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Abstract

The generalized k-connectivity ki (G) of a graph G, introduced by Hager
in 1985, is a nice generalization of the classical connectivity. Recently,
as a natural counterpart, we proposed the concept of generalized k-edge-
connectivity A\;(G). In this paper, graphs of order n such that ki (G) =
n— % —land \(G)=n— % — 1 for even k are characterized.
Keywords: (edge-)connectivity; Steiner tree; internally disjoint trees; edge-
disjoint trees; packing; generalized (edge-)connectivity..
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1. INTRODUCTION

All graphs considered in this paper are undirected, finite and simple. We refer
to the book [3] for graph theoretical notation and terminology not described here.
For a graph G, let V(G), E(G), G denote the set of vertices, the set of edges of
G and the complement, respectively. Let dg(v) denote the degree of the vertex
v in G. As usual, the union of two graphs G and H is the graph, denoted by
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2 L1 AND MAO

G U H, with vertex set V(G)UV (H) and edge set E(G)U E(H). Let mH be the
disjoint union of m copies of a graph H. If M is a subset of edges of a graph G,
the subgraph of G induced by M is denoted by G[M], and G — M denotes the
subgraph obtained by deleting the edges of M from G. If M = {e}, we simply
write G —e for G —{e}. If S C V(G), the subgraph of G induced by S is denoted
by G[S]. For S C V(G), we denote G — S the subgraph obtained by deleting the
vertices of S together with the edges incident with them from G. We denote by
Eq[X,Y] the set of edges of G with one end in X and the other end in Y. If
X = {z}, we simply write Eqg[z,Y] for Eq[{z},Y]. A subset M of E(G) is called
a matching of G if the edges of M satisfy that no two of them are adjacent in G.
A matching M saturates a vertex v, or v is said to be M -saturated, if some edge
of M is incident with v; otherwise, v is M -unsaturated. If every vertex of G is
M-saturated, the matching M is perfect. M is a maximum matching if G has no
matching M’ with |M’'| > |M].

Connectivity and edge-connectivity are two of the most basic concepts of
graph-theoretic subjects, both in a combinatorial sense and an algorithmic sense.
As we know, the classical connectivity has two equivalent definitions. The con-
nectivity of a graph G, written x(G), is the minimum size of a set S C V(G) such
that G — S is disconnected or has only one vertex. If G — S is disconnected we
call such a set S a vertex cut-set for G. We call this definition the ‘cut’ version
definition of connectivity. A well-known Menger’s theorem provides an equiva-
lent definition of connectivity, which can be called the ‘path’ version definition
of connectivity. For any two distinct vertices x and y in G, the local connectivity
kG(z,y) is the maximum number of internally disjoint paths connecting x and
y. Then k(G) = min{kg(z,y)|z,y € V(G),x # y} is defined to be the con-
nectivity of G. Similarly, the classical edge-connectivity also has two equivalent
definitions. The edge-connectivity of G, written A(G), is the minimum size of an
edge set M C E(G) such that G — M is disconnected or has only one vertex.
We call this definition the ‘cut’ version definition of edge-connectivity. Menger’s
theorem also provides an equivalent definition of edge-connectivity, which can
be called the ‘path’ version definition. For any two distinct vertices x and y in
G, the local edge-connectivity Ag(x,y) is the maximum number of edge-disjoint
paths connecting = and y. Then A\(G) = min{Ag(z,y)|z,y € V(G),z # y} is
defined to be the edge-connectivity of G. For connectivity and edge-connectivity,
Oellermann gave a survey paper on this subject, see [34].

Although there are many elegant and powerful results on connectivity in
graph theory, the classical connectivity and edge-connectivity also have their
defects. So people want some generalizations of both connectivity and edge-
connectivity. For the ‘cut’ version definition of connectivity, we are looking for
a minimum vertex-cut with no consideration about the number of components
of G — S. Two graphs with the same connectivity may have different degrees of
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GRAPHS WITH LARGE GENERALIZED (EDGE-)CONNECTIVITY 3

vulnerability in the sense that the deletion of a vertex cut-set of minimum cardi-
nality from one graph may produce a graph with considerably more components
than in the case of the other graph. For example, the star K, and the path
P11 (n > 3) are both trees of order n + 1 and therefore connectivity 1, but the
deletion of a cut-vertex from K, produces a graph with n components while
the deletion of a cut-vertex from P,1; produces only two components. Char-
trand et al. [4] generalized the ‘cut’ version definition of connectivity. For an
integer k (k > 2) and a graph G of order n (n > k), the k-connectivity k. (G)
is the smallest number of vertices whose removal from G produces a graph with
at least k components or a graph with fewer than k vertices. Thus, for k = 2,
k5(G) = k(G). For more details about k-connectivity, we refer to [4, 6, 35, 36].
The k-edge-connectivity, which is a generalization of the ‘cut’ version definition
of classical edge-connectivity was initially introduced by Boesch and Chen [2] and
subsequently studied by Goldsmith in [7, 8] and Goldsmith et al. [9]. For more
details, we refer to [1, 34].

The generalized connectivity of a graph G, introduced by Hager [12], is a
natural and nice generalization of the ‘path’ version definition of connectivity.
For a graph G = (V, E) and a set S C V of at least two vertices, an S-Steiner tree
or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T'= (V' E') of
G that is a tree with S C V/. Two Steiner trees T and T” connecting S are said to
be internally disjoint it E(T)NE(T') =@ and V(T)NV(T") = S. For S C V(G)
and |S| > 2, the generalized local connectivity k(S) is the maximum number
of internally disjoint Steiner trees connecting S in G. Note that when |S| = 2
a minimal Steiner tree connecting S is just a path connecting the two vertices
of S. For an integer k with 2 < k < n, generalized k-connectivity (or k-tree-
connectivity) is defined as ki (G) = min{x(S) | S C V(G),|S| = k}. Clearly, when
|S| = 2, k2(G) is nothing new but the connectivity x(G) of G, that is, ka(G) =
k(G), which is the reason why one addresses ki (G) as the generalized connectivity
of G. By convention, for a connected graph G with less than k vertices, we set
kip(G) = 1. Set kk(G) = 0 when G is disconnected. This concept appears to
have been introduced by Hager in [12]. It is also studied in [5] for example,
where the exact value of the generalized k-connectivity of complete graphs are
obtained. Note that the generalized k-connectivity and the k-connectivity of a
graph are indeed different. Take for example, the graph H; obtained from a
triangle with vertex set {v1,vs,v3} by adding three new vertices uy,us,us and
joining v; to w; by an edge for 1 < i < 3. Then k3(H;) = 1 but x5(H;) = 2.
There are many results on the generalized connectivity or tree-connectivity, we
refer to [5, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 37]. Apart from the concept
of tree-connectivity, Hager also introduced another tree-connectivity parameter,
called the pendant tree-connectivity of a graph in [12]. For the tree-connectivity,
we only search for edge-disjoint trees which include S and are vertex-disjoint with
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4 L1 AND MAO

the exception of the vertices in S. But pendant tree-connectivity further requires
the degree of each vertex of S in a Steiner tree connecting S equal to one. Note
that it is a special case of the tree-connectivity.

As a natural counterpart of the generalized connectivity, we introduced in
[32] the concept of generalized edge-connectivity, which is a generalization of the
‘path’ version definition of edge-connectivity. For S C V(G) and |S| > 2, the
generalized local edge-connectivity A(S) is the maximum number of edge-disjoint
Steiner trees connecting S in G. For an integer k with 2 < k < n, the general-
ized k-edge-connectivity A\, (G) of G is then defined as A\ (G) = min{A(S)|S C
V(G) and |S| = k}. Tt is also clear that when |S| = 2, A\3(G) is nothing new but
the standard edge-connectivity A\(G) of G, that is, A2(G) = A(G), which is the
reason why we address A\;(G) as the generalized edge-connectivity of G. Also set
A (G) = 0 when G is disconnected. Results on the generalized edge-connectivity
can be found in [28, 29, 32].

In fact, Mader [19] was studying an extension of Menger’s theorem to inde-
pendent sets of three or more vertices. We know from Menger’s theorem that if
S = {u,v} is a set of two independent vertices in a graph G, then the maximum
number of internally disjoint u-v paths in G equals the minimum number of ver-
tices that separate u and v. For a set S = {uy,ug, - ,ur} of k vertices (k > 2)
in a graph G, an S-path is defined as a path between a pair of vertices of S that
contains no other vertices of S. Two S-paths P; and P» are said to be internally
disjoint if they are vertex-disjoint except for their endvertices. If S is a set of
independent vertices of a graph G, then a vertex set U C V(G) with UNS = & is
said to totally separate S if every two vertices of S belong to different components
of G —U. Let S be a set of at least three independent vertices in a graph G.
Let (@) denote the maximum number of internally disjoint S-paths and p/(G)
the minimum number of vertices that totally separate S. A natural extension of
Menger’ s theorem may well be suggested, namely: If S is a set of independent
vertices of a graph G and |S| > 3, then u(S) = p/(S). However, the statement is
not true in general. Take the above graph H; for example. For S = {vy,vs,v3},
1(S) = 1 but 4/(S) = 2. Mader proved that u(S) > $4/(S). Moreover, the
bound is sharp. Lovéasz conjectured an edge analogue of this result and Mader
proved this conjecture and established its sharpness. For more details, we refer
to [19, 20, 34].

