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Abstract

Parabolic R-polynomials were introduced by Deodhar as parabolic analogues of ordinary
R-polynomials defined by Kazhdan and Lusztig. In this paper, we are concerned with the
computation of parabolic R-polynomials for the symmetric group. Let S,, be the symmetric
group on {1,2,...,n}, and let S = {s;|1 < i <n — 1} be the generating set of S,,, where
for 1 <7 <mn-—1, s; is the adjacent transposition. For a subset J C S, let (S,,); be the
parabolic subgroup generated by J, and let (S,,)? be the set of minimal coset representatives
for S,,/(Sn)s. For u < v € (S,)” in the Bruhat order and x € {q, -1}, let R;%(q) denote
the parabolic R-polynomial indexed by w and v. Brenti found a formula for R;{f)(q) when
J = S\{si}, and obtained an expression for R;%(¢) when J = S\ {s;_1, s;}. In this paper,
we provide a formula for R;%(q), where J = S\ {si_2,si1,5;} and i appears after i — 1
in v. It should be noted that the condition that ¢ appears after ¢ — 1 in v is equivalent to
that v is a permutation in (S,)%\{%-2:%} We also pose a conjecture for R}%(q), where

J =5\ {sk,Sk+1,---,8} with 1 <k <i<n-—1and v is a permutation in (Sn)s\{sk’si}.
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1 Introduction

Parabolic R-polynomials for a Coxeter group were introduced by Deodhar [5] as parabolic
analogues of ordinary R-polynomials defined by Kazhdan and Lusztig [8]. In this paper, we
consider the computation of parabolic R-polynomials for the symmetric group. Let S, be the
symmetric group on {1,2,...,n}, and let S = {s1,52,...,8,-1} be the generating set of S,
where for 1 < ¢ < n — 1, s; is the adjacent transposition that interchanges the elements i
and ¢ + 1. For a subset J C S, let (S,)s be the parabolic subgroup generated by .J, and let
(S,)” be the set of minimal coset representatives of S,,/(S,)s. Assume that u and v are two
permutations in (S,)” such that u < v in the Bruhat order. For x € {gq, —1}, let R{f’,ﬁ(q) denote
the parabolic R-polynomial indexed by v and v. When J = S > {si}, Brenti [2] found a formula
for RJ%(q). Recently, Brenti [3] obtained an expression for Rys(q) for J = 8\ {si_1,s:}.

In this paper, we consider the case J = S\ {s;_2,si—1,s;}. We introduce a statistic on
pairs of permutations in (S,)” and then we give a formula for R;ﬁf, (q), where v is restricted to
a permutation in (S, )%\{%i-2:%} Notice that v € (S,,) \{5i-2:%} is equivalent to that v € (S,,)’



and 7 appears after ¢ — 1 in v. It should be noted that there does not seem to exist an explicit
formula for the case when v € (S,,)” and i appears before i — 1 in v.

We also conjecture a formula for R;{’,i(q), where J = S\ {sk, Sk+1,---,8} with 1 <k <i <
n—1and v € (S,)3\ s}, Notice also that v € (S,,)%\{%+*1} can be equivalently described as
the condition that v € (S,)” and the elements k + 1,k + 2,...,7 appear in increasing order in

v. This conjecture contains Brenti’s formulas and our result as special cases. When k = 1 and
i =n — 1, it becomes a conjecture for a formula of the ordinary R-polynomials R, ,(q), where
v is a permutation in S, such that 2,3,...,n — 1 appear in increasing order in v.

Let us begin with some terminology and notation. For a Coxeter group W with a generating
set S, let T = {wsw™!|w € W, s € S} be the set of reflections of W. For w € W, the length
£(w) of w is defined as the smallest k such that w can be written as a product of k£ generators in
S. For u,v € W, we say that v < v in the Bruhat order if there exists a sequence t1,to, ..., ¢,
of reflections such that v = utyty---t, and £(uty ---t;) > l(uty - --t;—q) for 1 < i <r.

For a subset J C S, let W be the parabolic subgroup generated by J, and let W+ be the
set of minimal right coset representatives of W/Wj, that is,

W’ = {we W |{(sw) > {(w), for all s € J}. (1.1)
We use Dpr(w) to denote the set of right descents of w, that is,
Dr(w) = {s € S|l(ws) < L(w)}. (1.2)

For u,v € WY, the parabolic R-polynomial R;{f)(q) can be recursively determined by the
following property.

