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Abstract

A tree T in an edge-colored graph is a proper tree if any two adjacent edges

of T are colored with different colors. Let G be a graph of order n and k be

a fixed integer with 2 ≤ k ≤ n. For a vertex set S ⊆ V (G), a tree containing

the vertices of S in G is called an S-tree. An edge-coloring of G is called a

k-proper coloring if for every set S of k vertices in G, there exists a proper

S-tree in G. The k-proper index of a nontrivial connected graph G, denoted

by pxk(G), is the smallest number of colors needed in a k-proper coloring of G.

In this paper, we state some simple observations about pxk(G) for a nontrivial

connected graph G. Meanwhile, the k-proper indices of some special graphs

are determined, and for every pair of positive integers a, b with 2 ≤ a ≤ b, a

connected graph G with pxk(G) = a and rxk(G) = b is constructed for each

integer k with 3 ≤ k ≤ n. Also, we characterize the graphs with k-proper

index n− 1 and n− 2, respectively.
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1. Introduction

In this paper, all graphs under our consideration are finite, undirected,
connected and simple. For more notation and terminology that will be used
in the sequel, we refer to [2], unless otherwise stated.

In 2008, Chartrand et al. [8] first introduced the concept of rainbow
connection. Let G be a nontrivial connected graph on which an edge-coloring
c : E(G) → {1, 2, . . . , k}(k ∈ N) is defined, where adjacent edges may be
colored with the same color. For any two vertices u and v of G, a path in G
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connecting u and v is abbreviated as a uv-path. A uv-path P is a rainbow
uv-path if no two edges of P are colored with the same color. The graph G

is rainbow connected (with respect to c) if G contains a rainbow uv-path for
every two vertices u and v, and the coloring c is called a rainbow coloring
of G. If k colors are used, then c is a rainbow k-coloring. The minimum k

for which there exists a rainbow k-coloring of the edges of G is the rainbow
connection number of G, denoted by rc(G). The topic of rainbow connection
is especially meaningful and numerous relevant papers have been written.
For more details see a survey [23] and a book [24].

Subsequently, a series of generalizations of rainbow connection number
were proposed. The k-rainbow index is one of them. An edge-colored tree T
is a rainbow tree if no two edges of T are assigned the same color. Let G be a
nontrivial connected graph of order n and let k be an integer with 2 ≤ k ≤ n.
A k-rainbow coloring of G is an edge coloring of G having the property that
for every set S of k vertices of G, there exists a rainbow tree T in G such that
S ⊆ V (T ). The minimum number of colors needed in a k-rainbow coloring of
G is the k-rainbow index of G. These concepts were introduced by Chartrand
et al. in [9], and were further studied in [4, 5, 10, 21, 22, 26].

In addition, a natural extension of the rainbow connection number is the
proper connection number, which was introduced by Borozan et al. in [3].
A path in an edge-colored graph is said to be properly edge-colored (or prop-
er), if every two adjacent edges on the path differ in color. An edge-colored
graph G is k-proper connected if any two vertices are connected by k internal-
ly pairwise vertex-disjoint proper paths. The k-proper connection number of
a k-connected graph G, denoted by pck(G), is defined as the smallest num-
ber of colors that are needed in order to make G k-proper connected. In
particular, when k = 1, the 1-proper connection number is abbreviated as
proper connection number and written as pc(G). For more results, we refer
to [1, 12, 13, 14, 15, 18, 25].

Inspired by the k-rainbow index and the proper connection number, a
natural idea is to introduce the concept of k-proper index. A tree T in an
edge-colored graph is a proper tree if any two adjacent edges of T are colored
with different colors. Let G be a graph of order n and k be a fixed integer
with 2 ≤ k ≤ n. For a vertex set S ⊆ V (G), a tree containing the vertices of
S in G is called an S-tree. An edge-coloring of G is called a k-proper coloring
if for every set S of k vertices in G, there exists a proper S-tree in G. The
k-proper index of a nontrivial connected graph G, denoted by pxk(G), is the
smallest number of colors needed in a k-proper coloring of G. By definition,
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px2(G) is precisely the proper connection number pc(G) for any nontrivial
graph G. As a variety of nice results about pc(G) have been obtained, we in
this paper only study pxk(G) for 3 ≤ k ≤ n.

