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1. Introduction25

All graphs considered in this paper are undirected, finite and simple. We refer26

to the book [3] for graph theoretical notation and terminology not described here.27

For a graph G, let V (G), E(G), G denote the set of vertices, the set of edges of28

G and the complement, respectively. Let dG(v) denote the degree of the vertex29

v in G. As usual, the union of two graphs G and H is the graph, denoted by30



2 Li and Mao

G∪H, with vertex set V (G)∪V (H) and edge set E(G)∪E(H). Let mH be the31

disjoint union of m copies of a graph H. If M is a subset of edges of a graph G,32

the subgraph of G induced by M is denoted by G[M ], and G −M denotes the33

subgraph obtained by deleting the edges of M from G. If M = {e}, we simply34

write G− e for G−{e}. If S ⊆ V (G), the subgraph of G induced by S is denoted35

by G[S]. For S ⊆ V (G), we denote G− S the subgraph obtained by deleting the36

vertices of S together with the edges incident with them from G. We denote by37

EG[X,Y ] the set of edges of G with one end in X and the other end in Y . If38

X = {x}, we simply write EG[x, Y ] for EG[{x}, Y ]. A subset M of E(G) is called39

a matching of G if the edges of M satisfy that no two of them are adjacent in G.40

A matching M saturates a vertex v, or v is said to be M -saturated, if some edge41

of M is incident with v; otherwise, v is M -unsaturated. If every vertex of G is42

M -saturated, the matching M is perfect. M is a maximum matching if G has no43

matching M ′ with |M ′| > |M |.44

Connectivity and edge-connectivity are two of the most basic concepts of45

graph-theoretic subjects, both in a combinatorial sense and an algorithmic sense.46

As we know, the classical connectivity has two equivalent definitions. The con-47

nectivity of a graph G, written κ(G), is the minimum size of a set S ⊆ V (G) such48

that G − S is disconnected or has only one vertex. If G − S is disconnected we49

call such a set S a vertex cut-set for G. We call this definition the ‘cut’ version50

definition of connectivity. A well-known Menger’s theorem provides an equiva-51

lent definition of connectivity, which can be called the ‘path’ version definition52

of connectivity. For any two distinct vertices x and y in G, the local connectivity53

κG(x, y) is the maximum number of internally disjoint paths connecting x and54

y. Then κ(G) = min{κG(x, y) |x, y ∈ V (G), x 6= y} is defined to be the con-55

nectivity of G. Similarly, the classical edge-connectivity also has two equivalent56

definitions. The edge-connectivity of G, written λ(G), is the minimum size of an57

edge set M ⊆ E(G) such that G − M is disconnected or has only one vertex.58

We call this definition the ‘cut’ version definition of edge-connectivity. Menger’s59

theorem also provides an equivalent definition of edge-connectivity, which can60

be called the ‘path’ version definition. For any two distinct vertices x and y in61

G, the local edge-connectivity λG(x, y) is the maximum number of edge-disjoint62

paths connecting x and y. Then λ(G) = min{λG(x, y) |x, y ∈ V (G), x 6= y} is63

defined to be the edge-connectivity of G. For connectivity and edge-connectivity,64

Oellermann gave a survey paper on this subject, see [34].65

Although there are many elegant and powerful results on connectivity in66

graph theory, the classical connectivity and edge-connectivity also have their67

defects. So people want some generalizations of both connectivity and edge-68

connectivity. For the ‘cut’ version definition of connectivity, we are looking for69

a minimum vertex-cut with no consideration about the number of components70

of G− S. Two graphs with the same connectivity may have different degrees of71
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vulnerability in the sense that the deletion of a vertex cut-set of minimum cardi-72

nality from one graph may produce a graph with considerably more components73

than in the case of the other graph. For example, the star K1,n and the path74

Pn+1 (n ≥ 3) are both trees of order n+ 1 and therefore connectivity 1, but the75

deletion of a cut-vertex from K1,n produces a graph with n components while76

the deletion of a cut-vertex from Pn+1 produces only two components. Char-77

trand et al. [4] generalized the ‘cut’ version definition of connectivity. For an78

integer k (k ≥ 2) and a graph G of order n (n ≥ k), the k-connectivity κ′k(G)79

is the smallest number of vertices whose removal from G produces a graph with80

at least k components or a graph with fewer than k vertices. Thus, for k = 2,81

κ′2(G) = κ(G). For more details about k-connectivity, we refer to [4, 6, 35, 36].82

The k-edge-connectivity, which is a generalization of the ‘cut’ version definition83

of classical edge-connectivity was initially introduced by Boesch and Chen [2] and84

subsequently studied by Goldsmith in [7, 8] and Goldsmith et al. [9]. For more85

details, we refer to [1, 34].86

The generalized connectivity of a graph G, introduced by Hager [12], is a87

natural and nice generalization of the ‘path’ version definition of connectivity.88

For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an S-Steiner tree89

or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T = (V ′, E′) of90

G that is a tree with S ⊆ V ′. Two Steiner trees T and T ′ connecting S are said to91

be internally disjoint if E(T )∩E(T ′) = ∅ and V (T )∩V (T ′) = S. For S ⊆ V (G)92

and |S| ≥ 2, the generalized local connectivity κ(S) is the maximum number93

of internally disjoint Steiner trees connecting S in G. Note that when |S| = 294

a minimal Steiner tree connecting S is just a path connecting the two vertices95

of S. For an integer k with 2 ≤ k ≤ n, generalized k-connectivity (or k-tree-96

connectivity) is defined as κk(G) = min{κ(S) |S ⊆ V (G), |S| = k}. Clearly, when97

|S| = 2, κ2(G) is nothing new but the connectivity κ(G) of G, that is, κ2(G) =98

κ(G), which is the reason why one addresses κk(G) as the generalized connectivity99

of G. By convention, for a connected graph G with less than k vertices, we set100

κk(G) = 1. Set κk(G) = 0 when G is disconnected. This concept appears to101

have been introduced by Hager in [12]. It is also studied in [5] for example,102

where the exact value of the generalized k-connectivity of complete graphs are103

obtained. Note that the generalized k-connectivity and the k-connectivity of a104

graph are indeed different. Take for example, the graph H1 obtained from a105

triangle with vertex set {v1, v2, v3} by adding three new vertices u1, u2, u3 and106

joining vi to ui by an edge for 1 ≤ i ≤ 3. Then κ3(H1) = 1 but κ′3(H1) = 2.107

There are many results on the generalized connectivity or tree-connectivity, we108

refer to [5, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 37]. Apart from the concept109

of tree-connectivity, Hager also introduced another tree-connectivity parameter,110

called the pendant tree-connectivity of a graph in [12]. For the tree-connectivity,111

we only search for edge-disjoint trees which include S and are vertex-disjoint with112
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the exception of the vertices in S. But pendant tree-connectivity further requires113

the degree of each vertex of S in a Steiner tree connecting S equal to one. Note114

that it is a special case of the tree-connectivity.115

As a natural counterpart of the generalized connectivity, we introduced in116

[32] the concept of generalized edge-connectivity, which is a generalization of the117

‘path’ version definition of edge-connectivity. For S ⊆ V (G) and |S| ≥ 2, the118

generalized local edge-connectivity λ(S) is the maximum number of edge-disjoint119

Steiner trees connecting S in G. For an integer k with 2 ≤ k ≤ n, the general-120

ized k-edge-connectivity λk(G) of G is then defined as λk(G) = min{λ(S) |S ⊆121

V (G) and |S| = k}. It is also clear that when |S| = 2, λ2(G) is nothing new but122

the standard edge-connectivity λ(G) of G, that is, λ2(G) = λ(G), which is the123

reason why we address λk(G) as the generalized edge-connectivity of G. Also set124

λk(G) = 0 when G is disconnected. Results on the generalized edge-connectivity125

can be found in [28, 29, 32].126

In fact, Mader [19] was studying an extension of Menger’s theorem to inde-127

pendent sets of three or more vertices. We know from Menger’s theorem that if128

S = {u, v} is a set of two independent vertices in a graph G, then the maximum129

number of internally disjoint u-v paths in G equals the minimum number of ver-130

tices that separate u and v. For a set S = {u1, u2, · · · , uk} of k vertices (k ≥ 2)131

in a graph G, an S-path is defined as a path between a pair of vertices of S that132

contains no other vertices of S. Two S-paths P1 and P2 are said to be internally133

disjoint if they are vertex-disjoint except for their endvertices. If S is a set of134

independent vertices of a graph G, then a vertex set U ⊆ V (G) with U ∩S = ∅ is135

said to totally separate S if every two vertices of S belong to different components136

of G − U . Let S be a set of at least three independent vertices in a graph G.137

