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Abstract An edge colored graph is rainbow connected if any two vertices are con-
nected by a path whose edges have distinct colors. The rainbow connection number,
rc-number for short, of a graph Γ , is the smallest number of colors that are needed
in order to make Γ rainbow connected. In this paper, we give a method to bound the
rc-numbers of graphs with certain structural properties. Using this method, we inves-
tigate the rc-numbers of Cayley graphs, especially, those defined on abelian groups
and on dihedral groups.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the
notation and terminology of Bondy and Murty (2008) for those not described here.
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For a graph Γ , we denote by VΓ and EΓ the vertex set and edge set of Γ ,
respectively. An edge-coloring of a graph Γ is a mapping from EΓ to some finite set
of colors. A path in an edge colored graph is said to be a rainbow path if no two edges
on this path share the same color. An edge colored graph Γ is rainbow connected if
each pair of distinct vertices of Γ are joined by some rainbow path, while the coloring
is called a rainbow coloring. The rainbow connection number of a connected graph,
rc-number for short, is the smallest number of colors that are needed in order to make
the graph rainbow connected. For a connected graph Γ , we denote by rc(Γ ) its rc-
number. Then, for a connected graph Γ with diameter diam(Γ ), it follows from the
definition that

diam(Γ ) ≤ rc(Γ ) ≤ |EΓ |.

Moreover, rc(Γ ) ≤ rc(�) for each connected spanning subgraph � of a graph Γ .
The concept of rc-number was introduced in Chartrand et al. (2008), where the rc-

numbers of several graph classes were determined. Since then the study of rc-numbers
has received considerable attention in the literature, see Li and Sun (2012) for a survey
on this topic. It was shown in Chakraborty et al. (2011) that computing the rc-number
of an arbitrary graph is an NP-Hard problem. Subsequently, there have been various
investigations towards finding good upper (or lower) bounds for rc-numbers in terms
of graph parameters such as connectivity, minimum degree, radius etc., see Basavaraju
et al. (2014), Caro et al. (2008), Chandran et al. (2012), Krivelevich and Yuster (2009),
Li et al. (2012), and Schiermeyer (2009) for example. In particular, it was shown in
Li et al. (2012) that a 2-connected graph of order n has rc-number no more than � n

2 �.
In this paper, we focus our attention on a special class of 2-connected graphs.

Let G be a finite group with identity element 1, and let S be a subset of G such that
1 /∈ S = S−1 := {s−1 | s ∈ S}. The Cayley graph Cay(G, S) (on G with respect to S)
is defined on G such that two ‘vertices’ g and h are adjacent if and only if g−1h ∈ S.
Then Cay(G, S) is a well-defined simple regular graph of valency |S|. It is well-known
that Cay(G, S) is connected if and only if G = 〈S〉, that is, S is a generating set of the
underlying group G. A subset X of G is a minimal generating set if G is generated by
X but not by any proper subset of X .

Cayley graphs have been an active topic in algebraic graph theory for a long time. In
fact, interconnection networks are often modeled by highly symmetric Cayley graphs
(Akers and Krishnamurthy 1989). The rainbow connection number of a graph can be
applied to measure the safety of a network. Thus the object of the rainbow connection
numbers of Cayley graphs should be meaningful. Li et al. (2011) established an upper
bound for the rc-numbers of Cayley graphs on abelian groups by using minimal
generating sets. For an element x ∈ G, denote by |x | the order of x in G.

Theorem 1.1 (Li et al. 2011) Let G be a finite abelian group, and let S be a generating
set of G such that 1 /∈ S = S−1. Set Γ = Cay(G, S). Then rc(Γ ) ≤ ∑

x∈X� |x |
2 �,

where X is an arbitrary minimal generating set of G contained in S.

This motivates us to consider the rc-numbers of Cayley graphs, especially, those
defined on non-abelian groups. In Sect. 2 we establish a method to bound the rc-
numbers of (Cayley) graphs satisfying certain structural properties, which leads to a
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new proof and an improvement of Theorem 1.1. In Sect. 3, applying the method given
in Sect. 2, we investigate the rc-numbers of connected Cayley graphs on dihedral
groups.

2 rc-numbers of Cayley graphs on abelian groups

Let Γ be a graph. For V1, V2 ⊆ VΓ , we denote by Γ [V1, V2] the subgraph on
V1 ∪ V2 with edge set {{v1, v2} ∈ EΓ | v1 ∈ V1, v2 ∈ V2}. For a partition B =
{V0, V1, . . . , Vm−1} of VΓ , define a graph ΓB on B such that distinct ‘vertices’ Vi
and Vj are adjacent if and only if some u ∈ Vi is adjacent to some v ∈ Vj in Γ . The
graph ΓB is called a quotient graph of Γ . We first prove a technical lemma.

