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Abstract22

Let G be an edge-colored connected graph. A path P in G is called23

ℓ-rainbow if each subpath of length at most ℓ + 1 is rainbow. The graph24

G is called (k, ℓ)-rainbow connected if there is an edge-coloring such that25

every pair of distinct vertices of G are connected by k pairwise internally26

vertex-disjoint ℓ-rainbow paths in G. The minimum number of colors needed27

to make G (k, ℓ)-rainbow connected is called the (k, ℓ)-rainbow connection28

number of G and denoted by rck,ℓ(G). In this paper, we first focus on the29

(1, 2)-rainbow connection number of G depending on some constraints of G.30

Then, we characterize the graphs of order n with (1, 2)-rainbow connection31
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number n − 1 or n − 2. Using this result, we investigate the Nordhaus-32

Gaddum-Type problem of (1, 2)-rainbow connection number and prove that33

rc1,2(G) + rc1,2(G) ≤ n + 2 for connected graphs G and G. The equality34

holds if and only if G or G is isomorphic to a double star.35

Keywords: ℓ-rainbow path; (k, ℓ)-rainbow connected; (k, ℓ)-rainbow con-36

nection number.37

2010 Mathematics Subject Classification: 04C15, 05C40.38

1. Introduction39

All graphs in this paper are finite, undirected, simple and connected. We follow40

the notation and terminology in the book [3].41

When considering the transmission of information between agencies of the42

government, an immediate question is put forward as follows: What is the min-43

imum number of passwords or firewalls needed that allows one or more secure44

paths between every two agencies so that the passwords along each path are dis-45

tinct? This question can be represented by a graph and studied by means of46

what is called rainbow colorings introduced by Chartrand et al. in [5]. An edge-47

coloring of a graph is a mapping from its edge set to the set of natural numbers48

(colors). A path in an edge-colored graph with no two edges sharing the same49

color is called a rainbow path. A graph G with an edge-coloring c is said to be50

rainbow connected if every pair of distinct vertices of G is connected by at least51

one rainbow path in G. The coloring c is called a rainbow coloring of the graph52

G. For a connected graph G, the minimum number of colors needed to make G53

rainbow connected is defined as the rainbow connection number of G and denoted54

by rc(G). Many researchers have studied problems on rainbow connection. See55

[9, 12, 14] for example. For more details we refer to the survey paper [13] and56

the book [14].57

The following question provides a relaxation of this concept: What is the58

minimum number of passwords or firewalls that allows one or more secure paths59

between every two agencies such that as we progress from one agency to another60

along such a path, we are required to change passwords at each step? Inspired61

by this, Borozan et al. in [2] and Andrews et al. in [1] introduced the concept of62

proper-path coloring of graphs. Let G be an edge-colored graph. A path P in G is63

called a proper path if no two adjacent edges of P are colored with the same color.64

An edge-colored graph G is k-proper connected if every pair of distinct vertices65

u, v of G are connected by k pairwise internally vertex-disjoint proper (u, v)-paths66

in G. For a connected graph G, the minimum number of colors needed to make G67

k-proper connected is called the k-proper connection number of G and denoted by68

pck(G). Particularly for k = 1, we write pc1(G), the proper connection number69
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of G, as pc(G) for simplicity. Recently, many results have been obtained on the70

proper connection number. For details, we refer to the dynamic survey [10].71

Relaxing the notion of a rainbow path, the (k, ℓ)-proper-path coloring was72

defined in [11] as a generalization of rainbow coloring and proper-path coloring.73

The notion of ℓ-rainbow colorings was also independently defined and studied in74

[4, 6, 7]. A path P in G is called an ℓ-rainbow path if each subpath of length75

at most ℓ+ 1 is rainbow colored. The graph G is called (k, ℓ)-rainbow connected76

if there is an edge-coloring c such that every pair of distinct vertices of G are77

connected by k pairwise internally vertex-disjoint ℓ-rainbow paths in G. This78

coloring is called a (k, ℓ)-rainbow-path coloring of G. In addition, if t colors are79

used, then c is referred to as a (k, ℓ)-rainbow-path t-coloring of G. For a con-80

nected graph G, the minimum number of colors needed to make G (k, ℓ)-rainbow81

connected is called the (k, ℓ)-rainbow connection number of G and denoted by82

rck,ℓ(G). Particularly, for k = 1 and ℓ = 2, there is an edge-coloring using rc1,283

colors such that there exists a 2-rainbow path between each pair of vertices of the84

graph G. Furthermore, if we ensure that every path in G is a 2-rainbow path,85

then such an edge-coloring is called a strong edge-coloring. In addition, the strong86