Let µ(G) denote the maximum number of internally disjoint S-paths and µ′(G)138

the minimum number of vertices that totally separate S. A natural extension of139

Menger’ s theorem may well be suggested, namely: If S is a set of independent140

vertices of a graph G and |S| ≥ 3, then µ(S) = µ′(S). However, the statement is141

not true in general. Take the above graph H1 for example. For S = {v1, v2, v3},142

µ(S) = 1 but µ′(S) = 2. Mader proved that µ(S) ≥ 1
2µ

′(S). Moreover, the143

bound is sharp. Lovász conjectured an edge analogue of this result and Mader144

proved this conjecture and established its sharpness. For more details, we refer145

to [19, 20, 34].146

In addition to being natural combinatorial measures, the Steiner Tree Pack-147

ing Problem and the generalized edge-connectivity can be motivated by their148

interesting interpretation in practice as well as theoretical consideration. From a149

theoretical perspective, both extremes of this problem are fundamental theorems150

in combinatorics. One extreme of the problem is when we have two terminal-151

s. In this case internally (edge-)disjoint trees are just internally (edge-)disjoint152

paths between the two terminals, and so the problem becomes the well-known153
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Menger theorem. The other extreme is when all the vertices are terminals. In154

this case internally disjoint Steiner trees and edge-disjoint trees are just edge-155

disjoint spanning trees of the graph, and so the problem becomes the classical156

Nash-Williams-Tutte theorem.157

Theorem 1.1. (Nash-Williams [33], Tutte [39]) A multigraph G contains a sys-
tem of ℓ edge-disjoint spanning trees if and only if

‖G/P‖ ≥ ℓ(|P| − 1)

holds for every partition P of V (G), where ‖G/P‖ denotes the number of cross-158

ing edges in G, i.e., edges between distinct parts of P.159

The generalized edge-connectivity is related to an important problem, which160

is called the Steiner Tree Packing Problem. For a given graph G and S ⊆ V (G),161

this problem asks to find a set of maximum number of edge-disjoint Steiner162

trees connecting S in G. One can see that the Steiner Tree Packing Problem163

studies local properties of graphs, but the generalized edge-connectivity focuses164

on global properties of graphs. The generalized edge-connectivity and the Steiner165

Tree Packing Problem have applications in V LSI circuit design, see [10, 11, 38].166

In this application, a Steiner tree is needed to share an electronic signal by a167

set of terminal nodes. Another application, which is our primary focus, arises168

in the Internet Domain. Imagine that a given graph G represents a network.169

We choose arbitrary k vertices as nodes. Suppose that one of the nodes in G170

is a broadcaster, and all the other nodes are either users or routers (also called171

switches). The broadcaster wants to broadcast as many streams of movies as172

possible, so that the users have the maximum number of choices. Each stream of173

movie is broadcasted via a tree connecting all the users and the broadcaster. So,174

in essence we need to find the maximum number of Steiner trees connecting all175

the users and the broadcaster, namely, we want to get λ(S), where S is the set176

of the k nodes. Clearly, it is a Steiner tree packing problem. Furthermore, if we177

want to know whether for any k nodes the network G has the above properties,178

then we need to compute λk(G) = min{λ(S)} in order to prescribe the reliability179

and the security of the network.180

The following two observations are easily seen from the definitions.181

Observation 1.2. Let k, n be two integers with 3 ≤ k ≤ n. For a connected182

graph G of order n, κk(G) ≤ λk(G) ≤ δ(G).183

Observation 1.3. Let k, n be two integers with 3 ≤ k ≤ n. If H is a spanning184

subgraph of G of order n, then λk(H) ≤ λk(G).185

Chartrand et al. in [5] got the exact value of the generalized k-connectivity186

for the complete graph Kn.187
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Lemma 1.4. [5] For every two integers n and k with 2 ≤ k ≤ n, κk(Kn) =188

n− ⌈k/2⌉.189

In [32] we obtained some results on the generalized k-edge-connectivity. The190

following results are restated, which will be used later.191

Lemma 1.5. [32] For every two integers n and k with 2 ≤ k ≤ n, λk(Kn) =192

n− ⌈k/2⌉.193

Lemma 1.6. [32] Let k, n be two integers with 3 ≤ k ≤ n. For a connected graph194

G of order n, 1 ≤ κk(G) ≤ λk(G) ≤ n − ⌈k/2⌉. Moreover, the upper and lower195

bounds are sharp.196

We also characterized graphs attaining the upper bound and obtained the197

following result.198

Lemma 1.7. [32] Let k, n be two integers with 3 ≤ k ≤ n. For a connected graph199

G of order n, κk(G) = n−⌈k2⌉ or λk(G) = n−⌈k2⌉ if and only if G = Kn for even200

k; G = Kn −M for odd k, where M is a set of edges such that 0 ≤ |M | ≤ k−1
2 .201

One may notice that the graphs with κk(G) = n − ⌈k2⌉ are the same as the202

graphs with λk(G) = n − ⌈k2⌉. Our motivation of this paper is to ask whether203

the graphs with κk(G) = n−⌈k2⌉− 1 are different from the graphs with λk(G) =204

n− ⌈k2⌉ − 1. In this paper, graphs of order n such that κk(G) = n− ⌈k2⌉ − 1 and205

λk(G) = n− ⌈k2⌉ − 1 for any even k are characterized.206

Theorem 1.8. Let n and k be two integers such that k is even and 4 ≤ k ≤ n,207

and G be a connected graph of order n. Then κk(G) = n − k
2 − 1 if and only208

if G = Kn − M where M is a set of edges such that 1 ≤ ∆(Kn[M ]) ≤ k
2 and209

1 ≤ |M | ≤ k − 1.210

The above result can also be established for the generalized k-edge-connectivity,211

which is stated as follows.212

Theorem 1.9. Let n and k be two integers such that k is even and 4 ≤ k ≤ n,213

and G be a connected graph of order n. Then λk(G) = n − k
2 − 1 if and only if214

G = Kn−M where M is a set of edges satisfying one of the following conditions:215

(1) ∆(Kn[M ]) = 1 and 1 ≤ |M | ≤ ⌊n2 ⌋;216

(2) 2 ≤ ∆(Kn[M ]) ≤ k
2 and 1 ≤ |M | ≤ k − 1.217

2. Main result218

To begin with, we give the following lemmas.219
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Lemma 2.1. If G is a graph obtained from the complete graph Kn by deleting a220

set of edges M such that ∆(Kn[M ]) ≥ r, then λk(G) ≤ n− 1− r.221

Proof. Since ∆(Kn[M ]) ≥ r, there exists at least one vertex, say v, such that222

dKn[M ](v) ≥ r. Then dG(v) = n− 1− dKn[M ](v) ≤ n− 1− r. So δ(G) ≤ dG(v) ≤223

n− 1− r. From Observation 1.2, λk(G) ≤ δ(G) ≤ n− 1− r.224

Corollary 2.2. For every two integers n and k with 4 ≤ k ≤ n, if k is even and225

M is a set of edges in the complete graph Kn such that ∆(Kn[M ]) ≥ k
2 +1, then226

κk(Kn −M) ≤ λk(Kn −M) < n− k
2 − 1.227

Remark 1. From Corollary 2.2, if κk(Kn −M) = n − k
2 − 1 or λk(Kn −M) =228

n− k
2 − 1 for k even, then ∆(Kn[M ]) ≤ k

2 .229

In [32], we stated a useful lemma for general k.230

Let S ⊆ V (G) be such that |S| = k, and T be a maximum set of edge-231

disjoint S-Steiner trees in G. Let T1 be the set of trees in T whose edges belong232

to E(G[S]), and T2 be the set of S-Steiner trees containing at least one edge of233

