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Abstract

A path in a vertex-colored graph is called vertez-rainbow if its internal
vertices have pairwise distinct colors. A vertex-colored graph G is rainbow
vertex-connected if for any two distinct vertices of G, there is a vertex-
rainbow path connecting them. For a connected graph G, the rainbow vertez-
connection number of G, denoted by rve(G), is defined as the minimum
number of colors that are required to make G rainbow vertex-connected. In
this paper, we find all the families F of connected graphs with |F| € {1, 2},
for which there is a constant kr such that, for every connected F-free graph
G, rve(G) < diam(G) + kr, where diam(G) is the diameter of G.
Keywords: vertex-rainbow path; rainbow vertex-connection; forbidden sub-
graphs.
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2 L1, L1 AND ZHANG

1. INTRODUCTION

All graphs considered in this paper are simple, finite, and undirected. We
follow the terminology and notation of Bondy and Murty in [2] for those not
defined here.

Let G be a nontrivial connected graph with an edge-coloring ¢ : E(G) —
{0,1,...,t}, t € N, where adjacent edges may be colored with the same color.
A path in G is called a rainbow path if no two edges of the path are colored
with the same color. The graph G is called rainbow connected if for any two
distinct vertices of GG, there is a rainbow path connecting them. For a connected
edge-colored graph G, the rainbow connection number of G, denoted by rc(G),
is defined as the minimum number of colors that are needed to make G rainbow
connected. Observe that if G has n vertices, then diam(G) < re(G) < n — 1.
It is easy to verify that rc(G) = 1 if and only if G is a complete graph, and
re(G) = n— 1 if and only if G is a tree. The concept of rainbow connection of
graphs was first introduced by Chartrand et al. in [3], and has been well-studied
since then. For further details, we refer the reader to a survey paper [10] and a
book [11].

Let G be a nontrivial connected graph with a vertez-coloring ¢ : V(G) —
{0,1,...,t}, t € N, where adjacent vertices may be colored with the same col-
or. A path of G is called vertez-rainbow if any two internal vertices of the path
have distinct colors. The vertex-colored graph G is rainbow vertex-connected if
any two vertices of G are connected by a vertex-rainbow path. For a connected
graph G, the rainbow vertex-connection number of G, denoted by rvc(G), is the
minimum number of colors used in a vertex-coloring of G to make G rainbow
vertex-connected. The concept of rainbow vertex-connection of graphs was pro-
posed by Krivelevich and Yuster in [6]. They showed that if G is a connected
graph with n vertices and minimum degree ¢, then rve(G) < 11n/d. In [9], Li
and Shi improved this bound. In [4], it was shown that computing the rainbow
vertex-connection number of a graph is NP-hard. Recently, Li et al. in [7] proved
that it is NP-complete to decide whether a given vertex-colored graph is rainbow
vertex-connected even when the graph is bipartite.

For the rainbow vertex-connection number of graphs, the following observa-
tions are immediate.

Proposition 1. Let G be a connected graph with n vertices. Then

(1) diam(G) — 1 < rve(G) < n — 2;

(ii) rve(G) = diam(G) — 1 if diam(G) = 1 or 2, with the assumption that
complete graphs have rainbow vertex-connection number 0.

Note that the difference rve(G) —diam(G) can be arbitrarily large. In fact, if
G is a subdivision of a star K ,,, then we have rvc(G) —diam(G) = (n+1) —4 =
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RAINBOW VERTEX-CONNECTION AND FORBIDDEN SUBGRAPHS 3

n — 3, since in a rainbow vertex-connected coloring of G, the internal vertices
must have distinct colors.

In [8], Li and Liu studied the rainbow vertex-connection number for any
2-connected graph, and determined the precise value of the rainbow vertex-
connection number of the cycle C), (n > 3).

Theorem 1. [8] Let C), be a cycle of order n (n > 3). Then,

0 if n=3;
1 if n=4,5;
rve(Cp) =4 3 if n=09;
[2]—1 itn=6,7,8,10,11,12,13,0r 15;
5] if n > 16 or n = 14.

