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Abstract Agraph is called 2-planar if it can be drawn in the plane such that each edge
is crossed by at most other two edges. The weight of an edge is the sum of degrees of
its ends. In the present paper, we focus on 3-connected 2-planar graphs with minimum
degree 6 and show the existence of edges with weight at most 30 by a discharging
process.
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1 Introduction

All graphs considered in this paper are finite, simple, undirected, and connected. We
follow [1] for the notation and terminology not defined here.

Let G be a graph. We denote by V(G), E(G), and δ(G) the vertex set, edge set, and
minimum degree of G, respectively. A vertex of G is called a k-vertex if it has degree
k in G. The weight of an edge in G is defined as the sum of degrees of its ends. An
edge of G is called a light edge if it has the minimum weight. (In some earlier papers,
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“light edge” is defined as an edge with weight 13. But in [9], the meaning of “light
edge” is changed, and in the present paper, we use the definition in [9].)

The interest of light edges stemmed from a result of Kotzig [11], which says that
every 3-dimensional polyhedral graph (i.e., 3-connected planar graph) contains an
edge with weight at most 13, and at most 11 in the absence of 3-vertex. These bounds
are sharp and one can see that by some appropriate iteration of the icosahedron and
the dodecahedron. On basis of the work of Grünbaum [8], Erdős conjectured that
Kotzig’s conclusion holds for every planar graph with minimum degree at least 3.
This conjecture was proved by Barnette (unpublished, see [8]) and by Borodin [3] in
1989 independently. For more results in this topic, the reader may refer [10].

Let G be a graph. A drawing of G means a representation of it on the plane such
that (1) the vertices are represented by distinct points of the plane; (2) every edge is
represented by a Jordan arc connecting the ends of this edge but not passing through
any other vertex; and (3) any two edges have finite crossings in common, and any three
edges have not crossings in common. Let k be a nonnegative integer. A drawing of G
is called k-planar if each edge is crossed by at most k other edges, and G is a k-planar
graph if it admits a k-planar drawing.

Interest in k-planar graphs stems from theworkon a coloringproblemofRingel [12],
who considered a simultaneous vertex-face coloring of plane graphs and conjectured
that, for this type of coloring, 6 colors suffice (note that this coloring corresponds
to a regular coloring of underlying vertex-face adjacency/incidence graph which is
1-planar). Ringel’s Conjecture was proved by Borodin in [2,3] through different
approaches. Since then, the study on k-planar graphs has received considerable atten-
tion in the literature (see, for example, [4,6,7,13–16]).

In 2007, Fabrici and Madaras [7] showed that each light edge in a 3-connected
1-planar graph has weight at most 40. As observed in [7], the bound 40 may not be
the best. For a 1-planar graph G with δ(G) ≥ 4, Hudák and Šugerek [9] proved that
every light edge in G has weight no more than 17, and in particular, each light edge
has weight 14 if further δ(G) > 4.

In this paper, we focus on the light edges of 2-planar graphs and prove the following
result.

Theorem 1.1 If G is a 3-connected 2-planar graph with δ(G) ≥ 6, then there is an
edge of G with ends of degree at most 15; in particular, each light edge of G has weight
at most 30.

2 Proof of Theorem 1.1

Suppose that there are counterexamples to Theorem 1.1. Choose a counterexample
G on a given number, say n, of vertices such that G has maximum number of edges.
Let D be an optimal 2-planar drawing of G, that is, D has the minimum number of
crossings. Construct a plane graph D× from D by identifying every crossing with a
new 4-vertex. In the resulting graph D×, those new 4-vertices are called false vertices
and the other vertices are called true vertices.

By [13, Lemma 1.1], we always assume that, for an optimal 2-planar drawing, every
pair of edges has at most one point in common, where “one point” may be a vertex
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or a crossing. Thus D× is a simple graph. Moreover, it is easy to show that D× is
2-connected, and so each face has a cycle of D× as boundary.

LetV andF be the vertex set and face set of D×, respectively. For v ∈ V and f ∈ F ,
denote by deg(v) and deg( f ) the degree of v and the size of f in D×, respectively. A
face f ∈ F is called a d-face if deg( f ) = d.

For every d-vertex v ∈ V = V (D×), the edges in D× incident with v form a d-tuple
in the anticlockwise order around v, which results a d-tuple, denoted by T (v), of the
neighbors of v.