chromatic index χ′

s(G), which was introduced by Fouquet and Jolivet [8], is the87

minimum number of colors needed in a strong edge-coloring of G. Immediately88

we get that rc1,2(G) ≤ χ′

s(G). And this inspires us to pay our attention to the89

(1, 2)-rainbow connection number of the connected graph G, i.e., rc1,2(G).90

As an example of this concept, we consider the (2, 3)-rainbow connection91

number of the cycle C12. Since ℓ = 3, then each pair of edges with the same color92

must have at least 3 edges in between. Additionally, there are pairs of vertices at93

distance greater than 4, we see that rc2,3(C12) ≥ 4. On the other hand, if we color94

the edges of C12 by alternating through the colors like 1, 2, 3, 4, 1, . . . , 4 in order95

around the cycle, then it is easy to see that this is a (2, 3)-rainbow connected96

coloring using 4 colors, so rc2,3(C12) = 4.97

In this paper, we consider the (k, ℓ)-rainbow connection number of graphs98

and their complements. This paper is organized as follows. In Section 2, we list99

some useful results about the (k, ℓ)-rainbow connection number of a graph. In100

Section 3, we focus on rc1,2(G) depending on some constraints of G. In Section 4,101

we first characterize the graphs of order n with (1, 2)-rainbow connection number102

n−1 or n−2. Using this result, we give the Nordhaus-Gaddum-Type result for the103

(1, 2)-rainbow connection number, i.e., rc1,2(G) + rc1,2(G) ≤ n+2 for connected104

graphs G and G, and the equality holds if and only if G or G is isomorphic to a105

double star.106
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2. Preliminaries107

In this section, we introduce some definitions and present several results which108

will be used later. Let G be a connected graph. We denote by n the number of109

its vertices and m the number of its edges. The distance between two vertices u110

and v in G, denoted by d(u, v), is the length of a shortest path between them in111

G. The eccentricity of a vertex v is ecc(v) := maxx∈V (G)d(v, x). The radius of G112

is rad(G) := minx∈V (G)ecc(x). We also write σ′

2(G) as the largest sum of degrees113

of vertices x and y, where x and y are taken over all couples of adjacent vertices114

in G. Additionally, we set [n] = {1, 2, · · · , n} for any integer n ≥ 1.115

The following are some results that we will use in our proofs. The first116

is a simple observation that the addition of edges cannot increase the rainbow117

connection number.118

Proposition 2.1 [11]. If G is a nontrivial connected graph and H is a con-119

nected spanning subgraph of G, ℓ ≥ 1 is an integer. Then rc1,ℓ(G) ≤ rc1,ℓ(H).120

Particularly, rc1,ℓ(G) ≤ rc1,ℓ(T ) for every spanning tree T of G.121

When we focus on trees, the following holds.122

Theorem 2.2 [11]. If T is a nontrivial tree, then rc1,2(T ) = σ′

2(T )− 1.123

For complete bipartite graphs, the situation is trickier.124

Theorem 2.3 [11]. Let ℓ ≥ 2 be an integer and m ≤ n. Then,125

rc1,ℓ(Km,n) =







n if m = 1,
2 if m ≥ 2 and m ≤ n ≤ 2m,
3 if ℓ = 2, m ≥ 2 and n > 2m

or ℓ ≥ 3, m ≥ 2 and 2m < n ≤ 3m,
4 if ℓ ≥ 3, m ≥ 2 and n > 3m.

For a general 2-connected graph, we gave in [11] an upper bound for the126

(1, 2)-rainbow connection number.127

Theorem 2.4 [11]. If a graph G is 2-connected, then rc1,2(G) ≤ 5.128

3. (1, 2)-rainbow connection number for the complement of a129

graph130

In this section, we investigate the (1, 2)-rainbow connection number of G depend-131

ing on some properties of its complement G.132

Theorem 3.1. If G is a graph with diam(G) ≥ 4, then rc1,2(G) ≤ 3.133
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Proof. We first claim that G must be connected. If not, G must contain a span-134

ning complete bipartite graph which implies that diam(G) ≤ 2, a contradiction.135

Choose a vertex x with eccG(x) = diam(G). Let Ni(x) = {v : distG(x, v) = i}136

for 0 ≤ i ≤ 3 and N4(x) = {v : distG(x, v) ≥ 4}. Obviously N0(x) = {x}. We137

write Ni (for 0 ≤ i ≤ 4) instead of Ni(x) and ni instead of |Ni| for convenience.138

It can be deduced that all edges are present in G of the form uv where u ∈ N1139

and v ∈ N3
⋃

N4 or u ∈ N2 and v ∈ N4 (see Figure 1).140

x

N1(x) N3(x)

N4(x) N2(x)

Figure 1. The graph G for the proof of Theorem 3.1.

