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1. INTRODUCTION

All graphs and groups considered in this paper are assumed to be finite. The
notation and terminologies for graphs and permutation groups not defined in this
paper are referred to [1] and [6], respectively. For simple groups and their subgroups,
we follow the notation used in the Atlas [5] while we sometimes use Z; and Z’; to
denote respectively the cyclic group of order [ and the elementary abelian group of
order p¥, where p is a prime.

Let I' = (V, E) be a graph with vertex set V' and edge set E, where F is a set
of 2-subsets of V. Denote by Autl’ the automorphism group of I'. Let G < Autl’,
that is, G is a subgroup of Autl’. Then the graph I' is called G-vertex-transitive
or G-edge-transitive if G acts transitively on V' and FE, respectively. An arc in I’
is an ordered pair of adjacent vertices. The graph I' is called G-arc-transitive if G
acts transitively on the set of all arcs in I'. For u € V, we denote by G, and I'(u)
respectively the vertex-stabilizer of u in G and the set of neighbors of w in I, that is,

G,={9eG|u =u}and I'(u) ={v eV |{unv} € FE}.

Then the graph I is called G-locally-primitive if for every u € V the stabilizer G,
induces a primitive group G ™ (on I'(u)). It is well-known that if I" is G-locally-
primitive then it is G-edge-transitive. Moreover, if I" is both G-vertex-transitive and
G-locally-primitive, then I is also G-arc-transitive; in this case, I" is called G-locally-
primitive arc-transitive.

In [16], Li et al. give a reduction for locally-primitive arc-transitive of square-free
order. It was proved that, for a connected locally-primitive arc-transitive graph I’
with square-free order, if it is not a complete bipartite graph then either Autl’ is
soluble, or I' is a cover of one of the ‘basic’ graphs arising from PSL(2, p), PGL(2, p)
and a finite number (depending only on the valency of I') of other almost simple
groups. This result makes it possible to classify such graphs of small valencies. For
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example, the reader may find some classification results on graphs of valency less than
8 in [15, 17, 18]. In this paper we deal with the graphs of valency 10.

Our main result is stated as follow.

Theorem 1.1. Let I' = (V, E) be a connected graph of square-free order and valency
10, and let G < Autl’. Assume that I' is G-locally-primitive arc-transitive. Then, up
to isomorphism, I' is one of the following graphs.
(1) Autl” = PSL(2,r) for a prime r with r = +1 (mod 5) and r = +1 (mod 12),
and I' is constructed in Example 3.4; or
Autl’ = ZyxPSL(2,7) for a prime r with r = £1 (mod 5), » = £1 (mod 12)
and r* # 1(mod 16), and I' is the standard double cover of the graph in
Example 3.4.
(2) Autl” = PGL(2,r) for a prime r with r = £1 (mod 5) and r # +1 (mod 12),
and I' 1s constructed in Example 3.5.
(3) Autl” = PX1(2,25), and I' is the graph given in Example 3.7; or
Autl" = ZyxPXL(2,25), and I is the standard double cover of the graph in
Example 3.7.
(4) Autl’ =Sy, and I is the complement graph of L(K;), where L(Ky;) is the line
graph of the complete graph K; of order 7; or
Autl’ = Zo xSz, and I is the standard double cover of the complement graph
Of L(K7)
(5) Autl” = Jy, and I' is constructed in Example 3.9.
(6) Autl’ = SH, and I' = KH,' or
Autl’ = Zy X Sy1, and I' is the standard double cover of Kyy.
(7) Autl’ = PI'L(3,9).Zs, and I is the point-line incidence graph of the projective
plane PG(2,9).
(8) Autl’ = Syg, and I' = Oyg, the Odd graph of valency 10.

2. PRELIMINARIES

In this section, we collect some elementary results on permutation groups and
graphs, which will be used in the following sections.

Let G be a group acting transitively on a finite set V. A nonempty subset B of V' is
a block of G if either BY = B or BYN B = for all g € G. A block B of G is nontrivial
if 1 <|B| < |V|. We say the group G is primitive on V" if there is no nontrivial block.
Forue Vand BCV,let G, ={g| v =u} and Gg = {g € G | B = B}, called
respectively the point-stabilizer of u and the set-wise stabilizer of B in G. If B is a
block then B is a Gpg-orbit and G, < G for u € B. Conversely, If G, < H < G
for u € V then it is easily shown that ufl := {u" | h € H} is a block of G. Thus
H s u® gives a bijection between the subgroups of G' containing G,, and the blocks
of G containing u. In particular, G is primitive on V' if and only if, for u € G, the
point-stabilizer G, is a maximal subgroup of G.
Let G be a group acting transitively on a finite set V', and Let H < G. Then, for
u € V, the H-orbit v has length |H : H,|, the index of H, in H. Choose u € V such
that u” has mir‘li‘mal l|engt{h among the H-orbits on V. Then the number of H-orbits is
1% G:Gy

- G:Gul _ |GlH| _ |G|
no more than Y = . Since H, < G.,. we have | = < &= =G H|.
[uf | |H:Hy| U= |H:Hy| |H||Gu| — |H| ’ |
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It (|V|,|G: H|) =1, that is, (|G : G|, |G : H|) = 1, then G = HG,, (see [10, 1.2.13]

for example), and so H is transitive on V. Thus we have the following lemma.

Lemma 2.1. Let G be a group acting transitively on a finite set V' of size n, and Let
H < G. Then H has at most |G : H| orbits on V', and H is transitive on § if and
only if G = HG, for uw € V.. Moreover, if (|G : H|,n) = 1 then H is transitive on V.

Let I' = (V,E) be a graph and G < Autl’. For each u € V, the stabilizer G,
induces a permutation group GI™ . Denote by G be the kernel of G, acting on

I'(u). Then G, W~ q, / G, Further, the next lemmas are easily shown, refer to
[18].

Lemma 2.2. Assume that I' = (V, E) is a connected G-vertez-transitive graph. Let
N <G such that NI g semareqular for some uw € V. Then NY=1.1In particular,
N, =1if NI = 1.

Lemma 2.3. Let I' = (V, E) be a connected graph. Let N <G < Autl’ and u € V.
Assume that either N is reqular on' V', or I' is a bipartite graph such that N is reqular

on both the bipartition subsets of I'. Then Gl =1.

Lemma 2.4. Let I' = (V, F) be a connected G-locally-primitive arc-transitive graph,
where G < Autl’. Let N be a normal subgroup of G. If N is not semireqular on V.
then for u € V' the stabilizer N, is transitive on I'(u); in particular, N is transitive
on E and has at most two orbits on V.

Now let I' = (V, E) be a connected G-locally-primitive graph, where G < Aut/".
Let N be a normal subgroup of GG. Suppose that N is intransitive on every G-orbit
on V. Let B be the set of the N-orbits. The normal quotient I'y is defined as the
graph with vertex set B such that By, By € B are adjacent if and only if {uj,us} € F
for some u; € By and us € By. The graph I is called a (normal) cover of I'y if, for
every edge of {B1, By} of I'y, the subgraph of I" induced by B; U By is a matching.
By Lemmas 2.3 and 2.4, the following lemma is easily shown, refer to [9, 18].

Lemma 2.5. Let I' = (V, E) be a connected G-locally-primitive graph, where G <
Autl’. Let N be a normal subgroup of G. Assume that N is intransitive on every
G-orbit on V. Then one of the following statements holds.

(i) I" is a cover of I'y, N is semireqular on V and N itself is the kernel of G
acting on B, and I'y is (G/N)-locally-primitive.

(ii) N has two orbits on V', I' is bipartite and G-arc-transitive, and either I is
N -edge-transitive or Gl =1 for every u € V.

Let I' = (V, E) be a graph. The standard double cover of I', denoted by I'® | is the
graph defined on V' xZ, with edge set {{(u,0), (v,1)} | {u,v} € E}. Tt is well-known
that I'® is connected if and only if I is connected and not bipartite. Moreover, each
g € Aut!" induces an automorphism of I'®) by

(u,9)? = (u9,i), weV, i€ Zs.
Further, we have an automorphism interchanging the bipartition subsets of I"®:

0 : VXZQ — VXZQ, (U,Z) — (U,Z+1), (IS ‘/v7 1 E ZQ.
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Thus, identifying Autl” with a subgroup of Autl’®, we have Autl'® > Autl'x(6).
Then the next lemma follows.

Lemma 2.6. Let I' be a graph and G < Autl’. If I' is G-vertex-transitive (resp.
arc-transitive or locally-primitive) then I'® is G-edge-transitive and (G x (0))-vertez-
transitive (resp. arc-transitive or locally-primitive).