Theorem 1.1 (Deodhar [5]) Let (W, S) be a Coxeter system and J be a subset of S. Then,
for each x € {q,—1}, there is a unique family {Rq{ﬁj((])}umewJ of polynomials with integer
coefficients such that for all u,v € W,

(i) if u £ v, then Ry (q) = 0;

(ii) if u = v, then R;{’ff,(q) =1;

(iii) if uw < v, then for any s € Dg(v),

Riﬁvs(q% if s € DR(’LL),
RI(q) =1 qRIEws(q) + (g — VDRISs(q), if s ¢ Dr(u) and us € W7,
(q—1—2)Ry%s(q), if s ¢ Dp(u) and us ¢ W,

Notice that when J = (), the parabolic R-polynomial Ri’ﬁ(q) reduces to an ordinary R-
polynomial R, ,(q), see, for example, Bjorner and Brenti [1, Chapter 5] or Humphreys [7,
Chapter 7]. The parabolic R-polynomials R;{:ﬁ (q) for z = g and = —1 satisfy the following
relation, so that we only need to consider the computation for the case x = q.

Theorem 1.2 (Deodhar [6, Corollary 2.2]) For u,v € W7 with u < v,

1
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There is no known explicit formula for R;{’,ﬁ(q) for a general Coxeter system (W,S), and
even for the symmetric group. When W = S,,, Brenti [2, 3] found formulas for R;ﬁfﬁ(q) for
certain subsets J, namely, J = S\ {s;} or J = S\ {si_1,s}. To describe the formulas for
the parabolic R-polynomials obtained by Brenti [2, 3], we recall some statistics on pairs of
permutations in (S,)’ with J =S\ {s;} or J =5\ {s;_1, 5 }.

A permutation u = ujug - - u, in S, is also considered as a bijection on {1,2,...,n} such
that u(i) = u; for 1 <i <n. For u,v € Sy, the product uv of u and v is defined as the bijection
such that uv(i) = u(v(7)) for 1 <i < n. For 1 <i <n — 1, the adjacent transposition s; is the
permutation that interchanges the elements ¢ and i 4+ 1. The length of a permutation u € S,
can be interpreted as the number of inversions of u, that is,

U(u) = {0, 5) |1 < i <j <n, u@) > u(f)}- (1.3)
By (1.2) and (1.3), the right descent set of a permutation u € S, is given by
Dru)={si|1<i<n-—1, u(i)>u(i+ 1)}
When J = S\ {s;}, it follows from (1.1) and (1.3) that a permutation u € S,, belongs to

(S,)? if and only if the elements 1,2, ...,4 as well as the elements i + 1,7 +2,...,n appear in
increasing order in u, or equivalently,

u ) <ut2) < <u (@) and wl(i4+1) <ul(i+2) <o <ui(n).
For n > 1, we use [n] to denote the set {1,2,...,n}. For J = S\ {s;} and u,v € (S,)”, let
D(u,v) = v~ ([i]) \ u™ ([2)).
For1 <j<n,let
aj(u,v) = [{r € w'([i]) | < j} = {r e v (i) [r < 5} .
It is known that v < v in the Bruhat order if and only if a;(u,v) > 0 for all 1 < j < n.

Brenti [2] obtained the following formula for R;{iﬁ (q), where J = S\ {s;}.

Theorem 1.3 (Brenti [2, Corollary 3.2]) Let J = S\ {s;}, and let u,v € (S,)? with u < v.

Then
Rl4(q) = ()~ T (1= gu00).
Jj€D(u,v)

We now turn to the case J = S\ {s;_1,s;}. In this case, it can be seen from (1.1) and (1.3)
that a permutation u € S, belongs to (S,)” if and only if
1) <ut2) < <ut(i—1) and w41 <ur(i42)<---<ul(n).

For u,v € (Sy)7, let

D(u,v) = v~ ([i = 1)) \u™ ' ([i = 1))

For1 <j<n,let
aj(u,0) = [{reu M (li—1))|r <j} - {rev (i - 1) |r <}

The following formula is due to Brenti [3].