Lemma 2.1 Let Γ be a connected graph. Assume that VΓ has a partition B =
{V0, V1, . . . , Vm−1} such that, for each i , the subgraph Γ [Vi , Vi ] is connected.
(i) Suppose that, for 0 ≤ i < m, Γ [Vi , Vi+1]is not empty, and every u ∈ Vi is

adjacent to some v ∈ Vi−1 or some w ∈ Vi+1 in Γ , reading the subscripts
modulo m. Then

rc(Γ ) ≤ (max{rc(Γ [Vi , Vi ]) | 0 ≤ i < m} + 1)
⌈m

2

⌉
.

(ii) Suppose that, for 0 ≤ i, j < m, every subgraphΓ [Vi , Vj ] has no isolated vertices
provided that it has at least one edge. Then

rc(Γ ) ≤ max{rc(Γ [Vi , Vi ]) | 0 ≤ i < m} + rc(ΓB).

Proof Let Γi = Γ [Vi , Vi ] and c = max{rc(Γi ) | 0 ≤ i < m}.
(i) Now we are ready to show that Γ has a connected spanning subgraph which has

rc-number no more than (c + 1)�m
2 �. Consider the spanning subgraph � of Γ with

edge set

E� = (∪m−1
i=0 EΓi ) ∪ (∪m−1

i=0 EΓ [Vi , Vi+1]),

where Vm = V0. (Note that �B is a cycle of length m.) Let C0, C1, . . . , Cm−1 be
c-sets of colors such that Ci ∩ C j = ∅ if 0 ≤ i < j < �m

2 �, and Ci = C j if
i ≡ j (mod �m

2 �). For each graph Γi , since rc(Γi ) ≤ c, we choose a rainbow coloring
θi : EΓi → Ci . Choose �m

2 � colors c1, c2, . . . , c�m
2 � which are not used above. We

define an edge-coloring θ of � as follows:

θ(e) =
⎧
⎨

⎩

θi (e) if e ∈ EΓi for 0 ≤ i < m;
ci if e ∈ EΓ [Vi−1, Vi ] for 1 ≤ i ≤ �m

2 �;
c j−�m

2 � if e ∈ EΓ [Vj−1, Vj ] for �m
2 � < j ≤ m.

It is straightforwardly checked that Γ is rainbow connected with the edge-coloring θ .
Then the lemma follows from enumerating the number of colors used for θ .
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(ii) Let C be a set of c colors and D be a set of rc(ΓB) colors with C ∩ D = ∅.
For each graph Γi , choose a rainbow coloring θi : EΓi → C . For ΓB, we choose a
rainbow coloring θ̄ : EΓB → D. We define an edge-coloring θ of Γ as follows:

θ(e) =
{

θi (e) if e ∈ EΓi for 0 ≤ i < m;
θ̄ ({Vi , Vj }) if {Vi , Vj } ∈ EΓB and e ∈ EΓ [Vi , Vj ].

Then Γ is rainbow connected with the edge-coloring θ . Thus

rc(Γ ) ≤ |C ∪ D| = c + rc(ΓB) = max{rc(Γi ) | 0 ≤ i < m} + rc(ΓB).

��
Let G be a group and N a normal subgroup of G. Then all (left) cosets of N in G

form a group under the product

(gN )(hN ) = ghN ,

which is denoted by G/N and called the quotient group of G with respect to N .

Theorem 2.2 Let G be a finite group and S a generating set of G such that 1 /∈ S =
S−1. Suppose that X ⊆ S such that N := 〈S \ (X ∪ X−1)〉 �= G. Set Γ = Cay(G, S),
Y = S \ (X ∪ X−1) and � = Cay(N ,Y ). Suppose that N is normal in G. Then
rc(Γ ) ≤ rc(�) + rc(Cay(Ḡ, X̄)), where Ḡ = G/N and X̄ = {xN | x ∈ S \ N }.
Proof Since N is normal in G, we have G = 〈X,Y 〉 ≤ 〈X, N 〉 = 〈X〉N , and
so G = 〈X〉N . Let m be the index of N in G. Then m = |G|

|N | . Let g0N =
N , g1N , . . . gi N , . . . , gm−1N be all distinct left cosets of N in G. Set Vi = gi N
for 0 ≤ i < m. Then B = {Vi | 0 ≤ i < m} is a partition of VΓ . It is easily shown
that V0 → Vi , g �→ gi g is an isomorphism from Γ [V0, V0] to Γ [Vi , Vi ]. Thus each
subgraph Γ [Vi , Vi ] contains a spanning subgraph isomorphic to the connected Cayley
graph � = Cay(N , Y ), and so rc(Γ [Vi , Vi ]) ≤ rc(�).