Lemma 2.7. Let I' = (V, E) be a connected (Gx N)-arc-transitive graph. Assume
N = Zs, I' is G-edge-transitive and G has two orbits on V. If I' is a normal cover
of I'y then I' = (I'y)®),

Proof. Take a G-orbit U, and set N = (o). Then U? is the other G-orbit. Define a
directed graph ¥ on U such that (u,v) is a directed edge of ¥ if and only if (u,v°) is
an arc of I'. Note that o is an automorphism of I". Then (u,v°) is an arc of I" if and
only if (v,u°) is an arc of I". Thus (u,v) is a directed edge of ¥ if and only if so does
(v,u). Therefore, we may identify ¥ with a graph, also denoted by >, by viewing two
directed edges (u,v) and (v,u) as an edge {u,v}. Then X(u) ={v € U | v° € I'(u)}
for u € U. Note that the stabilizer G, is transitive on I'(u). It follows that G,
is transitive on X(u), and so X is G-arc-transitive as G is transitive on U. Define
n:UUU® - UxZy u +— (u,0),u® — (u,1). It is easily shown that 7 is an
isomorphism from I" to £,

Note that NV has |U| orbits on V and, for v € U, the N-orbit containing w is {u, u°}.
Then {u,u’} — u gives a bijection between the set of N-orbits and U. Since I is a
bipartite graph, it is easily shown that this bijection is in fact an isomorphism from
I'y to X. Then the lemma follows. ]

We end this section by quoting a result on number theory. For positive integers a
and n, a prime divisor of a” — 1 is called primitive if it does not divide a* — 1 for any
positive integer ¢ less than n.

Theorem 2.8 (Zsigmondy). For integers a,n > 2, if a™ — 1 does not have primitive
prime divisors, then either (a,n) = (2,6), orn =2 and a+ 1 is a power of 2.

Corollary 2.9. Let n be a positive integer, and r € {2,3}. Then r™ — 1 has a prime
divisor no less than 7 unless n =1 or (r,n) is one of (2,2), (2,4), (3,2) and (3,4).

Proof. Suppose that all prime divisors of ™ — 1 are less than 7. If n = 1 then " — 1
has no prime divisor no less than 7. Thus let n > 2. If ¥ — 1 has no primitive prime
divisor, then (r,n) = (2,6) or (3,2); in this case, we have (r,n) = (3,2). Let p be a
primitive prime divisor of 7™ — 1. Then p € {3,5}. For p = 3 we have (r,n) = (2,2),
and for p =5 we have (r,n) = (2,4) or (3,4). Then the lemma follows. O

3. COSET GRAPHS AND EXAMPLES

Let G be a finite group and H be a core-free subgroup of GG, where core-free means
that NyegHY = 1. For # € G\ H, the coset graph Cos(G, H, H{x,x '} H) is defined
on [G : HJ, the set of right cosets of H in G, such that Hg; and Hgy are adjacent
whenever gog;' € HxH U Hx 'H. In the case where HxH = Ha 'H, we denote
this coset graph by Cos(G, H,z). Note that G may be viewed as a subgroup of
AutCos(G, H, H{x, 2z '} H), where G acts on [G : H| by right multiplication.



The following statements for coset graphs are well-known.

Lemma 3.1. Let G be a finite group and H a core-free subgroup of G. Set I' =
Cos(G, H, H{x,z '} H), where x € G\ H. Then I is both G-vertez-transitive and
G-edge-transitive, and
(i) I' is G-arc-transitive if and only if HtH = HyH for some 2-element y €
Ng(HNH®)\ H with y* € HNH?; in this case, I has valency |H : (HNHY)|;
(ii) I" is connected if and only if (H,x) = G;
(iii) for each o € Aut(G), there is an isomorphism Hg — H%g¢%, g € G from I to
Cos(G, H?, H{z°, (x°) "1} H").

Let I' = (V,E) be a graph of valency d, let {u,v} € E and G < Autl’. Set
Gy = Gy N Gy, call the arc-stabilizer of (u,v) (and of (v,u)). Assume that I is
G-arc-transitive. Then G,, is transitive on ['(u), and d = |I'(u)| = |Gy : Guyl|. Take
x € G with (u,v)* = (v,u). Then

7€ No(Guo) \ G, 72 € G,

In particular, the index |Ng(Guy) : Guo| is even. Note that each element in Ng(G.,)
either interchanges u and v, or fixes both of them. Thus this x may be chosen as
a 2-element in the normalizer N (Gy,). Moreover, it is well-know and easily shown
that I" is connected if and only if (x,G,) = G. Since G is transitive on V', the map
u? — G,g is a bijection between V and [G : G,]. Tt is easy to show that this map is
also an isomorphism from I" to Cos(G, G,, ). Thus the following simple fact holds.

Lemma 3.2. Let I' = (V,E) ba a graph with E # () and G < Autl’. If I' is
G-arc-transitive then, for {u,v} € E and x € G with (u,v)” = (v,u), we have
I' = Cos(G, Gy, x); moreover, such an x may be chosen as a 2-element in Ng(Guy),
and I' is connected if and only if (z,G,) = G.

The next result is a direct consequence of Lemmas 3.1 and 3.2.

Lemma 3.3. Let G be a finite group, and let H be a core-free subgroup of G. Let
K < H with |H : K| > 1. If there is a G-arc-transitive graph I' = (V, E) with E # (),
G, = H and G, = K for {u,v} € E, then |Ng(K) : K| is even and Ng(K) £ H; if
further I' is connected then G is generated by H and some 2-element in Ng(K).

Next we shall construct some graphs involved in Theorem 1.1.

Example 3.4. Let T = PSL(2,r), where r is a prime with r* = 1(mod 5) and
r = #£1(mod 12). Fixes two subgroups K and H of T' with S3 = K < H = A;. Then
Np(K) = Zy x S3. Let o be the involution in the center of Ny (K'). Then (o, H) =T,
and Cos(7', H,0) is connected and T-arc-transitive. O

Example 3.5. Let G = PGL(2,7), where r is a prime with > = 1 (mod 5) and r #
+1 (mod 12). Fixes two subgroups K and H of 7" = soc(G) with S3 = K < H = A;.
Then N7 (K) = S3 and Ng(K) = Zy x S3. Let ¢ be the involution in the center of
N¢(K). Then (1, HY = G, and Cos(G, H, ) is connected and G-arc-transitive. O

Remark 3.6. We may reconstruct the graphs in Examples 3.4 and 3.5 as follows.
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Let T = PSL(2,7), where r is a prime with 7> = 1(mod 5). Then T has two
conjugacy classes §2; and )y of subgroups isomorphic to A, which are interchanged

by each element ¢ € PGL(2,r) \ PSL(2,r). Moreover, || = Q] = %. Let
¢ = +1 with r + e divisible by 3. Set € = {HY|g € T}, where A; =2 H < T. Then
Qy ={H"“|geT} Let K< H with |K|=6. Then K = S;.

For the dihedral group D, ., it is easily shown that its subgroups isomorphic to S3
form two conjugacy classes if r+e¢ is divisible by 12, and one conjugacy class otherwise.
By [10, I1.8.5], two distinct subgroups of T" isomorphic to D,,. have intersection of
order at most 2. Note that each subgroup of T isomorphic to S3 is contained in
some subgroup of 7" isomorphic to D, ... It follows that 7" has at most two conjugacy
classes of subgroups isomorphic to Sz, and 7" has two conjugacy classes of subgroups
isomorphic to Ss if and only if r + € is divisible by 12.

(1) Assume that r + € is divisible by 4. Then 7" has two conjugacy classes A :=

{K9| g €T} and A} of subgroups isomorphic to Sz, and |A;| = |Aq| = T(T;_l)

Enumerating the pairs (X,Y) with X € Q;, Y € A; and Y < X, we conclude
that each Y € A, is contained exactly two subgroups in ;, i = 1,2. Since Aj has
10 subgroups isomorphic to S3, we know that for each X € €);, there are exactly 10
other subgroups in €2; which intersects X in some subgroup of order 6.

For i € {1,2}, we define a graph 3; on €2; such that X;, X, € ; are adjacent
if and only if |X; N X3| = 6. Then ¥%; is a well-defined graph of valency 10. Let
0;:|G:H| —Q;, Hg— H"™" Note H"'™" = H%"" if and only if gog7 ' normalizes
H, yielding gog; ' € H as H is a maximal subgroup of T, i.e., Hg, = Hg,. It follows
that 6; is a bijection. If Hg; and Hg, are adjacent in the graph in Example 3.4 then
their stabilizers H9* and H9? intersect in a subgroup of order 6. Thus both ¥; and
Y5 are isomorphic to the graph given in Example 3.4.