Let F be a family of connected graphs. We say that a graph G is F-free
if G does not contain any induced subgraph isomorphic to a graph from F.
Specifically, for F = {X} we say that G is X-free, and for F = {X,Y} we say
that G is (X,Y)-free. The members of F will be referred to in this context as
forbidden induced subgraphs, and for |F| = 2 we also say that F is a forbidden
pair.

In [5], Holub et al. considered the question: For which families F of connected
graphs, a connected F-free graph G satisfies r¢(G) < diam(G) + kr, where kg is
a constant (depending on F)? They gave a complete answer for |F| € {1,2} in
the following two results (where N denotes the net, a graph obtained by attaching
a pendant edge to each vertex of a triangle).

Theorem 2. [5] Let X be a connected graph. Then there is a constant kr such
that every connected X-free graph G satisfies r¢(G) < diam(G) + kx, if and only
it X = Ps.

Theorem 3. [5] Let X,Y be connected graphs such that X,Y # Ps;. Then
there is a constant kxy such that every connected (X,Y')-free graph G satisfies
re(G) < diam(G)+kxy, if and only if (up to symmetry) either X = Ky, (r > 4)
and Y = P, or X = K; 3 and Y is an induced subgraph of N.

Naturally, we may consider an analogous question concerning the rainbow
vertex-connection number of graphs. In this paper, we will consider the following
question.

For which families F of connected graphs, there is a constant kr such that a
connected graph G being F-free implies rvc(G) < diam(G) + kx ?

We give a complete answer for | F| = 1 in Section 3, and for |F| = 2 in Section
4.
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4 L1, L1 AND ZHANG

2. PRELIMINARIES

In this section, we introduce some further notations and facts that will be
needed for the proofs of our main results.

If G is a graph and A C V(G), then G[A] denotes the subgraph of G induced
by the vertex set A, and G — A the graph G[V(G)\ A]. An edge is called a
pendant edge if one of its end vertices has degree one. The subdivision of a graph
G is the graph obtained from G by adding a vertex of degree 2 to each edge of G.
For z,y € V(G), a path in G from z to y will be referred to as an (z, y)-path, and,
whenever necessary, it will be considered as oriented from z to y. For a subpath
of a path P with origin u and terminus v (also referred to as a (u,v)-arc of P),
we will use the notation uPv. If w is a vertex of a path with a fixed orientation,
then w~ and w™ denote the predecessor and successor of w, respectively.

For graphs X and G, we write X C G if X is a subgraph of G, X INCD G if
X is an induced subgraph of G, and X ~ G if X is isomorphic to G. For two
vertices x,y € V(G), we use distg(z,y) to denote the distance between z and
y in G. The diameter of G is defined as the maximum of distg(x,y) among all
pairs of vertices z,y of G, and will be denoted by diam(G). A shortest path
joining two vertices at distance diam(G) will be referred to as a diameter path.
The distance between a verter uw € V(G) and a set S C V(G) is defined as
distg(u, S) := minyesdistg(u,v). A set D C V(G) is called dominating if every
vertex in V(G) \ D has a neighbor in D. In addition, if G[D] is connected, then
we call D a connected dominating set. Throughout this paper, N denotes the set
of all positive integers.

For a set S C V(G) and k € N, the kth-neighborhood of S is the set N (S) of
all vertices of G at distance k from S. In the special case k = 1, we simply write
N¢(S) for NA(S), and if |S] = 1 with « € S, we write Ng(z) for Ng({z}). For
aset M C V(G), we denote N¥.(S) = NE(S)N M and N¥,(z) = NE(z) N M,
and as above, we simply use Nj;(S) for N}, (S) and Ny (z) for N3, (x). For a
subgraph P C G, we write Np(x) for Ny (py(x). Finally, we will use Py to denote
the path on k vertices.

We end up this section with an important result that will be used in our
proofs.

Theorem 4. [1] Let G be a connected Ps-free graph. Then G has a dominating
clique or a dominating Ps.

3. FAMILIES WITH ONE FORBIDDEN SUBGRAPH

In this section, we characterize all connected graphs X such that every con-
nected X-free graph G satisfies rvce(G) < diam(G) + kx, where kx is a constant.
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Theorem 5. Let X be a connected graph. Then there is a constant kx such
that every connected X-free graph G satisfies rvc(G) < diam(G) + kx, if and
only if X = P5 or Py.