The paper is organized as follows: In Section 2, some simple observa-
tions about pxk(G) for a nontrivial graph G are stated. Meanwhile, certain
necessary lemmas are also listed. In Section 3, the k-proper indices of some
special graphs are determined. And for every pair of positive integers a, b
with 2 ≤ a ≤ b, a connected graph G with pxk(G) = a and rxk(G) = b is
constructed for each integer k with 3 ≤ k ≤ n. In Section 4, the graphs with
k-proper index n− 1 and n− 2 are characterized, respectively.

2. Preliminaries

We, in this section, state some observations about pxk(G) for a nontrivial
graph G. Also, certain necessary lemmas are listed.

For a graph G of order n ≥ 3, it follows from the definition that

(∗) pc(G) = px2(G) ≤ px3(G) ≤ px4(G) ≤ · · · ≤ pxn(G).

This simple property will be used frequently later.
Since any k-proper coloring of a spanning subgraph must be a k-proper

coloring of its supergraph, then there exists a fundamental proposition about
spanning subgraphs.

Proposition 1. If G is a nontrivial connected graph of order n ≥ 3 and H

is a connected spanning subgraph of G, then pxk(G) ≤ pxk(H) for any k with
3 ≤ k ≤ n. In particular, pxk(G) ≤ pxk(T ) for every spanning tree T of G.

It has been seen in [9] that rxk(G) ≤ n − 1 for any graph G of order
n ≥ 3 and any integer k with 3 ≤ k ≤ n. Since a rainbow tree must be a
proper tree, then obviously pxk(G) ≤ rxk(G) ≤ n− 1. Moreover, this simple
upper bound is sharp, the graphs with pxk(G) = n− 1 will be characterized
in Section 4.

For any nontrivial graph G, χ′(G) denotes the edge-chromatic number
of G. It is well-known that either χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1
by Vizing’s Theorem, where ∆(G), or simply ∆, is the maximum degree of
G. Accordingly, a natural upper bound on pxk(G) with respect to these
parameters follows.
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Proposition 2. Let G be a connected graph of order n ≥ 3, the maximum
degree ∆(G) and the edge-chromatic number χ′(G). Then for each integer k

with 3 ≤ k ≤ n, we have

pxk(G) ≤ χ′(G) ≤ ∆(G) + 1.

In addition, there is a classical result about the edge-chromatic number
of a graph, which will be useful in the next section.

Lemma 1 ([2]). If G is bipartite, then χ′(G) = ∆(G).

For arbitrary k (k ≥ 3) vertices of a nontrivial graph G, any tree T

containing these vertices must contain internal vertices. While for any proper
tree T , there must be d(u) distinct colors assigned to the incident edges of
each vertex u in T , where d(u) denotes the degree of u in T . Hence, the
incident edges of any internal vertex must be assigned with at least two
distinct colors to make T proper. Then the following trivial lower bound is
immediate.

Proposition 3. For arbitrary connected graph G of order n ≥ 3, we have

pxk(G) ≥ 2

for any integer k with 3 ≤ k ≤ n.

Remark: The above lower bound of pxk(G) is sharp since there exist
many graphs satisfying pxk(G) = 2, as shown in Section 3. Further, we
believe that it will be interesting to characterize all graphs with k-proper
index 2 for specific values of k.

In any graphG, a path that contains every vertex ofG is called a Hamilton
path of G. A graph is traceable if it contains a Hamilton path. Bearing in
mind that Inequality (∗), the following is an immediate consequence of these
definitions, as well as Proposition 3.

Proposition 4. Let G be a connected graph of order n ≥ 3, then pxn(G) = 2
if and only if G is a traceable graph.

As mentioned before, characterizing all graphs with k-proper index 2 for
specific values of k would be interesting. Proposition 4 is essentially the case
of k = n. For the case of k = n − 1, there is a basic result that can be
presented.
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Observation 1. If a connected graph G of order n satisfies pxn−1(G) = 2,
then pxn(G) = 2 if and only if G is traceable. Otherwise, pxn(G) = 3.