(2) Assume that r + € is not divisible by 4. By a similar argument as above, we
conclude that each subgroup of T" isomorphic to S3 is contained exactly two subgroups
isomorphic to As: one lies in €2; and the other one is in ;.

Define a bipartite graph > on €2 U2y such that X; € €y and X, € )y are adjacent
if and only if |X; N X5| = 6. Then ¥ is a well-defined graph of valency 10, and
0:[G: H — Q Hg™' — H% ' i = 1,2 is an isomorphism between ¥ and the
graph in Example 3.5. 0

Example 3.7. Let T' = PSL(2, 25). Fixes two subgroups K and H of T with ZyxS3 &
K < H = S;5. Then Np(K) = Dyy. Take an involution x € Np(K) \ K. Then
(x,H) =T, and Cos(T, H, x) is a connected T-arc-transitive of order 65.

Checking the subgroups of PX1.(2, 25), we may choose an involution ¢ € PXL(2,25)\
T such that (H,:) = () x H. Then ¢ normalizes N7 (K'). Thus

(HxH)' = (HNp(K)H)" = HNp(K)H = HzH.

Then, by Lemma 3.1, ¢ induces an automorphism of Cos(7, H,z). It follows that
PYL(2,25) < AutCos(T, H, z). O

Remark 3.8. Note that PSL(2,25) has two conjugacy classes of subgroups isomor-
phic to S5, and two classes of subgroups isomorphic to Zy x Ss. It is easily shown
that the graph in Example 3.7 may be reconstructed in a similar way as in part
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(1) of Remark 3.6. In fact, this graph is a primitive distance transitive graph with
automorphism group PYX1.(2,25), refer to [3, pp. 381, Proposition 12.2.2]. O

Example 3.9. Checking by GAP [8], we know that the first Janko group J; has
exactly two conjugation classes of subgroups isomorphic Az, and one of the classes
consists of the subgroups having normalizer isomorphic to Zs X As, while the other
one contains only self-normalized subgroups.

Take a subgroup H of J; with H = A5 and Ny, (H) =2 Zy x As. Let S3 = K < H.
Then Ny, (K) = K x {(a,b), where a has order 5 and b is an involution with a® = a~!.
Calculation shows that H is contained exactly in three maximal subgroups of J;, one
is X := Ny, (H), and the other two, say Y and Z, are isomorphic to PSL(2,11). It
is easily shown that each of these maximal subgroups contains exactly one involution
centralizing K. Note that Ny, (K) contains 5 involutions centralizing K. Thus (a, b)
contains at least two involutions o0; and 09 which lie outside of XUY UZ. Then we have
J1=(H,01) = (H,09), and so we get two connect arc-transitive graphs Cos(Jy, H, 0;)
and Cos(J1, H, 02). Confirmed by GAP, 0; and o0y are the only involutions which are
contained in (a, b) and lie outside of X UY UZ, and these two involution are conjugate
under Ny, (K). Thus, up to isomorphism, we get only one arc-transitive graph. [

4. THE STRUCTURE OF STABILIZERS

Let I' = (V, E) be a graph, G < Autl” and {u,v} € E. Set Ghl = el nall,
Writing GG, in group extensions, we have

(4.1) G, =G (G gl

where (GL1 })F ®) is the permutation group induced by Gi on I (v). In [7, 2.3], Gardiner
proved the following theorem.

Theorem 4.1. Let I' = (V, E) be a connected graph, {u,v} € E and G < Autl’. If

I is G-locally-primitive arc-transitive, then then G&]} is a p-group for some prime p.

Note that, for {u,v} € E, both G and GIY are normal subgroups of G,. Then
(42) (G =G/Gl = (GGG 26w/Gl = Gl = (G,
If G = (V, E) is transitive on the arcs of I', then (Gf;(v))u o (Gf:(“))v. Thus, by (4.2),
the following lemma holds.
Lemma 4.2. If G is transitive on the arcs of I', then (GL”)F(”) 15 1somorphic to a
normal subgroup of (Gﬁ‘“))v.

Let I be connected and G-arc-transitive. Assume that GL} # 1, where {u,v} € E.
Then, by the connectedness of I, there exists an edge {u’,v'} € E such that Gl =
GS,]U,, and Gl #* GLI,}UJ for some w € I'(v'). In particular, Gl acts nontrivially on
I'(w). Without loss of generality, we let (u,v) = (v/,v"). Note that Gil<acll<a,,.
Then G induces a nontrivial normal subgroup of (GL”)F () Since I' is G-arc-
transitive, (v, w)? = (u,v) for some g € G. This yields (GL”)F(“’) = (GLI])F(“). Thus,
if GIlJ is a nontrivial p-group then we may get Op((GLH)F ®)) # 1. Then the next
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result follows from Theorem 4.1 and Lemma 4.2. (Note that O,(X) is the maximal
normal p-subgroup of a group X, which is a characteristic subgroup of X.)

Theorem 4.3. Let I' = (V,E) be a connected graph, {u,v} € E and G < Autl.
If I' is G-locally-primitive arc-transitive, then Gﬂ, s a p-group for some prime p;

moreover, either Gq[}l], =1, or Op((GE})F(v)) # 1 and Op((Gg(U))’U) # 1.

Recall that, for a positive integer s, an s-arc in I' = (V, E) is an (s + 1)-tuple
(wp, u1, -+ ,us) of vertices such that {u;,u;11} € E and wu;_17#u;,; for all possible
i. Then the graph I is called (G, s)-arc-transitive if it has at least one s-arc and G
acts transitively on both V' and the set of s-arcs, and called (G, s)-transitive if it is
(G, s)-arc-transitive but not (G, s+1)-arc-transitive. For the stabilizers of s-transitive
graphs, we formulate the following result from [21, 22, 23].

Theorem 4.4. Let I' = (V, E) be a connected (G, s)-transitive graph with s > 2, and
let {u,v} € E. Then one of the following holds.
(1) Gq[}q]] =1 and s < 3;
(2) G is a non-trivial p-group, PSL(n,p®) < Gq];(u), |I'(u)| = ’;j:__ll, and either
n >3 and s € {2,3}, orn =2, s >4 and one of the following holds:
(i) s =4 and G, = [p*]:(Z,.PGL(2,p%)).0, where a = (3’,’]);_11) and O is of
order a divisor of (3,p° — 1)e;
(ii) s =5, p=2 and G, = [23°]:GL(2,2°).Z;, where b is a divisor of e;
(ili) s =7, p=3 and G, = [3%]:GL(2,3°).Zy, where b is a divisor of e.

Based on Theorems 4.3 and 4.4, we produce here a description for the stabilizers of
locally-primitive arc-transitive graphs of valency 2k, where k is a prime no less than

d.

Theorem 4.5. Let I' = (V, E) be a connected G-locally-primitive arc-transitive graph.
Assume that I' is (G, s)-transitive and of valency 2k, where k is a prime no less than
5. Then one of the following holds.
(1) s =1, k=5 and one of the following holds:
(1) Gu = A5 or S5,’
(ii) O3(Gy) # 1 and G, = O3(G,).0.A5, where O < Zy;
(iii) O3(Gy) # 1 and G, = 03(G,).0.S5, where O < 73;
(iv) O2(Gy) # 1 and G, = O5(G,).0.S5, where O < S;.
(2) s € {2,3}, k=11, G, = Mgy, M9s.2 or (PSL(3,4) x May).O, where |O] is a
divisor of 4.
(3) soc(Gf;(u)) = PSL(2,p%), k = ’% for an odd prime p and a power e of 2, and
one of the following holds:
(v) G} =1 and s € {2,3}, where v € I'(u);
(vi) s =4 and G, = [p*]:(Z,.PGL(2,p%)).R, where a = (37?;;_11) and |R| is a
divisor of (3,p° — 1)e;
(vii) s =7, p=3 and G, = [3°]:GL(2, 3°).Zy, where b is a divisor of e.
(4) s € {2,3}, Gy = Aok, Sor o1 (Agg_1 X Agy).O, where |O| is a divisor of 4.