EG[S, S̄], where S̄ = V (G)−S. Thus, T = T1 ∪T2 (Throughout this paper, T ,234

T1, T2 are defined in this way).235

Lemma 2.3. [32] Let G be a connected graph of order n, and S ⊆ V (G) with236

|S| = k (3 ≤ k ≤ n) and let T be a S-Steiner tree. If T ∈ T1, then T contains237

exactly k − 1 edges of E(G[S]). If T ∈ T2, then T contains at least k edges of238

E(G[S]) ∪EG[S, S̄].239

Lemma 2.4. For every two integers n and k with 4 ≤ k ≤ n, if k is even and M240

is a set of edges of the complete graph Kn such that |M | ≥ k and ∆(Kn[M ]) ≥ 2,241

then λk(Kn −M) < n− k
2 − 1.242

Proof. Set G = Kn−M . We claim that there is an S ⊆ V (G) with |S| = k such243

that |M∩
(

E(Kn[S])∪EKn [S, S̄])| ≥ k and |M∩
(

E(Kn[S])| ≥ 1. Choose a subset244

M ′ of M such that |M ′| = k. Suppose that Kn[M
′] contains s independent edges245

and r connected components C1, · · · , Cr such that ∆(Ci) ≥ 2 (1 ≤ i ≤ r). Set246

|V (Ci)| = ni and |E(Ci)| = mi. Then mi ≥ ni − 1. For each Ci (1 ≤ i ≤ r), we247

select one of the vertices having maximum degree, say ui. Set Xi = V (Ci)− ui.248

If there exists some Xj such that |E(Kn[Xj ])| ≥ 1, then we choose Xi ⊆ S249

for all 1 ≤ i ≤ r. Since |V (Ci)| = ni and Xi = V (Ci)− ui, we have |Xi| = ni − 1.250

By such a choosing, the number of the vertices belonging to S is
∑r

i=1 |Xi| =251

∑r
i=1(ni − 1) ≤

∑r
i=1mi ≤ k − s. In addition, we select one endvertex of each252

independent edge into S. Till now, the total number of the vertices belonging to253

S is
∑r

i=1 |Xi|+ s ≤ (k− s)+ s = k. Note that if
∑r

i=1 |Xi|+ s < k, then we can254

add some other vertices in G into S such that |S| = k. Thus all edges of E(Ci)255

and the s independent edges are put into E(Kn[S])∪EKn [S, S̄], that is, all edges256
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of M ′ belong to E(Kn[S]) ∪EKn [S, S̄]. So |M ∩
(

E(Kn[S]) ∪EKn [S, S̄])| ≥ k, as257

desired. Since |E(Kn[Xj ])| ≥ 1, it follows that |M ∩
(

E(Kn[S])| ≥ 1, as desired.258

Suppose that |E(Kn[Xi])| = 0 for all 1 ≤ i ≤ r. Then each Ci must be a259

star such that |E(Ci)| ≥ 2. Recall that ui is one of the vertices having maximum260

degree in Ci. Select one vertex from V (Ci) − ui, say vi. Put all the vertices of261

Yi = V (Ci) − vi into S, that is, Yi ⊆ S. Thus |Yi| = ni − 1. In addition, we262

choose one endvertex of each independent edge into S. By such a choosing, the263

total number of the vertices belonging to S is
∑r

i=1 |Yi|+ s =
∑r

i=1(ni− 1)+ s ≤264

∑r
i=1 mi + s ≤ (k − s) + s = k. Note that if

∑r
i=1 |Xi|+ s < k then we can add265

some other vertices in G into S such that |S| = k. Thus all edges of E(Ci) and266

the s independent edges are put into E(Kn[S])∪EKn [S, S̄], that is, and all edges267

of M ′ belong to E(Kn[S]) ∪ EKn [S, S̄]. So |M ∩
(

E(Kn[S]) ∪ EKn [S, S̄])| ≥ k,268

as desired. Since |E(Ci)| ≥ 2, it follows that there is an edge uiwi ∈ M ∩Kn[S]269

where wi ∈ V (Ci)−{ui, vi}, which implies that |M ∩
(

E(Kn[S])| ≥ 1, as desired.270

From the above arguments, we conclude that there exists an S ⊆ V (G) with271

|S| = k such that |M ∩
(

E(Kn[S]) ∪ EKn [S, S̄])| ≥ k and |M ∩
(

E(Kn[S])| ≥ 1.272

Since each tree T ∈ T1 uses k − 1 edges in E(G[S]) ∪ EG[S, S̄], it follows that273

|T1| ≤ (
(

k
2

)

− 1)/(k − 1) = k
2 − 1

k−1 , which results in |T1| ≤
k
2 − 1 since |T1|274

is an integer. From Lemma 2.3, each tree T ∈ T2 uses at least k edges of275

E(G[S]) ∪ EG[S, S̄]. Thus |T1|(k − 1) + |T2|k ≤ |E(G[S])| + |EG[S, S̄]|, that is,276

|T1|k + |T2|k ≤ |T1| +
(

k
2

)

+ k(n − k) − k. So λk(G) = |T | = |T1| + |T2| ≤277

n− k
2 − 1− 1

k
< n− k

2 − 1.278

Remark 2. From Lemmas 1.7 and 2.4, if κk(Kn−M) = n− k
2−1 or λk(Kn−M) =279

n − k
2 − 1 for k even and 2 ≤ ∆(Kn[M ]) ≤ k

2 , then 1 ≤ |M | ≤ k − 1, where280

M ⊆ E(Kn).281

Lemma 2.5. For every two integers n and k with 4 ≤ k ≤ n, if k is even and M282

is a set of edges in the complete graph Kn such that |M | ≥ k and ∆(Kn[M ]) = 1,283

then κk(Kn −M) < n− k
2 − 1.284

Proof. Let G = Kn −M . Since ∆(Kn[M ]) = 1, it follows that M is a matching285

in Kn. Since |M | ≥ k, we can choose M1 ⊆ M such that |M1| = k. Let286

M1 = {uiwi|1 ≤ i ≤ k}. Choose S = {u1, u2, · · · , uk}. We will show that287

κ(S) < n − k
2 − 1. Clearly, |S̄| = n − k, and let S̄ = {w1, w2, · · · , wn−k}. Since288

each tree in T2 contains at least one vertex of S̄, it follows that |T2| ≤ n − k.289

By the definition of T1, we have |T1| ≤
k
2 . If |T1| ≤

k
2 − 2, then κ(S) ≤ λ(S) =290

|T | = |T1| + |T2| ≤ (k2 − 2) + (n − k) = n − k
2 − 2 < n − k

2 − 1, as desired. Let291

us assume k
2 − 1 ≤ |T1| ≤

k
2 .292

Consider the case |T1| =
k
2 − 1. Recall that |T2| ≤ n − k. Furthermore,293

we claim that |T2| ≤ n − k − 1. Assume, to the contrary, that |T2| = n − k.294

Let T1, T2, · · · , Tn−k be the n − k edge-disjoint S-Steiner trees in T2. For each295
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tree Ti (1 ≤ i ≤ n − k), this tree only occupy one vertex of S̄, say wi. Since296

uiwi ∈ M1 (1 ≤ i ≤ k), namely, uiwi /∈ E(G), and each Ti (1 ≤ i ≤ k) is an297

S-Steiner tree in T2, it follows that this tree Ti must contain at least one edge298

in G[S] = Kk. So the trees T1, T2, · · · , Tk must use at least k edges in G[S],299

and |T1| =
(k2)−k

k−1 = k−2
2 − 1

k−1 . Since |T1| is an integer, we have |T1| <
k−2
2 ,300

a contradiction. We conclude that |T2| ≤ n − k − 1, and hence κ(S) ≤ λ(S) =301

|T | = |T1|+ |T2| ≤ (k2 − 1) + (n− k − 1) = n− k
2 − 2 < n− k

2 − 1, as desired.302

Consider the case |T1| =
k
2 . We claim that |T2| ≤ n− k− 2. Assume, to the303

contrary, that n− k− 1 ≤ |T2| ≤ n− k. Since |T1| =
k
2 , it follows that each edge304

of G[S] is occupied by some tree in T1, which implies that each tree in T2 only305

uses the edges of EG[S, S̄] ∪ E(G[S̄]). Suppose that T1 is a tree in T2 occupying306

w1. Since u1w1 /∈ E(G), if T1 contains three vertices of S̄, then the remaining307

n− k− 3 vertices in S̄ must be contained in at most n− k− 3 trees in T2, which308