It is well known that if G is a simple graph of order n ≥ 3 and minimum
degree δ ≥ n−1

2
, then G is traceable. Whereupon a direct corollary follows.

Corollary 1. If G is a simple graph of order n ≥ 3 and minimum degree
δ ≥ n−1

2
, then pxk(G) = 2 for each integer k with 3 ≤ k ≤ n.

In [9], Chartrand et al. derived the k-rainbow index of a nontrivial tree,
which will be helpful in the next section.

Lemma 2 ([9]). Let T be a tree of order n ≥ 3. For each integer k with
3 ≤ k ≤ n,

rxk(T ) = n− 1.

In [3], Borozan et al. established the proper connection number of trees.

Lemma 3 ([3]). If G is a tree then pc(G) = ∆(G).

At the end of this section, we recall several notations required in the
subsequent sections.

Let E ′ ⊆ E(G) be a set of edges of a graph G, then G[E ′] is the subgraph
of G induced by E ′. If e is an edge of G, then G − e denotes the graph
obtained from G by only deleting the edge e. If G is not complete, denote
by G+ e the graph obtained from G by the addition of e, where e is an edge
connecting two nonadjacent vertices of G.

3. The k-proper indices of special graphs

In this section, we determine the k-proper indices of complete graphs,
cycles, wheels, trees and unicyclic graphs. Moreover, the independence of
pxk(G) and rxk(G) is given by a brief theorem.

By Proposition 4, if G is a traceable graph, then pxk(G) = 2. Obviously,
the complete graphs, cycles and wheels are all traceable, thus the k-proper
indices of these graphs are direct consequences of Proposition 4.

Theorem 1. Let Kn, Cn and Wn be a complete graph, a cycle and a wheel
with n (n ≥ 3) vertices, respectively. Then for any integer k with 3 ≤ k ≤ n,
we have

pxk(Kn) = pxk(Cn) = pxk(Wn) = 2.
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Now we determine the k-proper index for a nontrivial tree.

Theorem 2. If T is a tree of order n ≥ 3, then for each integer k with
3 ≤ k ≤ n,

pxk(T ) = ∆(T ).

Proof. Firstly, since T is bipartite, then pxk(T ) ≤ χ′(T ) = ∆(T ) for 3 ≤
k ≤ n by Proposition 2 and Lemma 1. On the other hand, according to
Inequality (∗) and Lemma 3, pxk(T ) ≥ pc(T ) = ∆(T ) holds naturally for
3 ≤ k ≤ n. Therefore, we arrive at pxk(T ) = ∆(T ) for any integer k with
3 ≤ k ≤ n.

Combining with Proposition 1 and Theorem 2, one can check that the
following proposition holds.

Proposition 5. For any graph G of order n ≥ 3 and any integer k with
3 ≤ k ≤ n, we have

pxk(G) ≤ min{∆(T ) : T is a spanning tree of G}.

Since ∆(T ) ≤ ∆(G) for any spanning tree T of G, then the upper bound
in Proposition 2 can be replaced by ∆(G).

Proposition 6. Let G be a connected graph of order n ≥ 3 and maximum
degree ∆(G), then

pxk(G) ≤ ∆(G)

for each integer k with 3 ≤ k ≤ n.

Remark: The above upper bound of pxk(G) is sharp since the equality
clearly holds for any nontrivial tree.

In order to get the k-proper index of a unicyclic graph, an assistant lemma
is presented.

Lemma 4. Let G be a connected graph of order n ≥ 3 containing bridges
and v be any vertex of G. Denote by b(v) the number of bridges incident with
v. Set b = max{b(v) : v ∈ V (G)}. Then for each integer k with 3 ≤ k ≤ n,
we have pxk(G) ≥ b.