Note that gNh = ghN for ∀g, h ∈ G. Assume that Γ [Vi , Vj ] is not empty, where
i �= j . Then there are some g, h ∈ N and x ∈ S \ N such that gi gx = g j h. Thus

gi N x = gi gNx = gi gx(x
−1Nx) = gi gxN = g j hN = g j N .

It follows that Γ [Vi , Vj ] contains a perfect matching, and so Γ [Vi , Vj ] has no isolated
vertices. By Lemma 2.1 (ii), rc(Γ ) ≤ rc(�) + rc(ΓB). Consider the quotient graph
ΓB. Then Vi and Vj are adjacent if and only if g j N = gi N x = (gi N )(xN ) for some
x ∈ S \ N . It follows that ΓB = Cay(Ḡ, X̄), and hence the result follows. ��

Recall that a graph is called vertex transitive if for any two vertices there is an
automorphism of the graph mapping one vertex to the other one. It is well-known that
a connected vertex transitive graph of order no less than three must be 2-connected
(see Godsil and Royle 2001, Theorem 3.4.2). Thus, by Li et al. (2012, Theorem 2.4),
if Γ is a connected vertex transitive graph then rc(Γ ) ≤ �|VΓ |

2 �. Note that a Caley
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graph must be vertex-transitive. Then the next two results follow from Theorem 2.2
directly.

Corollary 2.3 Let Γ , G and N be as in Theorem 2.2. Then rc(Γ ) ≤ �|N |
2 � + � |G|

2|N | �.
Corollary 2.4 Let G be a finite abelian group and S a generating set of G such that
1 /∈ S = S−1. Set Γ = Cay(G, S). Then either

(i) G is cyclic and S consists of generators of G; or
(ii) there are two proper divisors m and n of |G| such that |G| = mn and rc(Γ ) ≤

�m
2 � + � n

2 �.
Proof If 〈x〉 = G for each x ∈ S, then part (i) follows. Thus we assume that there are
x ∈ S and Y ⊆ S such that |Y | ≥ 1 and 〈x,Y 〉 = G but 〈Y 〉 �= G. Set N = 〈Y 〉. Then,
by Theorem 2.2, rc(Γ ) ≤ rc(Cay(G,Y ∪Y−1∪{x, x−1})) ≤ rc(Cay(N ,Y ∪Y−1))+
rc(Cay(G/N , {xN , x−1N })). Note that the Cayley graph Cay(G/N , {xN , x−1N }) is
either a cycle or the complete graph on two vertices. Then part (ii) follows by setting
|N | = m and |G/N | = n. ��

Now we give a new proof of a known result by using the above simple lemma.

Theorem 2.5 (Li et al. 2011) Let G be a finite abelian group and S a generating set
of G such that 1 /∈ S = S−1. Set Γ = Cay(G, S). Then rc(Γ ) ≤ ∑

x∈X� |x |
2 �, where

X is an arbitrary minimal generating set of G contained in S.

Proof We prove the result by induction on the orders of groups. Let X be an arbitrary
minimal generating set of G contained in S. Take x ∈ X , set Y = X \ {x} and
N = 〈Y 〉. Then G = 〈X〉 = N 〈x〉, and |G/N | ≤ |〈x〉| = |x |. By Theorem 2.2,
rc(Cay(G, X∪X−1)) ≤ rc(Cay(N ,Y∪Y−1))+�|x |

2 �. Since |N | < |G|, by induction,
we may assume that the result holds for Cay(N ,Y ∪ Y−1). It is easily shown that Y
is also a minimal generating set of N . Thus rc(Cay(N ,Y ∪ Y−1)) ≤ ∑

y∈Y � |y|
2 �,

and so rc(Cay(G, X ∪ X−1)) ≤ ∑
x∈X� |x |

2 �. Then the theorem follows because
rc(Γ ) ≤ rc(Cay(G, X ∪ X−1)). ��

For integers n ≥ 1 and m ≥ 3, denote by Zn the cyclic group of order n, and
by Cm the cycle of length m. For graphs �1, �2, . . . , �r , the Cartesian product
�1��2� · · · ��r is the graph defined on V�1 × · · · × V�r such that two vertices
(u1, u2, . . . , ur ) and (v1, v2, . . . , vr ) are adjacent if and only if there is some 1 ≤ i ≤ r
such that {ui , vi } ∈ E�i and u j = v j for all j �= i .