Proof. We have diam(G) < 2 since G is Pj-free. Then it follows from Proposi-
tion 1 that rve(G) = diam(G) —1 < 1.

Conversely, let ¢ > kx + 5, and GY be the subdivision of Ki4, and let G
denote the graph obtained by attaching a pendant edge to each vertex of the
complete graph K; (see Fig.1). Since rve(GY) =t + 1 but diam(GY) = 4, X is
an induced subgraph of GY. Clearly, rvc(G5) = t but diam(G%) = 3, and G} is
K 3-free and Ps-free. Hence, X is an induced subgraph of Pj.

The proof is thus complete. [ |

t
G, 1

Figure 1: The graphs G and G%.

4. FAMILIES WITH A PAIR OF FORBIDDEN SUBGRAPHS

For i,j,k € N, let S; ;1 denote the graph obtained by identifying one end-
vertex from each of three vertex-disjoint paths of lengths i, j, k, and N, ; 5, denote
the graph obtained by identifying each vertex of a triangle with an endvertex of
one of three vertex-disjoint paths of lengths i, j, k (see Fig.2). In this context, we
will also write KJ' for the graph G% introduced in the proof of Theorem 5.

The following statement, which is the main result of this section, characterizes
all forbidden pairs X,Y for which there is a constant kxy such that G being
(X,Y)-free implies rve(G) < diam(G) + kxy. By virtue of Theorem 5, we
exclude the case that one of X, Y is an induced subgraph of P;. Recall that the
net is the graph N = Ny q 1.

Theorem 6. Let X,Y # P3 or P be a pair of connected graphs. Then there is
a constant kxy such that every connected (X,Y')-free graph G satisfies rvc(G) <
diam(G) + kxy, if and only if (up to symmetry) X = P5; and Y fl K!' (r > 4),
or X H&D 51,272 and Y INCD N.
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—e <

i vertices Viik
~—_————

1 vertices
—_———

t
Sijk Gy

7 vertices 7 vertices

~—_————— ~—_—————
i —@ o —

k vertices vertices

—_————— —_—

Figure 2: The graphs S; j s, N; j, and G.

The proof of Theorem 6 will be divided into three separate results: we prove
the necessity in Proposition 2, and Theorems 7 and 8 will establish the sufficiency
of the forbidden pairs given in Theorem 6.

Proposition 2. Let X,Y # P; or Py be a pair of connected graphs for which
there is a constant kxy such that every connected (X,Y')-free graph G satisfies

IND
rve(G) < diam(G)+kxy. Then, (up to symmetry) X = PsandY C K (r > 4),
IND

IND
or X C Sip2andY C N.

Proof. Let t > 2kxy + 5, and let (see Fig.2):

e Gt =Ny 14-14-1;

e G be the graph obtained by attaching a pendant edge to each vertex of a
cycle Cs.

We will also use the graphs G} and G (= K}') shown in Fig.1.

For the graphs G and G, we have diam(G}) = 4 but rvc(G}) =t + 1, and
diam(G%) = 3 but rve(Gl) = t, respectively. For the graph G4, we observe that
diam(GY) = 2t — 1 while roc(G%) = 3(t — 1) = 3(diam(GY) — 1), since all internal
vertices must have mutually distinct colors. Analogously, for the graph G%, we
have diam(GY) = |L] +2, but rvc(GY) =t > 2(diam(GY) —2). Thus, each of the
graphs G}, G}, G and G must contain an induced subgraph isomorphic to one
of the graphs X,Y.

Consider the graph G!. Up to symmetry, we have that X is an induced
subgraph of GY excluding P and P;. Now we consider the graph G%. Obviously,

IND
G is X-free since G is K s3-free. Hence, G} contains Y, implying Y C K" for
IND
some 7 > 3 (for r <2 we get Y C Py, which is excluded by the assumptions).

Now we consider the graph G%. There are two possibilities:
1) Y HED G%. Then Y HED N. Now we consider the graph G%. G% is N-free,
3 4- Gy

IND
so we get X C Si2p2.