We denote by Ni,j(0 ≤ i 6= j ≤ 4) the edge set between Ni and Nj in G. We141

distinguish four cases and give each of the cases a (1, 2)-rainbow-path 3-coloring,142

respectively. Again we use f(e)(e ∈ E(G)) to represent the color assigned to e.143

Case 1. If n4 > 1. We give all edges of N1,3 the color 3, edges of N0,3 the144

color 3, edges of N0,4 the color 2, edges of N0,2 the color 3, edges of N2,4 the145

color 1. Additionally, color the edges of N1,4 such that for v ∈ N1, {f(vs) : s ∈146

N4} = {1, 2}. Then for any u, v ∈ N1(if n1 > 1), there must exist s1, s2 ∈ N4147

(possibly with s1 = s2) such that f(us1) = 1 and f(vs2) = 2. Then one of us1v148

or us1xss2v, where s ∈ N2, is a 2-rainbow (u, v)-path. Other situations can be149

checked similarly.150

Case 2. If n4 = 1, n3 > 1 and n1 = 1. Then we give all edges of N1,3 the151

color 1, the edge of N1,4 the color 3, edges of N0,3 the color 1, edges of N0,4 the152

color 2, edges of N0,2 the color 1 and edges of N2,4 the color 3. It is easy to verify153

this is indeed a (1, 2)-rainbow-path 3-coloring of G.154

Case 3. If n4 = 1, n3 > 1 and n1 > 1. Let G′ be the complete bipartite graph155

G′ = G[N1 ∪N3]. By Theorem 2.3, we can use at most three colors to make G′
156

(1, 2)-rainbow connected. Then we give all edges of N1,4 the color 1, edges of157

N0,3 the color 2, the edge of N0,4 the color 3, edges of N0,2 the color 1 and edges158

of N2,4 the color 2. One can easily check this is a (1, 2)-rainbow-path 3-coloring159

of G and we omit the details here.160

Case 4. If n4 = 1 and n3 = 1. Then we give all edges of N1,3 the color 1,161

edges of N1,4 the color 1, the edge of N0,3 the color 2, the edge of N0,4 the color162

3, edges of N0,2 the color 2 and edges of N2,4 the color 1. We can again verify163
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the correctness easily.164

Thus, the proof is completed.165

Theorem 3.2. For a graph G, if G is triangle-free and diam(G) = 3, then166

rc1,2(G) ≤ 3.167

Proof. As in the proof of Theorem 3.1, it is easy to show that G is connected.168

Choose a vertex x such that eccG(x) = diam(G) = 3. In addition, Ni, ni and169

Ni,j for 0 ≤ i 6= j ≤ 3 are defined as in the previous theorem. Again it can be170

deduced that there exist all edges of the form uv where u ∈ N0 and v ∈ N2 ∪N3171

or where u ∈ N1 and v ∈ N3. Since G is triangle-free and x has all edges to N1172

in G, we know that N1 is a clique in G. We give a (1, 2)-rainbow-path 3-coloring173

for G as follows.174

We assign to the edges of N0,2 the color 3, edges of N0,3 the color 1, edges of175

N1,3 the color 2, any edges of N1,2 the color 3, any edges of N2,3 the color 2 and176

the edges of the induced subgraph G[N1] the color 3.177

It is obvious that for any u ∈ Ni and v ∈ Nj(i 6= j), there exists a 2-rainbow178

path between them. Then it suffices to show that for any u, v ∈ N2 or N3, there179

is a 2-rainbow path connecting them in G. First suppose u, v ∈ N2 and there180

is no edge between them in G. Since G is triangle-free, there exists a vertex181

w ∈ N1 such that wv ∈ G, then uxtwv is a 2-rainbow path between u and v,182

where t ∈ N3. The situation for any vertices u, v ∈ N3 can be dealt with similarly.183

Thus rc1,2(G) ≤ 3.184

Theorem 3.3. Let G be a connected graph. If G is triangle free and diam(G) =185

2, then rc1,2(G) ≤ 3.186

Proof. First we choose a vertex x with eccG(x) = diam(G) = 2. In addition,187

Ni, ni and Ni,j are defined as above. Clearly, all edges of the form xv for v ∈ N2188

are present in G. Again N1 is a clique in G since all edges of the form xu are in189

G for u ∈ N1 and G is triangle free.190

Suppose there exists a vertex v0 ∈ N2 such that no edge vw(w ∈ N1) exists191

in G. Then v0 is adjacent to every vertex of N1 in G. Thus, since every vertex of192