Theorem 2.6 Let G be a finite abelian group and S a generating set of G such that
1 /∈ S = S−1. Set Γ = Cay(G, S). Then either

(i) rc(Γ ) < min{∑x∈X� |x |
2 � | X ⊆ S is a minimal generating set of G}; or

(ii) G ∼= Zn1 × Zn2 × · · · × Znr and Γ has a connected spanning subgraph
�1��2� · · · ��r , where �i is either the ni -cycle Cni if ni ≥ 3, or the com-
plete graph K2 on two vertices if ni = 2.
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Proof By Theorem 2.5, either part (i) follows or there is a minimal generating set
X = {x1, x2, . . . , xr } of G such that rc(Γ ) = ∑r

i=1� |xi |
2 �, where X is a subset of S.

Assume that the latter case occurs. Note that the minimal generating set X is a subset
of S. Set Y = X \ {xr }, N = 〈Y 〉 and � = Cay(N ,Y ∪ Y−1). Then Y is a minimal
generating set of N . By Theorems 2.2 and 2.5,

r∑

i=1

⌈ |xi |
2

⌉

= rc(Γ ) ≤ rc(�) +
⌈ |G|
2|N |

⌉

≤ rc(�) +
⌈ |xr |

2

⌉

≤
r∑

i=1

⌈ |xi |
2

⌉

.

It follows that rc(�) = ∑r−1
i=1� |xi |

2 � and � |G|
2|N | � = � |xr |

2 �. Since G = 〈xr ,Y 〉 =
〈xr 〉N , we have |G| = |〈xr 〉N | = |xr ||N |

|〈xr 〉∩N | , and hence |G|
|N | is a divisor of |xr |. Thus

� |G|
2|N | � = � |xr |

2 � implies that either |G|
|N | = |xr | or

|G|
|N | +1
2 = |xr |

2 . The latter case implies

that |G|
|N | and |xr | are coprime. It follows that |G|

|N | = 1 as |G|
|N | is a divisor of |xr |, yielding

G = N , a contradiction. Therefore, |G|
|N | = |xr |. Thus |〈xr 〉 ∩ N | = |xr ||N |

|G| = 1. Then
G = N 〈xr 〉 = N × 〈xr 〉. Since Y is a minimal generating set of N , by induction on r ,
we may assume that N = 〈x1〉×· · ·×〈xr−1〉. Thus G = 〈x1〉×· · ·×〈xr−1〉×〈xr 〉 ∼=
Zn1 ×Zn2 × · · · ×Znr , where ni = |xi | for 1 ≤ i ≤ r . Notice that each element of G
has the form of xe11 . . . xeii . . . xerr for integers e1, e2, . . . , er . Consider the connected
spanning subgraph Cay(G, X ∪ X−1) of Γ . Then two vertices xe11 . . . xeii . . . xerr and

x f1
1 . . . x fi

i . . . x fr
r are adjacent in Cay(G, X ∪ X−1) if and only if there is some 1 ≤

j ≤ r such that e j − f j ≡ ±1 (mod n j ) and ei − fi ≡ 0 (mod ni ) for i �= j . Set�i =
Cay(〈xi 〉, {xi , x−1

i }) for 1 ≤ i ≤ r . Then Cay(G, X ∪ X−1) = �1��2� · · · ��r ,
and so part (ii) follows. ��

3 rc-numbers of Cayley graphs on dihedral groups

Let n ≥ 1 be an integer. We use D2n to denote the dihedral group generated by two
elements, say a and b, such that

|a| = n, |b| = 2, b−1ab = a−1.

(Note that D2 = Z2 and D4 = Z2×Z2.) Then

D2n = 〈a〉 ∪ 〈a〉b = {ai | 0 ≤ i < n} ∪ {aib | 0 ≤ i < n}.

Let Z(D2n) be the center of D2n . Then, for n ≥ 3, either Z(D2n) = 1, or Z(D2n) =
〈a n

2 〉 while n is even. For convenience, we collect some basic facts about dihedral
groups by considering the involutions, elements of order 2 in D2n .