In addition to being natural combinatorial measures, the Steiner Tree Pack-
ing Problem and the generalized edge-connectivity can be motivated by their
interesting interpretation in practice as well as theoretical consideration. From a
theoretical perspective, both extremes of this problem are fundamental theorems
in combinatorics. One extreme of the problem is when we have two terminal-
s. In this case internally (edge-)disjoint trees are just internally (edge-)disjoint
paths between the two terminals, and so the problem becomes the well-known
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Menger theorem. The other extreme is when all the vertices are terminals. In
this case internally disjoint Steiner trees and edge-disjoint trees are just edge-
disjoint spanning trees of the graph, and so the problem becomes the classical
Nash-Williams-Tutte theorem.

Theorem 1.1. (Nash-Williams [33], Tutte [39]) A multigraph G contains a sys-
tem of ¢ edge-disjoint spanning trees if and only if

G/ 2| = (|| —1)

holds for every partition & of V(Q), where |G/ 2| denotes the number of cross-
ing edges in G, i.e., edges between distinct parts of .

The generalized edge-connectivity is related to an important problem, which
is called the Steiner Tree Packing Problem. For a given graph G and S C V(G),
this problem asks to find a set of maximum number of edge-disjoint Steiner
trees connecting S in G. One can see that the Steiner Tree Packing Problem
studies local properties of graphs, but the generalized edge-connectivity focuses
on global properties of graphs. The generalized edge-connectivity and the Steiner
Tree Packing Problem have applications in V LST circuit design, see [10, 11, 38].
In this application, a Steiner tree is needed to share an electronic signal by a
set of terminal nodes. Another application, which is our primary focus, arises
in the Internet Domain. Imagine that a given graph G represents a network.
We choose arbitrary k vertices as nodes. Suppose that one of the nodes in G
is a broadcaster, and all the other nodes are either users or routers (also called
switches). The broadcaster wants to broadcast as many streams of movies as
possible, so that the users have the maximum number of choices. Each stream of
movie is broadcasted via a tree connecting all the users and the broadcaster. So,
in essence we need to find the maximum number of Steiner trees connecting all
the users and the broadcaster, namely, we want to get A(S), where S is the set
of the k nodes. Clearly, it is a Steiner tree packing problem. Furthermore, if we
want to know whether for any k£ nodes the network GG has the above properties,
then we need to compute A\;(G) = min{\(S)} in order to prescribe the reliability
and the security of the network.

The following two observations are easily seen from the definitions.

Observation 1.2. Let k,n be two integers with 3 < k < n. For a connected
graph G of order n, k(G) < M\ (G) < 6(G).

Observation 1.3. Let k,n be two integers with 3 < k <n. If H is a spanning
subgraph of G of order n, then \,(H) < \i(G).

Chartrand et al. in [5] got the exact value of the generalized k-connectivity
for the complete graph K.
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6 L1 AND MAO

Lemma 1.4. [5] For every two integers n and k with 2 < k < n, ri(K,) =

n — [k/2].

In [32] we obtained some results on the generalized k-edge-connectivity. The
following results are restated, which will be used later.

Lemma 1.5. [32] For every two integers n and k with 2 < k < n, \(K,) =

n— [k/2].

Lemma 1.6. [32] Let k,n be two integers with 3 < k < n. For a connected graph
G of order n, 1 < ki(G) < A\ (GQ) < n — [k/2]. Moreover, the upper and lower
bounds are sharp.

We also characterized graphs attaining the upper bound and obtained the
following result.

Lemma 1.7. [32] Let k,n be two integers with 3 < k < n. For a connected graph
G of order n, kip(G) =n— [%] or \g(G) =n— [%] if and only if G = K, for even
k; G =K, — M for odd k, where M is a set of edges such that 0 < |M| < %

One may notice that the graphs with x;(G) = n — [£] are the same as the

graphs with \x(G) = n — [%] Our motivation of this paper is to ask whether
the graphs with x,(G) = n — [4] — 1 are different from the graphs with \;(G) =
n— [5] — 1. In this paper, graphs of order n such that x(G) =n — [5] — 1 and

Ai(G) =n — [5] — 1 for any even k are characterized.

Theorem 1.8. Let n and k be two integers such that k is even and 4 < k < n,
and G be a connected graph of order n. Then kip(G) = n — % — 1 if and only
if G = K, — M where M is a set of edges such that 1 < A(K,[M]) < % and
1<|M|<Ek-1.

The above result can also be established for the generalized k-edge-connectivity,
which is stated as follows.

Theorem 1.9. Let n and k be two integers such that k is even and 4 < k < n,
and G be a connected graph of order n. Then A\ (G) = n — % — 1 if and only if
G = K,,— M where M is a set of edges satisfying one of the following conditions:
(1) A(Kn[M]) =1 and 1 < |M| < |3];
(2) 2 < A(K,[M]) <% and1 < |M|<k-1.

2. MAIN RESULT

To begin with, we give the following lemmas.
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Lemma 2.1. If G is a graph obtained from the complete graph K, by deleting a
set of edges M such that A(K,[M]) > r, then \pg(G) <n—1—r.

Proof. Since A(K,[M]) > r, there exists at least one vertex, say v, such that
di,(m)(v) > 7. Then dg(v) =n —1—dg,p(v) <n—1-r. Sod(G) <dg(v) <
n —1—r. From Observation 1.2, \;(G) < 6(G) <n—1—r. |

Corollary 2.2. For every two integers n and k with 4 < k <mn, if k is even and
M is a set of edges in the complete graph K, such that A(K,[M]) > % +1, then
kg (K — M) < \o(K, — M) <n— & —1.

Remark 1. From Corollary 2.2, if ki (K, — M) =n — g —1lor \(K,, — M) =
n—% 1 for k even, then A(K,[M]) < &.

In [32], we stated a useful lemma for general k.

Let S C V(G) be such that |S| = k, and .7 be a maximum set of edge-
disjoint S-Steiner trees in GG. Let 7] be the set of trees in 7 whose edges belong
to E(G[S]), and 7, be the set of S-Steiner trees containing at least one edge of
Eg[S,S], where S = V(G) — S. Thus, 7 = 9 U.% (Throughout this paper, .7,
T, F are defined in this way).

Lemma 2.3. [32] Let G be a connected graph of order n, and S C V(G) with
S| =k (3<k <n)andletT be a S-Steiner tree. If T € F, then T contains
exactly k — 1 edges of E(G[S]). If T € 5, then T contains at least k edges of
E(G[S]) U Eg[S, S].

Lemma 2.4. For every two integers n and k with 4 < k <mn, if k is even and M
is a set of edges of the complete graph K,, such that |M| > k and A(K,[M]) > 2,
then \p(K, — M) <n— & —1.

Proof. Set G = K, — M. We claim that there is an S C V(G) with |S| = k such
that |[MN(E(K,[S]))UEK,[S,S])| > k and |[M N (E(K,[S])| > 1. Choose a subset
M’ of M such that |M'| = k. Suppose that K,,[M’] contains s independent edges
and r connected components C1,--- ,C, such that A(C;) > 2 (1 < i < 7). Set
[V(C;)| = n; and |E(C;)| = m;. Then m; > n; — 1. For each C; (1 <i <), we
select one of the vertices having maximum degree, say wu;. Set X; = V(C;) — u;.

If there exists some X such that |[E(K,[X;])| > 1, then we choose X; C S
for all 1 <4 <r. Since |V(C;)| = n; and X; = V(C;) — u;, we have | X;| =n; — 1.
By such a choosing, the number of the vertices belonging to S is > ., |X;| =
Yoiqg(ni—1) <377 i m; < k—s. In addition, we select one endvertex of each
independent edge into S. Till now, the total number of the vertices belonging to
Sis > | Xi|+s < (k—s)+s =k Note that if Y . | |X;|+s < k, then we can
add some other vertices in G into S such that |S| = k. Thus all edges of E(C;)
and the s independent edges are put into F(K,[S])U Ek, [S, S], that is, all edges
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of M’ belong to E(K,[S]) U Ek,[S,5]. So |[M N (E(K,[S])U Ek,[S,S])| > k, as
desired. Since |E(K,[X;])| > 1, it follows that |M N (E(K,[S])| > 1, as desired.

Suppose that |E(K,[X;])| = 0 for all 1 < i < r. Then each C; must be a
star such that |E(C;)| > 2. Recall that u; is one of the vertices having maximum
degree in Cj. Select one vertex from V(C;) — u;, say v;. Put all the vertices of
Y; = V(C;) — v; into S, that is, ¥; € S. Thus |Y;| = n; — 1. In addition, we
choose one endvertex of each independent edge into S. By such a choosing, the
total number of the vertices belonging to S'is Y i, [Yi|+s=>_(n;—1)+s <
Yoiymi+s<(k—s)+s==k Notethat if > | |X;| + s < k then we can add
some other vertices in G into S such that |S| = k. Thus all edges of E(C;) and
the s independent edges are put into F(K,[S]) U Ek, [S, S], that is, and all edges
of M’ belong to E(K,[S]) U Ek,[S,S]. So |M n (E(K,[S]) U Ek,[S,S])| > k,
as desired. Since |E(C;)| > 2, it follows that there is an edge u;w; € M N K,[5]
where w; € V(C;) — {u;,v;}, which implies that [M N (E(K,[S])| > 1, as desired.