N2 has at least one edge to N1 in G, the vertex v0 must be adjacent to every other193

vertex of N2 in G since otherwise a triangle will appear in G. Next we give an edge194

coloring f forG. We set f(xv0) = 3, f(xw) = 2 and f(v0w) = 1 (w ∈ N2, w 6= v0).195

And we give any edges of N1,2 the color 2, the edges of the induced subgraph196

G[N1] the color 3. We only need to consider the 2-rainbow path for w1, w2 ∈ N2197

and w1v0xw2 clearly suffices.198

Next suppose there exists no such vertex v0. Since G and G connected, we199

know that n1 ≥ 2. We denote by EG(v) (for v ∈ N2) the set of edges between200

v and vertices of N1 in G and set eG(v) = |EG(v)|. Also eG(v) (for v ∈ N2) is201

defined similarly. Again we distinguish two cases to analyze.202
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If |N1| ≥ 3, for each u ∈ N2 with eG(u) = 1, we give this edge the color 1.203

And for u ∈ N2 with eG(u) ≥ 2, we arbitrarily color these edges but confirm that204

{f(e) : e ∈ EG(u)} = {1, 2}. Then we set f(xu) = 2 (u ∈ N2) and give the edges205

of the induced subgraph G[N1] the color 3. The rest edges are colored arbitrarily206

with colors from [3]. Again we only need to consider the 2-rainbow path between207

the two non-adjacent vertices v,w ∈ N2. Since |N1| ≥ 3 and v and w are non-208

adjacent in G, so eG(v) + eG(w) ≤ |N1|. Thus eG(v) + eG(w) ≥ |N1| ≥ 3 which209

implies that one of the vertices v,w, say v, must have eG(v) ≥ 2. So there exists210

one vertex s ∈ N1 or two vertices s, t ∈ N1 such that vsw or vstw is a 2-rainbow211

(v,w)-path in G.212

If |N1| = 2 and N1 = {s, t}. Then each vertex u ∈ N2 is adjacent to only one213

vertex of N1 in G, either s or t since otherwise diam(G) ≥ 3. We denote by V1214

the set of vertices of N2 adjacent to s in G, that is, the set adjacent to t in G.215

And we write V2 for the rest of the vertices of N2. It is easy to see that V1 and V2216

both induce cliques in G. We then set f(xu) (u ∈ V1) = 1, f(us) (u ∈ V1) = 2,217

f(xu) (u ∈ V2) = 2, f(ut) (u ∈ V2) = 1, f(st) = 3 and color any remaining edges218

with color 1. It is easy to check that this is a (1, 2)-rainbow-path 3-coloring of219

G. Thus the proof is completed.220

4. Nordhaus-Gaddum-Type theorem for (1, 2)-rainbow connection221

number222

In this section, we first characterize the graphs on n vertices with (1, 2)-rainbow223

connection number n− 1 or n− 2, which is crucial to investigate the Nordhaus-224

Gaddum-Type result for the (1, 2)-rainbow connection number of the graph G.225

We use Cn, Sn to denote the cycle and the star graph on n vertices, respectively.226

Denote by T (n1, n2) the double star in which the degrees of its (adjacent) center227

vertices are n1 + 1 and n2 + 1 respectively. Additionally, we write T 1(n1, n2) as228

the graph obtained by replacing one pendent edge with P3 in the double star229

T (n1, n2) and denote the new pendent vertex by u0 (see Figure 2). Also define230

graphs G1, . . . , G8 as in Figure 2.231
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G1 G2 G3 G4 G5

G6 G7 G8 T 1(n1, n2)

︷
︸
︸

︷

︷
︸
︸

︷

n2 n1

u0

Figure 2. Graphs Gi (1 ≤ i ≤ 8) and T 1(n1, n2) in G2.

Theorem 4.1. Let G be a nontrivial connected graph on n ≥ 2 vertices. Then232

(i) rc1,2(G) = n− 1 if and only if G ∈ G1 = {Sn (n ≥ 2), T (n1, n2) (n1, n2 ≥233

1)};234

(ii) rc1,2(G) = n− 2 if and only if G ∈ G2 = {C3, C4, C5, G1, G2, G3, G4,235

G5, G6, G7, G8, T 1(n1, n2)}.236

Proof. Let G be a connected graph of order n ≥ 2 and T be a spanning tree of237

G. Proposition 2.1 shows that rc1,2(G) ≤ rc1,2(T ). Now we give proofs for (i)238

and (ii) separately.239

Proof of (i): For any graph G ∈ G1, we can easily check that rc1,2(G) =240

n − 1. So it remains to verify the converse. Since rc1,2(G) = n − 1, we see that241

n−1 = rc1,2(G) ≤ rc1,2(T ) ≤ n−1, i.e., rc1,2(T ) = n−1. Thus, by Theorem 2.2,242

we know that any spanning tree T of G must be a star or a double star, i.e.,243

T ∈ G1.Without loss of generality, we can assume that n2 ≥ n1.244

rc1,2 = 1 = n− 2 rc1,2 = 2 = n− 2 rc1,2 = 3 = n− 2 rc1,2 = n− 3

1 1

1

2 2

1

1

1 2

3

1 2

1 2

3

1 2 n− 3

Figure 3. Graphs obtained by adding an edge to Sn (n ≥ 2).