Lemma 3.1 (i) For 0 ≤ i ≤ n − 1, each aib is an involution.
(ii) If n is odd, then D2n has a unique conjugacy class of involutions, which is

{aib | 0 ≤ i ≤ n − 1}.
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(iii) If n is even, then D2n has exactly three conjugacy classes of involutions, which
are {a n

2 }, {a2i b | 0 ≤ i < n
2 } and {a2i+1b | 0 ≤ i < n

2 }.
(iv) If m is a divisor of n then 〈a〉 has a unique subgroup of order m, which is 〈a n

m 〉.
If N ≤ 〈a〉, then N is normal inD2n and the quotient groupD2n/N is a dihedral
group generated by {aN , bN }.

(v) If X is a (minimal) generating set of D2n, then X contains some involution asb,
and (X ∩ 〈a〉) ∪ {xasb | asb �= x ∈ X \ 〈a〉} is a (minimal) generating set of
〈a〉.

(vi) Set n = pe11 pe22 . . . perr for distinct primes pi . If Y is a minimal generating set of
〈a〉, then |Y | ≤ r . If X is a minimal generating set of D2n, then |X | ≤ r + 1.

Proof Items (i)–(iv) can be found in most text books about elementary group theory.
Here we only prove items (v) and (vi).

Let X be an arbitrary generating set of D2n . Then 〈a〉 �= D2n = 〈X〉, yielding
asb ∈ X for some integer s. Set Y = (X ∩ 〈a〉) ∪ {xasb | asb �= x ∈ X \ 〈a〉}. Then
Y ⊆ 〈a〉 as xasb ∈ 〈a〉 for x ∈ X \ 〈a〉, and so 〈Y 〉 is normal in D2n . Thus

D2n = 〈X〉 = 〈X ∩ 〈a〉, X \ 〈a〉〉 = 〈Y, asb〉 = 〈Y 〉〈asb〉.

It follows that 〈a〉 = 〈Y 〉. Assume that Y is not a minimal generating set of 〈a〉. Then
〈Y \ {y}〉 = 〈a〉 for some y ∈ Y . If y ∈ X ∩ 〈a〉 then D2n = 〈X \ {y}〉, and so X is not
a minimal generating set of D2n . Suppose that y = zasb for some z ∈ X \ 〈a〉 with
z �= asb. Set Y1 = Y \ {zasb}. Then

〈X \ {z}〉 = 〈X ∩ 〈a〉, X \ (〈a〉 ∪ {z, asb}), asb〉 = 〈Y1〉〈asb〉 = 〈Y 〉〈asb〉 = D2n .

It implies that X is not a minimal generating set of D2n . Thus item (v) holds.
Now set n = pe11 pe22 . . . perr for distinct primes pi . For 1 ≤ i ≤ r , set ai =

a
∏

j �=i p
e j
j . Then 〈a〉 = 〈ai | 1 ≤ i ≤ r〉 = 〈a1〉× · · · × 〈ar 〉, and so each element in

〈a〉 can be written as a product of the form of
∏r

i=1 a
mi
i . Let Y = {y j | 1 ≤ j ≤ t} be

an arbitrary generating set of 〈a〉. Write y j = ∏r
i=1 a

fi (y j )
i , where all fi are integral

valued functions on Y . Then

〈a〉 = 〈Y 〉 = 〈a fi (y j )
i | 1 ≤ i ≤ r, 1 ≤ j ≤ t〉.

For each 1 ≤ j ≤ r , we choose one element y ∈ Y such that |a f j (y)
j | = max{|a f j (yi )

j | |
1 ≤ i ≤ t}. Thus we obtain r elements contained in Y which are not necessarily
distinct, say y′

1, y
′
2, . . . , y′

r . Set Y1 = {y′
j | 1 ≤ j ≤ r}. Then

〈Y1〉 = 〈a fi (y′
j )

i | 1 ≤ i, j ≤ r〉.

By item (iv) and the choice of elements a
f j (y′

j )

j , we have

〈a fi (y′
j )

i | 1 ≤ i, j ≤ r〉 = 〈a f j (y′
j )

j | 1 ≤ j ≤ r〉 = 〈a fi (y j )
i | 1 ≤ i ≤ r, 1 ≤ j ≤ t〉.
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It follows that 〈Y1〉 = 〈Y 〉 = 〈a〉. Thus each generating set of 〈a〉 contains a generating
set of size no more than r . Then the first part of item (vi) follows, while the second
part follows from item (v). ��

It is well-known and easily shown that the ladder graph Ln and Möbius ladder
graph Mn (of order 2n) are cubic Cayley graphs on the dihedral group D2n . Cai et al.
(to appear) proved that

rc(Ln) =
⌈
n + 1

2

⌉

and rc(Mn) =
⌈n

2

⌉
.