Theorem 1.4 (Brenti [3, Theorem 3.1]) Let J = S\ {s;_1,8;}, and let u,v € (S,)’ with
u <wv. Then

(—1)Hw)=w) (1 —q+ cq”“v*w(“’”)) Iepu (L —a%™Y), if u™' (@) 2 07'(i),

Ryi(q) = _ _
(1)1 (1= g eq O T, (L g0) it 0) < 07 ()

where ¢ = 0,-1(;) ,—1(s) 15 the Kronecker delta function.

It should be noted that the sets (S,)” for J = S\ {s;} and J = S\ {s;_1,s;} are called
tight quotients of S,, by Stembridge [10] in the study of the Bruhat order of Coxeter groups.
Therefore, combining Theorem 1.3 and Theorem 1.4 leads to an expression for the parabolic
R-polynomials for tight quotients of the symmetric group.

2 A formula for R}(q) with J =5\ {s,_2, si_1,5i}

In this section, we present a formula for R;{Z%(q), where J = S\ {s;_2,8,-1,s;} and v is a
permutation in (S, )3\{%i-25i} | Tt is clear that v € (S,,)%\{%i-2%} is equivalent to that v € (S,,)”
and ¢ appears after ¢ — 1 in v. We also give a conjectured formula for R;{:%(q), where J =
S\ {Sk, Ska1s---r 8 with 1 <k <i<n—1and v e (S,)Msrsl,

For u,v € (S,,)”? with u < v, our formula for R;{j%(q) relies on a vector of statistics on (u,v),
denoted (ay(u,v),as(u,v),...,a,(u,v)). Notice that a permutation v € S, belongs to (S,)’
if and only if the elements 1,2,...,7 — 2 as well as the elements i + 1,7 + 2,...,n appear in
increasing order in u. To define a;(u,v), we need to consider the positions of the elements i — 1
and 7 in u and v. For convenience, let u=! = pips---p, and v = q1¢2 - - - qn, that is, t appears
in position p; in u, and appears in position ¢ in v. The following set A(u,v) is defined based
on the relations p;—1 > ¢;—1 and p; > ¢;. More precisely, A(u,v) is a subset of {i — 1,4} such
that i — 1 € A(u,v) if and only if p;—1 > ¢;—1, and i € A(u,v) if and only if p; > ¢;. Set

B(u,v) ={1,2,...,i — 2} U A(u, v).
For 1 < j < n, we define a;(u,v) to be the number of elements of B(u, v) that are contained
in {u1,...,uj—1} minus the number of elements of B(u,v) that are contained in {v1,...,vj_1},

that is,
aj(u,v) = [{r € u  (B(u,0))|r < j}| = [{r € v (B(u,v)) |r < j}]. (2.1)

For example, let n =9 and i = 5, so that J = S\ {s3, s4, s5}. Let
u = 416273859 and v = 671489253 (2.2)
be two permutations in (Sg)7. Then we have A(u,v) = {5}, B(u,v) = {1,2,3,5}, and

(a1(u,v),...,a9(u,v)) =(0,0,1,0,1,1,2,1,1). (2.3)
The following theorem gives a formula for R;{:%(q).

Theorem 2.5 Let J =5\ {s;-2,8i-1,8;}, and let v be a permutation in (Sn)s\{si*’si}. Let

D(u,v) = v (B(u,v)) \ v Y (B(u,v)). (2.4)



Then, for any u € (S,)” with u < v, we have
R (q) = (—1) =) (1 —q+ 5u—1(i—1),U71(i—1)q1+av‘1<i—1)(“v”))

(1 —q+ 5u—1(i),v—1(i)q1+av_l(i)(um)) 11 (1 - qaj(u’v)> . (25)
JeD(u,v)

Remark. It should be noted that Theorem 2.5 does not imply a formula for R;f:{,q(q) with
J' = S\ {s;_2,s;}, since, by definition, the parabolic R-polynomial R{f:%(q) depends heavily on
the choice of the subset J.

Let us give an example for Theorem 2.5. Assume that v and v are the permutations as
given in (2.2). Then we have D(u,v) = {3,7,9}. In view of (2.3), formula (2.5) gives

RM(g)=(1-9*1 -1 —q+q).

To prove the above theorem, we need a criterion for the relation of two permutations in
(S,)? with respect to the Bruhat order. Let u,v € (S,)”, for h =1,2,3 and 1 < j < n, define

bpj(u,v) =[{reu ([i+nh=3])|r<j} —{rev'(li+h-3])|r<j}. (2.6)

The following proposition, which follows easily from Corollary 2.2.5 and Theorem 2.6.3 of [1],
shows that we can use by, j(u,v) with h =1,2,3 and 1 < j <n to determine whether u < v in
the Bruhat order.