If G is a tree, then G ∈ G1. Now we suppose that G is not a tree. Then245

since T ∈ G1, G can be constructed from Sn (n ≥ 2) or T (n1, n2) (n1, n2 ≥ 1) by246

adding edges. Adding an edge to Sn (n ≥ 2), we will obtain one of the graphs247

depicted in Figure 3. However, all the graphs in Figure 3 have (1, 2)-rainbow248

connection number no more than n − 2, which implies that any spanning tree249

T of G cannot be a star. Next, we will consider the graphs obtained by adding250

edges to T (n1, n2) (n1, n2 ≥ 1).251
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If n1 = n2 = 1, then T (1, 1) = P4. If an edge is added, then we will obtain252

either the cycle C4 or the graph G1 depicted in Figure 2. Obviously, both C4253

and G1 have (1, 2)-rainbow connection number 2 = n − 2 < n − 1. For the254

cases n1 = 1, n2 = 2 and n1 = n2 = 2, one of the graphs in Figure 4 or 5255

will be obtained by adding an edge to T (1, 2) or T (2, 2) respectively. The (1, 2)-256

rainbow-path colorings given in Figures 4 and 5 show that all these graphs have257

(1, 2)-rainbow connection number no more than n− 2.258

rc1,2 = 3 = n− 2 rc1,2 = 3 = n− 2 rc1,2 = 3 = n− 2 rc1,2 = 3 = n− 2

1 2

1 2

3

1

2

1

2

3

12

3

1

1

2

3

1

3 1

Figure 4. Graphs obtained by adding an edge to T (1, 2).

rc1,2 = 4 = n− 2

1 2

3

4 2

1

3

2

1

1 2

3
rc1,2 = 3 = n− 3 rc1,2 = 3 = n− 3

3

1

2 1

2
1

Figure 5. Graphs obtained by adding an edge to T (2, 2).

For all the other situations, i.e., n1 = 1, n2 ≥ 3 or n1 = 2, n2 ≥ 3 or259

n1 ≥ 3, n2 ≥ 3, Figure 6, Figure 7 and Figure 8 give all the graphs obtained by260

adding an edge to T (1, n2 ≥ 3), T (2, n2 ≥ 3) and T (n1 ≥ 3, n2 ≥ 3), respectively.261

We give (1, 2)-rainbow-path colorings for these graphs showed in Figure 6, Figure262

7 and Figure 8. One can easily check that all these graphs have (1, 2)-rainbow263

connection number no more than n− 2.264

From the discussions all above, we come to a conclusion that if rc1,2(G) =265

n− 1, then G ∈ G1 = {Sn (n ≥ 2), T (n1, n2)(n1, n2 ≥ 1)}.266



10 X. Li, C. Magnant, M. Wei and X. Zhu

rc1,2 = n− 3 rc1,2 ≤ n− 3

1 2

1 2

3

n− 3
2

1

n− 3

1n− 3
n− 4

rc1,2 ≤ n− 3

1

2

3

1 3

n− 3

2

rc1,2 = n− 3

1

2 12
3

n− 3 3

Figure 6. Graphs obtained by adding an edge to T (1, n2 ≥ 3).

rc1,2 = n− 3

1 2

n− 3

1 2

3
rc1,2 ≤ n− 3

n− 3

2

1 n− 4

n− 5
n− 4 3

2

1

1
3
4

rc1,2 ≤ n− 3

n− 3

2
1

rc1,2 ≤ n− 3

n− 3

2

n− 4

n− 5

1

1

rc1,2 ≤ 4 = n− 3

2 41

3

rc1,2 ≤ n− 3

2 n− 3

1

1

3 2

4

1
2

1

1

1 1

Figure 7. Graphs obtained by adding an edge to T (2, n2 ≥ 3).