From the above arguments, we conclude that there exists an S C V(G) with
|S| = k such that [M N (E(K,[S]) U Ek,[S,S])| > k and |M N (E(K,[S])| > 1.
Since each tree T € 77 uses k — 1 edges in E(G[S]) U Eg[S, S], it follows that
7] < ((5) —1)/(k —1) = & — Lo which results in | 7| < & — 1 since |7
is an integer. From Lemma 2.3, each tree T € %% uses at least k edges of
E(G[S]) U E¢[S,S]. Thus |7|(k — 1) + |%|k < |E(G[S])| + |Ec[S, S]], that is,
| Zilk + ||k < |F] + (5) + k(n — k) — k. So M(G) = |F] = | %] +|%| <
n—%—l—%<n—§—1. [ |
Remark 2. From Lemmas 1.7 and 2.4, if ki (K,,— M) = n—%—l or \ip(Kp—M) =
n — % — 1 for k even and 2 < A(K,[M]) < %, then 1 < |M| < k — 1, where
M C E(K,).

Lemma 2.5. For every two integers n and k with 4 < k <mn, if k is even and M
is a set of edges in the complete graph K,, such that |M| > k and A(K,[M]) =1,
then ky (K, — M) <n—% —1.

Proof. Let G = K,, — M. Since A(K,,[M]) =1, it follows that M is a matching
in K,. Since |[M| > k, we can choose M; C M such that [M;| = k. Let
My, = {u;w;|]l < i < k}. Choose S = {uy,ug, - ,ur}. We will show that
k(S) <n— % —1. Clearly, |S| =n — k, and let S = {wy,wa, - ,w,_y}. Since
each tree in 7 contains at least one vertex of S, it follows that |Z| < n — k.
By the definition of 7, we have | 7| < £. If | 71| < & — 2, then x(S) < A(S) =
|\ 7| = |A| + |%| < (%—2)+(n—k):n—§—2<n—§—1, as desired. Let
us assume % -1<|7| < %

Consider the case |7i| = & — 1. Recall that || < n — k. Furthermore,
we claim that |Z5| < n — k — 1. Assume, to the contrary, that || = n — k.
Let T1,T5,--- ,T,,_; be the n — k edge-disjoint S-Steiner trees in 7. For each
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tree T; (1 < i < n — k), this tree only occupy one vertex of S, say w;. Since
wiw; € My (1 < i < k), namely, ww; ¢ E(G), and each T; (1 < i < k) is an
S-Steiner tree in %, it follows that this tree T; must contain at least one edge
in G[S] = Kj. So the trees T1,Ts,--- , T must use at least k edges in G[S],

M~k . . .
and | 7| = % = k—f — 755 Since |Z3] is an integer, we have | 73| < %,

a contradiction. We conclude that |Z5| < n —k — 1, and hence £(S) < A(S) =
T =17+ B <E-1)+n-k-1)=n—%—-2<n—% -1 as desired.
Consider the case | 77| = % We claim that |Z| < n —k — 2. Assume, to the
contrary, that n —k — 1 < |%| < n —k. Since |7| = %, it follows that each edge
of G[S] is occupied by some tree in .77, which implies that each tree in %5 only
uses the edges of Eg[S, S| U E(G[S]). Suppose that T} is a tree in % occupying
wy. Since ujw; ¢ E(G), if Ty contains three vertices of S, then the remaining
n — k — 3 vertices in S must be contained in at most n — k — 3 trees in %, which
results in | %| < (n—k—3)+1 = n—k—2, a contradiction. So we assume that the
tree T} contains another vertex of S except wi, say ws. Recall that k& > 4. Then
|S| > k > 4. By the same reason, there is another tree Th containing two vertices
of S, say ws,ws. Furthermore, the remaining n — k — 4 vertices in S must be
contained in at most n—k—4 trees in 75, which results in | %] < (n—k—4)+2 =
n—k—2, a contradiction. We conclude that | 7| < n—k—2. Since | 71| = &, we
have k(S) < A(S) = |7 | = |A|+|%| < %—I—(n—kz—Z) :n—g—Z <n—§—1,
as desired. [

Lemma 2.6. Ifn (n > 4) is even and M is a set of edges in the complete graph
Ky such that 1 < M| < n—1 and 1 < A(K,[M]) < 5, then G = K,, — M
contains "T_z edge-disjoint spanning trees.

Proof. Let & =|JI_, V; be a partition of V(G) with |V;| =n; (1 <i <p), and
&p be the set of edges between distinct blocks of & in G. It suffices to show that
€y > 252(] 2| — 1) so that we can use Theorem 1.1.

The case p = 1 is trivial by Theorem 1.1, thus we assume p > 2. For
p = 2, we have & = V3 UV, Set |Vi]| = ny. Clearly, [Va] = n — ny. Since
A(K,[M]) < 2, it follows that §(G) =n —1— A(K,[M]) > n—1-2 =22
Therefore, if ny = 1 then |&| = |Eg[Vi, V3| > "7_2 Suppose ny > 2. Then
&) = |EcVi, Vo)l > (5) —(n—1) = () = ("3") = —nf + nny — n+ 1. Since
2 < ny <n-— 2, one can see that |€2| achives its minimum value when n; = 2
or ng =n —2. Thus [&| > n —3 > 252 since n > 4. The result follows from
Theorem 1.1.

Let us consider the remaining cases for p, namely, for 3 < p S n. Since
12 ()~ M-S0, () 2 () — (1)~ 32, (3) = (757) ~ S0, (1), we
only need to show (";') =30 (%) > 25%(p—1), that is, (n— p)" > 25’21 ("5)-
Because Zle (Zl) achieves its maximum value when ny =ng = --- =mn,_1 =1
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10 L1 AND MAO

and n, = n—p+ 1, we need inequality (n —p)"T_2 > (;) (p—1)+ ("‘g“), namely,

(n— p)p%?’ > 0. It is easy to see that the inequality holds since 3 < p < n. Thus,

&l > () = IM] =30 (5) = 52 (0 - 1).
From Theorem 1.1, there exist "7_2 edge-disjoint spanning trees in G, as
desired. [ |

Lemma 2.7. Let k,n be two integers with 4 < k < mn, and M 1is an edge set of
the complete graph K,, satisfying A(K,[M]) =1. Then

(1) If M| = k — 1, then (K, — M) >n—k —1;

(2) If M| = | 2], then \g(Kp — M) >n—% — 1.

Proof. (1) Set G = K,, — M. Since A(K,[M]) = 1, it follows that M is a
matching of K,,. By the definition of ry(G), we need to show that £(S) > n—4—1
for any S C V(G).

Case 1. There exists no u,w in S such that vw € M.

Without loss of generality, let S = {uj,ug, - ,ug} such that uy,ug, -, u,
are M-saturated but w41, up42, - , ux are M-unsaturated. Let My = {u;w; |1 <
i <r} C M. Since |[M| =k — 1, it follows that 0 < r < k — 1. In this case,
wiu; ¢ M (1 <4,5 <r). Clearly, G[S] is a clique of order k. We choose a path
P = wuy- - upupqy in G[S]. Let G = G — E(P). Then G'[S] = K, — E(P).
Since |E(P)] = r < k — 1 and A(Ky[E(P)]) = 2 < £ it follows that G'[S]

29
k—2 k=2

contains “5= edge-disjoint spanning trees, which are also *5= internally disjoint
S-Steiner trees. These trees together with the trees T; induced by the edges

in {ugw;, ugw;, wi—gw;, uip1w;, -+ upw;, w1 b (1 <@ < r) (see Figure 1 (EL))
and the trees T; induced by the edges in {uivj,ugvj, -, urv;} where v; € S —
{U)l,'lUQ,"' 7w7“} = {7}17?}27'” 7vn—]€—7“} form k52 +r+ (TL— k—T) =n- % -

internally disjoint S-Steiner trees. Thus, x(S) > n — % — 1, as desired.

Case 2. There exist u,w in S such that uw € M.

Without loss of generality, we let S = {uq,ug, -, Up, Ups1, Ups2, "+, Upts,
Upgstly s Uk—p, W1, W3, -+ W, } such that the vertices uy,ug, -+, Upts, w1, wa,

-, w, are all M-saturated and w;w; € M (1 < i < 7). Set My = {uw; |1 <

i < r}. In this case, r > 1 and 2r + s < k. Since |[M| = k — 1, it follows that
r+s<k—1and s<k-—2.

First, we consider 2r + s = k. Since k is even, it follows that s is even.