results in |T2| ≤ (n−k−3)+1 = n−k−2, a contradiction. So we assume that the309

tree T1 contains another vertex of S̄ except w1, say w2. Recall that k ≥ 4. Then310

|S̄| ≥ k ≥ 4. By the same reason, there is another tree T2 containing two vertices311

of S̄, say w3, w4. Furthermore, the remaining n − k − 4 vertices in S̄ must be312

contained in at most n−k−4 trees in T2, which results in |T2| ≤ (n−k−4)+2 =313

n−k−2, a contradiction. We conclude that |T2| ≤ n−k−2. Since |T1| =
k
2 , we314

have κ(S) ≤ λ(S) = |T | = |T1|+ |T2| ≤
k
2 +(n− k− 2) = n− k

2 − 2 < n− k
2 − 1,315

as desired.316

Lemma 2.6. If n (n ≥ 4) is even and M is a set of edges in the complete graph317

Kn such that 1 ≤ |M | ≤ n − 1 and 1 ≤ ∆(Kn[M ]) ≤ n
2 , then G = Kn − M318

contains n−2
2 edge-disjoint spanning trees.319

Proof. Let P =
⋃p

i=1 Vi be a partition of V (G) with |Vi| = ni (1 ≤ i ≤ p), and320

Ep be the set of edges between distinct blocks of P in G. It suffices to show that321

|Ep| ≥
n−2
2 (|P| − 1) so that we can use Theorem 1.1.322

The case p = 1 is trivial by Theorem 1.1, thus we assume p ≥ 2. For323

p = 2, we have P = V1 ∪ V2. Set |V1| = n1. Clearly, |V2| = n − n1. Since324

∆(Kn[M ]) ≤ n
2 , it follows that δ(G) = n − 1 −∆(Kn[M ]) ≥ n − 1 − n

2 = n−2
2 .325

Therefore, if n1 = 1 then |E2| = |EG[V1, V2]| ≥
n−2
2 . Suppose n1 ≥ 2. Then326

|E2| = |EG[V1, V2]| ≥
(

n
2

)

− (n − 1) −
(

n1

2

)

−
(

n−n1

2

)

= −n2
1 + nn1 − n + 1. Since327

2 ≤ n1 ≤ n − 2, one can see that |E2| achives its minimum value when n1 = 2328

or n1 = n − 2. Thus |E2| ≥ n − 3 ≥ n−2
2 since n ≥ 4. The result follows from329

Theorem 1.1.330

Let us consider the remaining cases for p, namely, for 3 ≤ p ≤ n. Since331

|Ep| ≥
(

n
2

)

−|M |−
∑p

i=1

(

ni

2

)

≥
(

n
2

)

− (n− 1)−
∑p

i=1

(

ni

2

)

=
(

n−1
2

)

−
∑p

i=1

(

ni

2

)

, we332

only need to show
(

n−1
2

)

−
∑p

i=1

(

ni

2

)

≥ n−2
2 (p−1), that is, (n−p)n−2

2 ≥
∑p

i=1

(

ni

2

)

.333

Because
∑p

i=1

(

ni

2

)

achieves its maximum value when n1 = n2 = · · · = np−1 = 1334
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and np = n−p+1, we need inequality (n−p)n−2
2 ≥

(1
2

)

(p−1)+
(

n−p+1
2

)

, namely,335

(n− p)p−3
2 ≥ 0. It is easy to see that the inequality holds since 3 ≤ p ≤ n. Thus,336

|Ep| ≥
(

n
2

)

− |M | −
∑p

i=1

(

ni

2

)

≥ n−2
2 (p− 1).337

From Theorem 1.1, there exist n−2
2 edge-disjoint spanning trees in G, as338

desired.339

Lemma 2.7. Let k, n be two integers with 4 ≤ k ≤ n, and M is an edge set of340

the complete graph Kn satisfying ∆(Kn[M ]) = 1. Then341

(1) If |M | = k − 1, then κk(Kn −M) ≥ n− k
2 − 1;342

(2) If |M | = ⌊n2 ⌋, then λk(Kn −M) ≥ n− k
2 − 1.343

Proof. (1) Set G = Kn − M . Since ∆(Kn[M ]) = 1, it follows that M is a344

matching ofKn. By the definition of κk(G), we need to show that κ(S) ≥ n− k
2−1345

for any S ⊆ V (G).346

Case 1. There exists no u,w in S such that uw ∈ M .347

Without loss of generality, let S = {u1, u2, · · · , uk} such that u1, u2, · · · , ur348

areM -saturated but ur+1, ur+2, · · · , uk areM -unsaturated. Let M1 = {uiwi | 1 ≤349

i ≤ r} ⊆ M . Since |M | = k − 1, it follows that 0 ≤ r ≤ k − 1. In this case,350

uiuj /∈ M (1 ≤ i, j ≤ r). Clearly, G[S] is a clique of order k. We choose a path351

P = u1u2 · · · urur+1 in G[S]. Let G′ = G − E(P ). Then G′[S] = Kk − E(P ).352

Since |E(P )| = r ≤ k − 1 and ∆(Kk[E(P )]) = 2 ≤ k
2 , it follows that G′[S]353

contains k−2
2 edge-disjoint spanning trees, which are also k−2

2 internally disjoint354

S-Steiner trees. These trees together with the trees Ti induced by the edges355

in {u1wi, u2wi, ui−1wi, ui+1wi, · · · , ukwi, uiui+1} (1 ≤ i ≤ r) (see Figure 1 (a))356

and the trees Tj induced by the edges in {u1vj, u2vj , · · · , ukvj} where vj ∈ S̄ −357

{w1, w2, · · · , wr} = {v1, v2, · · · , vn−k−r} form k−2
2 + r + (n − k − r) = n − k

2 − 1358

internally disjoint S-Steiner trees. Thus, κ(S) ≥ n− k
2 − 1, as desired.359

Case 2. There exist u,w in S such that uw ∈ M .360

Without loss of generality, we let S = {u1, u2, · · · , ur, ur+1, ur+2, · · · , ur+s,361

ur+s+1, · · · , uk−r, w1, w2, · · · , wr} such that the vertices u1, u2, · · · , ur+s, w1, w2,362

· · · , wr are all M -saturated and uiwi ∈ M (1 ≤ i ≤ r). Set M1 = {uiwi | 1 ≤363

i ≤ r}. In this case, r ≥ 1 and 2r + s ≤ k. Since |M | = k − 1, it follows that364

r + s ≤ k − 1 and s ≤ k − 2.365

First, we consider 2r + s = k. Since k is even, it follows that s is even.366

If s = 0, then r = k
2 . Thus S = {u1, u2, · · · , u k

2
, w1, w2, · · · , w k

2
}. Clearly,367

M1 = {uiwi | 1 ≤ i ≤ k
2}, |M1| =

k
2 ≤ k − 1 and ∆(Kn[M1]) = 1 < k

2 . By368

Lemma 2.6, G[S] contains k−2
2 edge-disjoint spanning trees, which are also k−2

2369

internally disjoint S-Steiner trees. These trees together with the trees Tj induced370

by the edges in {u1vj, u2vj , · · · , u k
2
vj}∪{w1vj, w2vj , · · · , w k

2
vj} form

k−2
2 +(n−k)371

internally disjoint S-Steiner trees, where vj ∈ S̄ = {v1, v2, · · · , vn−k}. So, κ(S) ≥372

n− k
2 − 1.373
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u1 ui ur+1

wr+s

ur+s

(d)

w1 wi

ur

wr+j
wr

ur+j

wr+1

ur+j+1

wr+j+1

uk−r

wr

ukur−1u2

w2

ui+1 ur

wi+1wr−1

(a)

ur+1

vj

ui

wi

ur+s+1

vj

u1

w1

u1

w1

u2

w2

u3

w3

(b)

w1 w k−2

2

(c)

u1

w2

u2
u k−2

2 u k

2
u k+2

2

w k+2

2

w k

2

M1 M1

M1 M1vj vj

Figure 1. Graphs for (1) of Lemma 2.7.