Proof. By the assumption, GI™ s a primitive permutation group of degree 2k. Since
a soluble primitive permutation group has degree a power of some prime, noting that
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k # 2, we know that G2 is insoluble. Then GL™ is known by [19, Corollary 1.2].
Let v € I'(u). Up to permutation isomorphism, one of the following holds:

(a) Soc(Gg(u)) = A;, soc(Gg(u))v = S; and k = 5;

(b) soc(Gr™) 22 My, soc(Gh ™), = PSL(3,4) and k = 11;

(c) soc(Gr™) = PSL(2,p°), soc(Gf;(u))v & ZyZpe—r and k = EEL where p is an

2
odd prime, and e is a power of 2;

(d) Soc(Gg(u)) = Ay, soc(Gqf(u))U = Ao .
For (b), (c¢) and (d), since L™ is 2-transitive, s > 2. For (c), by Theorem 4.4, part
(3) of this theorem follows. We next lay out the remainder argument in three cases.

Case 1. Let soc(Gg(u)) = As, soc(Gf;(u))v ~ S, and k = 5. In this case, GL™ is

not 2-transitive on I'(u), and so I" is not (G, 2)-arc-transitive. Thus s = 1. We next
shows that part (1) of this theorem occurs.

Suppose that G&™ = soc(GL™). Then, by Theorem 4.3, G4} is a 3-group. By
Lemma 4.2, (GL”)F(”) is isomorphic to a normal subgroup of Ss. If (GLH)F(”) =1 then
Gl = GL”, and so G = 1 by the connectedness of I, yielding G, = As. Now let
(GB])F(”) = Zs3 or S3. Noting that Gu/Gq[}] = Aj, it follows that O3(G,) = Og(GE]) =
GB};.ZE\,. Then (4.1) implies that G, = O3(G,).Z;. A5, where [ < 2.

Suppose that GL™ = S.. Then (Gf:(u))v >~ 7, x Ss, and by Theorem 4.3, Gl is
a 2-group or a 3-group. If (GQ])F(”) = 1 then G, = S5. Thus suppose further that
(GQ])F(”) # 1. Then (GE])F(”) > Zo, 73, S3, Zg or Lo X S3. If G is a nontrivial 2-
group then (GLH)F(”) = 7o, Zg or Zg X S3, and so O2(G,,) # 1 and G, = O2(G,,).0.Ss,
where O < S;3. If G% is a nontrivial 3-group then (GL”)F(”) X Zs, Zg, Sz or Za X Sg,
yielding O3(G,) # 1 and G, = 03(G,).0.S5, where O < Z2. Assume that ol —q
then G, = N.S5, where 1 # N <7y x S3. Then either Oy(G,) = Oy(N) = Zy and
N/O2(G,) is isomorphic to a normal subgroup of S3, or O3(G,) = O3(N) = Zs3 and
N/Oy(G,) S 7Z3. Then one of (iii) and (iv) follows.

Case 2. Let soc(GL™) 22 My, soc(GL™), = PSL(3,4) and k = 11. In this case,
s > 2. By Theorem 4.3 or 4.4, Gl — 1, and so (GQ])F(”) = G’B], and s < 3. Then
G is isomorphic to a normal subgroup of (G{:("))v. If GE®™ >~ My, then G =
or Gl = PSL(3,4), and so Gy, = My or PSL(3,4) x Myy. If Go™ = My,.2 then
G =1 or PSL(3,4) < G < PSL(3,4).2, and so G, = M, or (PSL(3,4) x My,).0,
where |O| = 2 or 4. Thus part (2) of this theorem follows.

Case 3. Let soc(Gg(u)) >~ Ao, soc(Gg(“))v >~ Ag,_1. Then a similar argument as
in Case 2 yields part (4) of this theorem. O

Note that |V| = |G : G| = |G|/|G.|. Considering the orders of the stabilizers G,
listed in Theorem 4.5, we have the following simple facts.

Corollary 4.6. Let I' = (V, E) be a connected graph of valency 10 and square-free
order, G < Autl'. Assume that I" is G-locally-primitive arc-transitive but not (G, 2)-
arc-transitive. Then neither 5° nor r? is a divisor of |G|, where r is a prime no less
than 7; moreover, for u € V', one of the following holds:

(i) Gy = As orSs, and neither 2° nor 3% is a divisor of |G|;
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(i) O3(G,) # 1 and G, = O3(G,).0.A5 for some O < Z,, and 2° is not a divisor

of |G|;

(iii) O3(Gy) # 1 and G, = O3(G,).0.S5 for some O < Z3, and 27 is not a divisor
of |G|;

(iv) O9(Gy) # 1 and G, = 05(G,).0.S5 for some O < Sz, and 3* is not a divisor
of 1G].

Corollary 4.7. Let I' = (V, E) be a connected graph of valency 10 and square-free
order, {u,v} € E and G < Autl’. Assume that I' is (G, s)-transitive, where s > 2.
Then one of the following holds.

(1) soc(Gf;(u)) =~ PSL(2,9), and one of the following holds:
() Gll =1 and s € {2,3}, where v € I'(u);
(ii) s =4 and G, = [3*]:(Zs.PGL(2,3?%)).Zy, where b < 2;
(iii) s =7 and G, = [3"°]:GL(2, 3%).Z;, where b < 2.
(2) s € {2,3} and G, = Ay, Sip or (Ag x Ayg).0, where O < Z3.

5. GRAPHS ARISING FROM ALMOST SIMPLE GROUPS

Let I' = (V, E) be a connected graph of valency 10 and square-free order, and let
G < Autl’. Assume that [' is G-locally-primitive arc-transitive, and that G is an
almost simple group with socle soc(G) = T'. Let u € V. By Corollaries 4.6 and 4.7,

soc(Gf:(u)) = A;, PSL(2,9) or Ay.
Since |V| is square-free, T is not semiregular on V. Then, by Lemma 2.4, 7™ g

transitive on I'(u). In particular, 7" has at most two orbits on V. Since 7" is normal in

G, all orbits of T" have the same length which is a divisor of |V|. Thus |T": T,| = |V/|
or |—‘2/|, and so |T" : T, is square-free. Moreover, |T": T,,| > 11 as I" has valency 10.
Since T, 4 Gy, we have Ty ) < GE™ . Tt follows that soc(Ty ™) = soc(Gh ™) = As,
PSL(2,9) or Ajp. In particular, T, is primitive on I'(u), and if 7" is transitive on V'

then I' is T-locally-primitive arc-transitive.

5.1. Assume that soc(G4 ™) = soc(T'™) = A;. Then, by Corollary 4.6, the order
of T satisfies the following conditions: neither 53 nor p? is a divisor of |T'|, where p is
a prime no less that 7; and one of 27 and 3* is not a divisor of |T'|.

Lemma 5.1. Up to isomorphism, T is one of the following simple groups:

PSL(2,7), where r is a prime with r = £1 (mod 5);
PSL(2,25), PSL<3,4), PSp(4,4), G2(4), A7, M22, M237 M24 and Jl.

Proof. Noting that Ay has order divisible by both 27 and 3%, if T is an alternating
simple group, then T is one of A7, Ag and Ag. For the 26 sporadic simple groups,
checking their orders, we have that T is one of My, My, Mas, Maos, Moy and J;.
Recall that T has a subgroup T,, which has square-free index in 7" and possesses a
composition factor As. Then, employing the Atlas [5], T is one of A7, May, Moz, Moy
and Jy.

Now let T" be a simple group of Lie type over the finite field F, of order ¢, where
q = 1/ for some prime 7. Consider the orders of simples group of Lie type, refer to
[12, pp. 170, Tables 5.1 A and BJ]. We conclude that either r < 5, or T" = PSL(2,r)
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with 7 = +1 (mod 5). If » = 5 then the only possibility is that 7' = PSL(2,25). Thus
we next assume that r € {2,3}.

Case 1. Assume first that 7 has Lie rank 1. Note that the group ?Bs(q) is excluded
as its order is not divisible by 3, and 2Gy(q) is excluded as it has order not divisible
by 5. Thus, up to isomorphism, 7' = PSL(2, ¢) or PSU(3, q).

Let T = PSL(2,q). Since T is simple, f > 2. By [10, II. 8.27], we conclude that
T, = As or Ss. Recalling that |T": T,,| > 11, we have f > 4. This yields that |T" : T,,|
is not square-free, a contradiction.

Let T = PSU(3,¢). Then ¢ > 2, and [T] = g 5¢°(¢> — 1)(¢* +1). I r*/ — 1
has no primitive prime divisor then (r, f) = (3,1) or (2,3). The group PSU(3,3) is
excluded as its order is not divisible by 5, and the group PSU(3,8) is excluded as its
order is divisible by 27 - 3% Let ¢ be a primitive prlme divisor of r2f — 1. Then t is

also a divisor of r/ + 1. Since |T| is divisible by g ﬁ)l but not by p? for some prime

p > 7, we know that ¢ € {3,5}. This yields that ( f)=1(2,2) or (3,2). By the Atlas
[5], both PSU(3,4) and PSU(3,9) have no insoluble subgroup of square-free index, a

contradiction.