If s = 0, then r = % Thus S = {u1,ug, - ,ur,wy,we, -+ ,wk}. Clearly,
2 2
My = {uaw; |1 < i < &}, [My| = 5 < k—1and AK,[M]) =1 < & By

Lemma 2.6, G[S] contains k—f edge-disjoint spanning trees, which are also %

internally disjoint S-Steiner trees. These trees together with the trees T); induced
by the edges in {ujvj, ugvj, - -+ , urv; }U{w1v;, wovy, - - - ,wrv;} form %—I—(n—k’)
2 ~ 2
internally disjoint S-Steiner trees, where v; € S = {v1,v2,- -+ ,vp—k}. So, K(S) >
k
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ul U2 u; Upyj  Ur4jtl

Ur+1 Upts ’U«rJ-rE'Jrl

Wit Up—1 Up  Upp1 U Ul Ui Up

U—
My "

o o

O ... &

o
v;

wyp W2 w; Wi Wr—1 Wy vj WIN W, " W1 Wrps

(@)

Wy j

Figure 1. Graphs for (1) of Lemma 2.7.

374 Consider s = 2. Since 2r + s = k, we have r = % If £ = 4, then
srs 7 = 1 and hence S = {uj,ug,us,wy}. Clearly, M; = {ujw;}, and the tree
ste 11 induced by the edges in {ujug, ujwse, wiwsy, usws} and the tree Th induced
sr7 by the edges in {ujug, ugus,usw;} and the tree T3 induced by the edges in
ss {ujws, usws, wiws, uzwy } are three spanning trees; see Figure 1 (¢). These trees
39 together with the trees Tj induced by the edges in {ujvj, ugvj, usv;, wiv;} for-
w0 m 3+ (n — 6) internally disjoint S-Steiner trees, where v; € S — {wq, w3} =
sst {v1,v9, -+ ,vp—¢}. Thus, K(S) >n—-3 =n-— % — 1. Suppose k& > 6. Then

s2 1 >28 ={ujp,ug, o Ukr2, w1, we, - we—2 } and My = {uww; |1 < i < k—f}
2 2

3 Clearly, the tree T induced by the edges in {ujwk, uowr, -+ , Uk—2Wk, Ukr2 Wk,

2 2 2 2 2 2

384 UgUk, WIWk, WaWk, - , Wr2ws } and the tree Ty induced by the edges in {ujwr2

2 2 2 2 2 2

385 UQWk+2," " ,uE’ww}U{QHUw,wl’ww,wgww, e ,wﬁww} are two inter-
2 2 2 2 2 2
6 nally disjoint S-Steiner trees; see Figure 1 (d). Let My = M U {ujuris, usus }.
2 2

s Then [M| = |My| +2 = 552 +2 = &2 < |k — 1 and A(K,[Mp)) = 2 < &,
s which implies that G[S]| — {ujurs2,usur } = Ky — My contains k—52 edge-disjoint
2 2

380 spanning trees by Lemma 2.6, which are also k—f internally disjoint S-Steiner

300 trees. These trees together with 77,75 and the trees T} induced by the edges in

s1 {u1vj, uguy, - - - ) Wk2 Ujy W1V, WUy ,u%vj} are % + 24 (n—k — 2) inter-
32 nally disjoint S-Steiner trees, where v; € S — {w%,w%} ={v1,v9," ,Up_g_2}.
33 So, K(S) >n — % — 1.

304 Consider the remaining case for s, namely, for 4 < s < k — 2. Clearly,

305 there exists a cycle of order s containing w1, U109, - ,uUpts in K — My, say
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Cs = Upp1Upsn - Uppstpr1. Set M = My U E(Cs). Then |[M'| =r+s<k-1
and A(K,[M']) =2 < £, which implies that G — E(C,) = Kj — M’ contains £52
edge-disjoint spanning trees by Lemma 2.6. These trees together with the trees

Tr—i—j induced by the edges in {ulwr-i-ja UQ2Wrjgy 5 Up4j—1Wr4j, uT+j+1wT’];i-j7 R
- )

Uy s Wyt U j Up 441, W1 W j, W2Wr g gy -+ Wewrpj (1< g < s) form 555 + s
internally disjoint trees; see Figure 2 (b) (note that w,+s = ug_,). These trees to-
gether with the trees T]’ induced by the edges in {u1v}, u2vj, - -+, Urysv5, W05, - - -,
wyv;} form £52 4 s+ (n — 2r — 2s) = n — £ — 1 internally disjoint S-Steiner
trees where v; € S — {wyy1, Wry2, -, Wrys} = {v1,02, - ,Vp—2r—25}. Thus,
K(S)>n— % — 1, as desired.

Next, assume 27 + s < k. Then S = {u1,ug, -, Upgs, Uppst1s " s Uk—p, W1,
wo, -+ ,wytand r+s+1 < k—r. Iif s =0, then S = {uq,ug, -+, Ug_p, w1, wa, -,

wy }. Clearly, My = {uw; |1 <i<r}, |Mi|=r <k—1and A(K,[M]) =1< g
By Lemma 2.6, G[S] contains % edge-disjoint spanning trees. These trees to-
gether with the trees T induced by the edges in {u1v}, u2vj, - - -, Un—pv;, W10}, Wov;,
- wyvj} form 552 + (n — k) internally disjoint S-Steiner trees, where v; € S =
{v1,v9,-+ ,vn_r}. Therefore, K(S) > n — % — 1. Assume s > 1. Clearly, there
exists a path of length s containing w,41,urq2,** , Upts, Urts+1 In G[S], say
Py = tpyqtpyo Uppstpysiy. Set M = My UE(P;). Then |[M'|=r+s<k-1
and A(K,[M']) = 2 < %, which implies that G[S]—E(Ps) = Kj,— M’ contains 32
edge-disjoint spanning trees by Lemma 2.6, which are also % internally disjoin-

t S-Steiner trees. These trees together with the trees 7, ; induced by the edges in

{urwy g, Wy gy -+ o Ur g j 1 Wpp iy U g AWy 5 Uk p Wty U Ui 1 W1 Wy iy

WoWyryj, -, Wewry;} (1 < 5 < s) form k52 + s internally disjoint S-Steiner

trees; see Figure 1 (b). These trees together with the trees TJ( induced by
: k—2

the edges in {u1vj, ugvj, -, up—,vj, W1Vj, W5, - -+ ,wypv;} form 5= 4 54+ (n —

k+71)— (r+s) =n—%—1 internally disjoint S-Steiner trees where v; €

G k

S —A{wry1, Wrp2, - Weg st = {v1,02, ,Vp_k—s}. S0, K(S) > n — 3 —1, as

desired.

We conclude that x(S) > n— % —1for any S C V(G). From the arbitrariness
of S, it follows that ki(G) > n — % -1

(2) Set G = K,, — M. Assume that n is even. Thus M is a perfect matching
of K, and all vertices of G are M-saturated. By the definition of A\t (G), we need
to show that A(S) >n — & — 1 for any S C V(G).

Case 3. There exists no u,w in S such that vw € M.

Without loss of generality, let S = {uj,ug,--- ,ur}. In this case, uu; ¢
M (1 § i,j § k‘) Let M1 = {uiwi|1 S 7 § k‘} Q M = {uiwi|1 § 7 § %}
Clearly, w; ¢ S (1 <i< §)andu;j ¢ S (k+1<j < 5). Since G[S] is a clique of
order k, it follows that there are % edge-disjoint spanning trees in G[S], which are

also % edge-disjoint S-Steiner trees. These trees together with the trees T; induced
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by the edges in {uiw;, ugw;, w; 1w, wip1w;, - -+, Upw;, uiwg, wiwg} (1 <i < k—1)
(see Figure 2 (a)) and the trees T induced by the edges in {uju;, uguj, -+, ugu;}
(k+1<j < 3) and the trees T} induced by the edges in {ujw;, ugwy, -, upw;}

(k+1<j<2) form &+ (k—1)+ (n—2k) =n— & — 1 edge-disjoint S-Steiner
trees. Therefore, A\(S) > n — % — 1, as desired.

Case 4. There exist u,w in S such that uw € M.

Without loss of generality, let S = {uj,ug, -+, upys,wr,we, - ,w,} with
|S| = k = 2r + s, where 1 < r < % and 0 < s < k —2. Set My = {u;w; |1 <
i <r} CM={uw; |l <i< G} Weclaim that r +s < k — 1. Otherwise, let
r+ s = k. Combining this with 2r + s = k, we have r = 0, a contradiction. Since
k =2r + s and k is even, it follows that s is even.