Since G is a counterexample to Theorem 1.1, we know that for every uu′ ∈ E(G),
one of u and u′ must have degree at least 16. For convenience, we call a vertex v ∈ V
a big vertex if deg(u) ≥ 16, and a small vertex otherwise.

Denote by W the set of false vertices in D×.
Lemma 2.1 Let u be a big vertex and T (u) = (v1, v2, . . . , vd), where d = deg(u).
Suppose that there are 1 ≤ i ≤ d and 0 ≤ r ≤ d−1 such that vi , vi+1, . . . , vi+r ∈ W,
where the subscripts take modulo d. Then r = 0 or 1.

Proof Without loss of generality, we assume that v1, . . . , v1+r ∈ W for some 1 ≤
r ≤ d − 1. We shall show r = 1. Consider the drawing D of G.

Take two edges uu1 and u′u′
1 of G which cross each other in D at v1. Since D is a

2-planar drawing, we may assume that u′v1 ∈ E(D×). Suppose that there is no edge
inG joins u and u′. Then we may get a 2-planar drawing of some graph G1 fromD by
adding a suitable Jordan arc connecting the points u and u′. Note that u is a big vertex.
Then we get a counterexample G1 to Theorem 1.1; however, |E(G1)| = |E(G)| + 1,
which contradicts the choice of G. Therefore, uu′ ∈ E(G); in particular, u′ is a
neighbor of u in D×.

Recalling thatD is an optimal 2-planar drawing ofG, we conclude that uu′ contains
no crossings. Then uu′v1u is a 3-cycle of D×. Assume that u1 lies outside the 3-cycle
uu′v1u. If the interior of uu′v1u contains some vertices of D×, then they must contain
true vertices, and so we get a 2-vertex-cut {u, u′} of G, a contradiction. Then we have
a face f1 (of D×) with boundary uu′v1u. By the definition of T (u), we have u′ = vd
as v2 ∈ W and u′ is a true vertex.

Let f2 be the other face of D× incident with uv1. Then f2 is incident with v2.
Let k = deg( f2). Since G is 3-connected, D× is 2-connected. Thus the bound-
ary of every face of D× is a cycle. Assume that the boundary of f2 is a k-cycle
x1, x2, x3, . . . , xk−1, xkx1, where x1 = u, x2 = v1, and xk = v2. Without loss of
generality, we assume that f2 is a bounded face. Suppose that xk−1 is a true vertex
(so k ≥ 4). Then we claim that uxk−1 ∈ E(G). If not, then we may get a 2-planar
drawing of some graph G2 from D by adding a Jordan arc in the interior of f2 con-
necting the points u and xk−1, thus uxk−1 ∈ E(G). Since f2 is a face, uxk−1 is located
outside f2. Moreover, uxk−1 has no crossing; otherwise, we can redraw uxk−1 in the
interior of f2 to loss this crossing. Since f2 is a face, uv2 and v2xk−1 have no crossing.
Thus uv2xk−1u is a cycle of D×. Note that there are some true vertices in the two
sides of uv2xk−1u. That means {u, xk−1} is a 2-vertex-cut of G, which contradicts the
3-connectivity of G. Therefore, xk−1 is a false vertex. Then there is an edge u′′u′′

1 of
G such that the edge xkxk−1 of D× is contained in u′′u′′

1 in the drawing D. Assume
that u′′, xk, xk−1, and u′′

1 lie on edge u′′u′′
1 in succession. Note that D is a 2-planar
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drawing. Then u′′xk is an edge of D×. Since uv2, u′′v2 ∈ E(D×), there is no crossing
lying inside uv2 and u′′v2, respectively.

Suppose that there is no edge in G joins u and u′′. Then we may get a 2-planar
drawing of some graph G3 from D by adding a suitable Jordan arc connecting the
points u and u′′. Note that u is a big vertex. Then we get a counterexample G3 to
Theorem 1.1; however, |E(G3)| = |E(G)| + 1, which contradicts the choice of G.
Therefore, uu′′ ∈ E(G); in particular, u′′ is a neighbor of u in D×.