Proposition 2.6 Let J = S\ {s;_2,58;_1,si}, and let u,v € (S,,)”. Then, u < v if and only if
by,j(u,v) >0 for h=1,2,3 and1 < j <n.

We are now in a position to present a proof of Theorem 2.5.

Proof of Theorem 2.5. Assume that J = S\ {s;—2,8i—1,8;}, and v and v are two permutations
in (Sn)J such that u < v. Write u™! = p1pa---p, and v™! = q1¢2 - - - ¢,,. By the definitions of

(a1(u,v),...,an(u,v)) and D(u,v), we consider the following four cases:
pi-1 > ¢i-1 and  p; > ¢, (2.7)
pi-1 > ¢i-1  and  p; <g, (2.8)
pi-1 <gi—1 and p; > g, (2.9)
pi-1 <gi-1 and p; <g;. (2.10)

We conduct induction on ¢(v). When ¢(v) = 0, formula (2.5) is easy to check. Assume that
£(v) > 0 and formula (2.5) is true for ¢(v) — 1. We proceed to prove (2.5) for ¢(v). We shall
only provide a proof for the case in (2.8). The other cases can be justified by using similar
arguments. By (2.1) and (2.8), we see that for 1 < k <mn,

ar(u,v) = [{r e u N [i = 1)) |7 <k} — {r € v Y ([i = 1]) |7 <k} (2.11)
Note that a;j(u,v) = by j(u,v) for all 1 < j < n. Moreover, by (2.4) and (2.8) we find that

D(u,v) = v ([i — 1)) \ u ' ([i — 1]). (2.12)



1 and v(j+1)=1

i and v(j+1)<et—1

> (G+1)
>i and v(j+1)=i—-1
> (G+1)

) <

=1 and (j+1
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Table 2.1: The choices of v(j) and v(j + 1) in v.

Let s = s; € Dg(v) be aright descent of v, that is, v(j) > v(j+1), where 1 < j <n—1. Keep
in mind that ¢ appears after ¢ — 1 in v, namely, ¢; > ¢;—1, and that the elements 1,2,...,i — 2
as well as the elements ¢ + 1,4+ 2,...,n appear in increasing order in v. So we get all possible
choices of v(j) and v(j + 1) as listed in Table 2.1.

According to whether s is a right descent of u, we have the following two cases.

Case 1: s € Dg(u), that is, u(j) > u(j + 1). Since the elements 1,2,...,7i — 2 as well as the
elements i + 1,7 + 2,...,n appear in increasing order in u, the possible choices of u(j) and
u(j + 1) are as given in Table 2.2.

1l u(j)>i and u(j+1)=1

2 u(j)>i and u(j+1)=1i1—-1
3|lu(j)>i and u(j+1)<i—1

4 u(j)=1 and u(j+1)=i—1

5| u(j) =14 and u(j+1)<i—1

6 |u()=i—1 and u(j+1)<i—1

Table 2.2: The choices of u(j) and u(j + 1) in w in Case 1.

We only give proofs for the cases when v satisfies Condition 1 in Table 2.1 and u satisfies
Conditions 2 and 5 in Table 2.2, and for the cases when v satisfies Condition 5 in Table 2.1
and u satisfies Conditions 1, 2, 3, and 6 in Table 2.2. The remaining cases can be dealt with
in the same manner.

Subcase 1. v(j) > i,v(j + 1) =i and u(j) > i,u(j + 1) = ¢ — 1. In this case, it is easy to see
that B(u,v) = B(us,vs) = [i — 1]. By (2.1), we have

ajr1(u,v) = ajq1(us,vs) — 1, and ag(u,v) = ag(us,vs) for k # j + 1.
Moreover, by (2.4), we find that
D(u,v) = D(us,vs) and j + 1 ¢ D(u,v).
Thus by the induction hypothesis,

Ryi(q) = Ridys(a)

us,vs

— (_1)€(vs)7€(us)(1 - Q)2 H (1 - qak(us,vs))

keD(us,vs)



— (_1)€(v)—Z(u)(1 o q)2 H (1 - qak(u,v)> ’

keD(u,v)
as desired.