1u7-+j Ur+j+1 u

‘\[l ;\[1 : B : B

; & b b @ N 66 60

W Wg4+1 Wz w1 i Wy j+1 Wy 45 wn

2 Wrj :

(a) ()
Figure 2. Graphs for (2) of Lemma 2.7.
If s =0, then r = % Clearly, S = {uj,ug, - ,ur, w1, ws, - ,wr} and

2 2

My = M = {uw;|l <i < %} In addition, [M;| < & < k—1and A(M N
K,[S]) = 1 < % Then G[S] contains %52 edge-disjoint spanning trees by
Lemma 2.6. These trees together with the trees 7; induced by the edges in
{urug, ugug, - -+ wrsug, wing, waug, - wrup (k+1 < j < &) and the trees T
2 2
induced by the edges in {ujw;, ugw;, -+ , wrw;, WiwW;, Wow;, + -+ , Wk wW; } (% +1<
2 2

i < %) formn — % — 1 edge-disjoint S-Steiner trees. Thus, A\(S) > n — % -1

If s = 2, then r = % Then S = {uj,ug,  + ,Ukte, w1, W, ,Wk_2}

2 2
and My = {ww;|1 < i < %552} C M. If k = 4, then r = 1 and hence S =
{uy,ug,us,wy}. Clearly, My = {ujw;}, and the tree 77 induced by the edges in
{urug, ugwe, wywsy, ugws } and the tree Ty induced by the edges in {ujus, usus, ugws }
and the tree T3 induced by the edges in {ujws, ugws, wyws, ugw; } are three edge-
disjoint spanning trees; see Figure 1 (¢). These trees together with the trees Tj
induced by the edges in {uiu;, uguj, uzuj, wiu;} (4 <k < 7) and the trees T} in-
duced by the edges in {u1w;, usw;, usw;, wiu;} (4 < k < 5) form 34 (n—6) edge-
disjoint S-Steiner trees. So, A(S) >n—3=n— % — 1, as desired. Suppose k£ > 6.
Then r > 2, S = {ug,ug, -+ ,Urr2, Wy, wa, -+ ,wr—2} and M; = {uw;|l < i <
2 2
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2} Clearly, the tree T7 induced by the edges in {’LLl'UJk UgWE, " Uk_2 Wk,
Uk+2?,Uk ’LLQ’LLk 'UJl?,Uk wgw&, c W QZUk} and the tree Ty mduced by the edges
n {ulez, ’LL2U)k+2, . ’LLk'lUk+2 UlUk+2, wlwk+2 ’LUkaJrz, L, Wk— 2U)k+2} are
two edge- dlSJOlHt s Stelner trees see Flgure 1 (d). “Let My = MlU{Ul’LLk+2 UQUk:}

Then [Ms| = [M;|+2 = 55242 = 22 < k1 and A(K [Mg]) =2<t Whlch im-
plies that G[S] — {Ul'dk+2 UQUk} Kk — My contains 552 edge- d1SJ01nt spanning
trees by Lemma 2.6. These trees together with 17,715 and the trees T induced by
the edges in {ujuj, uguj,- - - ) Wh2 Uy WG, W, - ,u%uj} (% +2<5<%)
and the trees T]’ induced by the edges in {ujw;, ugwy, - - - ) Ukt2 Wy, WIWj, Wty

) Uk—2 wj} (E +2<j5< ﬁ) are ﬂ + 2+ (n — k — 2) edge-disjoint S-Steiner
trees. Therefore A(S) >n— % —1, as desired.

Consider the remaining case s with 4 < s < k — 2. Clearly, there ex-
ists a cycle of order s containing w41, Upt2, - ,Upps in K — My, say Cs =
Up g 1Upg 2+ UpgsUpy1. Set M = My U E(Cs). Then |M'| =r+s <k —1 and
A(K,[M']) =2 < % which implies that G — E(C5) contains %52 edge-disjoint s-
panning trees by Lemma 2.6. These trees together with the trees T}, ; induced by
the edges in {ulwr+j7 UWr gy« 5 Up4j—1Wrtjs Up4j+1Wrj, 0 Up4sWr+j, Ur4j
Up4j 1, WIWppj, WoWpgj, -+ Wrwrps b (1 < j < s) form k=2 | s edge-disjoint S-
Steiner trees; see Figure 2 (b). These trees together with the trees 7/ induced by
the edges in {uiug, ugts, - -+, Uy sy, iy, - -+, wpu;} (r4+s+1<i< %) and the
trees T} induced by the edges in {ujw;, uow;, - -+, Upyswi, wiw;, -+ ,wpw;} (r+
s+1<i<75)form (n—2r—2s)+ (k52 +s)=n— % — 1 edge-disjoint S-Steiner
trees since 2r + s = k. Thus, A\(S) > n — E — 1, as desired.

We conclude that A(S) > n— % -1 for any S C V(G). From the arbitrariness
of S, it follows that \(G) > n — % — 1. For n odd, M is a maximum matching
and we can also check that A\p(G) >n — % — 1 similarly. ]

Lemma 2.8. Let n and k be two integers such that k is even and 4 < k < n.
If M is a set of edges in the complete graph K, such that |M| =k — 1, and
2 < A(K,M)) < %, then k(K — M) >n— % -1

Proof. Set G = K,, — M. For n = k, there are "= 2 edge-disjoint spanning trees
by Lemma 2.6, and hence x,(G) = \,(G) > 252. So from now on, we assume n >
kE+1. Let S = {uq,ug, -+ ,ur} CV(G)and S = V(G)— S = {wy,wa, - , Wp_p}
We have the following two cases to consider.

Case 1. M C E(K,[S]) U E(K,[S]).

Let M' = M N E(K,[S]) and M" = M N E(K,[S]). Then |M'| + |M"| =
IM| = k—1and 0 < |M'|,|M"| < k—1. We can regard G[S] as a complete
graph K}, by deleting |M’| edges. Since 2 < A(K,[M]) < % and M’ C M, it
follows that A(K,[M']) < A(K,[M]) < % From Lemma 7?7, there exist %
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edge-disjoint spanning trees in G[S]. Actually, these k—52 edge-disjoint spanning
trees are all internally disjoint S-Steiner trees in G[S]. All these trees together
with the trees T; induced by the edges in {w;ui, wug, -+ ,wiug}t (1 <i<n-—k)
form % +(n—k)=n-— % — 1 internally disjoint S-Steiner trees, and hence
k(S) > n — % — 1. From the arbitrariness of S, we have ri(G) > n — % —1, as

desired.

Case 2. M ¢ E(K,[S]) U E(K,[S]).

In this case, there exist some edges of M in E,[S,S]. Let M’ = M N
E(K,[S]), M" = M N E(K,[S]), and |[M’'| = m; and |[M"| = my. Clearly, 0 <
m; <k —2 (i=1,2). For w; € S, let |Eg, aj[wi, S]| = 2, where 1 <i <n — k.

Without loss of generality, let x+1 > x9 > -+ > x,_i. Because there exist some
edges of M in Ef,[S, 5], we have z1 > 1. Since 2 < A(K,[M]) < &, it follows

that z; = |Eg,anwi, S| < di,p(wi) < AKL[M]) < % for 1 <i <n-—k.
We claim that there exists at most one vertex in K,[M] such that its degree is
%. Assume, to the contrary, that there are two vertices, say w and w’, such that
die, (W) = dre, g (w') = & Then |M| > dg, iy (w) + die, i (w') = £+ 5 =k,
contradicting |[M| = k — 1. We conclude that there exists at most one vertex in
K,,[M] such that its degree is % Recall that @, < zp_p1 < - < a9 <77 < %
So:m:%andznig k—f 2<i<n-—k),orz< % (1 <i<n-—k). Since
| Bk, [wi, S]] = @i, we have |Eg[w;, S]| = k — ;. Since 2 < A(K,[M]) < %, it
follows that 6(G[S]) >k —1— & = k52

Our basic idea is to seek for some edges in G[S], and combine them with
the edges of Eg[S, S] to form n — k internally disjoint trees, say T1,Tb, - -+ , Th_,
with their roots wy,ws, -+ ,wy,_k, respectively. Let G' = G — (U;:f E(T;)). We
will prove that G’[S] satisfies the conditions of Lemma ?? so that G’'[S] contains
k—gz edge-disjoint spanning trees, which are also % internally disjoint S-Steiner
trees. These trees together with 17,75, -- ,T,,_; are our n — % — 1 desired trees.
Thus, k(S) >n— % — 1. So we can complete our proof by the arbitrariness of S.

For wy € S, without loss of generality, let S = S US3 and S} = {uy,ug, -+,

Uy, } such that ujw; € M for 1 < j < 1. Set S3 = S—51 = {ug,+1, Uy 42, , Uk}
Then ujw; € E(G) for 1 +1 < j < k. One can see that the tree 7] induced
by the edges in {wity, 41, W1tz 42, - ,wiuE} is a Steiner tree connecting 521.

Our current idea is to seek for a1 edges in Eg[Si,Si] and add them to T} to
form a Steiner tree connecting S. For each u; € S} (1 < j < z1), we claim that
|Eqluj, S3]] > 1. Otherwise, let |Egluj, S3]| = 0. Then |Eg, anluj, S3]] = k — 21
and hence |M| > |E, anlug, S3]| 4 di, g (w1) > (k — 1) + 21 = k, which con-
tradicts |[M| = k — 1. We conclude that for each u; € S} (1 < j < x1) there is
at least one edge in G connecting it to a vertex of S%. Choose the vertex with
the smallest subscript among all the vertices of Si having maximum degree in
G|S], say uj. Then we select the vertex adjacent to u} with the smallest sub-
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script among all the vertices of S% having maximum degree in G[S], say u]. Let
e11 = ujuy. Consider the graph Gi;3 = G — e11, and choose the vertex with
the smallest subscript among all the vertices of S} —u} having maximum degree
in G11[5], say uy. Then we select the vertex adjacent to uwh with the smallest
subscript among all the vertices of S having maximum degree in G11[5], say uj.
Set e19 = uhuy. Consider the graph Gi12 = G11 — e19 = G — {e11,e12}. Choose
the one with the smallest subscript among all the vertices of S§ — {u}, u4} having
maximum degree in G12[S], say uj, and select the vertex adjacent to uf with the
smallest subscript among all the vertices of S3 having maximum degree in G12[S],
say u4. Put e;3 = uhuf. Consider the graph G153 = Gi2—e1; = G—{e11, €12, €13}
For each u; € 511 (1 <j <), we proceed to find eqq, €15, - , €15, in the same
way, and obtain graphs G1; = G — {e11,€12, - ,el(j_l)} (1 <j < xp). Let
M, = {e11,€e12, - ,e12, } and G; = G — M. Thus the tree T7 induced by the
edges in {wiUg, 41, Wilgy42, - ,wiugt U{eir, e1a, -+, e1q, } is our desired tree.