In this section we investigate the rc-numbers of the whole class of connected Cayley
graphs on dihedral groups. By Theorem 2.2, the following lemma holds.

Lemma 3.2 Let Γ = Cay(D2n, S) be a connected Cayley graph. Then

rc(Γ ) ≤ rc(Cay(〈S1〉, S1)) + rc(Cay(D2m, S̄)),

where S1 = 〈a〉 ∩ S, m = n
|〈S1〉| , S̄ is a set of involutions in D2m and either m ≤ 2 or

S̄ ∩ Z(D2m) = ∅.
Note that, in the above lemma, Cay(〈S1〉, S1) is a Cayley graph on a cyclic group.

Thus, in view of Theorem 2.6, we next consider the Cayley graphs Cay(D2n, S) under
the assumption that S ∩ 〈a〉 = ∅.
Theorem 3.3 Let Γ = Cay(D2n, S) be a connected Cayley graph. Assume that S =
{aei b | 1 ≤ i ≤ r} for integers e1, e2, . . . , er . Then one of the following holds.

(i) Γ is a cycle;
(ii) r ≥ 3, n is odd and ei − e j are coprime to n, where i �= j and 1 ≤ i, j ≤ r;
(iii) rc(Γ ) ≤ (rc(Cay(D2l , X))+1)�m

2 � for some divisors l andm of n with l,m ≥ 2
and n = lm, where X is a set of involutions in D2l such that |X | ≤ |S| − 1 and
either l = 2 or X ∩ Z(D2l) = ∅.

Proof We assume first that D2n is generated by any 2-subset of S. If r = 2 then part
(i) follows. Suppose that r ≥ 3. By the assumption, for distinct i and j ,

D2n = 〈aei b, ae j b〉 = 〈aei−e j , ae j b〉 = 〈aei−e j 〉〈ae j b〉.

It follows that 〈a〉 = 〈aei−e j 〉, which yields that ei − e j is coprime to n. Since r ≥ 3,
take k �= i, j . Then ei − e j , ei − ek and e j − ek are coprime to n. Note that one of
ei − e j , ei − ek and e j − ek must be even. It implies that n is odd.

Let G = D2n . Now we may assume that there are x ∈ S and Y ⊆ S such that
|Y | ≥ 2 and 〈x,Y 〉 = G but 〈Y 〉 �= G. Without loss of generality, we may set
x = aer b and Y = {ae j b | 1 ≤ j ≤ s}, where 2 ≤ s ≤ r − 1. Let H = 〈Y 〉. Then
H = 〈Y 〉 = 〈Yaes b, aes b〉. Observe that Yaes b \ {1} = {ae j−es | 1 ≤ j ≤ s − 1} ⊂
〈a〉, we conclude that H = 〈Y 〉 = L〈aes b〉, where L = 〈ae〉 for some integer e.
Clearly, |H | ≥ 4, l := |ae| = |L| = |H |

2 ≥ 2 and m := |G|
|H | = n

l ≥ 2. Moreover,
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am ∈ L = 〈ae〉 and H has m left cosets in G. Note that G = 〈a, b〉 = 〈a, aes b〉 =
〈a〉〈aes b〉. Then each left coset of H has the form of a j H for some 0 ≤ j < m. Notice
that

G = 〈x,Y 〉 = 〈x, H〉 = 〈aer b, ae, aes b〉 = 〈ae, aes−er 〉〈x〉 = 〈ae, aer−es 〉〈x〉.

It follows that 〈a〉 = 〈ae, aer−es 〉. Thus for each 0 ≤ j < m, there are some integers
j1 and j2 such that a j = (aer−es ) j1(ae) j2 , and so a j H = a j1(er−es )H . Recalling
am ∈ 〈ae〉 ≤ H , we have am(er−es ) ∈ H . It follows that each left coset of H has the
form of ai(er−es )H for some 0 ≤ i < m. Set Vi = ai(er−es )H for 0 ≤ i < m. Then
each subgraph Γ [Vi , Vi ] contains a spanning subgraph isomorphic to the connected
Cayley graph Cay(H,Y ).

