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1. introduction

All graphs and groups considered in this paper are assumed to be finite. The
notation and terminologies for graphs and permutation groups not defined in this
paper are referred to [1] and [6], respectively. For simple groups and their subgroups,
we follow the notation used in the Atlas [5] while we sometimes use Zl and Zkp to
denote respectively the cyclic group of order l and the elementary abelian group of
order pk, where p is a prime.

Let Γ = (V,E) be a graph with vertex set V and edge set E, where E is a set
of 2-subsets of V . Denote by AutΓ the automorphism group of Γ . Let G ≤ AutΓ ,
that is, G is a subgroup of AutΓ . Then the graph Γ is called G-vertex-transitive
or G-edge-transitive if G acts transitively on V and E, respectively. An arc in Γ
is an ordered pair of adjacent vertices. The graph Γ is called G-arc-transitive if G
acts transitively on the set of all arcs in Γ . For u ∈ V , we denote by Gu and Γ (u)
respectively the vertex-stabilizer of u in G and the set of neighbors of u in Γ , that is,

Gu = {g ∈ G | ug = u} and Γ (u) = {v ∈ V | {u, v} ∈ E}.
Then the graph Γ is called G-locally-primitive if for every u ∈ V the stabilizer Gu

induces a primitive group G
Γ (u)
u (on Γ (u)). It is well-known that if Γ is G-locally-

primitive then it is G-edge-transitive. Moreover, if Γ is both G-vertex-transitive and
G-locally-primitive, then Γ is also G-arc-transitive; in this case, Γ is called G-locally-
primitive arc-transitive.

In [16], Li et al. give a reduction for locally-primitive arc-transitive of square-free
order. It was proved that, for a connected locally-primitive arc-transitive graph Γ
with square-free order, if it is not a complete bipartite graph then either AutΓ is
soluble, or Γ is a cover of one of the ‘basic’ graphs arising from PSL(2, p), PGL(2, p)
and a finite number (depending only on the valency of Γ ) of other almost simple
groups. This result makes it possible to classify such graphs of small valencies. For
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example, the reader may find some classification results on graphs of valency less than
8 in [15, 17, 18]. In this paper we deal with the graphs of valency 10.

Our main result is stated as follow.

Theorem 1.1. Let Γ = (V,E) be a connected graph of square-free order and valency
10, and let G ≤ AutΓ . Assume that Γ is G-locally-primitive arc-transitive. Then, up
to isomorphism, Γ is one of the following graphs.

(1) AutΓ = PSL(2, r) for a prime r with r ≡ ±1 (mod 5) and r ≡ ±1 (mod 12),
and Γ is constructed in Example 3.4; or
AutΓ = Z2×PSL(2, r) for a prime r with r ≡ ±1 (mod 5), r ≡ ±1 (mod 12)
and r2 6≡ 1 (mod 16), and Γ is the standard double cover of the graph in
Example 3.4.

(2) AutΓ = PGL(2, r) for a prime r with r ≡ ±1 (mod 5) and r 6≡ ±1 (mod 12),
and Γ is constructed in Example 3.5.

(3) AutΓ = PΣL(2, 25), and Γ is the graph given in Example 3.7; or
AutΓ = Z2×PΣL(2, 25), and Γ is the standard double cover of the graph in
Example 3.7.

(4) AutΓ = S7, and Γ is the complement graph of L(K7), where L(K7) is the line
graph of the complete graph K7 of order 7; or
AutΓ = Z2×S7, and Γ is the standard double cover of the complement graph
of L(K7).

(5) AutΓ = J1, and Γ is constructed in Example 3.9.
(6) AutΓ = S11, and Γ = K11; or

AutΓ = Z2 × S11, and Γ is the standard double cover of K11.
(7) AutΓ = PΓL(3, 9).Z2, and Γ is the point-line incidence graph of the projective

plane PG(2, 9).
(8) AutΓ = S19, and Γ = O10, the Odd graph of valency 10.

2. Preliminaries

In this section, we collect some elementary results on permutation groups and
graphs, which will be used in the following sections.

Let G be a group acting transitively on a finite set V . A nonempty subset B of V is
a block of G if either Bg = B or Bg ∩B = for all g ∈ G. A block B of G is nontrivial
if 1 < |B| < |V |. We say the group G is primitive on V if there is no nontrivial block.
For u ∈ V and B ⊆ V , let Gu = {g | ug = u} and GB = {g ∈ G | Bg = B}, called
respectively the point-stabilizer of u and the set-wise stabilizer of B in G. If B is a
block then B is a GB-orbit and Gu ≤ GB for u ∈ B. Conversely, If Gu ≤ H ≤ G
for u ∈ V then it is easily shown that uH := {uh | h ∈ H} is a block of G. Thus
H 7→ uH gives a bijection between the subgroups of G containing Gu and the blocks
of G containing u. In particular, G is primitive on V if and only if, for u ∈ G, the
point-stabilizer Gu is a maximal subgroup of G.

Let G be a group acting transitively on a finite set V , and Let H ≤ G. Then, for
u ∈ V , the H-orbit uH has length |H : Hu|, the index of Hu in H. Choose u ∈ V such
that uH has minimal length among the H-orbits on V . Then the number of H-orbits is

no more than |V |
|uH | = |G:Gu|

|H:Hu| . Since Hu ≤ Gu, we have |G:Gu|
|H:Hu| = |G||Hu|

|H||Gu| ≤
|G|
|H| = |G : H|.
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If (|V |, |G : H|) = 1, that is, (|G : Gu|, |G : H|) = 1, then G = HGu (see [10, I.2.13]
for example), and so H is transitive on V . Thus we have the following lemma.

Lemma 2.1. Let G be a group acting transitively on a finite set V of size n, and Let
H ≤ G. Then H has at most |G : H| orbits on V , and H is transitive on Ω if and
only if G = HGu for u ∈ V . Moreover, if (|G : H|, n) = 1 then H is transitive on V .

Let Γ = (V,E) be a graph and G ≤ AutΓ . For each u ∈ V , the stabilizer Gu

induces a permutation group G
Γ (u)
u . Denote by G

[1]
u be the kernel of Gu acting on

Γ (u). Then G
Γ (u)
u
∼= Gu/G

[1]
u . Further, the next lemmas are easily shown, refer to

[18].

Lemma 2.2. Assume that Γ = (V,E) is a connected G-vertex-transitive graph. Let

N �G such that N
Γ (u)
u is semiregular for some u ∈ V . Then N

[1]
u = 1. In particular,

Nu = 1 if N
Γ (u)
u = 1.

Lemma 2.3. Let Γ = (V,E) be a connected graph. Let N � G ≤ AutΓ and u ∈ V .
Assume that either N is regular on V , or Γ is a bipartite graph such that N is regular

on both the bipartition subsets of Γ . Then G
[1]
u = 1.

Lemma 2.4. Let Γ = (V,E) be a connected G-locally-primitive arc-transitive graph,
where G ≤ AutΓ . Let N be a normal subgroup of G. If N is not semiregular on V
then for u ∈ V the stabilizer Nu is transitive on Γ (u); in particular, N is transitive
on E and has at most two orbits on V .

Now let Γ = (V,E) be a connected G-locally-primitive graph, where G ≤ AutΓ .
Let N be a normal subgroup of G. Suppose that N is intransitive on every G-orbit
on V . Let B be the set of the N -orbits. The normal quotient ΓN is defined as the
graph with vertex set B such that B1, B2 ∈ B are adjacent if and only if {u1, u2} ∈ E
for some u1 ∈ B1 and u2 ∈ B2. The graph Γ is called a (normal) cover of ΓN if, for
every edge of {B1, B2} of ΓN , the subgraph of Γ induced by B1 ∪ B2 is a matching.
By Lemmas 2.3 and 2.4, the following lemma is easily shown, refer to [9, 18].

Lemma 2.5. Let Γ = (V,E) be a connected G-locally-primitive graph, where G ≤
AutΓ . Let N be a normal subgroup of G. Assume that N is intransitive on every
G-orbit on V . Then one of the following statements holds.

(i) Γ is a cover of ΓN , N is semiregular on V and N itself is the kernel of G
acting on B, and ΓN is (G/N)-locally-primitive.

(ii) N has two orbits on V , Γ is bipartite and G-arc-transitive, and either Γ is

N-edge-transitive or G
[1]
u = 1 for every u ∈ V .

Let Γ = (V,E) be a graph. The standard double cover of Γ , denoted by Γ (2), is the
graph defined on V×Z2 with edge set {{(u, 0), (v, 1)} | {u, v} ∈ E}. It is well-known
that Γ (2) is connected if and only if Γ is connected and not bipartite. Moreover, each
g ∈ AutΓ induces an automorphism of Γ (2) by

(u, i)g = (ug, i), u ∈ V, i ∈ Z2.

Further, we have an automorphism interchanging the bipartition subsets of Γ (2):

θ : V×Z2 → V×Z2, (u, i) 7→ (u, i+ 1), u ∈ V, i ∈ Z2.
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Thus, identifying AutΓ with a subgroup of AutΓ (2), we have AutΓ (2) ≥ AutΓ×〈θ〉.
Then the next lemma follows.

Lemma 2.6. Let Γ be a graph and G ≤ AutΓ . If Γ is G-vertex-transitive (resp.
arc-transitive or locally-primitive) then Γ (2) is G-edge-transitive and (G×〈θ〉)-vertex-
transitive (resp. arc-transitive or locally-primitive).