Let us now prove the following claim.
Claim 1. §(G4[9]) > 532

Proof of Claim 1. Assume, to the contrary, that 6(G1[S]) < £5%. Then there
exists a vertex u, € S such that dg,(g(up) < k_54‘ If u, € S, then by our
procedure dgg)(up) = dg,(s)(up) +1 < k—f, which implies that dynx,(s)(up) >
k—1-%2 = % Since wyu, € M, it follows that dic, v (Up) = darnre, sy (up) +1 >
k—J2F2, which contradicts A(K,[M]) < % Let us now assume u, € S3. By the above
procedure, there exists a vertex ug € 511 such that when we select the edge e;; =
upug (1 < j < 1) from Gy ;_1)[S] the degree of u,, in G1;[5] is equal to %. Thus,
day,s)(up) = % and dg, ;_ (s)(up) = % From our procedure, |Eg|ug, S3]| =
|EGy s, g, S3]|. Without loss of generality, let |Eg[ug, S3]| = t and ugu; € E(G)
for 21 +1 < j < zy +t; see Figure 3 (a). Thus up € {uz, 41, Uz 42, , Uz, ¢},
and uqu; € M for z1 +t+1 < j < k. Because |Eg[u;,S3]| > 1 for each u; €
511 (1 <j <), wehavet>1. Since [M| =k —1 and ujw; € M for 1 < j <y,
it follows that 1 < t < k — 2. Since dGl(j,l)[S](Up) = %, by our procedure
A,y (s)(ug) < % for each u; € S§ (z1 +1 < j < x1 +1t). Assume, to the
contrary, that there is a vertex us (z1+1 < s < 1 +1) such that dg, ;_,(s)(us) =
k—f. Then we should have selected the edge uq,us instead of e;; = ugu, by our

.. k—
procedure, a contradiction. We conclude that dGl(j—l) is)(ur) < Tz for each

U, € 511 (x1 +1 <r <z +1t). Clearly, there are at least k — 1 — % = % edges

incident to each w, (x1+1 <r <z +1t) belonging to M U {ej1, €12, - ,el(j_l)}.
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sz Since j < xq and ugu; € M for x; +t+1 < j <k, we have

sz and hence

| M]

>

v

v

> k—m—t+§r4j—n—<ﬁ

t
|Ex, g, S3]| + Z dgc,. 1 (u5)
=

2

-2
L N

2

t

|M N (Ex, [w1, S])] + ZdKn[M} (uj) + | Exc, an g, St

x1+</€+

2t
2 2

U

2+

j=1

=2y} (1)

=+

2

(k-2

t+k—j+1
7 + J+

t+k—j—+1

1 E—1\? (k—1)2
——<r— > +( )+k—j+1

2 8

(since 1 <t <k —2)

. . k
since j < z1 and 1 < 3

Figure 3. Graphs for Lemma 2.8.
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By Claim 1, we have 6(G1[S]) > k_;z Recall that there exists at most one
k

27
r < % Then z; < % for 2 <7 < n—k. Now we continue to introduce our
procedure.

For wy € S, without loss of generality, let S = S?US3 and S7 = {uy,ug, -,
Uz, } such that ujwy € M for1 < j < xo. Let S2 =5—8% = {Upyi1, Usyr2, -+ , UL}
Then ujwy € E(G) for z3+1 < j < k. Clearly, the tree T3 induced by the edges in
{watlgy+1, Wolzyt, -+, wouy} is a Steiner tree connecting 522. Our idea is to seek
for 2o edges in Eg,[S?, 53] and add them to T} to form a Steiner tree connecting
S. For each u; € S? (1 < j < x3), we claim that |Eg, [uj, S3]| > 1. Otherwise, let
|E, [u;, S3]] = 0. Recall that |M;| = 1. Then there exist k—x2 edges between u;
and S3 belonging to M UM, and hence |Eg, aluj, S3]| > k—x9—x1. Therefore,
|M| > |Eg, i [wg, S3)| + dic, ar) (w1) + die ar) (wa) > (k=22 —21) + 21 + 29 = kK,
which contradicts |[M| = k — 1. Choose the vertex with the smallest subscript
among all the vertices of S? having maximum degree in G1[S], say uj. Then
we select the vertex adjacent to u} with the smallest subscript among all the
vertices of S2 having maximum degree in G1[S], say u. Let ey = uju}. Con-
sider the graph G91 = G7 — es1, and choose the one with the smallest sub-
script among all the vertices of S? — 1} having maximum degree in G2;[S], say
uf. Then we select the vertex adjacent to w), with the smallest subscript a-
mong all the vertices of S7 having maximum degree in Ga1[S], say uj. Set
eg2 = ubuy. Consider the graph Gao = Go1 — ezn = Gy — {ea1,ex}. For
each u; € S% (1 < j < x9), we proceed to find ey3, €94, ,€9,, in the same
way, and get graphs Ga; = G1 — {ea1,e2, - ,62(j_1)} (1 <j < x9). Let
My = {eg1,e22, - ,e2:,} and Go = G; — My. Thus the tree T induced by
the edges in {wotly,11, Wollgyto, - ,waur} U {ea1,e22, -+ ,e2,,} is our desired
tree. Furthermore, T, and T} are two internally disjoint S-Steiner trees.

For w; € S, without loss of generality, let S = St U Ss and St = {uy,ug, -+,
Uz, } such that ujw; € M for 1 < j < ;. Set St = S—8% = {Ug, 11, Ug; 12, Uk}
Then ujw; € E(G) for z;+1 < j < k. One can see that the tree 7] induced by the
edges in {w;Uy,+1, WUy, t2,- -+ ,wug} is a Steiner tree connecting S;. Our idea
is to seek for z; edges in Eg, ,[S?,52] and add them to T to form a Steiner tree
connecting S. For each u; € S} (1 < j < z;), we claim that |Eg, ,[u;, S4]| > 1.
Otherwise, let |Eg, ,[uj, Si]| = 0. Recall that |[M;| = z; (1 < j < 4). Then
there are k — z; edges between u; and S} belonging to M U (U;_:l1 M;), and
hence |Ey, a[uj, S3]| > k — x; — Z;_:ll ;. Therefore, |[M| > |E, ar[u;, S3]| +
Z;-:l M N (K, [wj, S))| >k —x; — Z;;ll xj+ Z;Zl xj = k, contradicting |M| =
k —1. Choose the vertex with the smallest subscript among all the vertices of St
having maximum degree in G;_1[S], say u}. Then we select the vertex adjacent
to u} with the smallest subscript among all the vertices of S} having maximum

vertex in K, [M] such that its degree is and Ty p < Tpopoq < o < a9 <
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degree in G;_1[S], say u]. Let e;; = ujuf. Consider the graph G;; = G;—1 — e;1,
choose the vertex with the smallest subscript among all the vertices of S — u}
having maximum degree in G;1[S], say u). Then we select the vertex adjacent
to uf with the smallest subscript among all the vertices of S having maximum
degree in G;1[S], say uj. Set e;o = uhuf. Consider the graph Gias = Gj1 — €2 =
Gi—1—{ei1,ein}. Foreachu; € S} (1 < j < x;), we proceed to find e;3, €4, -+ + , €4,
in the same way, and get graphs Gy; = G;—1 — {ei1,€i2, -+, €¢i5—1)} (1 < j < ay).
Let M; = {ei1, €2, ,€iz,} and G; = Gj—1 — M;. Thus the tree T; induced by
the edges in {w;Ugy+1, Willyyt2, -+, wiuk}U{€1, €ia, -+ , €z, } is our desired tree.
Furthermore, 17,75, - - - ,T; are pairwise internally disjoint S-Steiner trees.

We continue this procedure until we obtain n — k pairwise internally disjoint

trees 11,15, -+ ,T,,_. Note that if there exists some x; such that x; = 0 then
Tjy1 = Tjyp = -+ = Ty_j, = 0 since 1 > x9 > --- > x,,_j. Then the trees T;
induced by the edges in {w;uq, wjug, -+ ,wiug} (j < i < n—k) is our desired tree.

From the above procedure, the resulting graph must be G,,_, = G — U;:lk M.
Let us show the following claim.