Note that

H = 〈ae〉 ∪ 〈ae〉aes b = 〈ae〉 ∪ 〈ae〉aes−er aer b = 〈ae〉 ∪ aes−er 〈ae〉x .

Then

Vi = ai(er−es )H = ai(er−es )〈ae〉 ∪ a(i−1)(er−es )〈ae〉x .

Set V 1
i = ai(er−es )〈ae〉 and V 2

i = a(i−1)(er−es )〈ae〉x . Then Γ [V 1
i , V 2

i+1] contains a
perfect matching (on V 1

i ∪ V 2
i+1), and Γ [V 1

i−1, V
2
i ] contains a perfect matching (on

V 1
i−1 ∪ V 2

i ). Thus, noting that H ∼= D2l , the result follows from Lemma 2.1 (i). ��
Recall that a cycle of length 2m has rc-number m. Then we get the following

consequence of Theorem 3.3 by induction on the sizes of minimal generating sets of
D2n .

Corollary 3.4 Let Γ = Cay(D2n, S) be a connected Cayley graph with n even.
Assume that S = {aei b | 1 ≤ i ≤ r} is a minimal generating set of D2n. Then
either Γ is a cycle of length 2n, or

rc(Γ ) ≤ m1

r−1∏

j=2

⌈m j

2

⌉
+

r−1∑

i=2

r−1∏

j=i

⌈m j

2

⌉

for some divisors m j of n with n = ∏r−1
j=1m j and m j ≥ 2 for 1 ≤ j ≤ r − 1.

In the next result we investigate the rc-numbers of cubic Cayley graphs on dihedral
groups.

Theorem 3.5 Let Γ = Cay(D2n, S) be a connected cubic Cayley graph. Then one of
the following cases occurs.

(i) rc(Γ ) = � n+1
2 �, and Γ is the ladder graph of order 2n.

(ii) rc(Γ ) = � n
2 �, and Γ is the Möbius ladder of order 2n.

(iii) Γ ∼= Cay(D2n, {b, asb, atb}) for some integers s and t, and either
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(iii.1) rc(Γ ) ≤ (l + 1)�m
2 �, where l ∈ {|as |, |at |, |as−t |} and m = n

l ≥ 2; or
(iii.2) n is odd, and s, t and s − t are coprime to n.

Proof Since |S| = 3 and S−1 = S, we conclude that S contains an involution z of
D2n . Set S = {x, y, z}. Then either x = y−1 has order no less than 3, or x , y and z are
distinct involutions. Thus one of the following cases occurs:

(1) x = y−1 has order no less than 3;
(2) n is even, x , y and z are involutions, and a

n
2 ∈ S.

(3) x , y, z ∈ {aib | 0 ≤ i ≤ n − 1}.
We next prove this theorem by dealing with these three cases separately.

Assume that (1) holds. Since Γ is connected, 〈S〉 = D2n . It follows from the
assumption that x = ai and z = a jb for some integers i and j . Then zxz = x−1

and D2n = 〈x, z〉 = 〈x〉〈z〉. Thus 2n = |D2n| = |〈x〉〈z〉| = |x ||z| = 2|x |, yielding
|x | = n. Then Γ has two cycles of length n, say (1, x, x2, . . . , xk, . . . , xn−1, 1) and
(z, zx, . . . , zxk, . . . , zxn−1, z). Moreover, Γ is constructed from these two cycles by
adding a perfect matching {{xi , zxn−i } | 0 ≤ i < n}. This says that Γ is (isomorphic
to) the ladder graph of order 2n. By Cai et al. (to appear), rc(Γ ) = � n+1

2 �, and so part
(i) of this theorem occurs.

Assume that (2) holds. Without loss of generality, we may set z = a
n
2 and write

x = asb and y = atb for some integers s and t . Thus xy = as−t and 〈x, y〉 = 〈xy〉〈x〉.
Suppose that 〈x, y〉 is a proper subgroup of D2n . Since Γ is connected, D2n =

〈x, y, z〉. Note that z = a
n
2 lies in the center of D2n . Thus D2n = 〈x, y, z〉 =

〈z〉〈x, y〉 �= 〈x, y〉. It implies that |〈x, y〉| = n. For 0 ≤ i < n
2 , set u2i = (xy)i ,

u2i+1 = (xy)i x , w2i = (xy)i z and w2i+1 = (xy)i xz. Then Γ is constructed from
two cycles (u0, u1, . . . , un−1, u0) and (w0, w1, . . . , wn−1, w0) by adding a perfect
matching {{ui , wi } | 0 ≤ i < n}. Thus Γ is the the ladder graph of order 2n and, by
Cai et al. (to appear), part (i) of this theorem occurs.