Subcase 2. v(j) > i,v(j +1) = ¢ and u(j) = 4,u(j + 1) < i — 1. It is easy to check that
B(u,v) = [i — 1], B(us,vs) = [i]. By (2.1) and (2.4), we have

aj(u,v) = aj(us,vs) for 1 <j<n

and
D(u,v) = D(us,vs).

Then by the induction hypothesis,

RI(@) = Rl,ula) = (-0~ 01— g2 T (1- o).
keD(u,v)

Subcase 3. v(j) =i —1,v(j+1) <i—1and u(j) > i,u(j +1) =i. Since B(u,v) = B(us,vs),
by (2.1), it is easy to check that for 1 < k < n,

ag(us,vs) = ag(u,v).
Moreover, it follows from (2.4) that
D(us,vs) = D(u,v).

By the induction hypothesis, we deduce that

R (q) = R, (a) = (~) @701 =2 TT (1= g).
keD(u,v)

Subcase 4. v(j) =i—1,v(j +1) <i—1and u(j) >i,u(j+1) =i— 1. Notice that in this case
us and vs satisfy the relation in (2.10). So we have B(u,v) = [i — 1] = B(us,vs) U{i — 1}. By
(2.1) and (2.4), it is easily verified that for 1 < k < n,

ag(us,vs) = ag(u,v),
and
D(us,vs) =(vs) " ([i = 2]) \ (us)~"([i — 2])

=v~H([i = 1) \w™([i - 1])
=D(u,v).

By the induction hypothesis, we get

RI(q) =Rilf(0) = (1) O~ - g2 [ (1-g@).
keD(u,v)

Subcase 5. v(j) =i—Lv(+1) <i—1and u(j) > i,u(j +1) < i—1. We find that
B(us,vs) = B(u,v) = [i — 1]. By (2.1) and (2.4), we have

aji1(us,vs) = ajqr1(u,v) +1 and ag(us,vs) = ap(u,v), for k#j+1,

7



and
D(us,vs) = (D(u,v) \ {j}) U{j + 1}.
Thus, the induction hypothesis yields that

R4 (q) =RJ4,(q)

:(_1)€(vs)—€(u8)(1 - q)Q H (1 N qak(us,vs)>
keD(us,vs)

1 — g%i+1(us,vs)
() ) 22 _ g (u)
(e —grt e I (=),

which reduces to (2.5), since
ajv1(us,vs) = aj(u,v).

Subcase 6. v(j) =i —1,v(j+1)<i—landu(j)=i¢—1,u(j+1) <i—1. For 1 <k <mn, we
have
ak(US,US) = CLk(U,’U)

and
B(us,vs) = B(u,v) and D(us,vs) = D(u,v).

By the induction hypothesis, we find that
Ry1(q) = Ridys(a)

— (_1)€(vs)f€(us) (1 —q+ q1+aj+1(us,vs)) (1 _ Q) H (1 _ qak(us,vs)) ) (213)
keD(us,vs)
Noticing the following relation
aji1(us,vs) = aj(u,v),
formula (2.13) can be rewritten as
RI(q) = (-1)! 070 (1- g g ) (1 q) TT (1= g,
keD(u,v)

as required.

Case 2: s € Dg(u), that is, u(j) < u(j+1). The possible choices of u(j) and u(j+1) are given
in Table 2.3.

We shall provide proofs for three subcases: (i) v satisfies Condition 1 in Table 2.1 and
u satisfies Condition 7 in Table 2.3; (ii) v satisfies Condition 3 in Table 2.1 and w satisfies
Condition 3 in Table 2.3; (iii) v satisfies Condition 5 in Table 2.1 and u satisfies Condition 3
in Table 2.3. The verifications in other situations are similar or relatively easier.

Subcase (i): v(j) >, v(j+1) =1, i =u(j) < u(j +1). By Theorem 1.1, we have

Ry4(a) = R () + (¢ = DR (a)- (2.14)
We need to compute Rig%vs(q) and R;{Z%S(q). We first compute R;{’,%S(q). Notice that u and vs
satisfy the relation in (2.7). Since A(u,vs) = {i — 1,7} and B(u,vs) = [i], by (2.1), we obtain
that for 1 < k <n,

ax(u,vs) = ‘{r € u_l([z]) |r < k:}| — ‘{7“ € (vs)_l([i]) |r < k}‘

8



1lu(@) <u(j+1)<i-1

2| u(y) <u(i+1)=i-1
3lu()<i—1 and u(j+1)=1
4l u(j)<i—1 and u(j+1)>1
5| u()=i—1 and u(j+1)=1
6| u(j)=i—1 and u(j+1)>1
iz u() <uG+1)
8li<u(j)<u(j+1)

Table 2.3: The choices of u(j) and u(j + 1) in u in Case 2.