Claim 2. §(G,_[S]) > %52

Proof of Claim 2. Assume, to the contrary, that 0(G,_x[S]) < “5%, namely,
there exists a vertex u, € S such that dg, | (5)(up) < %. Since §(G[S]) 2
by our procedure there exists an edge e;; in G;(;_;) incident to the vertex
that when we pick up this edge, dg, s5)(up) = k—§4 but dg, ,_,s)(up) = kT

First, we consider the case u, € Si. Then there exists a vertex u, € S}
such that when we select the edge e;; = uyu, from Gy;_1)[S] the degree of
u, in Gy[S] is equal to £5%. Thus, da;1s)(up) = k=4 and dey; i8] (up) =
k—52. From our procedure', |Eg,_, [ug, S8]| = |EGy;_1 [ug, S4]|. Without loss of
generality, let |Eg, | [uq, S5]| =t and ugu; € E(Gi—1) for z; +1 < j < x; + t; see
Figure 3 (b). Thus uy, € {tug;+1,Uz;+2, -+ s U+t }, and uqu; € MU (ULZ} M) for
z; +t+1<j <k Sincex; < k§2 (2 <i<n-—k),it follows that |S{| < %
From this together with §(G;_1[S]) > k—f, we have |Eg,_,[ug, St]| > 1, that is,

t > 1. Since dg,;_, ] (up) = k—f, by our procedure dg, ; , [s] (uj) < k—f for each

uj € Sg (r; +1 < j <z;+t). Assume, to the contrary, that there exists a vertex
us (z; +1 <'s < wx; +1) such that dg, ; , 15)(us) = kEQ. Then we should have
selected the edge uqus instead of e;; = ugu, by our procedure, a contradiction.
We conclude that dGi(j—l) is)(ur) < % for each u, € S5 (z; +1 <r < uz; +1).
Clearly, there are at least kK — 1 — k—gz = % edges incident to each u, (x; +1 <

r < x; +t) belonging to M U (U;_:l1 Mj) U ei1, e, -+, €i(j—1)}- Since j < x; and
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uguj € MU (U:,_:l1 M,) for z; +t+ 1 < j < k, we have

t
| Bk, (v [ug, S3]| + Z dc, ) ()

j—l
> k—u Zaz —-1) !
= j ] 9
—2
> +Lt—2xj—xi+l—<;> (since j < )
7=1

2 (k—1) !

= —E‘FTt—Fk—Ziﬂj—!Ei"Fl
7j=1

1 E—1\*> (k—1)

- _§<t_ 2 ) Ty TR Z%_%H
and hence

7 t
M| > Y IM OBk, [wy, SDI+ Y dicy ) (ug) + [Ere, g, 3]l

j:l j:l
i 2 9 i
1 k—1 (k—1)

> Za;j—§<t—T> + +/<;—Za;j—a:i+1

]:1 ]:1

1 E—1\> (k—1)?

2<t 5 > + 3 +k—x;+

k .
> 5—1—1—]{:—:@-—!—1 (since 1 <t <k —2)

k
> §+k—$i

k—2

> k+1, <since$i§T>

which contradicts |[M| =k — 1.

Next, assume u, € Sj. Recall that dg, g)(up) = k4 Since u, € S, it
follows that dg, ,(s(up) = b2 TIfu, € ﬂ;zl S7, namely, u,w; € M (1 <j <i),
then by our procedure dgs)(up) = k52 +i—1 and hence dg, (s)nn(up) =k —1—
(k 24i-1)= ——z—i—l Since upw; GMforeachw] €8 (1<j<i), we have
dic, ) (up) = dKn[s}nM(up)—|—dKn[S7S]ﬂM(up) > (——H—l)—l—z = k42'2, contradicting

A(K,[M]) < % Combining this with u, € S}, we have u, ¢ ﬂz_:ll St and we
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can assume that there exists an integer ¢/ (i < ¢ — 1) satisfying the following
conditions:

o u, €55 and dg ,(5)(up) < de, (5)(1p);

e if u, belongs to some S} (i’ + 1 < j <) then da;1s)(up) = da;_, 5(up)-
The above two conditions can be restated as follows:

e upwy € E(G) and dg,,5(up) < dg,, (5)(up);

o if uyw; € E(G) (' +1 < j <) then dg,(5)(up) = da;_,[s)(up)-

In fact, we can find the integer i’ such that uywy € E(G) and dg,,[s)(up) <
da,, ,1s)(up). Assume, to the contrary, that for each w; (1 <j <), upw; € M,
or uyw; € E(G) but dg,(s(up) = dg,_,[s(up). Let i1 (i1 < i) be the number
of vertices nonadjacent to u, € S in {wy,wy, -+ ,wi—1} € S. Without loss of
generality, let wju, € M (1 < j < i;). Recall that dg,;[g)(up) = %. Thus
das)(up) = % + 41 and hence dg,, (sjn(up) > k — 1 — (% +ip) = % -
i1. Since wju, € M (1 < j < 4y), it follows that dy (g gjna(up) > i1, which

results in di, vy (up) = dic, fsin (Up) + dic, 5,51 (up) > (52 —in) + iy = K52,

.o k
contradicting A(K,[M]) < 3.

Now we turn our attention to w, € Sg. Without loss of generality, let
upw; € M (j € {j1,72,- - ,ji }), namely, u, € S NS N--- NS, where
Jis g2 g € {41,742, Ji}. Thenwyw; € E(G) (j € {i'+1,¢+2,--- ,i}—
{j1, 42, ,jin }). Clearly, iy <i—4'. Recall that u, € S and dg,(s)(up) = k=4
Thus dg 9] (up) = # +41. By our procedure, there exists a vertex u, € S{,
such that when we select the edge ey; = upu, from Gy (;_1)[S] the degree of u), in

Gyr;[5] is equal to k—§4 + 41, that is, dGi,j[s} (up) = k—§4 + 11 and dGi/(jfl)[S] (up) =

k2 4 4. From our procedure, |EGi,71[uq,S§]| = |Eq,_, [ug, S5]|. Without
loss of generality, let |EGi,71[uq,S§'/]| = t and uqu; € E(Gy_y) for zy +1 <
J < xy +t; see Figure 3 (c). Thus up € {Ug, 1,Uz, 42, Uz, +¢}, and ugu;j €

MU(U’;:_llMT'), for xy +t+1 < j < k. Since z; < % (2<j<n-—k),it
follows that |S{ | < “52. From this together with §(Gi_1[S]) > %52, we have
|Eq,, ., lug,ST]| > 1, that is, £ > 1. Since dGi/(j,l)[S](up) = k2 44y, by our
procedure dGi/(j,l)[S](uj) < % + iy for each uj € S§ (zyp +1 < j < zp +1).
Assume, to the contrary, that there is a vertex us (z; +1 < s < zy +t) such
that dGi/(jfl)[S} (us) > kgz 4+ 41 + 1. Then we should have selected the edge
uqus instead of ey; = wgu, by our procedure, a contradiction. We conclude
that dGi/(j,l)[S](ur) < % + 4y for each u, € S5 (xy +1 < r < zy + ).

Clearly, there are at least k — 1 — (% +1i1) = % — 41 edges incident to each
(7% (l‘i/ +1 <r< T + t) belonging to M U (U;lz_ll M]) U{ei’la €i19, " ,ei’(j—l)}'
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71 Since j < xy and ugquj; € M U (Uf::_l1 M,) for zy +t+1 < j <k, we have

t
|Erxc, g, 311+ Y dic, i ()

j=1
> k‘—l’i/—t—i—<§—i1>t_§$j_(j_1)_(;)
j=1
> k—éijr(%—ﬁ)t—xi&l—t(t;l) (since j < /)
_ —§+%+k—j§::ﬂj+(%—Hz”)t—:vwrl (since i < i — 1)

2 (k-1 d
= —5—1- T—Z-I-Z t—i—k—Za:j—xi/—Fl
j=1

1 .
_ —§<t2—(/<;—1—21+2z’)t)—Hc—ij—xi/—i—l
7=1
< k—1—2i+2z”>2 (k—1—2i+2i)?
t— +

/

i
+*k-—j£:ah'—-$y-¥l
j=1

2 8

72 and hence

| M|
i P '
> Y IM (B, [wy, SN+ Y i (ug) + | Brc, an g, S3]]
j=1 j=1
i . g\ 2 . . i
1 k—1—2i+ 2 (b —1— 26+ 2i')?
Jj=1 7j=1
+1
1 k—1-2i+2'\> (k—1-2i+2{)?2 :
= —§<t— 5 ) + < *’“*.Z xj — x4 1
Jj=i'+1
k 7
> 5—1—i+z"+k—|— Z xj—xy +1 (since 1 <t <k —2and
j=i'+1
k—1-2i+2 <k-2)
. k—2
> k, since z; <

andwjzlfori/—i-lgjgi)
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contradicting |M| = k — 1. This completes the proof of Claim 2.