Proof. Since for 3 ≤ k ≤ n, it has been seen from Inequality (∗) that
pxk(G) ≥ px3(G), then we should only prove the case when k = 3. Since
px3(G) ≥ 2 by Proposition 3, the result is trivial when b = 1 or 2. Thus

6



we may assume that b ≥ 3. Let u be a vertex with b(u) = b = max{b(v) :
v ∈ V (G)}. Let F = {uw1, uw2, . . . , uwb} be the set of bridges incident with
u. Set A = {u, w1, w2, . . . , wb}. For any 3-set S = {wi, wj, u} ⊆ A, where
i, j ∈ {1, 2, . . . , b} and i 6= j, every S-tree T must contain the edges uwi and
uwj. Hence, the edges uwi and uwj receive distinct colors to make T proper,
which implies that the edges uw1, uw2, . . . , uwb need b distinct colors in any
3-proper coloring of G. Therefore, px3(G) ≥ b. This completes the proof.

With the aid of Lemma 4, now we are able to deal with the k-proper
index for a unicyclic graph.

Theorem 3. Let G be a unicyclic graph of order n ≥ 3, and maximum degree
∆(G). Then, for each integer k with 3 ≤ k ≤ n,

pxk(G) = ∆(G)− 1

when G contains at most two vertices having maximum degree such that the
vertices with maximum degree are all in the unique cycle of G and these two
vertices (if both exist) are adjacent;
Otherwise,

pxk(G) = ∆(G).

Proof. Note that when G = Cn, it follows from Theorem 1 that pxk(G) =
pxk(Cn) = 2 = ∆(G) for 3 ≤ k ≤ n. Thus in the following we assume
that G is not a cycle. And assume the vertices in the unique cycle of G are
u1, u2, . . . , ug. Also keep in mind that pxk(G) ≤ ∆(G) for 3 ≤ k ≤ n, which
will be used later. As before, denote by b(v) the number of bridges incident
with the vertex v. The discussion is divided into three cases.

Case 1. At first, assume that G contains a vertex, say u, satisfying
(1) the degree of u is d(u) = ∆(G).
(2) u is not in the cycle of G.

Then the incident edges of u are all bridges, i.e., b(u) = d(u) = ∆(G).
According to Lemma 4, we directly have pxk(G) ≥ b(u) = ∆(G) for 3 ≤
k ≤ n. Meanwhile, Proposition 6 guarantees pxk(G) ≤ ∆(G) for 3 ≤ k ≤ n.
Accordingly, we get pxk(G) = ∆(G) for each integer k with 3 ≤ k ≤ n in
this case.

By Case 1, if such a vertex u exists in G, then we always have pxk(G) =
∆(G) for each integer k with 3 ≤ k ≤ n. To avoid redundant presentation,
we in the following suppose that G contains no such vertices.

Case 2. Now assume G simultaneously satisfies
(3) G contains at most two vertices having maximum degree;
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(4) the vertices with maximum degree are all in the unique cycle of G;
(5) these two vertices (if both exist) are adjacent in G.

Then without loss of generality, suppose that d(u1) = ∆(G), d(u2) ≤
∆(G) and d(u) < ∆(G) for any other vertex u. Moreover, suppose that
the neighbors of u1 are v1, v2, . . ., v∆(G)−2, v∆(G)−1 = u2 and v∆(G) = ug.
Thereupon, in any 3-proper coloring c of G, based on the proof of Lemma
4, the edges u1vi with i ∈ {1, 2, . . . ,∆(G) − 2} are assigned with ∆(G) − 2
distinct colors since they are all bridges incident with u1. Without loss
of generality, suppose that c(u1v1) = 1, c(u1v2) = 2, . . ., c(u1v∆(G)−2) =
∆(G) − 2. Further, we claim that at least one new color is used by the
edges u1u2 and u1ug. For otherwise, suppose that c(u1u2) = i and c(u1ug) =
j with i, j ∈ {1, 2, . . . ,∆(G) − 2}. If i = j, then there exists no proper
tree containing the vertices u1, u2 and vi, a contradiction. If i 6= j, then
there exists no proper tree containing the vertices vi, vj and u2, again a
contradiction. Therefore, at least ∆(G)−2+1 = ∆(G)−1 different colors are
used by c. It follows that px3(G) ≥ ∆(G)− 1. Thus, Inequality (∗) deduces
that pxk(G) ≥ px3(G) ≥ ∆(G)−1 for each integer k with 3 ≤ k ≤ n. On the
other hand, obviously G−u1u2 is a spanning tree of G with maximum degree
∆(G) − 1. By Theorem 2, we know that pxk(G − u1u2) = ∆(G − u1u2) =
∆(G)− 1 for 3 ≤ k ≤ n. Consequently, pxk(G) ≤ pxk(G−u1u2) = ∆(G)− 1
based on Proposition 1. To sum up, we obtain pxk(G) = ∆(G)− 1 for each
integer k with 3 ≤ k ≤ n in this case.