Lemma 2.7. Let Γ = (V,E) be a connected (G×N)-arc-transitive graph. Assume
N ∼= Z2, Γ is G-edge-transitive and G has two orbits on V . If Γ is a normal cover
of ΓN then Γ ∼= (ΓN)(2).

Proof. Take a G-orbit U , and set N = 〈o〉. Then U o is the other G-orbit. Define a
directed graph Σ on U such that (u, v) is a directed edge of Σ if and only if (u, vo) is
an arc of Γ . Note that o is an automorphism of Γ . Then (u, vo) is an arc of Γ if and
only if (v, uo) is an arc of Γ . Thus (u, v) is a directed edge of Σ if and only if so does
(v, u). Therefore, we may identify Σ with a graph, also denoted by Σ, by viewing two
directed edges (u, v) and (v, u) as an edge {u, v}. Then Σ(u) = {v ∈ U | vo ∈ Γ (u)}
for u ∈ U . Note that the stabilizer Gu is transitive on Γ (u). It follows that Gu

is transitive on Σ(u), and so Σ is G-arc-transitive as G is transitive on U . Define
η : U ∪ U o → U×Z2, u 7→ (u, 0), uo 7→ (u, 1). It is easily shown that η is an
isomorphism from Γ to Σ(2).

Note that N has |U | orbits on V and, for u ∈ U , the N -orbit containing u is {u, uo}.
Then {u, uo} 7→ u gives a bijection between the set of N -orbits and U . Since Γ is a
bipartite graph, it is easily shown that this bijection is in fact an isomorphism from
ΓN to Σ. Then the lemma follows. �

We end this section by quoting a result on number theory. For positive integers a
and n, a prime divisor of an− 1 is called primitive if it does not divide ai− 1 for any
positive integer i less than n.

Theorem 2.8 (Zsigmondy). For integers a, n ≥ 2, if an − 1 does not have primitive
prime divisors, then either (a, n) = (2, 6), or n = 2 and a+ 1 is a power of 2.

Corollary 2.9. Let n be a positive integer, and r ∈ {2, 3}. Then rn − 1 has a prime
divisor no less than 7 unless n = 1 or (r, n) is one of (2, 2), (2, 4), (3, 2) and (3, 4).

Proof. Suppose that all prime divisors of rn− 1 are less than 7. If n = 1 then rn− 1
has no prime divisor no less than 7. Thus let n ≥ 2. If rn− 1 has no primitive prime
divisor, then (r, n) = (2, 6) or (3, 2); in this case, we have (r, n) = (3, 2). Let p be a
primitive prime divisor of rn − 1. Then p ∈ {3, 5}. For p = 3 we have (r, n) = (2, 2),
and for p = 5 we have (r, n) = (2, 4) or (3, 4). Then the lemma follows. �

3. Coset graphs and examples

Let G be a finite group and H be a core-free subgroup of G, where core-free means
that ∩g∈GHg = 1. For x ∈ G \H, the coset graph Cos(G,H,H{x, x−1}H) is defined
on [G : H], the set of right cosets of H in G, such that Hg1 and Hg2 are adjacent
whenever g2g

−1
1 ∈ HxH ∪ Hx−1H. In the case where HxH = Hx−1H, we denote

this coset graph by Cos(G,H, x). Note that G may be viewed as a subgroup of
AutCos(G,H,H{x, x−1}H), where G acts on [G : H] by right multiplication.
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The following statements for coset graphs are well-known.

Lemma 3.1. Let G be a finite group and H a core-free subgroup of G. Set Γ =
Cos(G,H,H{x, x−1}H), where x ∈ G \ H. Then Γ is both G-vertex-transitive and
G-edge-transitive, and

(i) Γ is G-arc-transitive if and only if HxH = HyH for some 2-element y ∈
NG(H∩Hx)\H with y2 ∈ H∩Hx; in this case, Γ has valency |H : (H∩Hy)|;

(ii) Γ is connected if and only if 〈H, x〉 = G;
(iii) for each σ ∈ Aut(G), there is an isomorphism Hg 7→ Hσgσ, g ∈ G from Γ to

Cos(G,Hσ, Hσ{xσ, (xσ)−1}Hσ).

Let Γ = (V,E) be a graph of valency d, let {u, v} ∈ E and G ≤ AutΓ . Set
Guv = Gu ∩ Gv, call the arc-stabilizer of (u, v) (and of (v, u)). Assume that Γ is
G-arc-transitive. Then Gu is transitive on Γ (u), and d = |Γ (u)| = |Gu : Guv|. Take
x ∈ G with (u, v)x = (v, u). Then

x ∈ NG(Guv) \Guv, x
2 ∈ Guv.

In particular, the index |NG(Guv) : Guv| is even. Note that each element in NG(Guv)
either interchanges u and v, or fixes both of them. Thus this x may be chosen as
a 2-element in the normalizer NG(Guv). Moreover, it is well-know and easily shown
that Γ is connected if and only if 〈x,Gu〉 = G. Since G is transitive on V , the map
ug 7→ Gug is a bijection between V and [G : Gu]. It is easy to show that this map is
also an isomorphism from Γ to Cos(G,Gu, x). Thus the following simple fact holds.

Lemma 3.2. Let Γ = (V,E) ba a graph with E 6= ∅ and G ≤ AutΓ . If Γ is
G-arc-transitive then, for {u, v} ∈ E and x ∈ G with (u, v)x = (v, u), we have
Γ ∼= Cos(G,Gu, x); moreover, such an x may be chosen as a 2-element in NG(Guv),
and Γ is connected if and only if 〈x,Gu〉 = G.

The next result is a direct consequence of Lemmas 3.1 and 3.2.

Lemma 3.3. Let G be a finite group, and let H be a core-free subgroup of G. Let
K ≤ H with |H : K| > 1. If there is a G-arc-transitive graph Γ = (V,E) with E 6= ∅,
Gu = H and Guv = K for {u, v} ∈ E, then |NG(K) : K| is even and NG(K) 6≤ H; if
further Γ is connected then G is generated by H and some 2-element in NG(K).

Next we shall construct some graphs involved in Theorem 1.1.

Example 3.4. Let T = PSL(2, r), where r is a prime with r2 ≡ 1 (mod 5) and
r ≡ ±1 (mod 12). Fixes two subgroups K and H of T with S3

∼= K < H ∼= A5. Then
NT (K) ∼= Z2×S3. Let o be the involution in the center of NT (K). Then 〈o,H〉 = T ,
and Cos(T,H, o) is connected and T -arc-transitive. �

Example 3.5. Let G = PGL(2, r), where r is a prime with r2 ≡ 1 (mod 5) and r 6≡
±1 (mod 12). Fixes two subgroups K and H of T = soc(G) with S3

∼= K < H ∼= A5.
Then NT (K) ∼= S3 and NG(K) ∼= Z2 × S3. Let ι be the involution in the center of
NG(K). Then 〈ι,H〉 = G, and Cos(G,H, ι) is connected and G-arc-transitive. �

Remark 3.6. We may reconstruct the graphs in Examples 3.4 and 3.5 as follows.
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Let T = PSL(2, r), where r is a prime with r2 ≡ 1 (mod 5). Then T has two
conjugacy classes Ω1 and Ω2 of subgroups isomorphic to A5, which are interchanged

by each element ι ∈ PGL(2, r) \ PSL(2, r). Moreover, |Ω1| = |Ω2| = r(r2−1)
120

. Let

ε = ±1 with r + ε divisible by 3. Set Ω1 = {Hg
∣∣ g ∈ T}, where A5

∼= H < T . Then

Ω2 = {H ιg
∣∣ g ∈ T}. Let K < H with |K| = 6. Then K ∼= S3.

For the dihedral group Dr+ε, it is easily shown that its subgroups isomorphic to S3

form two conjugacy classes if r+ε is divisible by 12, and one conjugacy class otherwise.
By [10, II.8.5], two distinct subgroups of T isomorphic to Dr+ε have intersection of
order at most 2. Note that each subgroup of T isomorphic to S3 is contained in
some subgroup of T isomorphic to Dr+ε. It follows that T has at most two conjugacy
classes of subgroups isomorphic to S3, and T has two conjugacy classes of subgroups
isomorphic to S3 if and only if r + ε is divisible by 12.

(1) Assume that r + ε is divisible by 4. Then T has two conjugacy classes ∆1 :=

{Kg | g ∈ T} and ∆ι
2 of subgroups isomorphic to S3, and |∆1| = |∆2| = r(r2−1)

24
.

Enumerating the pairs (X, Y ) with X ∈ Ωi, Y ∈ ∆i and Y < X, we conclude
that each Y ∈ ∆i is contained exactly two subgroups in Ωi, i = 1, 2. Since A5 has
10 subgroups isomorphic to S3, we know that for each X ∈ Ωi, there are exactly 10
other subgroups in Ωi which intersects X in some subgroup of order 6.

For i ∈ {1, 2}, we define a graph Σi on Ωi such that X1, X2 ∈ Ωi are adjacent
if and only if |X1 ∩ X2| = 6. Then Σi is a well-defined graph of valency 10. Let

θi : [G : H]→ Ωi, Hg 7→ Hgιi−1
. Note Hg1ιi−1

= Hg2ιi−1
if and only if g2g

−1
1 normalizes

H, yielding g2g
−1
1 ∈ H as H is a maximal subgroup of T , i.e., Hg1 = Hg2. It follows

that θi is a bijection. If Hg1 and Hg2 are adjacent in the graph in Example 3.4 then
their stabilizers Hg1 and Hg2 intersect in a subgroup of order 6. Thus both Σ1 and
Σ2 are isomorphic to the graph given in Example 3.4.