From our procedure, we get n — k internally disjoint Steiner trees connecting
S in G, say Ty,Ts,--- ,T,_. Recall that G, = G — (U;:lk M;). We can
regard G,_;[S] = G[S] — (U?z_lk M;) as a graph obtained from the complete
graph Ky by deleting | M| + 3277 | M;] edges. Since |M'|+ S\ F | My| + | M| =
my+ S x mg =k — 1, we have 1 < X" |M;| + my < k — 1. By Claim 2,
§(Gn—x[S]) > 552 and hence 2 < A(G,,_£[S]) < £. From Lemma 2.6, there exist

k—gz edge-disjoint spanning trees connecting S in G, _x[S]. These trees together

with 171,75, 1T, are n— % —1 internally disjoint Steiner trees connecting S in
G. Thus, £(S) > n—%—1. From the arbitrariness of S, we have 1 (G) > n—%—1,
as desired. [

We are now in a position to prove our main results.

Proof of Theorem 1.8. Assume that x;(G) = n — % — 1. Since G of order
n is connected, we can regard G as a graph obtained from the complete graph
K,, by deleting some edges. From Lemma 1.7, it follows that |M| > 1 and hence
A(K,[M]) > 1. If G = K, — M where M C E(K,) such that A(K,[M]) >
% + 1, then ki (G) < M\(G) < n — % — 1 by Observation 1.2 and Corollary 2.2, a
contradiction. So 1 < A(K,[M]) < % If 2 < A(K,[M]) < % and |M| > k, then
kk(G) < M\e(G) <n— % — 1 by Observation 1.2 and Lemma 2.4, a contradiction.
Therefore, 1 < |M| < k— 1. If A(K,[M]) =1, then 1 < |M| <k — 1 by Lemma
2.5. We conclude that 1 < A(K,[M]) < % and 1 < |M| <k —1, as desired.
Conversely, let G = K,,—M where M C E(K,,) such that 1 < A(K,,[M]) < %
and 1 < |M| < k — 1. In fact, we only need to show that ryx(G) >n — & — 1 for
A(K,[M]) =1and [M| =k —1, or 2 < A(K,[M]) < % and [M| =k — 1. The
results follow by (1) of Lemma 2.7 and Lemma 2.8. O

Proof of Theorem 1.9. If G is a connected graph satisfying condition (2), then
kp(G) =n — % — 1 by Theorem 1.8. From Observation 1.2, \;(G) > ki(G) =
n — % — 1. From this together with Lemma 1.7, we have \i(G) = n — % - 1.
Assume that G is a connected graph satisfying condition (1). We only need to
show that A\g(G) =n — & —1 for |[M| = |2]. The result follows by (2) of Lemma

2.7 and Lemma 1.7.

Conversely, assume that A\ (G) = n — % — 1. Since G of order n is connected,
we can consider GG as a graph obtained from a complete graph K, by deleting some
edges. From Corollary 2.2, G = K,, — M such that A(K,[M]) < &, where M C
E(K,). Combining this with Lemma 1.7, we have |[M| > 1 and A(K,[M]) > 1.
So 1 < A(K,[M]) < . Tt is clear that if A(K,[M]) =1 then 1 < |M|< |Z]. If
2 < A(K,[M)) < %, then 1 < |M| < k—1 by Lemma 2.4. So (1) or (2) holds. O
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Remark 3. As we know, \(G) = n — 2 if and only if G = K,, — M such that
A(Kn[M]) =1 and 1 < [M| < [§], where M C E(K,). So we can restate the
above conclusion as follows: \o(G) = n — 2 if and only if G = K,, — M such
that A(K,[M]) =1 and 1 < |M| < [§], where M C E(K,,). This means that
4 <k <nin Theorem 1.9 can be replaced by 2 < k < n.
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Appendix: An example for Case 2 of Lemma 2.8

Let Kk = 8 and let G = K, — M where M C FE(K,) be a connected
graph of order n such that |[M| = k— 1 = 7 and A(K,[M]) < & = 4.
Let S = {uj,uo,---,ug}, S = V(G) — S = {wy,ws, - ,w,_g} and
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M = {wyiug, wiug, wius, wols, woly, Usle, Ugus }; see Figure 4 (a). Clear-
ly, 71 = |Eg, w1, S]] = 3 > 22 = [Eg,plwe, Sl = 2 > a; =
|EKn[M][w2yS” =0 (3 < 7 <n-— 8).

For wy, we let ST = {uy,uz,u3} since wyuy, wiuz, wiuz € M. Set Si = S —
St = {ua, us, ug, ur,us}. Clearly, dgs)(u1) = dgps)(u2) = dgis)(uz) = 7 =
k—1 and hence uy, uz, u3 are all the vertices of S§ having maximum degree in
G[S]. But wu; is the one with the smallest subscript, so we choose v} = u; in
511 and select the vertex adjacent to u) in 521 and obtain uy, us, ug, Uy, ug € S%
since wyu; € E(G) (j = 4,---,8). Obviously, dgg)(ua) = dgis)(ur) = 7 >
dG[S%(ukr)) = dgs)(ug) = 6 > dgs)(ug) = 5 and hence uy, u7 are two vertices
of S5 having maximum degree in G[S]. Since uy is the one with the smallest
subscript, we choose v} = u4 € S5 and put ey = uju/ (= ujuy). Consider the
graph G11 = G —e11. Since dg,, [5)(u2) = dg,,[s)(u3) = 7 and the subscript of
us is smaller than ug, we let uh = ug in ST —u/ and select the vertices adjacent
to uh in Si and obtain wg,us, us, ur,us € S§ since vhu; € E(G11) (j =
4,--- ,8). Since dGn[S](u7) =7> dGn[s}(u]') =6 > dGn[S](uﬁ) =5 (] =
4,5,8), we select uj = u; € S and get e;n = ubulj (= uguy). Consider
the graph Gi12 = G117 — e12 = G — {e11,€e12}. There is only one vertex ug
in S — {u),u} = S1 — {u1,uz}. Therefore, let uf = ug and select the
vertices adjacent to u} in S and obtain u; € S} since uju; € E(G12) (j =
4,---,8). Since dg,[s(u;) = 6 > dg,s1(us) = 5 (i = 4,5,7,8), it follows
that uy, us, ur, ug are all the vertices of S3 having maximum degree in G13[9].
But wuy is the one with the smallest subscript, so we choose u}§ = uy € S}
and get e13 = uguy (= ugus). Since x1 = |Eg, (an[wr, S]] = 3, we terminate
this procedure. Set My = {ej1, e12,e13} and G; = G — Mj. Thus the tree T}
induced by the edges in {wjuy, wius, wiug, W1u7, WUs, UL UL, U2U7, UsUy ) 1S
our desired tree; see Figure 4 (b).

For woy, we let S% = {ug,uq} since woug, wouy € M. Let S% =95 - S% =
{u1,u3, us, ug, ur,ug}. Since dg,(s)(u2) = 6 > dg,s)(us) = 5, it follows
that ug is the vertex of S? having maximum degree in G1[S]. So we choose
u} = uy in S? and find the vertices adjacent to u} (= ug) in S3 and ob-
tain uy,us,us, ug,us € S5 since uju; € E(Ga) (j = 1,3,5,6,8). Since
days)(uj) = 6 > dg,(s)(us) = 5 (j = 1,3,5,8) and u; is the vertex hav-
ing maximum degree with the smallest subscript, we choose u} = u; € S7.
Put es; = wju] (= ugup). Consider the graph Ga; = Gj — eg;. Clearly,
S; —{u}} = S1 — {us} = {u4}, so we let uy = uy and select the ver-
tices adjacent to u) (= wuy) in S% and obtain wus,ug, u7,ug since ugu; €
E(G) (j = 5,6,7, 8). Since dGzl[S}(uj) =6 > ngl[S}(UG) =95 (] = 0,7, 8)
and us is the vertex with the smallest subscript, we let uf = us € S% and
get ezn = whuy (= wgus). Since x3 = |[Eg, agwa, S]] = 2, we terminate
this procedure. Let My = {es1,€22} and Gy = G7 — Ms. Then the tree T
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Figure 4 Graphs for the appendix.

induced by the edges in {wouy, wous, wous, woug, wour, Wous, Uiy, Usus} 18
our desired tree; see Figure 4 (¢). Obviously, 75 and 77 are two internally
disjoint Steiner trees connecting S.

Since x; = |Eg,pglwi,S]| = 0 for 3 < i < n — 8, we terminate
this procedure. For ws, -+ ,w,_g, the trees T; induced by the edges
{wiug, wiug, -+ ,wiug} (3 < i < n —8) (see Figure 4 (d)) are our desired
trees.

We can consider G3[S| = G[S]—{ M, M5} as a graph obtained from complete
graph Ky, by deleting |M N K, [S]| + | M| + |Ma| edges. Since |M N K,[S]| +
|My|+|Ms| = 24342 =7 = k—1, it follows from Lemma ?? that there exist
three edge-disjoint spanning trees connecting S in G[S] (Actually, we can give
three edge-disjoint spanning trees; see Figure 4 (e). For example, the trees
Tll = urug Uugug Uugug Uugusz Jusus Uusus Uusury, T2/ = ugurUurug Uuguz U
uzug Uugus Uug ugUugus and Té = UgugJusugUugusUususJugur UugurUurug
can be our desired trees). These three trees together with 77,75, - ,T,,—s
aren—5=mn— % — 1 internally disjoint Steiner trees connecting .S. Thus,
A(S) > n—5.