1
2

n2

n2 + 1
n2 + 2

n2 + 1
n2 + 2

1

rc1,2 = n− 3

n− 3

1
2

n2

n2 + 2

n1 − 1

rc1,2 ≤ n2 + 2 ≤ n− 3

1

n2 + 1

1

n2 − 1

n2 + 2

n1 − 1

rc1,2 ≤ n2 + 2 ≤ n− 3

1

n2 + 1

n2n2

1
n2 − 1

2
n1

rc1,2 ≤ n2 + 1 ≤ n− 4

1 n2 + 1

1 1
1

Figure 8. Graphs obtained by adding an edge to T (n1 ≥ 3, n2 ≥ 3).

Proof of (ii): One can easily check that rc1,2(G) = n − 2 for any graph267

G ∈ G2. Hence, it remains to show the converse. Since rc1,2(G) = n − 2,268

then n − 2 ≤ rc1,2(T ) ≤ n − 1. Thus, Theorem 2.2 implies that any spanning269

tree T of G must be an element of the set {Sn (n ≥ 2), T (n1, n2) (n1, n2 ≥270

1), T 1(n1, n2) (n1, n2 ≥ 1)}.271

If G is a tree, then G ∼= T 1(n1, n2) (n1, n2 ≥ 1) ⊆ G2. Next we sup-272

pose that G is not a tree. Then G can be constructed from Sn (n ≥ 2),273
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T (n1, n2) (n1, n2 ≥ 1) or T 1(n1, n2) (n1, n2 ≥ 1) by adding edges. In the proof274

of (i), we listed eight graphs with (1, 2)-rainbow connection number n− 2, which275

are C3, C4, G1, G3, G4, G6, G7 and G8, respectively. Furthermore, all graphs276

obtained by adding an edge to Sn (n ≥ 2) or T (n1, n2) (n1, n2 ≥ 1) except these277

eight ones have (1, 2)-rainbow connection number no more than n − 3. There-278

fore, the graph G can be constructed from C3, C4, G1, G3, G4, G6, G7, G8 or279

T 1(n1, n2) (n1, n2 ≥ 1) by adding edges.280

n− 4 n2

1

n2 + 1

n2 + 2n− 3

12

1 n1 − 1 n1 n− 5
n− 4

n− 4 n− 4

n− 5 1

n− 3 n2

1

n2 + 1

n2 + 2
2

n− 3

1
1 n1 − 1

n− 4

n1 n2 + 1

1 n2

n2 + 2

rc1,2 ≤ n− 3 rc1,2 ≤ n− 4 rc1,2 = n− 3 rc1,2 ≤ n2 + 2 ≤ n− 3

1

Figure 9. Graphs obtained by adding an edge to T 1(n1 ≥ 2, n2 ≥ 2).

Considering graphs constructed from C3, C4, G1, G3, G4, G6, G7 or G8281

by adding edges, we find only another two graphs G2, G5 with rc1,2(G2) = 2 =282

|V (G2)| − 2 and rc1,2(G5) = 3 = |V (G5)| − 2. All others have (1, 2)-rainbow283

connection number no more than n − 3. Now we focus on the graphs obtained284

by adding an edge to T 1(n1, n2) (n1, n2 ≥ 1). For the cases n1 = n2 = 1,285

n1 = 1, n2 ≥ 2 and n1 ≥ 2, n2 = 1, we find another graph C5 such that286

rc1,2(C5) = n−2 with similar analysis as in the proof of (i). Denote by e the new287

edge added to T (n1, n2) (n1, n2 ≥ 1) or T 1(n1, n2) (n1, n2 ≥ 1) and T (n1, n2)+e,288

T 1(n1, n2) + e the newly obtained graphs. For the case n1 ≥ 2, n2 ≥ 2, we289

consider cases depending on whether the pendent vertex u0 in T 1(n1, n2) is an290

end vertex of e or not. It is obvious that if u0 /∈ e, then T 1(n1, n2) + e \ u0 ∼=291

T (n1, n2)+e. The proof of (i) suggests that we only need to consider the case when292

T 1(n1, n2)+e\u0 ∼= G8. It is easy to check that rc1,2(T
1(n1, n2)+e) = n−3 < n−2293

for this case. If u0 ∈ e, then one of the graphs in Figure 9 will be obtained by294

adding an edge to T 1(n1, n2). However, all these graphs have (1, 2)-rainbow295

connection number no more than n − 3 (as colored in the figure). Thus, we296

complete the proof of (ii).297

Theorem 4.2. Let G and G be connected graphs on n vertices. Then rc1,2(G)+298

rc1,2(G) ≤ n + 2 and the equality holds if and only if G or G is isomorphic to a299

double star, i.e., G ∼= T (n1, n2) (n1, n2 ≥ 1) or G ∼= T (n1, n2) (n1, n2 ≥ 1).300