(2) Assume that r + ε is not divisible by 4. By a similar argument as above, we
conclude that each subgroup of T isomorphic to S3 is contained exactly two subgroups
isomorphic to A5: one lies in Ω1 and the other one is in Ω1.

Define a bipartite graph Σ on Ω1∪Ω2 such that X1 ∈ Ω1 and X2 ∈ Ω2 are adjacent
if and only if |X1 ∩ X2| = 6. Then Σ is a well-defined graph of valency 10, and

θ : [G : H] → Ωi, Hgι
i−1 7→ Hgιi−1

, i = 1, 2 is an isomorphism between Σ and the
graph in Example 3.5. �

Example 3.7. Let T = PSL(2, 25). Fixes two subgroupsK andH of T with Z2×S3
∼=

K < H ∼= S5. Then NT (K) ∼= D24. Take an involution x ∈ NT (K) \ K. Then
〈x,H〉 = T , and Cos(T,H, x) is a connected T -arc-transitive of order 65.

Checking the subgroups of PΣL(2, 25), we may choose an involution ι ∈ PΣL(2, 25)\
T such that 〈H, ι〉 = 〈ι〉 ×H. Then ι normalizes NT (K). Thus

(HxH)ι = (HNT (K)H)ι = HNT (K)H = HxH.

Then, by Lemma 3.1, ι induces an automorphism of Cos(T,H, x). It follows that
PΣL(2, 25) ≤ AutCos(T,H, x). �

Remark 3.8. Note that PSL(2, 25) has two conjugacy classes of subgroups isomor-
phic to S5, and two classes of subgroups isomorphic to Z2 × S3. It is easily shown
that the graph in Example 3.7 may be reconstructed in a similar way as in part
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(1) of Remark 3.6. In fact, this graph is a primitive distance transitive graph with
automorphism group PΣL(2, 25), refer to [3, pp. 381, Proposition 12.2.2]. �

Example 3.9. Checking by GAP [8], we know that the first Janko group J1 has
exactly two conjugation classes of subgroups isomorphic A5, and one of the classes
consists of the subgroups having normalizer isomorphic to Z2 × A5, while the other
one contains only self-normalized subgroups.

Take a subgroup H of J1 with H ∼= A5 and NJ1(H) ∼= Z2 × A5. Let S3
∼= K < H.

Then NJ1(K) = K ×〈a, b〉, where a has order 5 and b is an involution with ab = a−1.
Calculation shows that H is contained exactly in three maximal subgroups of J1, one
is X := NJ1(H), and the other two, say Y and Z, are isomorphic to PSL(2, 11). It
is easily shown that each of these maximal subgroups contains exactly one involution
centralizing K. Note that NJ1(K) contains 5 involutions centralizing K. Thus 〈a, b〉
contains at least two involutions o1 and o2 which lie outside of X∪Y ∪Z. Then we have
J1 = 〈H, o1〉 = 〈H, o2〉, and so we get two connect arc-transitive graphs Cos(J1, H, o1)
and Cos(J1, H, o2). Confirmed by GAP, o1 and o2 are the only involutions which are
contained in 〈a, b〉 and lie outside of X∪Y ∪Z, and these two involution are conjugate
under NJ1(K). Thus, up to isomorphism, we get only one arc-transitive graph. �

4. The structure of stabilizers

Let Γ = (V,E) be a graph, G ≤ AutΓ and {u, v} ∈ E. Set G
[1]
uv := G

[1]
u ∩ G[1]

v .
Writing Gu in group extensions, we have

(4.1) Gu = G[1]
uv.(G

[1]
u )Γ (v).GΓ (u)

u ,

where (G
[1]
u )Γ (v) is the permutation group induced byG

[1]
u on Γ (v). In [7, 2.3], Gardiner

proved the following theorem.

Theorem 4.1. Let Γ = (V,E) be a connected graph, {u, v} ∈ E and G ≤ AutΓ . If

Γ is G-locally-primitive arc-transitive, then then G
[1]
uv is a p-group for some prime p.

Note that, for {u, v} ∈ E, both G
[1]
u and G

[1]
v are normal subgroups of Guv. Then

(4.2) (G[1]
u )Γ (v) ∼= G[1]

u /G
[1]
uv
∼= (G[1]

u G
[1]
v )/G[1]

v �Guv/G
[1]
v
∼= GΓ (v)

uv = (GΓ (v)
v )u.

If G = (V,E) is transitive on the arcs of Γ , then (G
Γ (v)
v )u ∼= (G

Γ (u)
u )v. Thus, by (4.2),

the following lemma holds.

Lemma 4.2. If G is transitive on the arcs of Γ , then (G
[1]
u )Γ (v) is isomorphic to a

normal subgroup of (G
Γ (u)
u )v.

Let Γ be connected and G-arc-transitive. Assume that G
[1]
uv 6= 1, where {u, v} ∈ E.

Then, by the connectedness of Γ , there exists an edge {u′, v′} ∈ E such that G
[1]
uv =

G
[1]
u′v′ , and G

[1]
uv 6= G

[1]
v′w for some w ∈ Γ (v′). In particular, G

[1]
uv acts nontrivially on

Γ (w). Without loss of generality, we let (u, v) = (u′, v′). Note that G
[1]
uv �G

[1]
v �Gvw.

Then G
[1]
uv induces a nontrivial normal subgroup of (G

[1]
v )Γ (w). Since Γ is G-arc-

transitive, (v, w)g = (u, v) for some g ∈ G. This yields (G
[1]
v )Γ (w) ∼= (G

[1]
u )Γ (v). Thus,

if G
[1]
uv is a nontrivial p-group then we may get Op((G

[1]
u )Γ (v)) 6= 1. Then the next
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result follows from Theorem 4.1 and Lemma 4.2. (Note that Op(X) is the maximal
normal p-subgroup of a group X, which is a characteristic subgroup of X.)

Theorem 4.3. Let Γ = (V,E) be a connected graph, {u, v} ∈ E and G ≤ AutΓ .

If Γ is G-locally-primitive arc-transitive, then G
[1]
uv is a p-group for some prime p;

moreover, either G
[1]
uv = 1, or Op((G

[1]
u )Γ (v)) 6= 1 and Op((G

Γ (u)
u )v) 6= 1.

Recall that, for a positive integer s, an s-arc in Γ = (V,E) is an (s + 1)-tuple
(u0, u1, · · · , us) of vertices such that {ui, ui+1} ∈ E and ui−1 6=ui+1 for all possible
i. Then the graph Γ is called (G, s)-arc-transitive if it has at least one s-arc and G
acts transitively on both V and the set of s-arcs, and called (G, s)-transitive if it is
(G, s)-arc-transitive but not (G, s+1)-arc-transitive. For the stabilizers of s-transitive
graphs, we formulate the following result from [21, 22, 23].

Theorem 4.4. Let Γ = (V,E) be a connected (G, s)-transitive graph with s ≥ 2, and
let {u, v} ∈ E. Then one of the following holds.

(1) G
[1]
uv = 1 and s ≤ 3;

(2) G
[1]
uv is a non-trivial p-group, PSL(n, pe) � G

Γ (u)
u , |Γ (u)| = pen−1

pe−1
, and either

n ≥ 3 and s ∈ {2, 3}, or n = 2, s ≥ 4 and one of the following holds:
(i) s = 4 and Gu = [p2e]:(Za.PGL(2, pe)).O, where a = pe−1

(3,pe−1)
and O is of

order a divisor of (3, pe − 1)e;
(ii) s = 5, p = 2 and Gu = [23e]:GL(2, 2e).Zb, where b is a divisor of e;

(iii) s = 7, p = 3 and Gu = [35e]:GL(2, 3e).Zb, where b is a divisor of e.

Based on Theorems 4.3 and 4.4, we produce here a description for the stabilizers of
locally-primitive arc-transitive graphs of valency 2k, where k is a prime no less than
5.

Theorem 4.5. Let Γ = (V,E) be a connected G-locally-primitive arc-transitive graph.
Assume that Γ is (G, s)-transitive and of valency 2k, where k is a prime no less than
5. Then one of the following holds.

(1) s = 1, k = 5 and one of the following holds:
(i) Gu

∼= A5 or S5;
(ii) O3(Gu) 6= 1 and Gu = O3(Gu).O.A5, where O ≤ Z2;

(iii) O3(Gu) 6= 1 and Gu = O3(Gu).O.S5, where O ≤ Z2
2;

(iv) O2(Gu) 6= 1 and Gu = O2(Gu).O.S5, where O � S3.
(2) s ∈ {2, 3}, k = 11, Gu

∼= M22, M22.2 or (PSL(3, 4) ×M22).O, where |O| is a
divisor of 4.

(3) soc(G
Γ (u)
u ) ∼= PSL(2, pe), k = pe+1

2
for an odd prime p and a power e of 2, and

one of the following holds:

(v) G
[1]
uv = 1 and s ∈ {2, 3}, where v ∈ Γ (u);

(vi) s = 4 and Gu = [p2e]:(Za.PGL(2, pe)).R, where a = pe−1
(3,pe−1)

and |R| is a

divisor of (3, pe − 1)e;
(vii) s = 7, p = 3 and Gu = [35e]:GL(2, 3e).Zb, where b is a divisor of e.

(4) s ∈ {2, 3}, Gu
∼= A2k, S2k or (A2k−1 × A2k).O, where |O| is a divisor of 4.