=|{reu (-1 |r <k} —[{reov'([i—1])|r <k}
= ag(u,v).
Moreover, by (2.4) we have
D(u,vs) = (v5)~ (i) \ w1 (1]

=v7 (i - 1) \u ([l - 1))
= D(u,v).

By the induction hypothesis, we deduce that

Riﬁ%s(@) = (_1)“1}8)4(“) (1 —q+ 6u_1(i—1),(vs)—l(i—l)qlJra('“S)_l(ifl)(“’vs))

(1 - q+q1+aj(u,vs)> H (1 _ qak(u,vs))

k€D (u,vs)
= (—1)f) (1 —q+ 5u—1(z'fl),v—l(ifl)qlﬂ“’l(i*”(u’v)>
(1-g+q ) ] (1 - qa’“("’”)) . (2.15)
keD(u,v)

To compute Ri’;{vs (q), we consider two cases according to whether us < vs. First, we assume
that us < vs. Since us and vs satisfy the relation in (2.7), and A(us,vs) = {i—1,i}, B(us,vs) =
[i] = B(u,v) U{i}, by (2.1) we see that

aji1(us,vs) = ajr1(u,v) —1 and  ag(us,vs) = ag(u,v), for k#j+1. (2.16)
Moreover, by (2.4) we get

D(us,vs) = (vs) " ([i]) \ (us) ™" ([d])
= D(u,v)U{j}. (2.17)

Combining (2.16) and (2.17) and applying the induction hypothesis, we deduce that

R,(0) = () ) (12 g Bya oy ayr o e 0 (050)

9



(1—q) H (1 _ qak(us,vs))

keD(us,vs)

= (—1)f)f (1 —q+ 5u—1(i—1),v—1(i—l)qlﬂfl(i*l)(u’v)>

1-q) (1 - q“f(“’”)) I1 (1 - qa’“(“’”)) . (2.18)

keD(u,v)
Substituting (2.15) and (2.18) into (2.14), we obtain that
Ry4(q) = aRyds(a) + (¢ = DRy, (0)

= (—1)4@) ) (q (1 _ qaj(u,v)) i (1 g+ q1+aj(u,v)))

(1-q) (1 —q+ 5qu(i_l),wl(i_l)qm“‘l“*”(u’v)) II (1 - q“’“(“’”))
keD(u,v)

= (=) (1 — ) (1= g+ 8,1y o gya o 0 )

H (1 _ qak(u,v)) '

keD(u,v)

We now consider the case us £ vs. In this case, we claim that
aj(u,v) = 0. (2.19)
In fact, by (2.6), it can be checked that for 1 < k < n,
by k(us,vs) = by k(u,v) and by y(us,vs) = by p(u,v),

and
b3 j+1(us,vs) = b3 jy1(u,v) —2 and bz (us,vs) = bsy(u,v), for k#j+1.

Since us £ vs, by Proposition 2.6, we see that b3 j11(u,v) —2 < 0. On the other hand, since
j+1 € v ([i]) but 5 +1 & u([i]), we have b3 j1+1(u,v) > 0. So we get bsji1(u,v) = 1.
Therefore,

aj(u,v) = by j(u,v) = b3 j41(u,v) —1=0.

This proves the claim in (2.19).
Combining (2.15) and (2.19), we obtain that

R}4(q) = (¢ — 1)R}?,(q)

= (1)1 (1 - g) (1 —q+ 5u*1(171),v*1(ifl)qHa”*l“*l)(W)) 11 (1 - qa’“(u’v)> ~
keD(u,v)

Subcase (ii): v(j) >4, v(j+1) <i—1,u(j) <i—1and u(j+1) =i. By Theorem 1.1, we have
Ry%(q) = aRydye(a) + (¢ — DRy (). (2.20)

We need to compute R;{ﬁvs(q) and R{fj%s(q). We first compute R;{Z%S(q). Since B(u,vs) =
B(u,v) = [i — 1], using (2.1), we get

ajr1(u,vs) = ajp1(u,v) —1 and ag(u,vs) = ap(u,v), for k#j+1.
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Moreover, by (2.4) we have
D(u,vs) = D(u,v) \ {j + 1}.

