the result
is true as mentioned in the introduction. Now we assume that r(H) > 2. Since
p > 2r(H), we have p > 5 and |H| > 25 follows. Let u = p™ and v = ap™~ ™. Then
uwv = ap™. By a > p*™~"|H| we obtain v > m|H|+1 = max{m|H|+1,4|H| +2m}.
It follows from Lemma 2.6 that s(G) = n(G) + exp(G) — 1. Now the result follows
from Theorem 1.2.

O
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