Case 2. Assume that T" has Lie rank at least 2. Then either 7' = PSL(3, q), or |T'|
(@®-1? 71)

is divisible by
(g —1)2 (r3 —1)?

Suppose that |T | is divisible by . Recalling that |T'| has no divisor
a square of some prime no less that 7 by Corollary 2.9, (r, f) is one of (2,1), (2,2),
(3,1) and (3,2). Since |T| is not divisible by 5% or 27 - 34, we conclude that T is one
of PSL(4,2), PSL(5,2), PSU(4,2), PSp(4, 3), PSp(4,4), G2(3) and G2(4). Employing
the Atlas [5], among these groups, only Go(4) has a subgroup group which has square-
free index and a composition factor As.

Let T = PSL(3,q). Then |T| is divisible by ;"ffl)l) Since |7T'| is not divisible
by p? for prime p > 7, by Corollary 2.9, ¢ = 2, 4, 16, 3, 9 or 3*. The groups
PSL(3,2) and PSL(3,3) are excluded as their orders are not divisible by 5, and the
groups PSL(3,9) and PSL(3,3") are excluded as their orders are divisible by 27 - 3%.
Suppose that 7' = PSL(3,16). Then, by [2, pp. 378, Table 8.3], T}, is contained in the
stabilizer of some projective point (or line) in PSL(3,16). It follows that PSL(2, 16)
has an insoluble subgroup of square-free index, which is impossible. Thus we have

T = PSL(3,4). Then the lemma follows. O

Lemma 5.2. T # PSL(3,4).

Proof. Suppose that T = PSL(3,4). Recall that Tr® ~ =~ Ajs or S;. Since |T : T,
is square-free, checking the subgroups of T', we know that T, = Z3:As; in particular,
O,(T,) has order 2*. Noting that O(T},) < O3(G,), by Corollary 4.6, GLW ~ g,
Checking the subgroup of G, the only possibility is that |G : G| = 21. This yields
that GG is 2-transitive on V', and hence I' = Ky, a contradiction. ]

Lemma 5.3. T # PSp(4,4).

Proof. Suppose that T' = PSp(4,4). By a similar argument as in the proof of Lemma
5.2, we have |Oo(T,)| > 2°, Tr'™ = A; and GL™ = S;; in particular, G # T.
Then G = T.Zy or T.Z,. Recalling T, is primitive on I'(u), by Corollary 4.6, T' is
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intransitive on V| and thus 7" has two orbits of equal length on V. In particular,
|T : T,| is odd. Then T, = Z$:A5 or ZS$:(Z3 x As). Thus ZS = Oy(T,) < 05(G.,),
this implies that G, & Z$:A5:Zy or Z5:(Zs x As):Zy; in particular, G, < T.Z; := X.
If G = X, then |G : G,| = |T : T,|, a contradiction. Then we have G = T.Z4, both T’
and X has two orbits on V', say U; and U,, which have length 85 or 255.

Let H, and H, be maximal subgroups of X with X, < H; = Z5:(Z3 x As):Z,
and X, < Hy = 75:(Z3 x As):Zy, where v € I'(u). Then B; := ufl* and By := v/2
are blocks of X on U; and Us,, respectively. Set B; = {Bf | z € X}, i = 1, 2.
Then |B;| = |Bs| = 85, and X acts primitively (and faithfully) on both By and Bs.
Moreover, each of these two actions is equivalent to the action of X on the point set
P or the line set £ of the symplectic generalized quadrangle of order (4,4).

By [10, 11.9.15], for p € P, the stabilizer X, has three orbits on P, which have
sizes 1, 20 and 64 respectively. Note that G has a element interchanging P and L.
It follows that, for L € L, the stabilizer X} also has three orbits on £ with sizes 1,
20 and 64 respectively. Let p € P and £, be the set of lines containing p. Then £,
is a Xp-orbit of size 5, and the points on these 5 lines form two Xp-orbits (on P)
of lengths 1 and 20. Thus the third orbits of X, on P consists of the points which
are not contained in p* and lie on the remain 80 lines. By [10, I11.9.11], we conclude
that every line L € £\ £; is not contained in p*. It follows that X, is transitive on
L\ L4, and thus X, has two orbits on L.

Assume that actions of X on B; and on B, are equivalent. Then Xz, = H; has three
orbits on By, say Ay, As and Az, which have sizes 1, 20 and 64 respectively. Since
|Hy : X,| =1 or 3, by Lemma 2.1, X, is transitive on every A;. Note that G, = X,
and I'(u) is a G,-orbits. It follows that there is some ¢ such that I'(u) C Ugea,B
and BN I'(u) # (0 for each B € A;. Since |B| =1 or 3 for B € B, we have |I'(u)| < 3
or |I'(u)| > 20, a contradiction.

Now, with out loss of generality, we identify B; and By, with P and L, respectively.
Then Xp, has two orbits on By, say A; and Ay, which have sizes 5 and 80, respectively.
Again by Lemma 2.1, A; and Ay are X,-orbits. Since I'(u) is an X,-orbit of length
10, we have I'(u) C Ugea, B. It follows that |I'(u) N B| = 2 for each B € A;. Thus a

G = X, has a nontrivial block I'(u)N B, which contradicts that Gy, ) is primitive. O

We next exclude the groups Ga(4), Mas, Moz and Myy. Note that each of these
groups has order divisible by 27. Thus, if T is one of these groups then (iv) of
Corollary 4.6 holds; in particular, G () ~ g, Recall that I’ (u) is a T,-orbit, where
uelV.

Lemma 5.4. T # Gy(4).

Proof. Let T = Gg(4). Then, checking the maximal subgroups of T" and G, we
know that G = T.Z, and, letting M be a maximal subgroup of 7" with T,, < M, we
have |7 : M| = 1365. In particular, 7" has two orbits on V, and each T-orbit has
length 1365|M : T,|. Noting that the prime divisors of |M| is 2, 3 and 5, it follows
that T, = M. Let U and W be the T-orbits on V. Then T acts primitively and
equivalently on U and W. Then T, has four orbits on W with sizes 1, 20, 320 and
1024, refer to [25]. This contradicts that |I"(u)| = 10. O

Lemma 5.5. T 7£ M22, Mgg, M24.
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Proof. Let T = May,. If TI® ~ A5 then T is transitive on V, and so I is T-arc-
transitive, which contradicts (iv ) of Corollary 4.6. Thus 7, w W >~ S, Tt follows that
T, = Z3:Ss. In particular, T is primitive on each of its orbits on V. Suppose that
that 7" is transitive on V. Then T, has exactly 4 orbits on V', which have sizes 1, 30,
60 and 140, respectively, refer to [25]. This contradicts that |I'(u)| = 10. Suppose
that T" has two orbits, say U and W, on V. Then the actions of 7" on both U and W
are primitive and equivalent. This implies that |I"(u)| > 10, again a contradiction.

Let T = Mys. Then G = T. Take a maximal subgroup M of G with G,, < M.
Then M & MQQ, Z%IA7 or Z%(Zg) X A5)IZQ. If Gu = M then Gu = Z%(Zg X A5)IZ2
and |G : G| = 1771; however, in this case, G, has no orbit of size 10 (refer to [25]), a
contradiction. Checking the subgroups of M, we have G,, = Z3:Ss, and G, = Z4:D1
for v € I'(u). By the information given for Mys in the Atlas [5], we may let M = Z3:A,
or Z3:(Zs X As):Zy. Confirmed by GAP, we have Ng(G.,) = Ny(Gyyp). Since I is
connected, G = (G, Ng(Guw)) < M, a contradiction.

Finally, let G =T = My,. Take a maximal subgroup M of G with G, < M. Then
|G : M| is square-free, and so M = Zj3:Ag or Z5:7Z;Ss. Checking the subgroups of
Ag, it has no subgroup with a composition factor As and square-free index. Thus
M = 78:7;Se, and hence G, = Z8:(Z;Ss), and G, = Z$:(Z;D;3). Confirmed by
GAP, we get a similar argument as above. 0

Theorem 5.6. Let I' = (V, E) be a connected graph of valency 10 and square-free
order, and let G < Autl’. Assume that I' is G-locally-primitive arc-transitive, and G
is almost simple. If I' is not (G,2)-arc-transitive then one of the following holds.