Recalling thatD is an optimal 2-planar drawing ofG, we conclude that uu′′ contains
no crossings. Then uu′′v2u is a 3-cycle of D×. Assume that u′′

1 lies outside uu′′v2u.
If the interior of uu′′v2u contains some vertices of D×, then they must contain true
vertices, and so we get a 2-vertex-cut {u, u′′} of G, a contradiction. Then we have a
face f3 (of D×) with boundary uu′′v2u. By the definition of T (u), we have u′′ = v3.
Hence r = 1. ��

For a true vertex u, denote by degt (u) the number of true neighbors of u in D×.
Then, by Lemma 2.1, the following corollary holds.

Corollary 2.2 If u is a big vertex, then degt (u) ≥
⌈
deg(u)

3

⌉
≥ 6.

We shall use a discharging method on D× to deduce a contradiction. Assign the
initial charge by

c(x) =
{
deg(x) − 6, if x ∈ V = V (D×);
2 deg(x) − 6, if x ∈ F = F(D×).

Then we get the following equation according to Euler polyhedral formula,

∑
x∈V∪F

c(x) =
∑
v∈V

(deg(v) − 6) +
∑
f ∈F

(2 deg( f ) − 6) = −12 < 0. (1)

Next we redistribute the charge values c(x), x ∈ V ∪ F by two rules such that the
total charge sum remains the same. For a face f ∈ F , denote by degt ( f ) the number
of true vertices incident with f .

Rule 1 Every true vertex u with deg(u) > degt (u) sends deg(u)−6
deg(u)−degt (u)

to every
false neighbor.
Rule 2 Every face f with deg( f ) > degt ( f ) sends

2 deg( f )−6
deg( f )−degt ( f )

to every incident
false vertex.

Denote by c′ the resulting charge after the application of Rules 1 and 2. Let W
be the set of false vertices of D×. Then for x ∈ (V \ W ) ∪ F , either c′(x) = 0 or
deg(x) = degt (x) and c′(x) = c(x). Thus

∑
w∈W

c′(w) ≤
∑

x∈V∪F

c′(x) =
∑

x∈V∪F

c(x) < 0. (2)
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Next we shall deduce a contradiction by proving

∑
w∈W

c′(w) ≥ 0.

Consider the subgraph D×[W ] of D× induced by W. Since D is a 2-planar draw-
ing, we know that every vertex of D×[W ] has degree at most 2. Recalling that D×
is simple, every component of D×[W ] is either a path or a cycle of length at least
three.

Lemma 2.3 Let H be a component of D×[W ]. If H is a cycle, then

∑
w∈V (H)

c(w) ≥ 0.

Proof Note that all vertices of H are false. Since D is an optimal 2-planar drawing of
G, we conclude that H, as a cycle of D×, is the boundary of a face f of D×.

Let H = w1w2 · · ·wsw1, where s ≥ 3 (since D× is simple, by [13, Lemma 1.1]).
Take edges uiu′

i+1 ∈ E(G) such that uiu′
i+1 crosses ui−1u′

i and ui+1u′
i+2 at wi and

wi+1, respectively, where the subscripts take modulo s. Denote by f{i,i+1} the face
of D× other than f which is incident with wiwi+1, reading the subscripts modulo s.
Without loss of generality, we assume that f{i,i+1} is incident with u′

i and ui+1. Let
fi be the face of D× incident with ui , u′

i , and wi , see Fig. 1. (Note that some vertices
may be identical.) Then

c′(wi ) = c(wi ) + deg(ui ) − 6

deg(ui ) − degt (ui )
+ deg(u′

i ) − 6

deg(u′
i ) − degt (u

′
i )

+ 2 deg( f ) − 6

deg( f ) − degt ( f )
+ 2 deg( fi ) − 6

deg( fi ) − degt ( fi )

+ 2 deg( f{i,i+1}) − 6

deg( f{i,i+1}) − degt ( f{i,i+1})
+ 2 deg( f{i−1,i}) − 6

deg( f{i−1,i}) − degt ( f{i−1,i})

Fig. 1 The case where the
component of (D×[W ]) is a
cycle
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= −6

s
+ deg(ui ) − 6

deg(ui ) − degt (ui )
+ deg(u′

i ) − 6

deg(u′
i ) − degt (u

′
i )

+ 2 deg( fi ) − 6

deg( fi ) − degt ( fi )
+ 2 deg( f{i,i+1}) − 6

deg( f{i,i+1}) − degt ( f{i,i+1})

+ 2 deg( f{i−1,i}) − 6

deg( f{i−1,i}) − degt ( f{i−1,i})
.