By the induction hypothesis, we deduce that

Ri:%s(Q) = (_1)£(vs)—e(u) (1 —q+ 5u—1(i—l),(vs)—l(ifl)q1+a(”5>*1(i71)(“’”5)>

0o T (1)

keD(u,vs)
= (1))t (1 —q+ 5u*1(7%1),1;*1(ifl)q1+av71(i71>(u’v)) (1-9q)
1
_ ak(uvv)
1 _ qaj+1(u,1)) H (1 q ) : (221)
keD(u,v)

To compute Ri{’s({vs(q), we consider two cases according to whether us < vs. First, we
assume that us < vs. Since B(us,vs) = B(u,v) = [i — 1], in view of (2.1), it is easy to check
that

aji1(us,vs) = ajr1(u,v) —2 and ax(us,vs) = ag(u,v), for k#j+1.

Moreover, it follows from (2.4) that
D(us,vs) = (D(u,v) \ {j +1}) U {j}.
By the induction hypothesis, we obtain that

Rl ala) = (=170 (1 gt 8141y oy 1y e 000

(1-q) H (1 _ qak(us,’us))

keD(us,vs)

= (1))~ (1 —q+ 5u*1(i—l),v*l(i—l)qH—avil(i_l)(U7U)) (1-1q)

I1 (1 . qak@’”)) . (2.22)

keD(u,v)

aj(us,vs)

1= g™
1— anl(u,v)

Substituting (2.21) and (2.22) into (2.20) and noticing the following relation
a;(us,vs) = ajp1(u,v) — 1,

we are led to formula (2.5).

We now consider the case us € vs. In this case, we claim that

aji1(u,v) = 1. (2.23)

By (2.6), it is easily seen that
b1 jy1(us,vs) = by j41(u,v) —2 and by g(us,vs) = by p(u,v), for k#j+1, (2.24)
ba j+1(us,vs) = bojy1(u,v) —2 and by p(us,vs) = by y(u,v), for k #j+1, (2.25)

~—

b3 j+1(us,vs) = b3 jy1(u,v) —1 and bz y(us,vs) = b3 p(u,v), for k#j+1. (2.26)
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It is clear that aji1(u,v) = bz j+1(u,v). So the claim in (2.23) reduces to

bajy1(u,v) = 1.

Since j & v=1([i —1]) but j € u~1([i —1]), we have by j1(u,v) > 0. Suppose to the contrary
that by j11(u,v) > 1. In the notation u= = pip2---p, and v™! = qiga-- - ¢n, we have the
following two cases.

Case (a): pi—1 < j. By (2.8), we see that ¢;—1 < j and
b1 j1(u,v) = bajt1(u,v) > 1.

On the other hand, since j ¢ v~!([i]) but j € u'([i]), we have b3 j+1(u,v) > 0. Hence we
conclude that by i (us,vs) > 0 for h = 1,2,3 and 1 < k < n. By Proposition 2.6, we get
us < wvs, contradicting the assumption us £ vs.

Case (b): p;—1 > j. In this case, we find that if ¢;_; > j, then
b17j+1(uvv) = b2jt1 (u,v) > 1,
whereas if ¢;—1 < j, then
b1 j41(u, v) > g1 (u,v) > 1.

Note that in Case (a), we have shown that b3 j+1(u,v) > 0. So, we obtain that by, j(us,vs) > 0
for h =1,2,3 and 1 < k < n. Thus we have us < vs, contradicting the assumption us £ vs.
This proves the claim in (2.23). Substituting (2.23) into (2.21), we arrive at (2.5).

Subcase (iii): v(j) =i—1,v(j+1) <i—1, u(j) <i—1and u(j + 1) = i. By Theorem 1.1,
we have

R}4(q) = qR}4,.(q) + (¢ — 1)RJ9,(q). (2.27)

We need to compute Ri’sq,vs(q) and Rij%s(q). Since B(u,v) = B(u,vs) = [i — 1], by (2.1), we
see that for 1 < k < n,
ag(u,vs) = ag(u,v).

Moreover, by (2.4) we have
D(u,vs) = D(u,v).