Proof. By the assumption, G
Γ (u)
u is a primitive permutation group of degree 2k. Since

a soluble primitive permutation group has degree a power of some prime, noting that
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k 6= 2, we know that G
Γ (u)
u is insoluble. Then G

Γ (u)
u is known by [19, Corollary 1.2].

Let v ∈ Γ (u). Up to permutation isomorphism, one of the following holds:

(a) soc(G
Γ (u)
u ) ∼= A5, soc(G

Γ (u)
u )v ∼= S3 and k = 5;

(b) soc(G
Γ (u)
u ) ∼= M22, soc(G

Γ (u)
u )v ∼= PSL(3, 4) and k = 11;

(c) soc(G
Γ (u)
u ) ∼= PSL(2, pe), soc(G

Γ (u)
u )v ∼= Zep:Z pe−1

2
and k = pe+1

2
, where p is an

odd prime, and e is a power of 2;

(d) soc(G
Γ (u)
u ) ∼= A2k, soc(G

Γ (u)
u )v ∼= A2k−1.

For (b), (c) and (d), since G
Γ (u)
u is 2-transitive, s ≥ 2. For (c), by Theorem 4.4, part

(3) of this theorem follows. We next lay out the remainder argument in three cases.

Case 1. Let soc(G
Γ (u)
u ) ∼= A5, soc(G

Γ (u)
u )v ∼= S3 and k = 5. In this case, G

Γ (u)
u is

not 2-transitive on Γ (u), and so Γ is not (G, 2)-arc-transitive. Thus s = 1. We next
shows that part (1) of this theorem occurs.

Suppose that G
Γ (u)
u = soc(G

Γ (u)
u ). Then, by Theorem 4.3, G

[1]
uv is a 3-group. By

Lemma 4.2, (G
[1]
u )Γ (v) is isomorphic to a normal subgroup of S3. If (G

[1]
u )Γ (v) = 1 then

G
[1]
u = G

[1]
v , and so G

[1]
u = 1 by the connectedness of Γ , yielding Gu

∼= A5. Now let

(G
[1]
u )Γ (v) ∼= Z3 or S3. Noting that Gu/G

[1]
u
∼= A5, it follows that O3(Gu) = O3(G

[1]
u ) =

G
[1]
uv.Z3. Then (4.1) implies that Gu = O3(Gu).Zl.A5, where l ≤ 2.

Suppose that G
Γ (u)
u
∼= S5. Then (G

Γ (u)
u )v ∼= Z2 × S3, and by Theorem 4.3, G

[1]
uv is

a 2-group or a 3-group. If (G
[1]
u )Γ (v) = 1 then Gu

∼= S5. Thus suppose further that

(G
[1]
u )Γ (v) 6= 1. Then (G

[1]
u )Γ (v) ∼= Z2, Z3, S3, Z6 or Z2 × S3. If G

[1]
uv is a nontrivial 2-

group then (G
[1]
u )Γ (v) ∼= Z2, Z6 or Z2×S3, and so O2(Gu) 6= 1 and Gu = O2(Gu).O.S5,

where O � S3. If G
[1]
uv is a nontrivial 3-group then (G

[1]
u )Γ (v) ∼= Z3, Z6, S3 or Z2 × S3,

yielding O3(Gu) 6= 1 and Gu = O3(Gu).O.S5, where O ≤ Z2
2. Assume that G

[1]
uv = 1

then Gu = N.S5, where 1 6= N � Z2 × S3. Then either O2(Gu) = O2(N) ∼= Z2 and
N/O2(Gu) is isomorphic to a normal subgroup of S3, or O3(Gu) = O3(N) ∼= Z3 and
N/O2(Gu) . Z2

2. Then one of (iii) and (iv) follows.

Case 2. Let soc(G
Γ (u)
u ) ∼= M22, soc(G

Γ (u)
u )v ∼= PSL(3, 4) and k = 11. In this case,

s ≥ 2. By Theorem 4.3 or 4.4, G
[1]
uv = 1, and so (G

[1]
u )Γ (v) ∼= G

[1]
u , and s ≤ 3. Then

G
[1]
u is isomorphic to a normal subgroup of (G

Γ (u)
u )v. If G

Γ (u)
u
∼= M22 then G

[1]
u = 1

or G
[1]
u
∼= PSL(3, 4), and so Gu

∼= M22 or PSL(3, 4) × M22. If G
Γ (u)
u
∼= M22.2 then

G
[1]
u = 1 or PSL(3, 4) . G

[1]
u . PSL(3, 4).2, and so Gu

∼= M22 or (PSL(3, 4)×M22).O,
where |O| = 2 or 4. Thus part (2) of this theorem follows.

Case 3. Let soc(G
Γ (u)
u ) ∼= A2k, soc(G

Γ (u)
u )v ∼= A2k−1. Then a similar argument as

in Case 2 yields part (4) of this theorem. �

Note that |V | = |G : Gu| = |G|/|Gu|. Considering the orders of the stabilizers Gu

listed in Theorem 4.5, we have the following simple facts.

Corollary 4.6. Let Γ = (V,E) be a connected graph of valency 10 and square-free
order, G ≤ AutΓ . Assume that Γ is G-locally-primitive arc-transitive but not (G, 2)-
arc-transitive. Then neither 53 nor r2 is a divisor of |G|, where r is a prime no less
than 7; moreover, for u ∈ V , one of the following holds:

(i) Gu
∼= A5 or S5, and neither 25 nor 33 is a divisor of |G|;
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(ii) O3(Gu) 6= 1 and Gu = O3(Gu).O.A5 for some O ≤ Z2, and 25 is not a divisor
of |G|;

(iii) O3(Gu) 6= 1 and Gu = O3(Gu).O.S5 for some O ≤ Z2
2, and 27 is not a divisor

of |G|;
(iv) O2(Gu) 6= 1 and Gu = O2(Gu).O.S5 for some O � S3, and 34 is not a divisor

of |G|.

Corollary 4.7. Let Γ = (V,E) be a connected graph of valency 10 and square-free
order, {u, v} ∈ E and G ≤ AutΓ . Assume that Γ is (G, s)-transitive, where s ≥ 2.
Then one of the following holds.

(1) soc(G
Γ (u)
u ) ∼= PSL(2, 9), and one of the following holds:

(i) G
[1]
uv = 1 and s ∈ {2, 3}, where v ∈ Γ (u);

(ii) s = 4 and Gu = [34]:(Z8.PGL(2, 32)).Zb, where b ≤ 2;
(iii) s = 7 and Gu = [310]:GL(2, 32).Zb, where b ≤ 2.

(2) s ∈ {2, 3} and Gu
∼= A10, S10 or (A9 × A10).O, where O ≤ Z2

2.

5. Graphs arising from almost simple groups

Let Γ = (V,E) be a connected graph of valency 10 and square-free order, and let
G ≤ AutΓ . Assume that Γ is G-locally-primitive arc-transitive, and that G is an
almost simple group with socle soc(G) = T . Let u ∈ V . By Corollaries 4.6 and 4.7,

soc(G
Γ (u)
u ) ∼= A5, PSL(2, 9) or A10.

Since |V | is square-free, T is not semiregular on V . Then, by Lemma 2.4, T
Γ (u)
u is

transitive on Γ (u). In particular, T has at most two orbits on V . Since T is normal in
G, all orbits of T have the same length which is a divisor of |V |. Thus |T : Tu| = |V |
or |V |

2
, and so |T : Tu| is square-free. Moreover, |T : Tu| ≥ 11 as Γ has valency 10.

Since Tu �Gu, we have T
Γ (u)
u �G

Γ (u)
u . It follows that soc(T

Γ (u)
u ) = soc(G

Γ (u)
u ) ∼= A5,

PSL(2, 9) or A10. In particular, Tu is primitive on Γ (u), and if T is transitive on V
then Γ is T -locally-primitive arc-transitive.

5.1. Assume that soc(G
Γ (u)
u ) = soc(T

Γ (u)
u ) ∼= A5. Then, by Corollary 4.6, the order

of T satisfies the following conditions: neither 53 nor p2 is a divisor of |T |, where p is
a prime no less that 7; and one of 27 and 34 is not a divisor of |T |.

Lemma 5.1. Up to isomorphism, T is one of the following simple groups:

PSL(2, r), where r is a prime with r ≡ ±1 (mod 5);
PSL(2, 25), PSL(3, 4), PSp(4, 4), G2(4), A7, M22, M23, M24 and J1.

Proof. Noting that A10 has order divisible by both 27 and 34, if T is an alternating
simple group, then T is one of A7, A8 and A9. For the 26 sporadic simple groups,
checking their orders, we have that T is one of M11, M12, M22, M23, M24 and J1.
Recall that T has a subgroup Tu, which has square-free index in T and possesses a
composition factor A5. Then, employing the Atlas [5], T is one of A7, M22, M23, M24

and J1.
Now let T be a simple group of Lie type over the finite field Fq of order q, where

q = rf for some prime r. Consider the orders of simples group of Lie type, refer to
[12, pp. 170, Tables 5.1 A and B]. We conclude that either r ≤ 5, or T = PSL(2, r)
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with r ≡ ±1 (mod 5). If r = 5 then the only possibility is that T = PSL(2, 25). Thus
we next assume that r ∈ {2, 3}.

Case 1. Assume first that T has Lie rank 1. Note that the group 2B2(q) is excluded
as its order is not divisible by 3, and 2G2(q) is excluded as it has order not divisible
by 5. Thus, up to isomorphism, T = PSL(2, q) or PSU(3, q).