Case 3. Finally, we discuss the case when G contains at least two vertices
ui and uj such that
(6) d(ui) = d(uj) = ∆(G);
(7) both ui and uj are in the cycle of G;
(8) ui and uj are not adjacent in G.

Then we claim that px3(G) ≥ ∆(G). Assume to the contrary, px3(G) ≤
∆(G)−1. Let c′ be a 3-proper coloring ofG using colors from {1, 2, . . . ,∆(G)−
1}. Let the neighbors of ui be w1, w2, . . ., w∆(G)−2, w∆(G)−1 = ui−1, w∆(G) =
ui+1, and the neighbors of uj be z1, z2, . . ., z∆(G)−2, z∆(G)−1 = uj−1, z∆(G) =
uj+1. Similarly to Case 2, the edges uiwt with t ∈ {1, 2, . . . ,∆(G) − 2} are
assigned with ∆(G) − 2 distinct colors. Without loss of generality, suppose
that c′(uiw1) = 1, c′(uiw2) = 2, . . ., c′(uiw∆(G)−2) = ∆(G) − 2. Thus, ei-
ther c′(uiui−1) = c′(uiui+1) = ∆(G) − 1, or there exists at least one edge
between uiui−1 and uiui+1, say uiui−1, such that c′(uiui−1) = x1 with x1 ∈
{1, 2, . . . ,∆(G)− 2}. Similarly, the edges ujzt with t ∈ {1, 2, . . . ,∆(G)− 2}
also receive ∆(G) − 2 distinct colors. And for the edges ujuj−1 and ujuj+1,
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either c′(ujuj−1) = c′(ujuj+1), or there exists at least one of them, say ujuj+1,
such that c′(ujuj+1) = c′(ujzx2

) with x2 ∈ {1, 2, . . . ,∆(G)− 2}.
(i) If c′(uiui−1) = c′(uiui+1) and c′(ujuj−1) = c′(ujuj+1), then there exists no
proper tree containing the vertices ui−1, ui+1 and w1, a contradiction.
(ii) If c′(uiui−1) = c′(uiui+1) and c′(ujuj+1) = c′(ujzx2

) with x2 ∈ {1, 2, . . . ,∆(G)−
2}, then there exists no proper tree containing the vertices uj+1, uj and zx2

,
a contradiction.
(iii) If c′(uiui−1) = x1 with x1 ∈ {1, 2, . . . ,∆(G) − 2} and c′(ujuj−1) =
c′(ujuj+1), then there exists no proper tree containing the vertices ui−1, ui

and wx1
, a contradiction.

(iv) If c′(uiui−1) = x1 with x1 ∈ {1, 2, . . . ,∆(G) − 2} and c′(ujuj+1) =
c′(ujzx2

) with x2 ∈ {1, 2, . . . ,∆(G) − 2}, then there exists no proper tree
containing the vertices wx1

, ui−1 and zx2
, a contradiction.

In summary, we verify that px3(G) ≥ ∆(G), which deduces that pxk(G) ≥
px3(G) ≥ ∆(G) for 3 ≤ k ≤ n. Combining with pxk(G) ≤ ∆(G) for 3 ≤ k ≤
n, we at last arrive at pxk(G) = ∆(G) for each integer k with 3 ≤ k ≤ n in
this case.

The proof of this theorem is finished.
We conclude this section with a simple theorem to address the indepen-

dence of pxk(G) and rxk(G). Notice that pxk(G) ≤ rxk(G) always holds, thus
we can construct a connected graph G with pxk(G) = a and rxk(G) = b,
where a ≤ b.