192

193

194

195

196

197

198

199

200

201

202

203

204

205

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

RAINBOW VERTEX-CONNECTION AND FORBIDDEN SUBGRAPHS 7

(11) X fl GY4. Then X = Ps5. As the case X = P; and Y = N is already

covered by case (i), we have that X = P; and Y el K" r>4.
This completes the proof. [ |

It is easy to observe that if X INCD X', then every (X,Y)-free graph is also
(X', Y)-free. Thus, when proving the sufficiency of Theorem 6, we will be always
interested in maximal pairs of forbidden subgraphs, i.e., pairs X,Y such that, if

replacing one of X,Y, say X, with a graph X’ # X such that X T X', then the
statement under consideration is not true for (X', Y')-free graphs.

Theorem 7. Let G be a connected (P5,K;‘)—free graph for some r > 4. Then,
rve(G) < diam(G) + r.

Proof. From Theorem 4, we have that G has a dominating clique or a dominating
Ps.

Case 1. G has a dominating Ps.

We color the vertices of P with colors 1,2, 3 and color the remaining vertices
arbitrarily (e.g., all of them have color 1). One can easily check that this vertex-
coloring can make G rainbow vertex-connected. So, in this case, rve(G) < 3 <
diam(G) + .

Case 2. G has a dominating clique, denoted by K.

Set W = V(G)\V(K,), H = G\E(K,). Let A be an independent set in
G[W] and B C V(K,) such that H[AU B] = (K, (that is, a matching of order ¢)
and / is maximal. Then ¢ < r, for otherwise, G[A U B] contains an induced K.
Moreover, for © € W\ A, Nayp(x) # 0, since ¢ is maximal. Now we define the
following vertex-coloring of G. Use colors 1,2,...,¢ to color each vertex in B,
color the vertices of A with color £+ 1, the vertices of V(K,)\B with color ¢+ 2,
and color the remaining vertices arbitrarily (e.g., all of them have color 1). Thus,
pairs of vertices in (AU V(K))) x V(G) are rainbow vertex-connected. As for
r1,22 € W\A, let y1 € Naup(z1), y2 € Nk, (22). Then, there is a vertex-rainbow
(21, x2)-path containing y; and yo. So, rve(G) <+ 2 <r+1 < diam(G) + r.

The proof is complete. n

Now let G be an (S12,2, N)-free graph, let z,y € V(G), and let P : x
v, V1, ...,V =y (k > 3) be a shortest (x,y)-path in G. Let z € V(G)\V (P). If
|INp(2)| > 2 and {v;,v;} C Np(z), then |i — j| <2 and |Np(z)| < 3, since P is a
shortest path. Moreover, the following facts are easily observed.

o If INp(z)| = 1, then, since G is S; 2 o-free, z is adjacent to z, vy, vg_; or y.

o If [Np(z)| = 3, then the vertices of Np(z) must be consecutive on P, since
P is a shortest path.

This motivates the following notations:
e A, :={ze€ V(G)\V(P)|Np(z) ={v;i}} for i = 0,1,k — 1, k;
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o Li :={z e V(G\V(P)|Np(z) = {vi—1,vipa}} for 1 <i <k —1;

o M;:={z € V(G)\V(P)|Np(z) ={vi—1,vi}} for 1 <i < k;

o N, :={2z € V(G)\V(P)|Np(z) = {vi—1,vi,viy1}} for 1 <i <k —1.
We further set S = V(P)U Ng(P) and R =V (G)\S.

Lemma 1. Let G be an (S22, N)-free graph, let z,y € V(G) be such that
distg(z,y) > 4 and let P : x = vy, v1,...,vx =y, be a shortest (z,y)-path in G.
Then

(1) No(M;)C S, i=2,...,k—

(1) Ng(N;) C S, i=2,...,k—

(t91) Na(Li) C S, i=1,...,k—

(iv) Np(R) = 0;

(v) Ns(R) C Ag U My U Ny U Ni_1 UM U Ayg.