By the induction hypothesis, we obtain that

Rl (q) = (-0 =g T] (1-gn)
keD(u,vs)

— (_1)€(v)—€(u)—1(1 _ q)2 H (1 _ qak(u,v)> . (228)
keD(u,v)

To compute R;{ﬁvs(q), we claim that us < vs. By (2.6), we see that

b1 j+1(us,vs) = by jy1(u,v) —2 and by p(us,vs) = by (u,v), for k#j+1, (2.29)
ba jy1(us,vs) =bg jr1(u,v) —1 and by i(us,vs) = by (u,v), for k#j+1, (2.30)
b3 i (us,vs) = b3 (u,v), for1l <k <n. (2.31)

Since j+1 € v ([i —1]) but j+ 1 & u([i — 1]), we have by j11(u,v) > 0, which implies that

bz,j+1(us,’08) = b2’j+1(u, U) —1 > 0. (2.32)
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Moreover, since p;_1 > ¢;—1 = j, we have p;_1 > j. So, we deduce that
bl:j+1(uvv) = b27j+1(uvv) +1>1,

and hence
b17j+1(us,vs) = bl’jJrl(u, U) -2 Z 0. (233)

Therefore, for h =1,2,3 and 1 < j < n,
by, j(us,vs) >0,
which together with Proposition 2.6 yields that us < vs. This proves the claim.
Since B(us,vs) = B(u,v) = [i — 1], by (2.1) and (2.4), it is easily verified that
aji1(us,vs) = ajy1(u,v) — 1 and  ag(us,vs) = ag(u,v), fork#j+1

and
D(us,vs) = (D(u,v) \ {7 +1}) U {j}.
By the induction hypothesis, we deduce that

Rlfu(@) = (-0 g2 TT (1 -gte)

keD(us,vs)
1— aj(us,vs)
_ L(v)—£(u 2 q ay (u,v
— (—1)!®) (>(1_q)m I1 (1_qk< )). (2.34)
keD(u,v)

Since a;(us,vs) = aj41(u,v), formula (2.34) becomes
R, (a) = (D)0 =g T (1-qu) (2.35)
keD(u,v)
Substituting (2.28) and (2.35) into (2.27), we are led to (2.5). This completes the proof. 1

We conclude this paper by giving a conjecture for a formula of R;{j%(q), where

J =5\ {skySkt1s---,5i}

with 1 < k < i < n—1 and v is a permutation in (S,)5\{*»*}, By (1.1) and (1.3), a
permutation u € S, belongs to (S,)” if and only if the elements 1,2,...,k as well as the
elements 7 + 1,7 + 2,...,n appear in increasing order in w. On the other hand, as we have
mentioned in Introduction, v € (S,) \{*r%i} is equivalent to the condition that v € (S,,)” and
k+1,k+2,...,7 appear in increasing order in v. Let u, v be two permutations in (Sn)‘]. Write
ut=pipa--pnand v = qiga - gy Let

Alu,v) ={t|k+1<t<i, p > q}.

Set B(u,v) to be the union of {1,2,...,k} and A(u,v). Based on the set B(u,v), we define
a;(u,v) and D(u,v) in the same way as in (2.1) and (2.4), respectively.

The following conjecture has been verified for n < 8.

Conjecture 2.7 Let J = S\ {sg, Skt1,...,5i}, and v is a permutation in (S,) \t505. Then,
for any u € (S,)” with u < v, we have

R}4(g) = (—1)/0~f@ H (1= g+ 8 amrpd T 0™) T (1= gu).
t=k-+1 J€D(u,v)
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Conjecture 2.7 contains Theorems 1.3, 1.4 and 2.5 as special cases. When i = n — 1 and
k =1, we have J = () and (S,,)” = S,,, and thus Conjecture 2.7 becomes a conjectured formula
for ordinary R-polynomials R, ,(¢), that is, for u € S, and v € (S, )S\Mssn—1} with u < v,

n—1
Ryu(q) = (-1 @~ T (1 —q+ 5u—1(t),v—l(t)qlmfl(t)(u’”)> 11 <1 - qaj(“’v)) . (2.36)
t=2 JED(u,w)

It should be mentioned that Theorem 4.2 of [9] also gives a combinatorial express for (2.36)
based on reduced expressions of u and v. We also remark that for J = S\{s1, s,—1}, the quotient
(S,)” is the quasi-minuscule quotient of S,,, and the corresponding parabolic R-polynomials
R%(g) have been computed by Brenti, Mongelli and Sentinelli [4, Corollary 2].
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