Proof. Since both G and G are connected, we have n ≥ 4 and ∆(G), ∆(G) ≤301

n − 2. Let G be the double star with center vertices u, v and NG(u) \ v =302

A, NG(v) \ u = B. So, G[A ∪ B] is a clique and NG(u) = B, NG(v) = A.303
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Certainly all edges of G must have distinct colors so we consider colorings of G.304

Color all edges incident to v with 1, all edges incident to u with 2 and edges in305

G[A ∪ B] with 3. This coloring shows that rc1,2(G) ≤ 3. Since u and v are at306

distance 3 in G, we get that rc1,2(G) = 3 and so rc1,2(G)+rc1,2(G) = n+2. Now,307

we must show that rc1,2(G) + rc1,2(G) < n+ 2 for all other connected graphs G308

and G. One can easily check that this is true for n = 4, 5. So we consider n ≥ 6309

in the following.310

If G or G has (1, 2)-rainbow connection number n − 1 or n − 2, i.e., G ∈311

G1 ∪ G2 \ T (n1, n2) (n1, n2 ≥ 1) or G ∈ G1 ∪ G2 \ T (n1, n2) (n1, n2 ≥ 1), then312

rc1,2(G) + rc1,2(G) < n + 2 by simple examination. Hence, we can assume that313

2 ≤ rc1,2(G) ≤ n− 3 and 2 ≤ rc1,2(G) ≤ n− 3.314

Suppose first that both G and G are 2-connected. For n = 6, it is easy to315

check that rc1,2(G) + rc1,2(G) ≤ 3 + 3 < 8 = n+ 2. And for n ≥ 9, Theorem 2.4316

implies that rc1,2(G) + rc1,2(G) ≤ 5 + 5 = 10 < 11 ≤ n + 2. Then what remains317

are the cases n = 7 and n = 8. For convenience, we denote the circumference of318

G by c(G). We first suppose n = 7. Obviously 4 ≤ c(G) ≤ 7. If c(G) = 7, then319

C7 is a spanning subgraph of G and rc1,2(G) ≤ rc1,2(C7) = 3. If c(G) = 6, then320

G has a traceable spanning subgraph which is composed of C6 by adding an open321

ear of length two. Thus, rc1,2(G) ≤ 3. If c(G) = 5, then G contains H7
1 or H7

2 (see322

Figure 10) as a spanning subgraph. Since H7
1 is traceable and rc1,2(H

7
2 ) ≤ 3, then323

rc1,2(G) ≤ 3. For the case c(G) = 4, G contains K2,5 as its spanning subgraph,324

which contradicts the assumption that G is connected. Therefore, all 2-connected325

graphs of order n = 7 with connected complementary graphs has (1, 2)-rainbow326

connection number no more than 3. Hence, rc1,2(G)+rc1,2(G) ≤ 3+3 < 9 = n+2.327

With similar analysis as for the situation n = 7, we can also draw the conclusion328

that rc1,2(G) + rc1,2(G) ≤ 3 + 3 < 10 = n+ 2 for n = 8.329

H7

1 H7

2

1

3

2

1

2

1

2

1

2

Figure 10. Graphs for the proof of Theorem 4.2.

Now we consider the case where at least one of G and G has at least one cut330

vertex. Without loss of generality, suppose that G has at least one cut vertex.331

We distinguish the following two cases.332

Case 1: G has a cut vertex u such that G−u has at least three components.333

Let G1, G2, · · · , Gk (k ≥ 3) be the components of G − u, and let ni be334

the number of vertices of Gi for i = 1, 2, . . . , k with n1 ≤ n2 ≤ · · · ≤ nk. Since335
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∆(G) ≤ n−2, then nk ≥ 2. The complementary graph G\u contains Knk,n−nk−1336

as a spanning subgraph and both nk ≥ 2 and n − nk − 1 ≥ 2. By Theorem 2.3,337

there exists a (1, 2)-rainbow-path 3-coloring of Knk,n−nk−1 using elements in [3].338

Then, if we color the edges incident to u in G with color 4, then we obtain a339

(1, 2)-rainbow-path 4-coloring of G. Therefore, rc1,2(G)+rc1,2(G) ≤ (n−3)+4 =340

n+ 1 < n+ 2.341

Case 2: Each cut vertex u of G satisfies that G−u has only two components.342

Let G1, G2 be the two components of G − u, and let ni be the number of343

vertices of Gi for i = 1, 2 with n1 ≤ n2. Since n ≥ 6, then n2 ≥ 2.344

Subcase 2.1: n1 ≥ 2. The complementary graph G \ u contains Kn1,n2
as345

a spanning subgraph. By Theorem 2.3, there is a coloring of Kn1,n2
with colors346

in [3], and we color the edges incident to u in G with color 4. This gives a (1, 2)-347

rainbow-path 4-coloring of G. As a result, rc1,2(G) + rc1,2(G) ≤ n − 3 + 4 =348

n+ 1 < n+ 2 as desired.349

Subcase 2.2: n1 = 1, i.e., each cut vertex of G is incident with a pendent350

edge.351

Since n ≥ 6, then n2 ≥ 4. Let {u1, u2, . . . , uℓ} be the set of all cut vertices of352