Suppose thatD2n = 〈x, y〉. Then |xy| = n, and so s−t is coprime to n; in particular,
s − t is odd. It follows that z = a

n
2 = (as−t )

n
2 = (xy)

n
2 . Set v2i = (xy)i and v2i+1 =

(xy)i x for 0 ≤ i < n. Then Γ has a hamiltonian cycle (v0, v1, v2, . . . , v2n−1, v0) and
a perfect matching {{vi , vi+n} | 0 ≤ i < n}. Hence Γ is (isomorphic to) the Möbius
ladder of order 2n. By Cai et al. (to appear), part (ii) of this theorem occurs.

Nowwe deal with case (3). By Lemma 3.1(ii) and (iii), one of x , y and z is conjugate
to b. Without loss of generality, we assume that b = g−1zg for some g ∈ D2n . Write
g−1xg = asb and g−1yg = atb. Set T = {b, asb, atb} and � = Cay(D2n, T ). It is
easily shown that VΓ → V�, h �→ g−1hg is an isomorphism from Γ to �. Note
that two isomorphic graphs have the same rc-number. Thus rc(Γ ) = rc(�), and part
(iii) of this theorem follows from Theorem 3.3 and Li et al. (2012, Theorem 2.4). ��

We end this section by considering the rc-numbers of Cayley graphs on G = D2pk

or D2pq , where k ≥ 1 is an integer, p and q are distinct primes.
Let X be a minimal generating set of G, S = X ∪ X−1 and Γ = Cay(G, S). Then

2 ≤ |X | ≤ 3 by Lemma 3.1 (vi). Suppose that |X | = 2. Then either X = {aib, a jb}
or X = {ai , a jb} for some integers i and j . Thus S = X or S = {ai , a−i , a jb}. It
follows that Γ is either a cycle or a ladder graph.
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Therefore, we assume next that |X | = 3. By Lemma 3.1 (v), 〈a〉 has a minimal
generating set of size 2. It follows that |a| = |〈a〉| is not a power of some prime. Thus
|a| = pq and G = D2pq . By Lemma 3.1 (v), we have asb ∈ X for some integer s.
Suppose that 〈a〉 ∩ X = ∅. Then X = {arb, atb, asb} with {|ar−s |, |at−s |} = {p, q},
where r and t are integers. It follows that ar−t = ar−sa−(t−s) has order pq, and hence
〈arb, atb〉 = D2pq , a contradiction. Thus 〈a〉∩X �= ∅, and hence one of the following
cases occurs:

I. X = {ar , at , asb} with {|ar |, |at |} = {p, q}.
II. X = {ar , atb, asb} with {|ar |, |at−s |} = {p, q}.

For case I, by Theorems 2.2 and 2.5, we get rc(Γ ) ≤ � p
2 � + � q

2 � + 1. In the
following we discuss case II.

Assume case II occurs. Set |ar | = l, |at−s | = m and H = 〈atb, asb〉. Then
H ∼= D2m , D2pq = 〈ar 〉H and 〈ar 〉∩ H = 1. In particular, every element of D2pq has
the formofair h,where 0 ≤ i < l andh ∈ H . Thus it is easily shown thatΓ = �1��2,
where�1 = Cay(〈ar 〉, {ar , a−r }) ∼= K2 orCl , and�2 = Cay(H, {asb, atb}) ∼= C2m .
Suppose �1 ∼= K2. Then Γ is isomorphic to the ladder graph L2m . Suppose �1 ∼= Cl .

By Liang (2012), rc(Cl�C2m) = l−1
2 + m. Therefore, rc(Γ ) = l−1

2 + m with
{l,m} = {p, q}.

By the foregoing argument we obtain the following result.

Theorem 3.6 Let G = D2pk or D2pq , where k ≥ 1 is an integer, p and q are distinct
primes. Let X be aminimal generating set of G. Set S = X∪X−1 andΓ = Cay(G, S).
Then one of the following statements holds.

(i) Γ is either a cycle or a ladder graph.
(ii) G = D2pq , |X | = 3 and either
(ii.1) |〈a〉 ∩ X | = 2 and rc(Γ ) ≤ � p

2 � + � q
2 � + 1; or

(ii.2) |〈a〉 ∩ X | = 1 and rc(Γ ) = � l
2� + m with {l,m} = {p, q}.
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