Theorem 4. For every pair of positive integers a, b with 2 ≤ a ≤ b, there
exists a connected graph G such that pxk(G) = a and rxk(G) = b for each
integer k with 3 ≤ k ≤ n.

Proof. For each pair of positive integers a, b with 2 ≤ a ≤ b, let G be a
nontrivial tree of order n = b + 1 and maximum degree ∆(G) = a. The
existence of such a tree is guaranteed by 2 ≤ a ≤ b. Then based on Theorem
2 and Lemma 2, we know that pxk(G) = ∆(G) = a and rxk(G) = n− 1 = b

for each integer k with 3 ≤ k ≤ n. The proof is thus complete.

4. Graphs with k-proper index n − 1, n − 2

In this section, we are going to characterize the graphs whose k-proper
index equals to n− 1 and n− 2, respectively, where 3 ≤ k ≤ n. First of all,
we give the following lemma that will be used in the sequel.
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Lemma 5. For n ≥ 5, let S+
n be the graph of order n obtained by adding a

new edge to the n-vertices star Sn, and S++
n be the graph of order n obtained

by adding a new edge to S+
n . Then we have pxk(S

++
n ) ≤ n−3 for each integer

k with 3 ≤ k ≤ n.

Proof. Let V (S+
n ) = V (S++

n ) = {u, v1, v2, . . . , vn−1}. Without loss of gener-
ality, set dS+

n

(u) = dS++
n

(u) = n− 1 and dS+
n

(v1) = dS+
n

(v2) = 2. Further, let
e be the edge of S++

n added to S+
n . We split the remaining proof into the

following two cases depending on the position of e.
Case 1. The edges e and v1v2 are vertex-disjoint. Without loss of gen-

erality, let e = v3v4. Then, G′ = G − uv1 − uv3 is a spanning tree of S++
n

with maximum degree n − 1 − 2 = n − 3. It follows from Theorem 2 that
pxk(G

′) = ∆(G′) = n− 3 for 3 ≤ k ≤ n. Hence, Proposition 1 deduces that
pxk(S

++
n ) ≤ pxk(G

′) = n− 3 for each integer k with 3 ≤ k ≤ n.
Case 2. The edges e and v1v2 have a common vertex. Without loss of

generality, let e = v2v3. Then, G
′′ = G− uv2− uv3 is a spanning tree of S++

n

with maximum degree n−1−2 = n−3. Similarly, pxk(G
′′) = ∆(G′′) = n−3

for 3 ≤ k ≤ n. Hence, we can also get pxk(S
++
n ) ≤ pxk(G

′′) = n− 3 for each
integer k with 3 ≤ k ≤ n.

Combining the above two cases, now the lemma follows.

Theorem 5. Let G be a connected graph of order n (n ≥ 4). Then for each
integer k with 3 ≤ k ≤ n, we have pxk(G) = n − 1 if and only if G ∼= Sn,
where Sn is the star of order n.

Proof. Firstly, if G ∼= Sn, then by Theorem 2, we directly obtain pxk(G) =
pxk(Sn) = ∆(Sn) = n− 1 for 3 ≤ k ≤ n.

Conversely, suppose G is a connected graph with pxk(G) = n−1 for each
integer k with 3 ≤ k ≤ n. Since n − 1 = pxk(G) ≤ ∆(G) by Proposition
6, meanwhile ∆(G) ≤ n − 1 holds for any simple graph of order n. Then,
∆(G) = n−1. The hypothesis is true ifG ∼= Sn. IfG ≇ Sn, let u be a vertex of
G with d(u) = ∆(G) = n−1. Let V (G)\u = {v1, v2, . . . , vn−1} denote the set
of the remaining vertices in G. Since G ≇ Sn, there exist at least two vertices,

say v1 and v2, such that they are adjacent in G. Set G′ = G[
n−1⋃

i=1

uvi] + v1v2.