Consider s = 2. Since 2r + s = k, we have r = k−2
2 . If k = 4, then374

r = 1 and hence S = {u1, u2, u3, w1}. Clearly, M1 = {u1w1}, and the tree375

T1 induced by the edges in {u1u2, u1w2, w1w2, u3w2} and the tree T2 induced376

by the edges in {u1u3, u2u3, u2w1} and the tree T3 induced by the edges in377

{u1w3, u2w3, w1w3, u3w1} are three spanning trees; see Figure 1 (c). These trees378

together with the trees Tj induced by the edges in {u1vj, u2vj , u3vj, w1vj} for-379

m 3 + (n − 6) internally disjoint S-Steiner trees, where vj ∈ S̄ − {w2, w3} =380

{v1, v2, · · · , vn−6}. Thus, κ(S) ≥ n − 3 = n − k
2 − 1. Suppose k ≥ 6. Then381

r ≥ 2, S = {u1, u2, · · · , u k+2
2
, w1, w2, · · · , w k−2

2
} and M1 = {uiwi | 1 ≤ i ≤ k−2

2 }.382

Clearly, the tree T1 induced by the edges in {u1w k
2
, u2w k

2
, · · · , u k−2

2
w k

2
, u k+2

2
w k

2
,383

u2u k
2
, w1w k

2
, w2w k

2
, · · · , w k−2

2
w k

2
} and the tree T2 induced by the edges in {u1w k+2

2
,384

u2w k+2
2
, · · · , u k

2
w k+2

2
}∪{u1u k+2

2
, w1w k+2

2
, w2w k+2

2
, · · · , w k−2

2
w k+2

2
} are two inter-385

nally disjoint S-Steiner trees; see Figure 1 (d). Let M2 = M1 ∪ {u1u k+2
2
, u2u k

2
}.386

Then |M2| = |M1| + 2 = k−2
2 + 2 = k+2

2 < k − 1 and ∆(Kn[M2]) = 2 ≤ k
2 ,387

which implies that G[S]−{u1u k+2
2
, u2u k

2
} = Kk −M2 contains k−2

2 edge-disjoint388

spanning trees by Lemma 2.6, which are also k−2
2 internally disjoint S-Steiner389

trees. These trees together with T1, T2 and the trees Tj induced by the edges in390

{u1vj , u2vj, · · · , u k+2
2
vj, w1vj , w2vj , · · · , u k−2

2
vj} are k−2

2 + 2 + (n− k − 2) inter-391

nally disjoint S-Steiner trees, where vj ∈ S̄ −{w k
2
, w k+2

2
} = {v1, v2, · · · , vn−k−2}.392

So, κ(S) ≥ n− k
2 − 1.393

Consider the remaining case for s, namely, for 4 ≤ s ≤ k − 2. Clearly,394

there exists a cycle of order s containing ur+1, ur+2, · · · , ur+s in Kk − M1, say395
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Cs = ur+1ur+2 · · · ur+sur+1. Set M ′ = M1 ∪ E(Cs). Then |M ′| = r + s ≤ k − 1396

and ∆(Kn[M
′]) = 2 ≤ k

2 , which implies that G−E(Cs) = Kk −M ′ contains k−2
2397

edge-disjoint spanning trees by Lemma 2.6. These trees together with the trees398

Tr+j induced by the edges in {u1wr+j, u2wr+j, · · · , ur+j−1wr+j, ur+j+1wr+j, · · · ,399

ur+swr+j, ur+jur+j+1, w1wr+j , w2wr+j , · · · , wrwr+j} (1 ≤ j ≤ s) form k−2
2 + s400

internally disjoint trees; see Figure 2 (b) (note that ur+s = uk−r). These trees to-401

gether with the trees T ′

j induced by the edges in {u1vj, u2vj , · · · , ur+svj , w1vj, · · · ,402

wrvj} form k−2
2 + s + (n − 2r − 2s) = n − k

2 − 1 internally disjoint S-Steiner403

trees where vj ∈ S̄ − {wr+1, wr+2, · · · , wr+s} = {v1, v2, · · · , vn−2r−2s}. Thus,404

κ(S) ≥ n− k
2 − 1, as desired.405

Next, assume 2r + s < k. Then S = {u1, u2, · · · , ur+s, ur+s+1, · · · , uk−r, w1,406

w2, · · · , wr} and r+s+1 ≤ k−r. If s = 0, then S = {u1, u2, · · · , uk−r, w1, w2, · · · ,407

wr}. Clearly, M1 = {uiwi | 1 ≤ i ≤ r}, |M1| = r ≤ k−1 and ∆(Kn[M1]) = 1 < k
2 .408

By Lemma 2.6, G[S] contains k−2
2 edge-disjoint spanning trees. These trees to-409

gether with the trees Tj induced by the edges in {u1vj , u2vj, · · · , un−rvj , w1vj, w2vj ,410

· · · , wrvj} form k−2
2 + (n− k) internally disjoint S-Steiner trees, where vj ∈ S̄ =411

{v1, v2, · · · , vn−k}. Therefore, κ(S) ≥ n − k
2 − 1. Assume s ≥ 1. Clearly, there412

exists a path of length s containing ur+1, ur+2, · · · , ur+s, ur+s+1 in G[S], say413

Ps = ur+1ur+2 · · · ur+sur+s+1. Set M
′ = M1 ∪E(Ps). Then |M ′| = r+ s ≤ k− 1414

and ∆(Kn[M
′]) = 2 ≤ k

2 , which implies thatG[S]−E(Ps) = Kk−M ′ contains k−2
2415

edge-disjoint spanning trees by Lemma 2.6, which are also k−2
2 internally disjoin-416

t S-Steiner trees. These trees together with the trees Tr+j induced by the edges in417

{u1wr+j , u2wr+j, · · · , ur+j−1wr+j , ur+j+1wr+j, · · · , uk−rwr+j , ur+jur+j+1, w1wr+j,418

w2wr+j, · · · , wrwr+j} (1 ≤ j ≤ s) form k−2
2 + s internally disjoint S-Steiner419

trees; see Figure 1 (b). These trees together with the trees T ′

j induced by420

the edges in {u1vj, u2vj , · · · , uk−rvj , w1vj , w2vj , · · · , wrvj} form k−2
2 + s + (n −421

k + r) − (r + s) = n − k
2 − 1 internally disjoint S-Steiner trees where vj ∈422

S̄ − {wr+1, wr+2, · · · , wr+s} = {v1, v2, · · · , vn−k−s}. So, κ(S) ≥ n − k
2 − 1, as423

desired.424

We conclude that κ(S) ≥ n− k
2 −1 for any S ⊆ V (G). From the arbitrariness425

of S, it follows that κk(G) ≥ n− k
2 − 1.426

(2) Set G = Kn −M . Assume that n is even. Thus M is a perfect matching427

of Kn, and all vertices of G are M -saturated. By the definition of λk(G), we need428

to show that λ(S) ≥ n− k
2 − 1 for any S ⊆ V (G).429

Case 3. There exists no u,w in S such that uw ∈ M .430

Without loss of generality, let S = {u1, u2, · · · , uk}. In this case, uiuj /∈431

M (1 ≤ i, j ≤ k). Let M1 = {uiwi | 1 ≤ i ≤ k} ⊆ M = {uiwi | 1 ≤ i ≤ n
2 }.432

Clearly, wi /∈ S (1 ≤ i ≤ n
2 ) and uj /∈ S (k+1 ≤ j ≤ n

2 ). Since G[S] is a clique of433

order k, it follows that there are k
2 edge-disjoint spanning trees in G[S], which are434

also k
2 edge-disjoint S-Steiner trees. These trees together with the trees Ti induced435
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by the edges in {u1wi, u2wi, ui−1wi, ui+1wi, · · · , ukwi, uiwk, wiwk} (1 ≤ i ≤ k−1)436

(see Figure 2 (a)) and the trees T ′

j induced by the edges in {u1uj, u2uj , · · · , ukuj}437

(k+1 ≤ j ≤ n
2 ) and the trees T ′′

j induced by the edges in {u1wj , u2wj , · · · , ukwj}438

(k + 1 ≤ j ≤ n
2 ) form

k
2 + (k − 1) + (n− 2k) = n− k

2 − 1 edge-disjoint S-Steiner439

trees. Therefore, λ(S) ≥ n− k
2 − 1, as desired.440

Case 4. There exist u,w in S such that uw ∈ M .441

Without loss of generality, let S = {u1, u2, · · · , ur+s, w1, w2, · · · , wr} with442

|S| = k = 2r + s, where 1 ≤ r ≤ k
2 and 0 ≤ s ≤ k − 2. Set M1 = {uiwi | 1 ≤443

i ≤ r} ⊆ M = {uiwi | 1 ≤ i ≤ n
2 }. We claim that r + s ≤ k − 1. Otherwise, let444

r+ s = k. Combining this with 2r+ s = k, we have r = 0, a contradiction. Since445

k = 2r + s and k is even, it follows that s is even.

w1

u1 uk−1u2

w2

ui

wk

uk u1 ui ur+1

wr+s

ur+s

wi wk−1

(a) (b)

w1 wi

ur

wr+j
wr

ur+j

wr+1

ur+j+1

wr+j+1

un

2
uk+1

wk+1 wn

2

un

2

wn

2

M1M1

Figure 2. Graphs for (2) of Lemma 2.7.