Let T = PSL(2, q). Since T is simple, f ≥ 2. By [10, II. 8.27], we conclude that
Tu ∼= A5 or S5. Recalling that |T : Tu| ≥ 11, we have f ≥ 4. This yields that |T : Tu|
is not square-free, a contradiction.

Let T = PSU(3, q). Then q > 2, and |T | = 1
(3,q+1)

q3(q2 − 1)(q3 + 1). If r2f − 1

has no primitive prime divisor then (r, f) = (3, 1) or (2, 3). The group PSU(3, 3) is
excluded as its order is not divisible by 5, and the group PSU(3, 8) is excluded as its
order is divisible by 27 · 34. Let t be a primitive prime divisor of r2f − 1. Then t is

also a divisor of rf + 1. Since |T | is divisible by (rf+1)2

(3,rf+1)
but not by p2 for some prime

p ≥ 7, we know that t ∈ {3, 5}. This yields that (r, f) = (2, 2) or (3, 2). By the Atlas
[5], both PSU(3, 4) and PSU(3, 9) have no insoluble subgroup of square-free index, a
contradiction.

Case 2. Assume that T has Lie rank at least 2. Then either T = PSL(3, q), or |T |
is divisible by (q2−1)2

2
.

Suppose that |T | is divisible by (q2−1)2

2
= (r2f−1)2

2
. Recalling that |T | has no divisor

a square of some prime no less that 7, by Corollary 2.9, (r, f) is one of (2, 1), (2, 2),
(3, 1) and (3, 2). Since |T | is not divisible by 53 or 27 · 34, we conclude that T is one
of PSL(4, 2), PSL(5, 2), PSU(4, 2), PSp(4, 3), PSp(4, 4), G2(3) and G2(4). Employing
the Atlas [5], among these groups, only G2(4) has a subgroup group which has square-
free index and a composition factor A5.

Let T = PSL(3, q). Then |T | is divisible by (rf−1)2

(3,rf−1)
. Since |T | is not divisible

by p2 for prime p ≥ 7, by Corollary 2.9, q = 2, 4, 16, 3, 9 or 34. The groups
PSL(3, 2) and PSL(3, 3) are excluded as their orders are not divisible by 5, and the
groups PSL(3, 9) and PSL(3, 34) are excluded as their orders are divisible by 27 · 34.
Suppose that T ∼= PSL(3, 16). Then, by [2, pp. 378, Table 8.3], Tu is contained in the
stabilizer of some projective point (or line) in PSL(3, 16). It follows that PSL(2, 16)
has an insoluble subgroup of square-free index, which is impossible. Thus we have
T ∼= PSL(3, 4). Then the lemma follows. �

Lemma 5.2. T 6= PSL(3, 4).

Proof. Suppose that T = PSL(3, 4). Recall that T
Γ (u)
u

∼= A5 or S5. Since |T : Tu|
is square-free, checking the subgroups of T , we know that Tu = Z4

2:A5; in particular,

O2(Tu) has order 24. Noting that O2(Tu) ≤ O2(Gu), by Corollary 4.6, G
Γ (u)
u
∼= S5.

Checking the subgroup of G, the only possibility is that |G : Gu| = 21. This yields
that G is 2-transitive on V , and hence Γ ∼= K21, a contradiction. �

Lemma 5.3. T 6= PSp(4, 4).

Proof. Suppose that T = PSp(4, 4). By a similar argument as in the proof of Lemma

5.2, we have |O2(Tu)| ≥ 25, T
Γ (u)
u

∼= A5 and G
Γ (u)
u

∼= S5; in particular, G 6= T .
Then G = T.Z2 or T.Z4. Recalling Tu is primitive on Γ (u), by Corollary 4.6, T is
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intransitive on V , and thus T has two orbits of equal length on V . In particular,
|T : Tu| is odd. Then Tu ∼= Z6

2:A5 or Z6
2:(Z3 × A5). Thus Z6

2
∼= O2(Tu) ≤ O2(Gu),

this implies that Gu
∼= Z6

2:A5:Z2 or Z6
2:(Z3 × A5):Z2; in particular, Gu ≤ T.Z2 := X.

If G = X, then |G : Gu| = |T : Tu|, a contradiction. Then we have G = T.Z4, both T
and X has two orbits on V , say U1 and U2, which have length 85 or 255.

Let H1 and H2 be maximal subgroups of X with Xu ≤ H1
∼= Z6

2:(Z3 × A5):Z2

and Xv ≤ H2
∼= Z6

2:(Z3 × A5):Z2, where v ∈ Γ (u). Then B1 := uH1 and B2 := vH2

are blocks of X on U1 and U2, respectively. Set Bi = {Bx
i | x ∈ X}, i = 1, 2.

Then |B1| = |B2| = 85, and X acts primitively (and faithfully) on both B1 and B2.
Moreover, each of these two actions is equivalent to the action of X on the point set
P or the line set L of the symplectic generalized quadrangle of order (4, 4).

By [10, II.9.15], for p ∈ P , the stabilizer Xp has three orbits on P , which have
sizes 1, 20 and 64 respectively. Note that G has a element interchanging P and L.
It follows that, for L ∈ L, the stabilizer XL also has three orbits on L with sizes 1,
20 and 64 respectively. Let p ∈ P and L1 be the set of lines containing p. Then L1

is a Xp-orbit of size 5, and the points on these 5 lines form two Xp-orbits (on P)
of lengths 1 and 20. Thus the third orbits of Xp on P consists of the points which
are not contained in p⊥ and lie on the remain 80 lines. By [10, II.9.11], we conclude
that every line L ∈ L \ L1 is not contained in p⊥. It follows that Xp is transitive on
L \ L1, and thus Xp has two orbits on L.

Assume that actions of X on B1 and on B2 are equivalent. Then XB1 = H1 has three
orbits on B2, say ∆1, ∆2 and ∆3, which have sizes 1, 20 and 64 respectively. Since
|H1 : Xu| = 1 or 3, by Lemma 2.1, Xu is transitive on every ∆i. Note that Gu = Xu,
and Γ (u) is a Gu-orbits. It follows that there is some i such that Γ (u) ⊆ ∪B∈∆i

B
and B ∩Γ (u) 6= ∅ for each B ∈ ∆i. Since |B| = 1 or 3 for B ∈ B, we have |Γ (u)| ≤ 3
or |Γ (u)| ≥ 20, a contradiction.

Now, with out loss of generality, we identify B1 and B2 with P and L, respectively.
Then XB1 has two orbits on B2, say Λ1 and Λ2, which have sizes 5 and 80, respectively.
Again by Lemma 2.1, Λ1 and Λ2 are Xu-orbits. Since Γ (u) is an Xu-orbit of length
10, we have Γ (u) ⊆ ∪B∈Λ1B. It follows that |Γ (u) ∩B| = 2 for each B ∈ Λ1. Thus a

Gu = Xu has a nontrivial block Γ (u)∩B, which contradicts that G
Γ (u)
u is primitive. �

We next exclude the groups G2(4), M22, M23 and M24. Note that each of these
groups has order divisible by 27. Thus, if T is one of these groups then (iv) of

Corollary 4.6 holds; in particular, G
Γ (u)
u
∼= S5. Recall that Γ (u) is a Tu-orbit, where

u ∈ V .

Lemma 5.4. T 6= G2(4).

Proof. Let T = G2(4). Then, checking the maximal subgroups of T and G, we
know that G = T.Z2 and, letting M be a maximal subgroup of T with Tu ≤ M , we
have |T : M | = 1365. In particular, T has two orbits on V , and each T -orbit has
length 1365|M : Tu|. Noting that the prime divisors of |M | is 2, 3 and 5, it follows
that Tu = M . Let U and W be the T -orbits on V . Then T acts primitively and
equivalently on U and W . Then Tu has four orbits on W with sizes 1, 20, 320 and
1024, refer to [25]. This contradicts that |Γ (u)| = 10. �

Lemma 5.5. T 6= M22, M23, M24.
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Proof. Let T = M22. If T
Γ (u)
u

∼= A5 then T is transitive on V , and so Γ is T -arc-

transitive, which contradicts (iv ) of Corollary 4.6. Thus T
Γ (u)
u
∼= S5. It follows that

Tu ∼= Z4
2:S5. In particular, T is primitive on each of its orbits on V . Suppose that

that T is transitive on V . Then Tu has exactly 4 orbits on V , which have sizes 1, 30,
60 and 140, respectively, refer to [25]. This contradicts that |Γ (u)| = 10. Suppose
that T has two orbits, say U and W , on V . Then the actions of T on both U and W
are primitive and equivalent. This implies that |Γ (u)| > 10, again a contradiction.