(1) G = PSL(2,r) for a prime r with r = £1 (mod 5) and r = £1 (mod 12), and
I is isomorphic to the graph constructed in Example 3.4; or
G = PGL(2,r) for a prime r with r = £1 (mod 5) and r # +1 (mod 12), and
I' is bipartite and isomorphic to the graph constructed in Example 3.5.

(2) G = PSL(2,25) or PXL(2,25), and I' is isomorphic to the graph given in
Example 3.7.

(3) G = A7 or S;, and I' is the complement graph of L(Kz), where L(K7) is the
line graph of the complete graph K; of order 7.

(4) G = Jy1, and I' is isomorphic to the graph in Example 3.9.

Proof. Assume that I' is not (G, 2)-arc-transitive. Then SOC(Gf:(u)) = soc(Tf(u)) =
Aj and, by Lemmas 5.1-5.5, we may let 7" be one of PSL(2, ), PSL(2,25), A7 and J;.

(1) Let T' = PSL(2,r). Checking the subgroups of PSL(2,7) and PGL(2,r) (see
[10, II. 8.27] and [4, Theorem 2]), we have G, = T,, = A5, and so G, = Ty, = S3. Let
€ = 41 be such that 3 is a divisor of r + €. Let Z be the subgroup of G, or order 3.
Then Guv < NG(Guv) < NG(Z) <M := NPGL(Q,T)(Z) = D2(7‘+e)7 and so NG’(Guv) <
Ny (Guy) = Zg x S3. On the other hand, G, < Np(Gy) < N := Np(Z) = D,.,
and so N7 (Guw) = Ny(Guw)-

Assume that r 4 € is divisible by 4. Then N¢(Gy,) = Ny(Guy) = Zo x S3. Thus
we have Ng(Gyy) = (0) X Ty, where o is the involution lying the center of N (G, ).
In particular, since I" is connected, G = (G, Ng(G,)) < T, and so G = T. Noting
that T,,2T, = T,,0T, for each © € Ng(Gyy) \ G, by Lemma 3.2, I' is isomorphic to
the graph constructed in Example 3.4.
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Assume that r + € is not divisible by 4. Then N7 (Gy) = Ny(Guy) = Guy- By
Lemma 3.3, G # T, and so G = PGL(2, ) in this case. Then N (Guy) = Ny (Guy) =
Zy x S3. Write Ng(Guyw) = (1) X Gypy. Then « € G\ T, and I' is isomorphic to the
graph constructed in Example 3.5.

(2) Let T = PSL(2,25). Then PSL(2,25) < G < PI'L(2,25). Inspect the subgroups
of G, refer to [5]. We know that T;, = Aj; or Ss, and either G, = T,,, or G = PX1(2, 25)
and G, is isomorphic to one of Zy X As, S5 and Zg X Ss.

Suppose that T,, =2 As;. Then T,, = S3, and |T : T,,| = 130 is even. Recall that

T : T, =|V| or |2ﬂ Since |V is square-free, we have |V| = |T : T, that is, T is
transitive on V', and so I is T-arc-transitive. Since [ is connected, by Lemma 3.2,
there is © € Np(T,,) with (z,T,) = T. Let Z be the subgroup of T, or order 3.
Then T, < Np(Ty) < M := Np(Z) = Doy, and so Np(Ty,) = Naf(Tow) = Zs X Ss.
Take a maximal subgroup H of T with T, < H = S5. Then Ny (T,,) = Zs X Ss,
yielding Np(Ty) = Ny(Tyw) < H. Thus T = (x,T,) < H, which is impossible.

Let G, =T, =2 S5. Then G, = Zy x S3. Checking the subgroups of G, we have
N¢(Guw) = Np(Guy) = Doy Since I' is connected, G = (G, Ng(Gyy)) < T, and so
G =T. It follows that I' is isomorphic to the graph given in Example 3.7.

Now let G, # T,. Then G = PXL(2,25) and G, = Zs X S5, and so |G : G| =
|T : T,| = 65. Thus I' is T-arc-transitive, and again [" is isomorphic to the graph in
Example 3.7.

(3) Let T'= A;. By Corollary 4.6 and checking the subgroup of G, we know that
one of the following cases occurs: G, =T, = Asor S5; G, = S5, T, = As and G = S7;
Gy, =7y x S5, T, =S5 and G = S;. These cases yield that the action of G acting on
V' is equivalent to that on the 2-subsets or ordered pairs of the set {1,2,3,4,5,6,7}.

If V' is the set of ordered pairs of the set {1,2,3,4,5,6,7} then it easily to show that

Gl ™) is not primitive, a contradiction. Thus we may let V' be the set of 2-subsets of
{1,2,3,4,5,6,7}. Then I is either the line graph L(K7) of the complete graph K; or
the complement graph of L(K;). Recalling that Gl ) is primitive, we conclude that
I' is the complement graph L(K5).

(4) Let T'=J;. Then G =T and G, = A5 or Zs x A;. By Corollary 4.6, we have
G, = As,andso |V|=|G:G,| =2926 =2-7-11-19. Let v € I'(u). Then G, = Ss.

Checking by GAP [8], we know that J; has exactly two conjugacy classes of sub-
groups isomorphic As, and one of them consists of the subgroups having normalizer
isomorphic to Zs x As, while the other one contains only self-normalized subgroups.
Moreover, if Ng(G,) = Zg x Ay then Ng(Gyy) = Dg X Dyg, and if Ng(G,,) = G, then
Ng(Guv) = 7o X Sg.

Let Ng(Gy) = G,. Take a maximal subgroup M of G with G,, < M = PSL(2,11).
Then we have N/ (Guy) = Zo x S3. This implies that Ng(Gyy) = Ny (Gyy), and
50 (Gu, Ng(Guy)) < M # T, which contradicts the connectedness of I'. Therefore,
N¢(Gy) = Zgy x A5 and Ng(Gyy) = Dg X Dyg, and then I' is isomorphic the graph
given in Example 3.9. ]

5.2. Assume that SOC(Gqf(u)) = PSL(2,9). Then, by Corollary 4.7, the order of T
satisfies the following conditions: neither 5% nor p? is a divisor of |T'|, where p is a
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prime no less that 7. Moreover, letting I" be (G, s)-transitive, then either Gl =1
for v € I'(u), or one of the following occurs:

(a) s =4, |T| is not divisible by 2'° or 3%,

(b) s =7, |T) is not divisible by 21° or 34

For the case where G = 1, by (4.1), Lemma 4.2 and Corollary 4.7, we have
(c) s € {2,3}, |T| is not divisible by 2! or 36.

Lemma 5.7. T is isomorphic to one of the following simple groups:

Aqo, Ay and M,,, where n € {11,12,22,23,24};
PSL(3,9), PSL(3,3%), PSU(4,9), PSp(4,9) and G4(9).

Proof. For the alternating simple groups and sporadic simple groups, checking their
orders, we know that 7" is one of A,, (with n < 13), M,, (with n € {11,12,22,23,24}),
Jo and J3. Note that |T : T, is square-free and no less than 11, and that T, has a
composition factor PSL(2,9). Checking the insoluble subgroups of those groups, we
conclude that T is one of Ajg, Aj; and M,,, where n € {11, 12,22,23,24}.

Now let T be a simple group of Lie type over F,, where ¢ = r/ for some prime 7.
Suppose that T' = PSL(2, ¢). Checking the subgroups of PSL(2, ¢), we know that r =
3, T, = PSL(2,9) or PGL(2,9). In this case, |T": T,| is divisible by 9, a contradiction.
Thus we assume further that 7' 2 PSL(2, ¢). Consider the orders of simple groups of
Lie type. We conclude that r € {2,3,5}. If r = 5 then, since |T'| is not divisible by 53,
we have T' = PSL(2,25), a contradiction. Thus r € {2,3}. By a similar argument as
in the proof of Lemma 5.1, noting the limits on |T’|, we conclude that 7" is isomorphic
to one of the following groups: PSL(3,2), PSL(3,3), PSL(3,4), PSL(3,9), PSL(3, 3%),
PSL(4,2), PSL(4,3), PSL(5, 2), PSU(3,3), PSU(3, 4), PSU(3, 8), PSU(3,9), PSU(4, 2),
PSU(4, 3), PSU(5,2), PSU(5, 3), PSp(4, 3), PSp(4,4), PSp(4,9), PSp(6, 2), PSp(6, 3),
Q(7,3), G2(3) and G2(9). Recall that |1 : T,,] is square-free and T, has a composition
factor PSL(2,9). Employing the Atlas [5], we know that 7" is isomorphic to one of
PSL(3,9), PSL(3,3%), PSU(4,9), PSp(4,9) and G»(9). O

Theorem 5.8. Let I' = (V, E) be a connected graph of valency 10 and square-free
order, and let G < Autl’. Assume that G is almost simple and soc(Gf:(u)) = PSL(2,9)
foruw € V. Then either
(1) G =My, and I' = Kyy, the complete graph of order 11; or
(2) G =PSL(3,9).Zy or PI'L(3,9).Zy, and I' is the point-line incidence graph of
the projective plane PG(2,9).