446

If s = 0, then r = k
2 . Clearly, S = {u1, u2, · · · , u k

2
, w1, w2, · · · , w k

2
} and447

M1 = M = {uiwi|1 ≤ i ≤ k
2}. In addition, |M1| ≤

k
2 < k − 1 and ∆(M ∩448

Kn[S]) = 1 < k
2 . Then G[S] contains k−2

2 edge-disjoint spanning trees by449

Lemma 2.6. These trees together with the trees Ti induced by the edges in450

{u1ui, u2ui, · · · , u k
2
ui, w1ui, w2ui, · · · , w k

2
ui} (k + 1 ≤ j ≤ n

2 ) and the trees T ′

i451

induced by the edges in {u1wi, u2wi, · · · , u k
2
wi, w1wi, w2wi, · · · , w k

2
wi} (k2 + 1 ≤452

i ≤ n
2 ) form n− k

2 − 1 edge-disjoint S-Steiner trees. Thus, λ(S) ≥ n− k
2 − 1.453

If s = 2, then r = k−2
2 . Then S = {u1, u2, · · · , u k+2

2
, w1, w2, · · · , w k−2

2
}454

and M1 = {uiwi | 1 ≤ i ≤ k−2
2 } ⊆ M . If k = 4, then r = 1 and hence S =455

{u1, u2, u3, w1}. Clearly, M1 = {u1w1}, and the tree T1 induced by the edges in456

{u1u2, u1w2, w1w2, u3w2} and the tree T2 induced by the edges in {u1u3, u2u3, u2w1}457

and the tree T3 induced by the edges in {u1w3, u2w3, w1w3, u3w1} are three edge-458

disjoint spanning trees; see Figure 1 (c). These trees together with the trees Tj459

induced by the edges in {u1uj , u2uj, u3uj , w1uj} (4 ≤ k ≤ n
2 ) and the trees T ′

j in-460

duced by the edges in {u1wj, u2wj , u3wj, w1uj} (4 ≤ k ≤ n
2 ) form 3+(n−6) edge-461

disjoint S-Steiner trees. So, λ(S) ≥ n−3 = n− k
2 −1, as desired. Suppose k ≥ 6.462

Then r ≥ 2, S = {u1, u2, · · · , u k+2
2
, w1, w2, · · · , w k−2

2
} and M1 = {uiwi|1 ≤ i ≤463
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k−2
2 }. Clearly, the tree T1 induced by the edges in {u1w k

2
, u2w k

2
, · · · , u k−2

2
w k

2
,464

u k+2
2
w k

2
, u2u k

2
, w1w k

2
, w2w k

2
, · · · , w k−2

2
w k

2
} and the tree T2 induced by the edges465

in {u1w k+2
2
, u2w k+2

2
, · · · , u k

2
w k+2

2
, u1u k+2

2
, w1w k+2

2
, w2w k+2

2
, · · · , w k−2

2
w k+2

2
} are466

two edge-disjoint S-Steiner trees; see Figure 1 (d). LetM2 = M1∪{u1u k+2
2
, u2u k

2
}.467

Then |M2| = |M1|+2 = k−2
2 +2 = k+2

2 < k−1 and ∆(Kn[M2]) = 2 ≤ k
2 , which im-468

plies that G[S]−{u1u k+2
2
, u2u k

2
} = Kk−M2 contains k−2

2 edge-disjoint spanning469

trees by Lemma 2.6. These trees together with T1, T2 and the trees Tj induced by470

the edges in {u1uj, u2uj , · · · , u k+2
2
uj, w1uj , w2uj, · · · , u k−2

2
uj} (k2 + 2 ≤ j ≤ n

2 )471

and the trees T ′

j induced by the edges in {u1wj , u2wj, · · · , u k+2
2
wj, w1wj , w2wj,472

· · · , u k−2
2
wj} (k2 + 2 ≤ j ≤ n

2 ) are
k−2
2 + 2 + (n − k − 2) edge-disjoint S-Steiner473

trees. Therefore, λ(S) ≥ n− k
2 − 1, as desired.474

Consider the remaining case s with 4 ≤ s ≤ k − 2. Clearly, there ex-475

ists a cycle of order s containing ur+1, ur+2, · · · , ur+s in Kk − M1, say Cs =476

ur+1ur+2 · · · ur+sur+1. Set M ′ = M1 ∪ E(Cs). Then |M ′| = r + s ≤ k − 1 and477

∆(Kn[M
′]) = 2 ≤ k

2 , which implies that G−E(Cs) contains
k−2
2 edge-disjoint s-478

panning trees by Lemma 2.6. These trees together with the trees Tr+j induced by479

the edges in {u1wr+j , u2wr+j, · · · , ur+j−1wr+j , ur+j+1wr+j, · · · , ur+swr+j , ur+j480

ur+j+1, w1wr+j, w2wr+j, · · · , wrwr+j} (1 ≤ j ≤ s) form k−2
2 + s edge-disjoint S-481

Steiner trees; see Figure 2 (b). These trees together with the trees T ′

i induced by482

the edges in {u1ui, u2ui, · · · , ur+sui, w1ui, · · · , wrui} (r+ s+1 ≤ i ≤ n
2 ) and the483

trees T ′′

i induced by the edges in {u1wi, u2wi, · · · , ur+swi, w1wi, · · · , wrwi} (r +484

s+1 ≤ i ≤ n
2 ) form (n− 2r− 2s)+ (k−2

2 + s) = n− k
2 − 1 edge-disjoint S-Steiner485

trees since 2r + s = k. Thus, λ(S) ≥ n− k
2 − 1, as desired.486

We conclude that λ(S) ≥ n− k
2 −1 for any S ⊆ V (G). From the arbitrariness487

of S, it follows that λk(G) ≥ n − k
2 − 1. For n odd, M is a maximum matching488

and we can also check that λk(G) ≥ n− k
2 − 1 similarly.489

Lemma 2.8. Let n and k be two integers such that k is even and 4 ≤ k ≤ n.490

If M is a set of edges in the complete graph Kn such that |M | = k − 1, and491

2 ≤ ∆(Kn[M ]) ≤ k
2 , then κk(Kn −M) ≥ n− k

2 − 1.492

Proof. Set G = Kn −M . For n = k, there are n−2
2 edge-disjoint spanning trees493

by Lemma 2.6, and hence κn(G) = λn(G) ≥ n−2
2 . So from now on, we assume n ≥494

k+1. Let S = {u1, u2, · · · , uk} ⊆ V (G) and S̄ = V (G)−S = {w1, w2, · · · , wn−k}.495