Proof. If zv € E(G) for some z € Rand v € M;, 2 < i < k — 1, then we
have G[{vi—2,vi—1,v;, vit+1,v,2}] =~ N, a contradiction. Hence, (7) follows. To
show (i7), we observe that if zv € E(G) for some z € R and v € N;, 2 <
i < k — 2, then we have G[{vi—2,vi—1,0it1,Vit2,v,2}] =~ Si22, a contradic-
tion. Similarly, for (iii), if zv € E(G) for some z € R and v € L;, 1 <
i < k —1, then, for i = 1 we have G[{v1,v2,v3,v4,v,2}] =~ S22, for 2 <
i < k — 2 we have G[{z,v,0;—1,vi—2,Vit1,Vit2}] =~ S122, and for i = k — 1,
G{vk—1,Vk—2, Vk—3,Vk—4,0, 2}| = S122, a contradiction. Part (iv) follows im-
mediately from the definition of R, and by (i) through (iii), we have Ng(R) C
AgUA3 UM UNyUNg_1 UM UAg_1UAg. Butif zv € E(G) for some z € R
and v € Ay, then G[{vg,v1,v2,v3,v,2}] =~ S122, a contradiction. Similarly, we
have N4, ,(R) =0, implying (v).

The proof is complete. n

Theorem 8. Let G be a connected (5122, N)-free graph. Then, rvc(G) <
diam(G) + 11.

Proof. Let G be a connected (S22, N)-free graph. If diam(G) < 2, then
rve(G) = diam(G)—1. Thus, for the rest of the proof we suppose that diam(G) =
d > 3. Let vg,vg € V(G) be such that distg(vg,vg) = d, let P : vgvivy...vg be a
diameter path in G, and let A;, L;, M;, N;, S, R be defined as above.

We distinguish three cases according to the value of d.

Case 1. d = 3.

First, we partition V(G) into four parts P, Ng(P), N4(P) and NZ(P) accord-
ing to the distance from P. Then, for the vertices in Ng(P), we can partition
them into three parts X1 = Ag U M7 U L1 U Ny, X9 = A3 U M3 U Ly U Ny and
X3 = A1 U My U As. We must point out that X3 N Xy = () and Ni(X3) = 0,
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whose proof is similar to that of Lemma 1. Then, we denote Y; the set of
vertices in N&(P) such that for each v € Y;, Ny(p)(v) C Xj,i = 1,2, and
Ys = NZ(P)\(Y1 UYs). With a similar reason as above, Nyzp)(Ys) = 0.
So, analogously we can partition Ng(P) into three parts 71,7 and Zz. It
should be noticed that Z; = (); otherwise there exists a vertex z € Z; such
that distg(z,v3) > 4, a contradiction. Symmetrically, we have Zy = ().

Now, we define a vertex-coloring of GG that uses at most 14 colors. Color
the vertices of P with colors 0, 1,2,3 and color the vertices in Ag, M1, L1, N1, Na,
Lo, M3, A3, Y7 and Y, with colors 4,5, ...,13, respectively. Then, color the re-
maining vertices arbitrarily (e.g., all of them have color 0). We can show that
this vertex-coloring can make G rainbow vertex-connected. We only need to
verify that for a pair of vertices z,y € (Y1 x Y1) U (Y2 x Y3), there exists a
vertex-rainbow path connecting them. Without loss of generality, we suppose
(r,y) € Y1 x Y1. If distg(z,y) < 2, then there is nothing left to do. Next
we consider distg(z,y) > 3. Let 2/ be an arbitrary neighbor of x in X7, and
Yy an arbitrary neighbor of y in X;. We claim that 2’ and ¥’ cannot have the
same color. Otherwise, we suppose that 2’ and gy’ are colored with the same
color, i.e., they are in the same vertex-class of X, and let i = max{j : v; €
Np(2')NNp(y')}. Then, we have G[{v;, vit1, 2", ¢, x,y}] =~ S122 if 2’y ¢ E(G),
or G{vi,vir1, 2",y x,y} =~ N if 2’y € E(G), respectively. So, the colors of
and 3’ must be different. Then, the (z,y)-path Py : z2'vpy’y is vertex-rainbow.
Hence, we have rvc(G) < diam(G) + 11.

Case 2. d =4.