Let T = M23. Then G = T . Take a maximal subgroup M of G with Gu ≤ M .
Then M ∼= M22, Z4

2:A7 or Z4
2:(Z3 × A5):Z2. If Gu = M then Gu

∼= Z4
2:(Z3 × A5):Z2

and |G : Gu| = 1771; however, in this case, Gu has no orbit of size 10 (refer to [25]), a
contradiction. Checking the subgroups of M , we have Gu

∼= Z4
2:S5, and Guv

∼= Z4
2:D12

for v ∈ Γ (u). By the information given for M23 in the Atlas [5], we may let M ∼= Z4
2:A7

or Z4
2:(Z3 × A5):Z2. Confirmed by GAP, we have NG(Guv) = NM(Guv). Since Γ is

connected, G = 〈Gu,NG(Guv)〉 ≤M , a contradiction.
Finally, let G = T = M24. Take a maximal subgroup M of G with Gu ≤M . Then
|G : M | is square-free, and so M ∼= Z4

2:A8 or Z6
2:Z·3S6. Checking the subgroups of

A8, it has no subgroup with a composition factor A5 and square-free index. Thus
M ∼= Z6

2:Z·3S6, and hence Gu = Z6
2:(Z·3S5), and Guv

∼= Z6
2:(Z·3D12). Confirmed by

GAP, we get a similar argument as above. �

Theorem 5.6. Let Γ = (V,E) be a connected graph of valency 10 and square-free
order, and let G ≤ AutΓ . Assume that Γ is G-locally-primitive arc-transitive, and G
is almost simple. If Γ is not (G, 2)-arc-transitive then one of the following holds.

(1) G = PSL(2, r) for a prime r with r ≡ ±1 (mod 5) and r ≡ ±1 (mod 12), and
Γ is isomorphic to the graph constructed in Example 3.4; or
G = PGL(2, r) for a prime r with r ≡ ±1 (mod 5) and r 6≡ ±1 (mod 12), and
Γ is bipartite and isomorphic to the graph constructed in Example 3.5.

(2) G = PSL(2, 25) or PΣL(2, 25), and Γ is isomorphic to the graph given in
Example 3.7.

(3) G = A7 or S7, and Γ is the complement graph of L(K7), where L(K7) is the
line graph of the complete graph K7 of order 7.

(4) G = J1, and Γ is isomorphic to the graph in Example 3.9.

Proof. Assume that Γ is not (G, 2)-arc-transitive. Then soc(G
Γ (u)
u ) = soc(T

Γ (u)
u ) ∼=

A5 and, by Lemmas 5.1-5.5, we may let T be one of PSL(2, r), PSL(2, 25), A7 and J1.
(1) Let T = PSL(2, r). Checking the subgroups of PSL(2, r) and PGL(2, r) (see

[10, II. 8.27] and [4, Theorem 2]), we have Gu = Tu ∼= A5, and so Guv = Tuv ∼= S3. Let
ε = ±1 be such that 3 is a divisor of r + ε. Let Z be the subgroup of Guv or order 3.
Then Guv ≤ NG(Guv) ≤ NG(Z) ≤ M := NPGL(2,r)(Z) ∼= D2(r+ε), and so NG(Guv) ≤
NM(Guv) ∼= Z2 × S3. On the other hand, Guv ≤ NT (Guv) ≤ N := NT (Z) ∼= Dr+ε,
and so NT (Guv) = NN(Guv).

Assume that r + ε is divisible by 4. Then NT (Guv) = NN(Guv) ∼= Z2 × S3. Thus
we have NG(Guv) = 〈o〉 × Tuv, where o is the involution lying the center of NT (Guv).
In particular, since Γ is connected, G = 〈Gu,NG(Guv)〉 ≤ T , and so G = T . Noting
that TuxTu = TuoTu for each x ∈ NG(Guv) \Guv, by Lemma 3.2, Γ is isomorphic to
the graph constructed in Example 3.4.
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Assume that r + ε is not divisible by 4. Then NT (Guv) = NN(Guv) = Guv. By
Lemma 3.3, G 6= T , and so G = PGL(2, r) in this case. Then NG(Guv) = NM(Guv) ∼=
Z2 × S3. Write NG(Guv) = 〈ι〉 × Guv. Then ι ∈ G \ T , and Γ is isomorphic to the
graph constructed in Example 3.5.

(2) Let T = PSL(2, 25). Then PSL(2, 25) ≤ G ≤ PΓL(2, 25). Inspect the subgroups
of G, refer to [5]. We know that Tu ∼= A5 or S5, and either Gu = Tu, or G = PΣL(2, 25)
and Gu is isomorphic to one of Z2 × A5, S5 and Z2 × S5.

Suppose that Tu ∼= A5. Then Tuv ∼= S3, and |T : Tu| = 130 is even. Recall that

|T : Tu| = |V | or |V |
2

. Since |V | is square-free, we have |V | = |T : Tu|, that is, T is
transitive on V , and so Γ is T -arc-transitive. Since Γ is connected, by Lemma 3.2,
there is x ∈ NT (Tuv) with 〈x, Tu〉 = T . Let Z be the subgroup of Tuv or order 3.
Then Tuv ≤ NT (Tuv) ≤ M := NT (Z) ∼= D24, and so NT (Tuv) = NM(Tuv) ∼= Z2 × S3.
Take a maximal subgroup H of T with Tu < H ∼= S5. Then NH(Tuv) ∼= Z2 × S3,
yielding NT (Tuv) = NH(Tuv) ≤ H. Thus T = 〈x, Tu〉 ≤ H, which is impossible.

Let Gu = Tu ∼= S5. Then Guv
∼= Z2 × S3. Checking the subgroups of G, we have

NG(Guv) = NT (Guv) ∼= D24. Since Γ is connected, G = 〈Gu,NG(Guv)〉 ≤ T , and so
G = T . It follows that Γ is isomorphic to the graph given in Example 3.7.

Now let Gu 6= Tu. Then G = PΣL(2, 25) and Gu
∼= Z2 × S5, and so |G : Gu| =

|T : Tu| = 65. Thus Γ is T -arc-transitive, and again Γ is isomorphic to the graph in
Example 3.7.

(3) Let T = A7. By Corollary 4.6 and checking the subgroup of G, we know that
one of the following cases occurs: Gu = Tu ∼= A5 or S5; Gu

∼= S5, Tu ∼= A5 and G = S7;
Gu
∼= Z2 × S5, Tu ∼= S5 and G = S7. These cases yield that the action of G acting on

V is equivalent to that on the 2-subsets or ordered pairs of the set {1, 2, 3, 4, 5, 6, 7}.
If V is the set of ordered pairs of the set {1, 2, 3, 4, 5, 6, 7} then it easily to show that

G
Γ (u)
u is not primitive, a contradiction. Thus we may let V be the set of 2-subsets of
{1, 2, 3, 4, 5, 6, 7}. Then Γ is either the line graph L(K7) of the complete graph K7 or

the complement graph of L(K7). Recalling that G
Γ (u)
u is primitive, we conclude that

Γ is the complement graph L(K7).
(4) Let T = J1. Then G = T and Gu

∼= A5 or Z2 × A5. By Corollary 4.6, we have
Gu
∼= A5, and so |V | = |G : Gu| = 2926 = 2 ·7 ·11 ·19. Let v ∈ Γ (u). Then Guv

∼= S3.
Checking by GAP [8], we know that J1 has exactly two conjugacy classes of sub-

groups isomorphic A5, and one of them consists of the subgroups having normalizer
isomorphic to Z2 × A5, while the other one contains only self-normalized subgroups.
Moreover, if NG(Gu) ∼= Z2×A5 then NG(Guv) ∼= D6×D10, and if NG(Gu) = Gu then
NG(Guv) ∼= Z2 × S3.

Let NG(Gu) = Gu. Take a maximal subgroup M of G with Gu < M ∼= PSL(2, 11).
Then we have NM(Guv) ∼= Z2 × S3. This implies that NG(Guv) = NM(Guv), and
so 〈Gu,NG(Guv)〉 ≤ M 6= T , which contradicts the connectedness of Γ . Therefore,
NG(Gu) ∼= Z2 × A5 and NG(Guv) ∼= D6 × D10, and then Γ is isomorphic the graph
given in Example 3.9. �

5.2. Assume that soc(G
Γ (u)
u ) ∼= PSL(2, 9). Then, by Corollary 4.7, the order of T

satisfies the following conditions: neither 53 nor p2 is a divisor of |T |, where p is a
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prime no less that 7. Moreover, letting Γ be (G, s)-transitive, then either G
[1]
uv = 1

for v ∈ Γ (u), or one of the following occurs:

(a) s = 4, |T | is not divisible by 210 or 38;
(b) s = 7, |T | is not divisible by 210 or 314.

For the case where G
[1]
uv = 1, by (4.1), Lemma 4.2 and Corollary 4.7, we have

(c) s ∈ {2, 3}, |T | is not divisible by 211 or 36.

Lemma 5.7. T is isomorphic to one of the following simple groups:

A10, A11 and Mn, where n ∈ {11, 12, 22, 23, 24};
PSL(3, 9), PSL(3, 34), PSU(4, 9), PSp(4, 9) and G2(9).

Proof. For the alternating simple groups and sporadic simple groups, checking their
orders, we know that T is one of An (with n ≤ 13), Mn (with n ∈ {11, 12, 22, 23, 24}),
J2 and J3. Note that |T : Tu| is square-free and no less than 11, and that Tu has a
composition factor PSL(2, 9). Checking the insoluble subgroups of those groups, we
conclude that T is one of A10, A11 and Mn, where n ∈ {11, 12, 22, 23, 24}.