We have the following two cases to consider.496

Case 1. M ⊆ E(Kn[S]) ∪ E(Kn[S̄]).497

Let M ′ = M ∩ E(Kn[S]) and M ′′ = M ∩ E(Kn[S̄]). Then |M ′| + |M ′′| =498

|M | = k − 1 and 0 ≤ |M ′|, |M ′′| ≤ k − 1. We can regard G[S] as a complete499

graph Kk by deleting |M ′| edges. Since 2 ≤ ∆(Kn[M ]) ≤ k
2 and M ′ ⊆ M , it500

follows that ∆(Kn[M
′]) ≤ ∆(Kn[M ]) ≤ k

2 . From Lemma ??, there exist k−2
2501
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edge-disjoint spanning trees in G[S]. Actually, these k−2
2 edge-disjoint spanning502

trees are all internally disjoint S-Steiner trees in G[S]. All these trees together503

with the trees Ti induced by the edges in {wiu1, wiu2, · · · , wiuk} (1 ≤ i ≤ n− k)504

form k−2
2 + (n − k) = n − k

2 − 1 internally disjoint S-Steiner trees, and hence505

κ(S) ≥ n − k
2 − 1. From the arbitrariness of S, we have κk(G) ≥ n − k

2 − 1, as506

desired.507

Case 2. M * E(Kn[S]) ∪ E(Kn[S̄]).508

In this case, there exist some edges of M in EKn [S, S̄]. Let M ′ = M ∩509

E(Kn[S]), M
′′ = M ∩ E(Kn[S̄]), and |M ′| = m1 and |M ′′| = m2. Clearly, 0 ≤510

mi ≤ k − 2 (i = 1, 2). For wi ∈ S̄, let |EKn[M ][wi, S]| = xi, where 1 ≤ i ≤ n − k.511

Without loss of generality, let x1 ≥ x2 ≥ · · · ≥ xn−k. Because there exist some512

edges of M in EKn [S, S̄], we have x1 ≥ 1. Since 2 ≤ ∆(Kn[M ]) ≤ k
2 , it follows513

that xi = |EKn[M ][wi, S]| ≤ dKn[M ](wi) ≤ ∆(Kn[M ]) ≤ k
2 for 1 ≤ i ≤ n − k.514

We claim that there exists at most one vertex in Kn[M ] such that its degree is515

k
2 . Assume, to the contrary, that there are two vertices, say w and w′, such that516

dKn[M ](w) = dKn[M ](w
′) = k

2 . Then |M | ≥ dKn[M ](w) + dKn[M ](w
′) = k

2 +
k
2 = k,517

contradicting |M | = k − 1. We conclude that there exists at most one vertex in518

Kn[M ] such that its degree is k
2 . Recall that xn−k ≤ xn−k−1 ≤ · · · ≤ x2 ≤ x1 ≤

k
2 .519

So x1 = k
2 and xi ≤

k−2
2 (2 ≤ i ≤ n − k), or xi ≤

k−2
2 (1 ≤ i ≤ n − k). Since520

|EKn[M ][wi, S]| = xi, we have |EG[wi, S]| = k − xi. Since 2 ≤ ∆(Kn[M ]) ≤ k
2 , it521

follows that δ(G[S]) ≥ k − 1− k
2 = k−2

2 .522

Our basic idea is to seek for some edges in G[S], and combine them with523

the edges of EG[S, S̄] to form n− k internally disjoint trees, say T1, T2, · · · , Tn−k,524

with their roots w1, w2, · · · , wn−k, respectively. Let G
′ = G− (

⋃n−k
j=1 E(Tj)). We525

will prove that G′[S] satisfies the conditions of Lemma ?? so that G′[S] contains526

k−2
2 edge-disjoint spanning trees, which are also k−2

2 internally disjoint S-Steiner527

trees. These trees together with T1, T2, · · · , Tn−k are our n− k
2 − 1 desired trees.528

Thus, κ(S) ≥ n− k
2 − 1. So we can complete our proof by the arbitrariness of S.529

For w1 ∈ S̄, without loss of generality, let S = S1
1 ∪S1

2 and S1
1 = {u1, u2, · · · ,530

ux1} such that ujw1 ∈ M for 1 ≤ j ≤ x1. Set S
1
2 = S−S1

1 = {ux1+1, ux1+2, · · · , uk}.531

Then ujw1 ∈ E(G) for x1 + 1 ≤ j ≤ k. One can see that the tree T ′

1 induced532

by the edges in {w1ux1+1, w1ux1+2, · · · , w1uk} is a Steiner tree connecting S1
2 .533

Our current idea is to seek for x1 edges in EG[S
1
1 , S

1
2 ] and add them to T ′

1 to534

form a Steiner tree connecting S. For each uj ∈ S1
1 (1 ≤ j ≤ x1), we claim that535

|EG[uj , S
1
2 ]| ≥ 1. Otherwise, let |EG[uj , S

1
2 ]| = 0. Then |EKn[M ][uj , S

1
2 ]| = k − x1536

and hence |M | ≥ |EKn[M ][uj , S
1
2 ]|+ dKn[M ](w1) ≥ (k − x1) + x1 = k, which con-537

tradicts |M | = k − 1. We conclude that for each uj ∈ S1
1 (1 ≤ j ≤ x1) there is538

at least one edge in G connecting it to a vertex of S1
2 . Choose the vertex with539

the smallest subscript among all the vertices of S1
1 having maximum degree in540

G[S], say u′1. Then we select the vertex adjacent to u′1 with the smallest sub-541
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script among all the vertices of S1
2 having maximum degree in G[S], say u′′1 . Let542

e11 = u′1u
′′

1 . Consider the graph G11 = G − e11, and choose the vertex with543

the smallest subscript among all the vertices of S1
1 − u′1 having maximum degree544

in G11[S], say u′2. Then we select the vertex adjacent to u′2 with the smallest545

subscript among all the vertices of S1
2 having maximum degree in G11[S], say u′′2.546

Set e12 = u′2u
′′

2 . Consider the graph G12 = G11 − e12 = G − {e11, e12}. Choose547

the one with the smallest subscript among all the vertices of S1
1 −{u′1, u

′

2} having548

maximum degree in G12[S], say u′3, and select the vertex adjacent to u′3 with the549

smallest subscript among all the vertices of S1
2 having maximum degree in G12[S],550

say u′′3 . Put e13 = u′3u
′′

3 . Consider the graph G13 = G12−e11 = G−{e11, e12, e13}.551

For each uj ∈ S1
1 (1 ≤ j ≤ x1), we proceed to find e14, e15, · · · , e1x1 in the same552

way, and obtain graphs G1j = G − {e11, e12, · · · , e1(j−1)} (1 ≤ j ≤ x1). Let553

M1 = {e11, e12, · · · , e1x1} and G1 = G − M1. Thus the tree T1 induced by the554

edges in {w1ux2+1, w1ux2+2, · · · , w1uk} ∪ {e11, e12, · · · , e1x1} is our desired tree.555

Let us now prove the following claim.556

Claim 1. δ(G1[S]) ≥
k−2
2 .557

Proof of Claim 1. Assume, to the contrary, that δ(G1[S]) ≤ k−4
2 . Then there558

exists a vertex up ∈ S such that dG1[S](up) ≤ k−4
2 . If up ∈ S1

2 , then by our559

procedure dG[S](up) = dG1[S](up) + 1 ≤ k−2
2 , which implies that dM∩Kn[S](up) ≥560

k−1− k−2
2 = k

2 . Since w1up ∈ M , it follows that dKn[M ](up) ≥ dM∩Kn[S](up)+1 ≥561

k+2
2 , which contradicts ∆(Kn[M ]) ≤ k

2 . Let us now assume up ∈ S1
2 . By the above562

procedure, there exists a vertex uq ∈ S1
1 such that when we select the edge e1j =563

upuq (1 ≤ j ≤ x1) fromG1(j−1)[S] the degree of up inG1j [S] is equal to
k−4
2 . Thus,564

dG1j [S](up) =
k−4
2 and dG1(j−1) [S](up) =

k−2
2 . From our procedure, |EG[uq, S

1
2 ]| =565

|EG1(j−1)
[uq, S

1
2 ]|. Without loss of generality, let |EG[uq, S

1
2 ]| = t and uquj ∈ E(G)566

for x1 + 1 ≤ j ≤ x1 + t; see Figure 3 (a). Thus up ∈ {ux1+1, ux1+2, · · · , ux1+t},567

and uquj ∈ M for x1 + t + 1 ≤ j ≤ k. Because |EG[uj , S
1
2 ]| ≥ 1 for each uj ∈568