Let

� =
s∑

i=1

( deg(ui ) − 6

deg(ui ) − degt (ui )
+ deg(u′

i ) − 6

deg(u′
i ) − degt (u

′
i )

)
,

� =
s∑

i=1

2 deg( fi ) − 6

deg( fi ) − degt ( fi )
,

� =
s∑

i=1

( 2 deg( f{i,i+1}) − 6

deg( f{i,i+1}) − degt ( f{i,i+1})
+ 2 deg( f{i−1,i}) − 6

deg( f{i−1,i}) − degt ( f{i−1,i})

)
.

Then

∑
w∈V (H)

c′(w) =
s∑

i=1

c′(wi ) = −6 + � + � + �.

SinceG is a counterexample to Theorem 1.1, we have δ(G) ≥ 6 (that is a condition
of Theorem 1.1, on Page 2), thus for every true vertex v, we have

deg(v) − 6

deg(v) − degt (v)
≥ 0.

By Corollary 2.2, for every big vertex u, we have

deg(u) − 6

deg(u) − degt (u)
≥ 1.

Since G is a counterexample to Theorem 1.1, for each i, one of ui and u′
i+1 is a big

vertex. Thus,

max
{ deg(ui ) − 6

deg(ui ) − degt (ui )
,

deg(u′
i+1) − 6

deg(u′
i+1) − degt (u

′
i+1)

}
≥ 1.

Thus � ≥ s and then

∑
w∈V (H)

c′(w) = −6 + � + � + � ≥ s − 6 + � + �.
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Note that, for each i and f ′ ∈ { fi , f{i,i+1}}, degt ( f ′) ≥ 2. Thus, either deg( f ′) = 3
or

2 deg( f ′) − 6

deg( f ′) − degt ( f ′)
≥ 2 − 2

deg( f ′) − 2
≥ 1.

It implies that

∑
w∈V (H)

c′(w) ≥ s − 6 + φ + 2ψ,

where φ is the number of the faces fi with deg( fi ) ≥ 4 and ψ is the number of the
faces f{i,i+1} with deg( f{i,i+1}) ≥ 4.

If s = 3 then it is easy to check that every face f{i,i+1} has size at least 4 (since two
edges of G incident with the same vertex do not cross in D, by [13, Lemma 1.1]), and
hence ψ = 3 and

∑
w∈V (H)

c′(w) ≥ 3 − 6 + φ + 3 ≥ 0.

If s = 4 then ψ ≥ 2, and so

∑
w∈V (H)

c′(w) ≥ 4 − 6 + φ + 2 ≥ 0.

If s ≥ 6 then

∑
w∈V (H)

c′(w) ≥ 6 − 6 + φ + 2ψ ≥ 0.

We assume next that s = 5. If φ + 2ψ ≥ 1 then

∑
w∈V (H)

c′(w) ≥ 5 − 6 + φ + 2ψ ≥ 0.

Thus we assume further that φ = ψ = 0, and so {u1, u2, u3, u4, u5} =
{u′

1, u
′
2, u

′
3, u

′
4, u

′
5}. Moreover, it is easy to check that {u1, u2, u3, u4, u5} contains

at least three big vertices. Then

∑
w∈V (H)

c′(w) = −6 + � = −6 + 2
5∑

i=1

deg(ui ) − 6

deg(ui ) − degt (ui )
≥ −6 + 6 = 0.

��
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Lemma 2.4 Let P be a component of D×[W ]. Assume that P := w1 · · · ws is a
path. Then c′(w1) ≥ 2

3 , c
′(ws) ≥ 2

3 and c′(w j ) ≥ − 1
3 for 2 ≤ j ≤ s − 1. If further

c′(w j ) < 1
3 and c

′(w j+1) < 1
3 for some j , then either c′(w j+2) ≥ 2

3 or c
′(w j−1) ≥ 2

3 .
In particular,

∑
w∈V (P)

c′(w) ≥ 0.

Proof Let e0, e1, e2, . . . , es be s + 1 edges of G such that e j−1 and e j cross at w j

where 1 ≤ j ≤ s. For j ∈ {1, 2, . . . , s}, denote by y j and x j+1 the two ends of e j such
thatw j is adjacent to x j and y j in D×, denote by f j the face incident with y j , w j , x j ,
denote by f{ j, j+1} the face incident with x j , w j , w j+1, denote by f ′{ j, j+1} the face
incident with w j , w j+1, w j−1 and denote by f ′

j the face incident with w j but other
than f j , f{ j, j+1} and f ′{ j, j+1}, see Fig. 2. (Note that some vertices may be identical.)