Now let T be a simple group of Lie type over Fq, where q = rf for some prime r.
Suppose that T ∼= PSL(2, q). Checking the subgroups of PSL(2, q), we know that r =
3, Tu ∼= PSL(2, 9) or PGL(2, 9). In this case, |T : Tu| is divisible by 9, a contradiction.
Thus we assume further that T 6∼= PSL(2, q). Consider the orders of simple groups of
Lie type. We conclude that r ∈ {2, 3, 5}. If r = 5 then, since |T | is not divisible by 53,
we have T ∼= PSL(2, 25), a contradiction. Thus r ∈ {2, 3}. By a similar argument as
in the proof of Lemma 5.1, noting the limits on |T |, we conclude that T is isomorphic
to one of the following groups: PSL(3, 2), PSL(3, 3), PSL(3, 4), PSL(3, 9), PSL(3, 34),
PSL(4, 2), PSL(4, 3), PSL(5, 2), PSU(3, 3), PSU(3, 4), PSU(3, 8), PSU(3, 9), PSU(4, 2),
PSU(4, 3), PSU(5, 2), PSU(5, 3), PSp(4, 3), PSp(4, 4), PSp(4, 9), PSp(6, 2), PSp(6, 3),
Ω(7, 3), G2(3) and G2(9). Recall that |T : Tu| is square-free and Tu has a composition
factor PSL(2, 9). Employing the Atlas [5], we know that T is isomorphic to one of
PSL(3, 9), PSL(3, 34), PSU(4, 9), PSp(4, 9) and G2(9). �

Theorem 5.8. Let Γ = (V,E) be a connected graph of valency 10 and square-free

order, and let G ≤ AutΓ . Assume that G is almost simple and soc(G
Γ (u)
u ) ∼= PSL(2, 9)

for u ∈ V . Then either

(1) G = M11 and Γ ∼= K11, the complete graph of order 11; or
(2) G = PSL(3, 9).Z2 or PΓL(3, 9).Z2, and Γ is the point-line incidence graph of

the projective plane PG(2, 9).

Proof. Let soc(G) = T . Then T is know by Lemma 5.7.
Case 1. Assume that T = A10, A11 or Mn for n ∈ {11, 12, 22, 23, 24}. Then |G| is

not divisible by 36. By Corollary 4.7, G
[1]
uv = 1, and so (G

[1]
u )Γ (v) ∼= G

[1]
u . By Lemma 4.2

and checking the subgroups of G
Γ (u)
u in the Atlas [5], either G

[1]
u = 1 or O3(G

[1]
u ) ∼= Z2

3.
The latter case yields that |G| is divisible by 34.

Suppose that T = A10. If Gu is faithful on Γ (u) then PSL(2, 9) . Gu . PΓL(2, 9);

in this case, |G : Gu| has a divisor 4, a contradiction. This implies that O3(G
[1]
u ) ∼= Z2

3,
and so |G : Gu| is coprime to 3. Let M be a maximal subgroup of G with Gu ≤ M .
Then both |G : M | and |M : Gu| are square-free and coprime to 3. Checking the
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maximal subgroups of G, we have M ∼= S9 or A9. Thus A9 or S9 contains a subgroup
having square-free index and a composition factor PSL(2, 9), which is impossible by
checking the subgroups of A9 and S9. Similarly, the group A11 is excluded.

Suppose that T = M11, M12, M22, M23 or M24. Then |G| is not divisible by 34.

It follows that G
[1]
u = 1, and so PSL(2, 9) . Gu . PΓL(2, 9). Since |G : Gu| is

square-free, we know that |G| is not divisible by 27. This yields that T = M11 or M12.
Let T = M12. Checking the subgroups of M12 and M12.Z2, we know that G = M12

and Gu is maximal in G with index 66. Thus G is a primitive permutation group
of rank 3 with subdegrees 1, 20 and 45, refer to [25]. This contradicts the fact that
|Γ (u)| = 10. Therefore, G = T = M11, and so Gu

∼= M10 or A6. If Gu
∼= A6, then

both Gu and NG(Guv) are contained in a same maximal subgroup isomorphic to M10,
which is contradicts Lemma 3.2. (Confirmed by GAP!) Thus Gu

∼= M10 and Γ ∼= K11.
Case 2. Let T = PSL(3, 9), PSL(3, 34), PSU(4, 9), PSp(4, 9) or G2(9), and let Γ

be (G, s)-transitive. Then s ≥ 2.
(1) Assume that T = PSL(3, 9). Then |G| is divisible by 36 but not by 37, by

Corollary 4.7, we have s = 4 and |Gu| = 27 · 36 · 5 or 28 · 36 · 5. Recall that T has at
most two orbits on V .

Suppose that T is transitive on V . Recalling that soc(T
Γ (u)
u ) ∼= PSL(2, 9), we know

that Γ is (T, 2)-arc-transitive. Since |T | is divisible by 36, by Corollary 4.7, we have
|Tu| = 27 ·36 ·5. Checking the subgroups of PSL(3, 9), we get Tu ∼= Z4

3:GL(2, 9). Thus
the action of T on V is equivalent to that on the points or the lines of the projective
plane PG(2, 9). Then T is 2-transitive on V , and so Γ ∼= K91, a contradiction.

Now let T have two orbits on V , say U and W . Then |G : GU | = 2, |U | = |W | =
|T : Tu| is odd, and GU = TGu for u ∈ U . Note that |G : T | is a divisor of 4. Since
|G : T | = |G : TGu||TGu : T | = |G : TGu||Gu : Tu|, we have |Gu : Tu| ≤ 2, and so
|Tu| = 26 ·36 ·5 or 27 ·36 ·5. It implies that |Tu| = 27 ·36 ·5 as |T : Tu| is odd. Checking
the subgroups of T and G, we conclude that Tu ∼= Z4

3:GL(2, 9), |U | = |W | = 91, and
G = PSL(3, 9).Z2 or PΓL(3, 9).Z2. This implies that the actions of T on U and W are
equivalent to the actions on the point set and the line set of PG(2, 9), respectively. It
is easily shown that the stabilizer of a line of PG(2, 9) has two orbits on the point set,
which have length 10 and 81, respectively. It follows that Γ is the point-line incidence
graph of PG(2, 9).

(2) Assume that T is one PSL(3, 34), PSU(4, 9), PSp(4, 9) and G2(9). Noting that
|G| is divisible by 38, by Corollary 4.7, we have s = 7 and Gu = [310]:GL(2, 9).Zb,
where b ≤ 2. In particular, |G| is divisible by 312, and so the group PSp(4, 9) is
excluded. Let M be a maximal subgroup of T with Tu ≤ M . Since |T : Tu| is
square-free, both |M : Tu| and |T : M | are square-free.

Suppose that T = PSL(3, 34). Check the maximal subgroups of T , refer to [2,
Tables 8.3 and 8.4], we conclude that M ∼= Z8

3:GL(2, 34). Let N be the maximal
soluble normal subgroup of M . Then M/N ∼= PGL(2, 34). Since |M : Tu| is square-
free, |M/N : (TuN/N)| is square-free. Moreover, TuN/N has a composition factor
PSL(2, 9) as TuN/N ∼= Tu/(Tu ∩N). Thus PGL(2, 34) has a subgroup of square-free
index, which has a composition factor PSL(2, 9). This is impossible by checking the
subgroups of PGL(2, 34), refer to [4].
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For T = PSU(4, 9), checking the maximal subgroups of T (refer to [2, Tables 8.10
and 8.11]), M is the stabilizer of some totally singular subspace of dimension 1. In
particular, |T : M | = (93 + 1)(92 + 1), which is not square-free, a contradiction.

Now let T = G2(9). Check the maximal subgroups of G2(9), refer to [11]. We have

M ∼= [310]:GL(2, 9), and so |T : M | = 96−1
9−1

= 2 · 5 · 7 · 13 · 73. Then |T : Tu| is even,
and hence T is transitive on V . It implies that Γ is not a bipartite group. Noting
that |G : T | is a divisor of 4, every Sylow 3-subgroup of G has order 312. This implies
that |V | = |G : Gu| is coprime to 3. Note that |V | = |T : Tu| = |T : M ||M : Tu|.
Since |V | is square-free and each prime divisor of |M | is less than 7, we conclude that
|M : Tu| = 1, that is, M = Tu. Thus T and hence G is primitive on V ; however, by
[14], there is no vertex-primitive 7-transitive graph, a contradiction. �

5.3. Assume that soc(G
Γ (u)
u ) ∼= A10. Then Gu

∼= A10, S10 or (A9 × A10).O, where
O ≤ Z2

2. Since G/T is soluble, soc(Gu) is contained in T . Since |T : Tu| is square-free,
|T | is not divisible by one of 217, 310, 55, 74 and p2, where p is a prime no less than
11. In particular, |T | is not divisible by r17 for an arbitrary prime r.

Note that either |Tu| is divisible by 27 · 34 · 52 but not by 29, or |Tu| is divisible by
213 · 38 · 53 · 72 but not by 216. Checking the orders of the sporadic simple groups, we
know that T is not a sporadic simple group. For the alternating simple groups, we
have T = An with 11 ≤ n ≤ 19.

Now let T be a simple group of Lie type over Fq, where q = rf for some prime
r. Recall that |T | is not divisible by r17. This excludes most of the exceptional
simple groups of Lie type except for G2(q), 2B2(q), 2G2(q) and 3D4(q). Checking the
subgroups of these exceptions (refer to [24, Table 4.1, Theorems 4.1-4.3]), none of
them has a subgroup isomorphic A10. Thus T is one of the classical simple groups of
Lie type. By [12, Proposition 5.3.7], T has dimension no less than 8. It follows that
T is one of PSp(8, r), Ω(9, r) and PΩ±(8, r). Noting that |T | is not divisible by p10

for odd prime p, we have r = 2, and so T = PSp(8, 2), PΩ−(8, 2) or PΩ+(8, 2). These
three groups have orders divisible by 212 but not by 38. Thus |Tu| is divisible by 211

but not by 38, which is impossible. Then we have the following result.