Proof. Let soc(G) =T. Then T is know by Lemma 5.7.

Case 1. Assume that T'= Ay, Ay or M, for n € {11,12,22,23,24}. Then |G| is
not divisible by 3°. By Corollary 4.7, Gl = 1, and so (GE])F(”) ~ gl By Lemma 4.2
and checking the subgroups of G in the Atlas [5], either G =1or Og(GE]) >~ 72.
The latter case yields that |G| is divisible by 3%.

Suppose that T' = Ayg. If G, is faithful on I'(u) then PSL(2,9) < G, < PI'L(2,9);
in this case, |G : G,| has a divisor 4, a contradiction. This implies that O3(GL) = Z2,
and so |G : G| is coprime to 3. Let M be a maximal subgroup of G with G,, < M.
Then both |G : M| and |M : G,| are square-free and coprime to 3. Checking the
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maximal subgroups of G, we have M = Sg or Ag. Thus Ag or Sy contains a subgroup
having square-free index and a composition factor PSL(2,9), which is impossible by
checking the subgroups of Ag and Sg. Similarly, the group Ay; is excluded.

Suppose that T = M;j;, Myy, Mgy, Mas or Myy. Then |G| is not divisible by 3%.
It follows that GY) = 1, and so PSL(2,9) < G, < PI'L(2,9). Since |G : G| is
square-free, we know that |G| is not divisible by 27. This yields that 7" = M;; or M.
Let T' = Mjs. Checking the subgroups of M5 and Mi5.Zs, we know that G = My,
and G, is maximal in G with index 66. Thus G is a primitive permutation group
of rank 3 with subdegrees 1, 20 and 45, refer to [25]. This contradicts the fact that
|I'(u)| = 10. Therefore, G = T = My;, and so G, = Mg or Ag. If G, = Ag, then
both G, and Ng(G,,) are contained in a same maximal subgroup isomorphic to Mg,
which is contradicts Lemma 3.2. (Confirmed by GAP!) Thus G, = M;g and I' = Kj;.

Case 2. Let T = PSL(3,9), PSL(3,3"), PSU(4,9), PSp(4,9) or G5(9), and let I’
be (G, s)-transitive. Then s > 2.

(1) Assume that T = PSL(3,9). Then |G| is divisible by 3% but not by 37, by
Corollary 4.7, we have s = 4 and |G, | = 27-3%-5 or 2% - 35 . 5. Recall that T has at
most two orbits on V.

Suppose that 7" is transitive on V. Recalling that soc(TuF(u)) =~ PSL(2,9), we know
that I' is (T, 2)-arc-transitive. Since |T| is divisible by 3%, by Corollary 4.7, we have
|T,| = 27-3%-5. Checking the subgroups of PSL(3,9), we get T, = Z3:GL(2,9). Thus
the action of T on V' is equivalent to that on the points or the lines of the projective
plane PG(2,9). Then 7T is 2-transitive on V', and so I" = Kg, a contradiction.

Now let T" have two orbits on V', say U and W. Then |G : Gy| =2, |[U| = |W| =
|T : T,| is odd, and Gy = T'G,, for u € U. Note that |G : T'| is a divisor of 4. Since
G :T|=1|G:TG,||TG, : T| = |G : TG,||Gy : Ty, we have |G, : T,,] < 2, and so
|T,| =26-35.5 or 27-3%-5. Tt implies that |T,| = 27-3%-5 as |T : T;,| is odd. Checking
the subgroups of T and G, we conclude that T, = Zi:GL(2,9), |U| = |[W| = 91, and
G = PSL(3,9).Zy or PI'L(3,9).Zy. This implies that the actions of T on U and W are
equivalent to the actions on the point set and the line set of PG(2,9), respectively. It
is easily shown that the stabilizer of a line of PG(2,9) has two orbits on the point set,
which have length 10 and 81, respectively. It follows that I" is the point-line incidence
graph of PG(2,9).

(2) Assume that T is one PSL(3,3%), PSU(4,9), PSp(4,9) and G5(9). Noting that
|G| is divisible by 3%, by Corollary 4.7, we have s = 7 and G, = [3']:GL(2,9).Z,
where b < 2. In particular, |G| is divisible by 3!2, and so the group PSp(4,9) is
excluded. Let M be a maximal subgroup of T" with 7,, < M. Since |T : T,| is
square-free, both |M : T, | and |T : M| are square-free.

Suppose that T = PSL(3,3%). Check the maximal subgroups of T, refer to [2,
Tables 8.3 and 8.4], we conclude that M = Z§:GL(2,3%). Let N be the maximal
soluble normal subgroup of M. Then M/N = PGL(2,3%). Since |[M : T,| is square-
free, |M/N : (T,N/N)| is square-free. Moreover, T;,N/N has a composition factor
PSL(2,9) as T,N/N =T, /(T, N N). Thus PGL(2,3?%) has a subgroup of square-free
index, which has a composition factor PSL(2,9). This is impossible by checking the
subgroups of PGL(2, 3), refer to [4].
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For T'=PSU(4,9), checking the maximal subgroups of T' (refer to [2, Tables 8.10
and 8.11]), M is the stabilizer of some totally singular subspace of dimension 1. In
particular, |T : M| = (9% + 1)(9% + 1), which is not square-free, a contradiction.

Now let T' = G5(9). Check the maximal subgroups of G5(9), refer to [11]. We have
M = [31°1:GL(2,9), and so |T : M| = 2= =2.5.7-13-73. Then |T : T,| is even,
and hence T is transitive on V. It implies that I' is not a bipartite group. Noting
that |G : T is a divisor of 4, every Sylow 3-subgroup of G has order 3'2. This implies
that |V| = |G : G,] is coprime to 3. Note that |V| = |T : T,| = |T : M||M : T,|.
Since |V is square-free and each prime divisor of |M| is less than 7, we conclude that
|M : T,| =1, that is, M = T,,. Thus T and hence G is primitive on V; however, by
[14], there is no vertex-primitive 7-transitive graph, a contradiction. O

5.3. Assume that soc(Gf;(u)) >~ Ajg. Then G, = Ay, Sip or (Ag X Ayg).O, where
O < Z3. Since G/T is soluble, soc(G,,) is contained in T'. Since |T : T, | is square-free,
|T| is not divisible by one of 217, 3% 55 7% and p?, where p is a prime no less than
11. In particular, |T| is not divisible by r!7 for an arbitrary prime r.

Note that either |T;,| is divisible by 27 - 3* - 52 but not by 2°, or |T;,| is divisible by
213.3%. 5% .72 but not by 2'6. Checking the orders of the sporadic simple groups, we
know that T is not a sporadic simple group. For the alternating simple groups, we
have T'= A,, with 11 < n < 19.

Now let T be a simple group of Lie type over F,, where ¢ = r/ for some prime
r. Recall that |T| is not divisible by r!". This excludes most of the exceptional
simple groups of Lie type except for Ga(q), 2Ba(q), >Ga(q) and *Dy(q). Checking the
subgroups of these exceptions (refer to [24, Table 4.1, Theorems 4.1-4.3]), none of
them has a subgroup isomorphic A;y. Thus T is one of the classical simple groups of
Lie type. By [12, Proposition 5.3.7], T has dimension no less than 8. It follows that
T is one of PSp(8,7), Q(9,7) and PQ*(8,7). Noting that |T'| is not divisible by p'°
for odd prime p, we have r = 2, and so T' = PSp(8,2), P27 (8,2) or PQ*(8,2). These
three groups have orders divisible by 2!2 but not by 3%. Thus |T,] is divisible by 2!!
but not by 3%, which is impossible. Then we have the following result.

Theorem 5.9. Let I' = (V, E) be a connected graph of valency 10 and square-free

order, and let G < Autl’. Assume that G is almost simple and SOC(Gf:(u)) = Ay for
u € V. Then one of the following holds:

(].) G == A11 or SH, and I' = KH,'
(2) G = Sy1, and I' is isomorphic to the standard double cover of Kiy;
(3) G = Ayg or Syg, and I' = Oy, the Odd graph of valency 10.

