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Abstract. In the study of Kostka numbers and Catalan numbers, Kirillov
posed a unimodality conjecture for the rectangular Narayana polynomials.
We prove that the rectangular Narayana polynomials have only real zeros,
and thereby confirm Kirillov’s unimodality conjecture. By using an equidis-
tribution property between descent numbers and ascent numbers on ballot
paths due to Sulanke and a bijection between lattice words and standard
Young tableaux, we show that the rectangular Narayana polynomial is equal
to the descent generating function on standard Young tableaux of certain
rectangular shape, up to a power of the indeterminate. Then we obtain the
real-rootedness of the rectangular Narayana polynomial based on Brenti’s
result that the descent generating function of standard Young tableaux has
only real zeros.
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1 Introduction

The main objective of this paper is to prove a unimodality conjecture for
the rectangular Narayana polynomials in the study of Kostka numbers and
Catalan numbers. This conjecture was first posed by Kirillov [5] in 1999,
and it was restated by himself [6] in 2015. In this paper we prove that
the rectangular Narayana polynomials have only real zeros, an even stronger
result than Kirillov’s conjecture.

Let us begin with an overview of Kirillov’s conjecture. Throughout this
paper, we abbreviate the vector (m,m, . . . ,m) with n occurrences of m as
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(mn) for any positive integer m and n. We say that a word w = w1w2 · · ·wnm
in symbols 1, 2, . . . ,m is a lattice word of weight (mn), if the following con-
ditions hold:

(a) each i between 1 and m occurs exactly n times and

(b) for each 1 ≤ r ≤ nm and 1 ≤ i ≤ m−1, the number of i’s in w1w2 · · ·wr
is not less than the number of (i+ 1)’s.

Given a word w = w1w2 · · ·wp of length p, we say that i is an ascent of w
if wi < wi+1, and a descent of w if wi > wi+1. Denote the number of ascents
of w by asc(w), and the number of descents des(w). For any m and n, the
rectangular Narayana polynomial N(n,m; t) is defined by

N(n,m; t) =
∑

w∈N (n,m)

tdes(w), (1.1)

where N (n,m) is the set of lattice words of weight (mn). Note that N(n, 2; t)
is the classical Narayana polynomial, and N(n, 2; 1) is the classical Catalan
number, see [6]. For this reason, N(n,m; 1) is called the rectangular Catalan
number.

Kirillov’s conjecture is concerned with the unimodality of the rectangular
Narayana polynomial N(n,m; t). Recall that a sequence {a0, a1, . . . , an} of
positive real numbers is said to be unimodal if there exists an integer i ≥ 0
such that

a0 ≤ · · · ≤ ai−1 ≤ ai ≥ ai+1 ≥ · · · ≥ an,

and it is said to be log-concave if, for each 1 ≤ i ≤ n− 1, there holds

a2i ≥ ai−1ai+1.

Clearly, for a sequence of positive numbers, its log-concavity implies uni-
modality. Given a polynomial with real coefficients

f(t) =
n∑
k=0

akt
k,

we say that it is unimodal (or log-concave) if its coefficient sequence {a0, a1, . . . , an}
is unimodal (resp. log-concave). Kirillov proposed the following conjecture.

Conjecture 1.1 ([6, Conjecture 2.5]). For any m and n, the rectangular
Narayana polynomial N(n,m; t) is unimodal as a polynomial of t.

In this paper, we give an affirmative answer to the above conjecture. In-
stead of directly proving its unimodality, we shall show that the rectangular
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Narayana polynomial N(n,m; t) has only real zeros. By the well known New-
ton’s inequality, if a polynomial with nonnegative coefficients has only real
zeros, then its coefficient sequence must be log-concave and hence unimodal.
Thus, from the real-rootedness of N(n,m; t) we deduce its log-concavity and
unimodality.

The remainder of this paper is organized as follows. In Section 2, we
show that the rectangular Narayana polynomial N(n,m; t) is equal to the
descent generating function on standard Young tableaux of shape (nm), up
to a power of t. We use a result of Sulanke [8] that the ascent and descent
statistics are equidistributed over the set of ballot paths. In Section 3, we
first prove the real-rootedness of the descent generating function on standard
Young tableaux, and then obtain the real-rootedness of N(n,m; t).

2 Tableau interpretation

The aim of this section is to interpret the rectangular Narayana polynomials
as the descent generating function on standard Young tableaux.

Let us first recall some definitions. Given an integer partition λ =
(λ1, λ2, . . . , λ`), its Young diagram is defined to be an array of squares in
the plane justified from the top left corner with l rows and λi squares in row
i. By transposing the diagram of λ, we get the conjugate partition of λ,
denoted λ′. A cell (i, j) of λ is in the i-th row from the top and in the j-th
column from the left. A semistandard Young tableau (SSYT) of shape λ is
a filling of its diagram by positive integers such that it is weakly increasing
in every row and strictly increasing down every column. The type of T is
defined to be the composition α = (α1, α2, . . .), where αi is the number of i’s
in T . If T is of type α with αi = 1 for 1 ≤ i ≤ |λ| and αi = 0 for i > |λ|,
then it is called a standard Young tableau (SYT) of shape λ. Let Tλ denote
the set of SYTs of shape λ. Given a standard Young tableau, we say that
i is a descent of T if i + 1 appears in a lower row of T than i. Define the
descent set D(T ) to be the set of all descents of T , and denote by des(T ) the
number of descents of T .