Assume that s = 1. Then e1 does not cross edges other than e0. Recall that for each
edge of G, at least one of its ends is big. Then either {y0, y1, x1, x2} contains three big
vertices, or {y0, y1, x1, x2} contains exactly two big vertices and w1 is incident with
some face f of D× which has size at least 4. Note there are at least two true vertices
incident to f. Then f sends at least 1 to w1. Thus we have c′(w1) ≥ −2 + 3 = 1.

Assume that s ≥ 2. For each 1 ≤ j ≤ s − 1, consider the two faces of D× incident
withw jw j+1, i.e., f{ j, j+1} and f ′{ j, j+1}. Then one of these faces, say f{ j, j+1}, has size
at least 4 (since two edges ofG incident with the same vertex do not cross inD, by [13,
Lemma 1.1]). Moreover, since P is a path, f{ j, j+1} is incident at least one true vertex.
Thus f{ j, j+1} sends at least

2 deg( f{ j, j+1})−6
deg( f{ j, j+1})−1 ≥ 2

3 tow j andw j+1, respectively ( f{ j, j+1}
and f{ j−1, j} may be the same face). Next compute c′(w j ) where j = 1, 2, . . . , s.

Let f1 and f ′
1 be the faces of D× incident with w1 than f{1,2} and f ′{1,2}. Then

either w1 is adjacent to at least two big vertices or w1 is adjacent to one big vertex
and one of f1 and f ′

1, say f1, has size at least 4. Noting that degt ( f1) ≥ 2, we have
c′(w1) ≥ −2 + 2

3 + 1 + 1 = 2
3 . Similarly, we have c′(ws) ≥ 2

3 .

(a) (b)

Fig. 2 The case where the component of (D×[W ]) is a path
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Fig. 3 The case where the sizes of ( f ′
j ), ( f{ j, j+1}) and ( f ′{ j+1}) are three

To complete the proof, we let s ≥ 3. For each 2 ≤ j ≤ s − 2, consider w j . Then
either deg( f j ) ≥ 4 or one of x j and y j is big. Since degt ( f j ) ≥ 2, we know that x j ,
y j and f j send totally at least 1 to w j . Thus we have c′(w j ) ≥ −2 + 2

3 + 1 = − 1
3 .

Finally, assume that c′(w j ) < 1
3 and c′(w j+1) < 1

3 for some j. Clearly, 2 ≤ j ≤
s − 2, and there are two cases (a) and (b) as shown in Fig. 2. Consider the case of
(b). Both of f{ j, j+1} and f ′{ j, j+1} send at least

2
3 to w j , and x j , y j and f j send totally

at least 1 to w j , thus c′(w j ) ≥ −2 + 2
3 + 2

3 + 1 = 1
3 , a contradiction. Consider

the case of (a). Since P is a path of D× and 2 ≤ j ≤ s − 2, w j−1 	= w j+2. Thus
deg( f ′{ j, j+1}) ≥ 4. Again, since P is a path of D×, there is at least one true vertex

incident with f ′{ j, j+1}. Thus f ′{ j, j+1} sends at least 2
3 to w j . Then both of f ′

j and

f{ j, j+1} have size 3, otherwise c′(w j ) ≥ 1
3 . Similarly, deg( f ′

j+1) = 3, see Fig. 3.
For the edge x j−1x j+1 of D, at least one of x j−1 and x j+1 is big, and assume

that x j−1 is big. Then x j must be small, otherwise c′(w j ) ≥ −2 + 2
3 + 2 = 2

3 , a
contradiction. Since x j is small. y j−1 is big. Thus c′(w j−1) ≥ −2 + 2

3 + 2 = 2
3 .

Similarly, if x j+1 is big, then c′(w j+2) ≥ −2 + 2
3 + 2 = 2

3 .
This completes the proof. ��
Now we are ready to get a contradiction. By Lemmas 2.3 and 2.4 , we have

∑
w∈W

c′(w) =
∑
H

∑
w∈V (H)

c′(w) ≥ 0,

where H runs over the components of D×. But by (2),
∑

w∈W c′(w) < 0, a contra-
diction. This completes the proof of Theorem 1.1.
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