Theorem 5.9. Let Γ = (V,E) be a connected graph of valency 10 and square-free

order, and let G ≤ AutΓ . Assume that G is almost simple and soc(G
Γ (u)
u ) ∼= A10 for

u ∈ V . Then one of the following holds:

(1) G = A11 or S11, and Γ ∼= K11;
(2) G = S11, and Γ is isomorphic to the standard double cover of K11;
(3) G = A19 or S19, and Γ ∼= O10, the Odd graph of valency 10.

Proof. By the foregoing argument, we have T = An with 11 ≤ n ≤ 19.
Assume first that Gu

∼= A10 or S10. Then A10 . Tu . S10. Since |T : Tu| is
square-free, either T = A11 and Tu ∼= A10, or T = A12 and Tu ∼= S10. Suppose that
Tu ∼= S10. Then |T : Tu| is even, and so T is transitive on V , which implies that Γ is
T -arc-transitive. Moreover, Tu is in fact the stabilizer of some 2-subset or 10-subset
in the natural action of T acting on a 12-set, refer to [20]. It follows that Tu has
exactly three orbits on V , which have sizes 1, 20 and 45 respectively. This implies
that Γ is not of valency 10, a contradiction. Thus we have T = A11 and Tu ∼= A10.
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If T is transitive on V , then Γ ∼= K10. Assume that T is intransitive on V . Then
G = S11, and T is 2-transitive on each of it orbits. This implies that Γ is isomorphic
to the standard double cover of K11.

Suppose that soc(Gu) ∼= A9 × A10. Recalling that soc(Gu) ≤ T , we have T = A19,
and Tu ∼= A9 × A10 or (A9 × A10):Z2. Since |T : Tu| is square-free, we have Tu ∼=
(A9×A10):Z2. In particular, |T : Tu| is even, and so Γ is T -arc-transitive. By [20], Tu
is in fact the stabilizer of some 9-subset or 10-subset in the natural action of T acting
on a 19-set. Up to the equivalence of group actions, we may identify V as the set of
9-subsets of a 19-set. Then Tu has ten orbits on V , says, Ui = {ui | |u ∩ ui| = i},
0 ≤ i ≤ 9. Since Γ has valency 10, we have Γ (u) = U0, and so Γ ∼= O10. �

6. The classification

Let Γ = (V,E) be a connected graph of valency 10 and square-free order, and G ≤
AutΓ . Assume that Γ is G-locally-primitive arc-transitive. Let u ∈ V . By Corollaries

4.6 and 4.7, soc(G
Γ (u)
u ) ∼= A5, PSL(2, 9) or A10. In particular, G is insoluble.

Lemma 6.1. Let N �G. Then either N is semiregular on V and N has square-free

order, or N is transitive on E and soc(N
Γ (u)
u ) = soc(G

Γ (u)
u ). In particular, if N is

soluble then N is semiregular and has at least three orbits on V .

Proof. Since N is normal in G and G is transitive on V , all N -orbits on V have the
same length, which is a divisor of |V |. Noting that |V | = |G : Gu| is square-free,
if N is semiregular on V then |N | is square-free. If Nu 6= 1 then, by Lemma 2.2,

N
Γ (u)
u 6= 1, and then the first part of this lemma follows by noting that N

Γ (u)
u �G

Γ (u)
u .

Now let N be soluble. Then N is semiregular on V . Suppose that N has at

most two orbits on V . By Lemma 2.3, Gu
∼= G

Γ (u)
u . Note that X := NGu is the

set-stabilizer in G of an N -orbit containing u. Then |G : X| ≤ 2; in particular,
X �G. Note that X/CX(N) = NX(N)/CX(N) . Aut(N). Since N has square-free
order, Aut(N) is soluble, see [13, Lemma 2.2] for example. It follows that CX(N) is
insoluble as X is insoluble, this yields that soc(Gu) ≤ CX(N). Noting that soc(Gu) is
a nonabelian simple group, it is easily shown that soc(Gu) is a characteristic subgroup
of X, and so soc(Gu) is normal in G. This implies that soc(Gu) acts trivially on V ,
a contradiction. This completes the proof. �

Since Γ has square-free order, Γ is not the complete bipartite graph of order 20.
Recall that the soluble radical of G is the maximal soluble normal subgroup. Then
the next lemma follows from Lemmas 2.5, 6.1 and [16, Theorem 4].

Lemma 6.2. Let M be the soluble radical of G. Then M has square-free order and
at least three orbits on V , Γ is a cover of ΓM and G = M :X for some almost simple
subgroup of G.

By Lemma 6.2 and the argument given in Section 5, we have the following lemma.

Lemma 6.3. Assume that G has no soluble normal subgroups. Then G is almost
simple; in particular, the pair (G,Γ ) is known as in Theorems 5.6, 5.8 and 5.9.
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Theorem 6.4. Assume that G has nontrivial soluble radical M . Then one of the
following statements holds.

(1) G = Z2 × PSL(2, r) for a prime r with r ≡ ±1 (mod 5), r ≡ ±1 (mod 12)
and r2 6≡ 1 (mod 16), and Γ is isomorphic to the standard double cover of the
graph in Example 3.4.

(2) G = Z2×PSL(2, 25) or Z2×PΣL(2, 25), and Γ is isomorphic to the standard
double cover of the graph given in Example 3.7.

(3) G = Z2 × A7 or Z2 × S7, Γ is the standard double cover of the complement
graph of L(K7).

(4) G = Z2 ×M11, Z2 × A11 or Z2 × S11, and Γ is the standard double cover of
K11.

Proof. By Lemma 6.2, G = M :X for X < G, M is semiregular on V and Γ is a
normal cover of Σ := ΓM . Denote by B the vertex set of Σ, that is, the set of M -orbits
on V . Then |V | = |M ||B|. Since |V | is square-free, if |B| is even then |M | is odd.

We identify X with a subgroup of AutΣ. Noting that X is almost simple, by
Lemma 2.5 and 6.3, the pair (X,Σ) is known. In particular, X, XB, TB and |B| are
listed in Table 1, where B ∈ B and T = soc(X).

X XB TB |B| |M |
PSL(2, r) A5 A5

r(r2−1)
120

PGL(2, r) A5 A5
r(r2−1)

60
Odd

PSL(2, 25) S5 S5 65
PΣL(2, 25) Z2 × S5 S5 65

A7, S7 S5, Z2 × S5 S5 21
J1 A5 A5 2926 Odd

M11 M10 M10 11
A11, S11 A10, S10 A10 11

S11 A10 A10 22 Odd
A19, S19 (A9 × A10):Z2, S9 × S10 (A9 × A10):Z2 92378 Odd

PSL(2, 9).Z2 Z4
3:GL(2, 9) Z4

3:GL(2, 9) 182 Odd
PΓL(3, 9).Z2 Z4

3:ΓL(2, 9) Z4
3:GL(2, 9) 182 Odd

Table 1. Candidates for (X,XB)

Set N = MT . Then N �G, and so CN(M) �G and MCN(M) �G. Since |M | is
square-free, Aut(M) is soluble. Note that N/CN(M) = NN(M)/CN(M) . Aut(M).
It follows that T ≤ CN(M), and so MCN(M) = M×T . This implies that T is
a characteristic subgroup of MCN(M), yielding T � G. Noting that |T | has order
divisible by 4, T is not semiregular on V , and so T has at most two orbits on V , see
Lemma 2.4,.

Suppose that |M | is odd. Recalling that T has at most two orbits on V , we conclude
that M fixes each T -orbit on V . Let U be a T -orbit on V , and choose u ∈ U and
u ∈ B ∈ B. Then B ⊆ U , MTB fixes B setwise, and both M and TB are transitive on
B. Since MTB = M×TB, by [6, Theorem 4.2A], both M and TB induce two regular
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permutation groups on B. In particular, TB has a normal subgroup of odd index
|B| = |M | 6= 1, which is impossible.

Now let |M | be even. Then |B| is odd as |V | = |M ||B|. In particular, T is transitive
on B, Σ is T -arc-transitive, and Γ is MT -arc-transitive. Take B ∈ B and u ∈ B.
Then |B| = |T : TB|. Since B is a block of G on V , we have Tu ≤ TB. Consider the
transitive action of M × TB on B. Since TB is normal in M × TB, all TB-orbits on B
have the same length |TB : Tu|. On the other hand, by [6, Theorem 4.2A], TB induces
a semiregular permutation group on B. It follows that Tu is the kernel of TB acting
on B; in particular, Tu is normal in TB and of square-free index. Since |B| is odd,
checking Table 1, we have TB ∼= A5, S5, M10 or A10. Then TB and soc(TB) are the
only normal subgroups of TB with square-free index. It follows that |TB : Tu| = 1 or 2.
Let t be the number of T on V . Then t ≤ 2, and |V | = t|T : Tu| = t|T : TB||TB : Tu|.
Since |V | = |M ||B| and |B| = |T : TB|, we get |M | = t|TB : Tu|, and so |TB : Tu| = |M |
or |M |

2
. It follows that |M | = 2. Since MT = M×T , by Lemma 2.7, Γ is the standard

double cover of Σ. Then our theorem follows. �

Note that, for each graph Γ involved in Theorems 5.6, 5.9, 5.8 and 6.4, all possible
candidates for G, which make Γ a G-locally primitive arc-transitive graph, have been
determined. Then AutΓ is just the maximal candidate for G. Thus Theorem 1.1
follows from Lemma 6.3 and Theorem 6.4.
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