Similarly, with the partition and the vertex-coloring of Case 1, we can get
that rve(G) < 15 = diam(G) + 11.

Case 3. d > 5.

Set B. = (UZ2ZN;) U (USZy M;) U (U L) U Ay U Ag_y U {og, 09, ... vg-1},
X = Ay UM{UN{UNyz_1UMUA,;, X1 = AgUM{UN7, and X9 = Ny_1UM 4UA,.
By virtue of Lemma 1, we have Ng(B.) C S.

Subcase 3.1. B, is a cut-set of G.

We claim that S U Ng(S) = V(G). Suppose, to the contrary, that z € R is
at distance 2 from S. Then, by Lemma 1 and the assumption of Case 1, as well
as the symmetry, we can assume that N2(z) C X;. Let @ be a shortest (z,vq)-
path, let w be the first vertex of @ in B, (it exists by the assumption of Subcase
3.1), and let w™ be the predecessor of w on Q. By Lemma 1, dist(w™, P) = 1,
implying w~ € X;. Then, distg(w™,vg) > d—1; otherwise, the path vow~ Quy is a
(vo, vq)-path shorter than P. Since distg(z,w™) > 2, we have distg(z,vq) > d+1,
contradicting diam(G) = d. Hence, we have S U Ng(S) = V(G). Moreover, with
a similar argument to that of Case 1, we have that for x,y € R with distance at
least 3, their neighbors 2’ and ¢’ cannot be in the same vertex-class of X.

Now we define a vertex-coloring of G that uses at most d + 7 colors. Color
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the vertices of P with colors 0,1,...,d and color the vertices in Ag, M1, N1, Ng_1,
My and Ay with colors d + 1,d + 2,...,d 4+ 6, respectively. Then, color the
remaining vertices arbitrarily (e.g., all of them have color 0). We can show
that this vertex-coloring can make G rainbow vertex-connected. For any pair of
vertices in S X (SUR), we can easily find a vertex-rainbow path connecting them.
For a pair (z,y) € R x R, if distg(xz,y) < 2, then there is nothing left to do.
Next we consider distg(x,y) > 3. From above, we know that their neighbors 2’
and y' in X are colored differently. So, the (z,y)-path containing x’ and 3’ is
vertex-rainbow.

Consequently, we have rvc(G) < diam(G) + 7.

Subcase 3.2. B, is not a cut-set of G.

Set H =G — B.. Let P’ : vgug41 ... 0440-1Va1e = vo be a shortest (vq, vo)-
path in H. Since P is a diameter path, ¢ > d > 5. If v411 is adjacent to v4_s, then
G{vd, Va+1, Va—2, Vd—3, Va+2, Va+3}] = S1.2.2, a contradiction. So, vgr; € AgUM,.
Similarly, we have vgyp 1 € Ay U M;.

Set P : vg_10qvgs1 if va_1vas1 € E(G), or P : vg_q1vgye1 if vg_1va41 € E(G),
respectively. Similarly, set PO : vy o_1vovy if vapoe—1v1 € E(G), or P%: vgyp_jv
if vgro_1v1 € E(G), respectively. Finally, set C : vy Pvg_1 P%gy1 P'vgye_1POvy.
Then, C' is a cycle of length at least 2d — 2.

Claim 1. The cycle C is chordless.

Proof. This proof can be found in [5]. But for the sake of completeness, we
provide the proof here. Suppose, to the contrary, that v;v; € E(G) is a chord
in C. Since both P and P’ are chordless, we can choose the notation such that
1<i<d—-landd+1<j<d+/¢—1. Since v; € V(P'), we have v; ¢ B. by
the definition of P’, implying i = d — 1 and v; € My, or, symmetrically, ¢ = 1
and v; € M. This implies that in the first case, v; = v441; in the second case,
Vj = Vg4¢—1; and in both cases, v;v; € E(C) by the definition of C. Thus, C is
chordless. 0

Claim 2. / < d+ 2.