Then, as n ≥ 4, G′ is a unicyclic graph satisfying the conditions in Case 2 of
Theorem 3 with maximum degree n−1. Hence, pxk(G

′) = ∆(G′)−1 = n−2
by Theorem 3. Certainly, G′ is a spanning subgraph of G, therefore pxk(G) ≤
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pxk(G
′) = n− 2 for 3 ≤ k ≤ n according to Proposition 1, contradicting our

assumption that pxk(G) = n− 1. Consequently, G ∼= Sn.
The proof is thus complete.
Remark: If G is a connected graph of order n = 3, then one can check

that px3(G) = n− 1 = 2 if and only if G ∼= S3 or G ∼= C3.

Theorem 6. Let G be a connected graph of order n (n ≥ 5). Then for each
integer k with 3 ≤ k ≤ n, we have pxk(G) = n− 2 if and only if G ∼= S+

n or
G0, where S+

n is defined in Lemma 5 and G0 is shown in Figure 1.

Proof. On one hand, if G ∼= S+
n , then G is a unicyclic graph with maximum

degree n−1 satisfying the conditions in Case 2 of Theorem 3. Thus pxk(G) =
pxk(S

+
n ) = ∆(G) − 1 = n − 2 for 3 ≤ k ≤ n. If G ∼= G0, then G is a tree

of order n ≥ 5 and maximum degree n − 2. Accordingly, by Theorem 2,
pxk(G) = pxk(G0) = ∆(G) = n− 2 for 3 ≤ k ≤ n.

On the other hand, if pxk(G) = n − 2, then by Proposition 6, ∆(G) ≥
pxk(G) = n − 2, which means that ∆(G) = n − 2 or n − 1. The remaining
proof is divided into two cases depending on the value of ∆(G).

Case 1. ∆(G) = n− 1.
In this case, since pxk(Sn) = n − 1 for 3 ≤ k ≤ n, as shown before, then
G must contain S+

n as a connected spanning subgraph. If G ∼= S+
n , we

have known that pxk(S
+
n ) = n − 2 for 3 ≤ k ≤ n. Now suppose G ≇ S+

n .
Then there exists a connected spanning subgraph with the form of S++

n in
G. Applying Proposition 1 together with Lemma 5, we arrive at pxk(G) ≤
pxk(S

++
n ) ≤ n− 3, a contradiction. Hence, G ∼= S+

n in this case.
Case 2. ∆(G) = n− 2.

Then G0 must be a connected spanning subgraph of G. If G ∼= G0, then
pxk(G0) = n − 2 for 3 ≤ k ≤ n. If G ≇ G0, then there exists at least one
edge e ∈ E(G) \ E(G0). Thus, G contains a connected spanning subgraph
isomorphic to G1, G2 or G3, where G1, G2 and G3 are shown in Figure 1.
Clearly, one can check that G1, G2 and G3 are all unicyclic graphs with
maximum degree n − 2 satisfying the conditions in Case 2 of Theorem 3.
Thereupon, by Theorem 3 as well as Proposition 1, we directly get that
pxk(G) ≤ pxk(Gi) = ∆(Gi) − 1 = n − 3 for 3 ≤ k ≤ n and i = 1, 2 or 3,
which is a contradiction. Accordingly, G ∼= G0 in this case.

In summary, if pxk(G) = n − 2 for 3 ≤ k ≤ n, then G ∼= S+
n or G ∼= G0.

And the proof of this theorem is complete.
Remark: When n = 4, except for the star S4, other connected graphs

of order 4 are all traceable. Then by Proposition 4, the k-proper indices of
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these graphs equal to 2 = n − 2 for each integer k with 3 ≤ k ≤ 4. While
for the star S4, we know that pxk(S4) = 3 for 3 ≤ k ≤ 4. Consequently, we
can easily claim that if G is a connected graph of order n = 4, then for each
integer k with 3 ≤ k ≤ 4, pxk(G) = n− 2 = 2 if and only if G ≇ S4.

v1 v2 v3 vn−2

u

w

· ··

G1

v1 v2 v3 vn−2

u

w

· · ·

G2

v3 v4 v1 v2 v3 vn−2

u

w

· ··

G3

v1 v2 v3 vn−2

u

w

· ··

G0

Figure 1: The graphs Gi for i = 0, 1, 2, 3.
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