The main result of this section is as follows.

Theorem 2.1. For any positive integers m and n, we have

N(n,m; t) = t1−m
∑

T∈T(nm)

tdes(T ). (2.1)

To prove the above result, we need a bijection between the set of lattice
paths and the set of standard Young tableaux. Here we use a very natural
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bijection φ between the lattice word of weight (mn) and the standard Young
tableau of shape (nm), see [3, p. 92], [4, p. 221] and [7]. To be self-contained,
we shall give a description of this bijection in the following.

Given a lattice word w = w1 · · ·wnm of weight (mn), let T = φ(w) be the
tableau of shape (nm) obtained by filling the square (i, j) with k provided
that wk is the j-th occurrence of i in w from left to right. Clearly, T is a
standard Young tableau. Conversely, given a standard Young tableau T of
shape (nm), define a word w by letting wi to be j if i is in the j-th row of T .
It is easy to verify that w = φ−1(T ). Figure 2.1 gives an illustration of this
bijection, where T is of shape (43) and w is of weight (34).

w = 121113223233 7→ T = 1 3 4 5

2 7 8 10

6 9 11 12

Figure 2.1: Bijection between standard Young tableaux and lattice words

By using the above bijection φ, we obtain the following result.

Lemma 2.2. For any positive integers m and n, we have∑
T∈T(nm)

tdes(T ) =
∑

w∈N (n,m)

tasc(w). (2.2)

Proof. Suppose that T = φ(w). Note that if i is an ascent in w, i.e. wi < wi+1,
then i+ 1 is filled in the wi+1-th row, which is lower than the row including
i in T . Hence, i is a descent of T . Conversely, given a tableau T , let i be a
descent of T and w = φ−1(T ). Since i is in a row above that of i+ 1, it follow
that that wi < wi+1. Hence, i is an ascent of w. Therefore, the bijection φ
sends the set of ascents in w to the set of descents of T = φ(w) and hence
asc(w) = des(T ). This completes the proof.

To prove Theorem 2.1, it remains to show that

t1−m
∑

w∈N (n,m)

tasc(w) =
∑

w∈N (n,m)

tdes(w). (2.3)

In fact, this has been established by Sulanke [8], who stated it in terms of
ballot paths. In the following, we shall give an overview of Sulanke’s result.

Recall that a ballot path for m-candidates is an m-dimensional lattice
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path running from (0, 0, . . . , 0) to (n, n, . . . , n) with the steps:

X1 := (1, 0, . . . , 0),

X2 := (0, 1, . . . , 0),

...
...

Xm := (0, 0, . . . , 1),

and lying in the region

{(x1, x2, . . . , xm) : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xm}.

Denote by C(m,n) the set of all such paths.

For any path P := p1p2 . . . pmn ∈ C(m,n), the number of ascents of P is
defined by

asc(P ) := |{i : pipi+1 = XjXl, j < l}|,
and the number of descents of P by

des(P ) := |{i : pipi+1 = XjXl, j > l}|.

Sulanke [8] obtained the following result by a nice bijection.

Lemma 2.3 ([8, Proposition 2]). For any positive integers m and n, we have∑
P∈C(m,n)

tasc(P ) =
∑

P∈C(m,n)

tdes(P )−m+1. (2.4)

Note that there is an obvious bijection between C(m,n) and N (n,m):
given a path P ∈ C(m,n), simply replace each step Xi of P by the symbol
m − i + 1, and the resulting word w is clearly a lattice word of N (n,m).
Moreover, we have asc(P ) = des(w) and des(P ) = asc(w). With this bijection,
Sulanke’s result can be restated as (2.3).

Proof of Theorem 2.1. Combining (1.1), (2.2) and (2.3), we immediately ob-
tain the desired result.

3 Real zeros

In this section, we aim to prove the real-rootedness of rectangular Narayana
polynomials. Our main result of this section is as follows.

Theorem 3.1. The rectangular Narayana polynomial N(n,m; t) has only
real zeros for any m and n.
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By Theorem 2.1, we only need to show that the following polynomial∑
T∈T(nm)

tdes(T )

has only real zeros. In fact, Brenti [2] has already obtained a more general
result during the study of the Neggers-Stanley Conjecture, see also Brändén
[1].

Theorem 3.2 ([2, p. 60, Proof of Theorem 5.3.2]). For any integer partition
λ, the polynomial ∑

T∈Tλ

tdes(T )

has only real zeros.

Now we can give a proof of Theorem 3.1.

Proof of Theorem 3.1. This follows from Theorems 2.1 and 3.2.

As an immediate corollary of Theorem 3.1, we obtain the following result,
which gives an affirmative answer to Kirillov’s conjecture.

Corollary 3.3. The rectangular Narayana polynomial N(n,m; t) is unimodal
for any m and n.
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