Proof. Assume that ¢ > d+3, and let @ be a shortest (vg, vg12)-path in G. Then,
|E(Q)| < d (since diam(G) = d). Since £ > d+3 and P’ is shortest in H = G— B,
we have distp (vg, vg12) > d+1. So, @ must contain a vertex from B.. Let w be the
last vertex of @ in B, and let w™ and w™ be its predecessor and successor on @,
respectively (they exist since vgyo ¢ B, by the definition of P’). By Lemma 1, w™
is at distance at most 1 from P. Since clearly w' ¢ {vg,v4}, either wTvg € E(G)
or whvy € B(G). If whyy € E(G), then vgwT Qugis is a (vg, vgye)-path shorter
than @, a contradiction. Thus, wtvy € F(G). Now, w' # v4,9 since P’ is
chordless, implying distg(vg,w™) < d — 1. On the other hand, distg(vg, w') >
d—1; otherwise, voQu™ vy is a (vg, vq)-path of length at most d— 1, contradicting
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the fact that P is a diameter path. Hence, distg(vo,w™) = d — 1, implying
that distg(vo,w) = d — 2 and wvgrs € E(Q). Since vgyo,v4r3 € R, we have
G[{vd+3, Vata, v, wT,w,w™ }] =~ 5129, a contradiction. Hence, ¢ < d + 2. 0

Claim 3. C'U Ng(C) = V(G), and every vertex in V(G)\V(C) has at least
2 neighbors in C.

Proof. Suppose that a vertex = € V(G)\V (C) at distance 1 from C has exactly
one neighbor in C, and set No(z) = {y}. Let 21,20 € NZ(z), and let 2},2) €
N&(x). Then, we have G[{z,y, 21, 22, 2}, 25 }] =~ S1,2.2, a contradiction.

Secondly, suppose, to the contrary, that z € V(G) is at distance 2 from
C, and y is a neighbor of z at distance 1 from C. Then, distg(z,P) > 2;
otherwise, y = vg or vy, without loss of generality, we assume y = vg. Then,
v; must be adjacent to vgiy_1, and thus, G[{z,y,v1,v2,V410—1,V410—2}] ~ N, a
contradiction. Hence, z € R. If y € R, then y is not adjacent to any of v, vo
and vs. If y ¢ R, then we have y € X. Without loss of generality, we assume
y € Xo. Then, y is not adjacent to any of v, v9 and v3. Moreover, from above
we know that y has at least 2 neighbors in C. Let x1, 22 € Neo(y) be the vertices
closest to v; and wvs, respectively. Let 2} and ) be their neighbors that are
closer to vy and vg in C, respectively. Then, G[{y, z,x1, x2, ], 25} ~ Sy 229 if
zr1z2 ¢ E(G), or G[{y, z,x1,x2, 27, 24} ~ N if 129 € E(G), respectively. Thus,
C' is a dominating set of G. 0

By Claims 1 and 2, we know that C is a chordless cycle of length at most
d+¢ < 2d+2. Now, we define a vertex-coloring of GG that uses at most d+1 colors.
Relabel C' = zyxs ... xpxpi1(= x1), 8 < 2d —2 < k < 2d 4 2. Then, we assign
color i to the vertex z; if 1 < i < [£] and assign color i — [%] to z; if [§] < i < k.
We color the remaining vertices arbitrarily. We can show that this vertex-coloring
can make G rainbow vertex-connected. From Theorem 1 and Claim 3, we know
that under this vertex-coloring, pairs in C'x V(G) are rainbow vertex-connected.
For each vertex z € Ng(C), we may strengthen the result of Claim 3 that z has
at least two neighbors colored differently in C. Otherwise, we suppose that zy
and 29 are the only two neighbors of z having the same color in C. From the
vertex-coloring, we know that distc(z1,22) = [%| > 4. Then, we can easily find
an induced Sj 239, a contradiction. So, for a pair (z,y) € Ng(C) x Ng(C), we
can find a vertex 2/ € N¢(z) and a vertex y' € Ng(y) such that 2’ and y' are
colored differently. Since there exists a vertex-rainbow path P connecting x’ and
y' and the internal vertices of P are colored differently from z’ and ¢/, the path
xax’ Py'y is vertex-rainbow and connects z and y. Hence, rve(G) < d + 1.

The proof of Theorem 8 is complete. [

Combining Proposition 2 with Theorems 7 and 8, we have proved Theorem
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