G, and let u1v1, u2v2, . . . , uℓvℓ be the pendent edges incident to these cut vertices353

in G. Set H = G \ {v1, v2, . . . , vℓ}, so H is 2-connected. By Theorem 2.4, we354

know that rc1,2(H) ≤ 5.355

G1 G2

v1

u1

v1

u1

G3

v1

u1

Figure 11. Graphs for the proof of Theorem 4.2.

If ℓ ≥ 2, then G \ {u1, u2} contains K2,n−4 as a spanning subgraph. By356

Theorem 2.3, there is a coloring of K2,n−4 using colors from [3], and we color357

the edges incident to u1 or u2 in G with color 4. One can easily check this is a358

(1, 2)-rainbow-path 4-coloring of G. Thus, rc1,2(G) + rc1,2(G) ≤ (n − 3) + 4 =359

n+ 1 < n+ 2.360

Thus, we may assume ℓ = 1, so rc1,2(G) ≤ rc1,2(H) + 1 ≤ 6. Since G is361

connected, then |NG(u1)| ≥ 1 and G contains G1, G2 or G3 (see Figure 11) as362

a spanning subgraph. We first suppose that G1 is a spanning subgraph of G.363

Let H1, . . . ,H5 be as in Figure 12. If G ∼= H1, then it is easy to verify that364

rc1,2(G) + rc1,2(G) = 3 + 3 = 6 < 8 = n+ 2 for n = 6 and rc1,2(G) + rc1,2(G) =365

4 + 3 = 7 < 9 = n + 2 for n = 7. If G ∼= H1 and n ≥ 8, the coloring depicted in366

Figure 12 shows that rc1,2(G) ≤ n− 4. In addition, if we color u1v1 with color 1,367
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other edges incident to u1 with color 2 and all other edges color 3 in G, then we368

get a (1, 2)-rainbow-path 3-coloring of G. Consequently, rc1,2(G) + rc1,2(G) ≤369

(n− 4) + 3 = n− 1 < n+ 2. Next we consider the situation H1 & G. Adding an370

edge to G1, we arrive at some graph in {H2, H3, H4, H5} depicted in Figure 12.371

If G ∼= H5, then rc1,2(G) ≤ n − 4 by the coloring in Figure 12. In order to372

color G, we color u1v1 with color 1 and other edges incident to u1 with color 2.373

Additionally, we color edges incident to x (y is the same) with colors 1, 3 such374

that both 1 and 3 appear and all other edges with color 2 in G. Thus, we get a375

(1, 2)-rainbow-path 3-coloring of G and so rc1,2(G) + rc1,2(G) ≤ 3 + (n − 4) =376

n − 1 < n + 2. If G is not isomorphic to H5, then G has H2, H3 or H4 as its377

spanning subgraph. As is depicted in Figure 12, rc1,2(Hi) ≤ n− 5 (2 ≤ i ≤ 4) for378

n ≥ 9. Therefore, rc1,2(G)+ rc1,2(G) ≤ 6+(n−5) = n+1 < n+2 for n ≥ 9. For379

the situation 6 ≤ n ≤ 8, we can verify the result depending on the circumference380

of H = G \ u1 similarly as above. Hence, if G1 is a spanning subgraph of G,381

then rc1,2(G) + rc1,2(G) < n + 2. By the same method, we can draw the same382

conclusion for G2 or G3 as a spanning subgraph of G. Therefore, we complete383

the proof.384

x

y v1

u1

4 4

2
3

rc1,2(H1) = n− 4

n− 4

1

3 3

1
2

rc1,2(H2) ≤ n− 5

n− 5

33

2

1 1

4

2

4

1

1 3

1
2

rc1,2(H3) ≤ n− 5

n− 5

44

3

2

4

1

H1 H2 H3

rc1,2(H5) = n− 4

x

y v1

u1

4 4

2
3

n− 4

13

2

1

H5

n− 5 2

1
1

rc1,2(H4) ≤ n− 5

n− 6

31

2

3

3

2

H4

1

Figure 12. Graphs for the proof of Theorem 4.2.
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