Proof. By the foregoing argument, we have T'= A,, with 11 <n < 19.

Assume first that G, = Ajg or Syg. Then Ay < T, < Syo. Since |T : T, is
square-free, either 7' = A;; and T, = Ajp, or T' = A5 and T, = S;g. Suppose that
T, = S19. Then |T': T, is even, and so T' is transitive on V', which implies that I" is
T-arc-transitive. Moreover, T, is in fact the stabilizer of some 2-subset or 10-subset
in the natural action of 7" acting on a 12-set, refer to [20]. It follows that 7T;, has
exactly three orbits on V', which have sizes 1, 20 and 45 respectively. This implies

that ' is not of valency 10, a contradiction. Thus we have T' = Ay; and T,, = Aq.
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If T is transitive on V, then I' & Kyg. Assume that T is intransitive on V. Then
G = Sy1, and T is 2-transitive on each of it orbits. This implies that " is isomorphic
to the standard double cover of Ky;.

Suppose that soc(G,) = Ag X Ajg. Recalling that soc(G,) < T, we have T" = Ay,
and T, = Ag x Ajg or (Ag X Ayg):Zy. Since |T : T,| is square-free, we have T, =
(Ag X A1g):Zsy. In particular, |T : T,]| is even, and so I" is T-arc-transitive. By [20], T,
is in fact the stabilizer of some 9-subset or 10-subset in the natural action of T" acting
on a 19-set. Up to the equivalence of group actions, we may identify V' as the set of
9-subsets of a 19-set. Then T, has ten orbits on V, says, U; = {u; | |[uNw;| = i},
0 <4 <9. Since I" has valency 10, we have I'(u) = Uy, and so I' = Oqy. O

6. THE CLASSIFICATION

Let I' = (V, E) be a connected graph of valency 10 and square-free order, and G <
Autl’. Assume that I' is G-locally-primitive arc-transitive. Let u € V. By Corollaries
4.6 and 4.7, soc(Gf:(u)) = Aj, PSL(2,9) or Ayy. In particular, G is insoluble.

Lemma 6.1. Let N JIG. Then either N is semireqular on 'V and N has square-free
order, or N s transitive on E and soc(Nf(u)) = soc(Gg(u)). In particular, if N is
soluble then N s semireqular and has at least three orbits on V.

Proof. Since N is normal in G and G is transitive on V', all N-orbits on V have the
same length, which is a divisor of |V|. Noting that |V| = |G : G,| is square-free,
if N is semiregular on V' then |N| is square-free. If N, # 1 then, by Lemma 2.2,
NI™ £ 1, and then the first part of this lemma follows by noting that N. ™ <GL™.

Now let N be soluble. Then N is semiregular on V. Suppose that N has at
most two orbits on V. By Lemma 2.3, G, = Gf;(“). Note that X := NG, is the
set-stabilizer in G of an N-orbit containing u. Then |G : X| < 2; in particular,
X <G. Note that X/Cx(N) = Nx(N)/Cx(N) < Aut(N). Since N has square-free
order, Aut(NN) is soluble, see [13, Lemma 2.2| for example. It follows that Cx(N) is
insoluble as X is insoluble, this yields that soc(G,) < Cx(N). Noting that soc(G,) is
a nonabelian simple group, it is easily shown that soc(G,) is a characteristic subgroup
of X, and so soc(G,) is normal in G. This implies that soc(G,) acts trivially on V,
a contradiction. This completes the proof. 0]

Since I" has square-free order, I' is not the complete bipartite graph of order 20.
Recall that the soluble radical of G is the maximal soluble normal subgroup. Then
the next lemma follows from Lemmas 2.5, 6.1 and [16, Theorem 4].

Lemma 6.2. Let M be the soluble radical of G. Then M has square-free order and
at least three orbits on V', I' is a cover of I'yy and G = M:X for some almost simple
subgroup of G.

By Lemma 6.2 and the argument given in Section 5, we have the following lemma.

Lemma 6.3. Assume that G has no soluble normal subgroups. Then G is almost
simple; in particular, the pair (G,I") is known as in Theorems 5.6, 5.8 and 5.9.
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Theorem 6.4. Assume that G has nontrivial soluble radical M. Then one of the
following statements holds.

(1) G = Zy x PSL(2,7) for a prime r with r = +1(mod 5), r = £1 (mod 12)
and r? £ 1 (mod 16), and I' is isomorphic to the standard double cover of the
graph in Example 3.4.

(2) G = Zy x PSL(2,25) or Zy x PX1.(2,25), and I" is isomorphic to the standard
double cover of the graph given in Fxample 3.7.

(3) G = Zy x Ay or Zy x Sz, I' is the standard double cover of the complement
graph of L(K7).

(4) G = Zy x My1, Zo X A1y or Zo X S11, and I is the standard double cover of
K11.

Proof. By Lemma 6.2, G = M:X for X < GG, M is semiregular on V and [ is a
normal cover of ¥ := I'y;. Denote by B the vertex set of 3, that is, the set of M-orbits
on V. Then |V| = |M||B|. Since |V] is square-free, if |B] is even then |M| is odd.

We identify X with a subgroup of AutX. Noting that X is almost simple, by
Lemma 2.5 and 6.3, the pair (X, Y) is known. In particular, X, Xp, T and |B| are
listed in Table 1, where B € B and T' = soc(X).

X Xp Tp 1B] | [M]
PSL(2, ) As As -l
PGL(2,7) As As fe D [ 0dd
PSL(2,25) S5 S5 65
PYL(2, 25) Zy x S S 65

A7, S7 S5, ZQ X S5 S5 21
Ji As As 2926 | Odd

M, Mo Mo 11

A1, Siy A1p, S1o Ay 11
811 AlO A10 22 Odd
.Alg7 Slg (Ag X A10)1Z27 Sg X SlO (Ag X Am)iZQ 92378 | Odd
PSL(2,9).Z, ZL.GL(2,9) ZLGL(2,9) | 182 |Odd
PT'L(3,9).Zs ZATL(2,9) Z3:GL(2,9) | 182 | 0Odd

TABLE 1. Candidates for (X, Xp)

Set N = MT. Then N <G, and so Cy(M) <G and MCy(M) <G. Since |M] is
square-free, Aut(M) is soluble. Note that N/Cy(M) = Ny (M)/Cn (M) < Aut(M).
It follows that 7" < Cy(M), and so MCy(M) = MxT. This implies that T is
a characteristic subgroup of MCy (M), yielding 7' < G. Noting that |T'| has order
divisible by 4, T' is not semiregular on V', and so 7" has at most two orbits on V', see
Lemma 2.4,.

Suppose that |M|is odd. Recalling that 7" has at most two orbits on V', we conclude
that M fixes each T-orbit on V. Let U be a T-orbit on V, and choose u € U and
u € B e B. Then B C U, MTg fixes B setwise, and both M and T are transitive on
B. Since MTp = M xTg, by [6, Theorem 4.2A], both M and T induce two regular
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permutation groups on B. In particular, T has a normal subgroup of odd index
|B| = |M| # 1, which is impossible.

Now let | M| be even. Then |B| is odd as |V| = |M||B|. In particular, T is transitive
on B, ¥ is T-arc-transitive, and I' is MT-arc-transitive. Take B € B and u € B.
Then |B| = |T : T|. Since B is a block of G on V', we have T;,, < T. Consider the
transitive action of M x Tg on B. Since T is normal in M x T, all Tz-orbits on B
have the same length [T : T,,|. On the other hand, by [6, Theorem 4.2A], Tz induces
a semiregular permutation group on B. It follows that T;, is the kernel of T acting
on B; in particular, T, is normal in T and of square-free index. Since |B| is odd,
checking Table 1, we have Ts = As, S5, My or Ajg. Then T and soc(Tp) are the
only normal subgroups of Tz with square-free index. It follows that [T : T;,| = 1 or 2.
Let t be the number of T'on V. Then t <2, and |V| =¢t|T": T, | =t|T: Ts||T5 : T.|.
Since |V| = |[M||B| and |B| = |T" : T|, we get |M| =t|Tp : T,|, and so |15 : T,,| = | M|
or % It follows that | M| = 2. Since MT = M x T, by Lemma 2.7, I is the standard
double cover of 3. Then our theorem follows. OJ

Note that, for each graph I" involved in Theorems 5.6, 5.9, 5.8 and 6.4, all possible
candidates for G, which make I a G-locally primitive arc-transitive graph, have been
determined. Then Autl’ is just the maximal candidate for G. Thus Theorem 1.1
follows from Lemma 6.3 and Theorem 6.4.
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