S1
1 (1 ≤ j ≤ x1), we have t ≥ 1. Since |M | = k− 1 and ujw1 ∈ M for 1 ≤ j ≤ x1,569

it follows that 1 ≤ t ≤ k − 2. Since dG1(j−1) [S](up) = k−2
2 , by our procedure570

dG1(j−1) [S](uj) ≤ k−2
2 for each uj ∈ S1

2 (x1 + 1 ≤ j ≤ x1 + t). Assume, to the571

contrary, that there is a vertex us (x1+1 ≤ s ≤ x1+ t) such that dG1(j−1) [S](us) ≥572

k−2
2 . Then we should have selected the edge uqus instead of e1j = uqup by our573

procedure, a contradiction. We conclude that dG1(j−1) [S](ur) ≤ k−2
2 for each574

ur ∈ S1
1 (x1 + 1 ≤ r ≤ x1 + t). Clearly, there are at least k − 1− k−2

2 = k
2 edges575

incident to each ur (x1 +1 ≤ r ≤ x1+ t) belonging to M ∪{e11, e12, · · · , e1(j−1)}.576
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Since j ≤ x1 and uquj ∈ M for xi + t+ 1 ≤ j ≤ k, we have577

|EKn[M ][uq, S
1
2 ]|+

t
∑

j=1

dKn[M ](uj)

≥ k − x1 − t+
k

2
t− (j − 1)−

(

t

2

)

= k +
(k − 2)

2
t− x1 − j + 1−

(

t

2

)

and hence578

|M | ≥ |M ∩ (EKn [w1, S])| +

t
∑

j=1

dKn[M ](uj) + |EKn[M ][uq, S
1
1 ]|

≥ x1 +

(

k +
(k − 2)

2
t− x1 − j + 1

)

−

(

t

2

)

= −
t2

2
+

t

2
+

(k − 2)

2
t+ k − j + 1

= −
t2

2
+

(k − 1)

2
t+ k − j + 1

= −
1

2

(

t−
k − 1

2

)2

+
(k − 1)2

8
+ k − j + 1

≥
k

2
− 1 + k − j + 1 (since 1 ≤ t ≤ k − 2)

=
k

2
+ k − j

≥ k,

(

since j ≤ x1 and x1 ≤
k

2

)

contradicting |M | = k − 1.

(a) (b)

uq

uxi+1

uxi+2

uxi+t+1

uxi+t+2

uk

wi

Si
1

Si
2

uxi+t
uq

ux1+1
ux1+2

ux1+t+1

ux1+t+2

uk

w1

S1
1

S1
2

ux1+t

(c)

uq

ux
i′+1

ux
i′+2

ux
i′

+t+1

ux
i′

+t+2

uk

wi′

Si′

1
Si′

2

ux
i′

+t

Figure 3. Graphs for Lemma 2.8.
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579

By Claim 1, we have δ(G1[S]) ≥
k−2
2 . Recall that there exists at most one580

vertex in Kn[M ] such that its degree is k
2 , and xn−k ≤ xn−k−1 ≤ · · · ≤ x2 ≤581

x1 ≤ k
2 . Then xi ≤

k−2
2 for 2 ≤ i ≤ n − k. Now we continue to introduce our582

procedure.583

For w2 ∈ S̄, without loss of generality, let S = S2
1 ∪S2

2 and S2
1 = {u1, u2, · · · ,584

ux2} such that ujw2 ∈ M for 1 ≤ j ≤ x2. Let S
2
2 = S−S2

1 = {ux2+1, ux2+2, · · · , uk}.585

Then ujw2 ∈ E(G) for x2+1 ≤ j ≤ k. Clearly, the tree T ′

2 induced by the edges in586

{w2ux2+1, w2ux2+2, · · · , w2uk} is a Steiner tree connecting S2
2 . Our idea is to seek587

for x2 edges in EG1 [S
2
1 , S

2
2 ] and add them to T ′

2 to form a Steiner tree connecting588

S. For each uj ∈ S2
1 (1 ≤ j ≤ x2), we claim that |EG1 [uj , S

2
2 ]| ≥ 1. Otherwise, let589

|EG1 [uj, S
2
2 ]| = 0. Recall that |M1| = x1. Then there exist k−x2 edges between uj590

and S2
2 belonging to M∪M1, and hence |EKn[M ][uj , S

2
2 ]| ≥ k−x2−x1. Therefore,591

|M | ≥ |EKn[M ][uj , S
2
2 ]|+ dKn[M ](w1)+ dKn[M ](w2) ≥ (k−x2 −x1)+x1 +x2 = k,592

which contradicts |M | = k − 1. Choose the vertex with the smallest subscript593

among all the vertices of S2
1 having maximum degree in G1[S], say u′1. Then594

we select the vertex adjacent to u′1 with the smallest subscript among all the595

vertices of S2
2 having maximum degree in G1[S], say u′′1. Let e21 = u′1u

′′

1 . Con-596

sider the graph G21 = G1 − e21, and choose the one with the smallest sub-597

script among all the vertices of S2
1 − u′1 having maximum degree in G21[S], say598

u′2. Then we select the vertex adjacent to u′2 with the smallest subscript a-599

mong all the vertices of S2
2 having maximum degree in G21[S], say u′′2 . Set600

e22 = u′2u
′′

2. Consider the graph G22 = G21 − e22 = G1 − {e21, e22}. For601

each uj ∈ S2
1 (1 ≤ j ≤ x2), we proceed to find e23, e24, · · · , e2x2 in the same602

way, and get graphs G2j = G1 − {e21, e22, · · · , e2(j−1)} (1 ≤ j ≤ x2). Let603

M2 = {e21, e22, · · · , e2x2} and G2 = G1 − M1. Thus the tree T2 induced by604

the edges in {w2ux2+1, w2ux2+2, · · · , w2uk} ∪ {e21, e22, · · · , e2x2} is our desired605

tree. Furthermore, T2 and T1 are two internally disjoint S-Steiner trees.606

For wi ∈ S̄, without loss of generality, let S = Si
1 ∪ Si

2 and Si
1 = {u1, u2, · · · ,607

uxi
} such that ujwi ∈ M for 1 ≤ j ≤ xi. Set S

i
2 = S−Si

1 = {uxi+1, uxi+2, · · · , uk}.608

Then ujwi ∈ E(G) for xi+1 ≤ j ≤ k. One can see that the tree T ′

i induced by the609

edges in {wiuxi+1, wiuxi+2, · · · , wiuk} is a Steiner tree connecting Si
2. Our idea610

is to seek for xi edges in EGi−1 [S
2
1 , S

2
2 ] and add them to T ′

i to form a Steiner tree611

connecting S. For each uj ∈ Si
1 (1 ≤ j ≤ xi), we claim that |EGi−1 [uj , S

i
2]| ≥ 1.612

Otherwise, let |EGi−1 [uj , S
i
2]| = 0. Recall that |Mj | = xj (1 ≤ j ≤ i). Then613

there are k − xi edges between uj and Si
2 belonging to M ∪ (

⋃i−1
j=1Mj), and614

hence |EKn[M ][uj, S
i
2]| ≥ k − xi −

∑i−1
j=1 xj. Therefore, |M | ≥ |EKn[M ][uj, S

i
2]| +615

∑i
j=1 |M ∩ (Kn[wj , S])| ≥ k − xi −

∑i−1
j=1 xj +

∑i
j=1 xj = k, contradicting |M | =616

k− 1. Choose the vertex with the smallest subscript among all the vertices of Si
1617

having maximum degree in Gi−1[S], say u′1. Then we select the vertex adjacent618

to u′1 with the smallest subscript among all the vertices of Si
2 having maximum619
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degree in Gi−1[S], say u′′1. Let ei1 = u′1u
′′

1 . Consider the graph Gi1 = Gi−1 − ei1,620

choose the vertex with the smallest subscript among all the vertices of Si
1 − u′1621

having maximum degree in Gi1[S], say u′2. Then we select the vertex adjacent622

to u′2 with the smallest subscript among all the vertices of Si
2 having maximum623

degree in Gi1[S], say u′′2 . Set ei2 = u′2u
′′

2. Consider the graph Gi2 = Gi1 − ei2 =624

Gi−1−{ei1, ei2}. For each uj ∈ Si
1 (1 ≤ j ≤ xi), we proceed to find ei3, ei4, · · · , eixi

625

in the same way, and get graphs Gij = Gi−1 −{ei1, ei2, · · · , ei(j−1)} (1 ≤ j ≤ xi).626

Let Mi = {ei1, ei2, · · · , eix2} and Gi = Gi−1 −Mi. Thus the tree Ti induced by627

the edges in {wiux2+1, wiux2+2, · · · , wiuk}∪{ei1, ei2, · · · , eixi
} is our desired tree.628

Furthermore, T1, T2, · · · , Ti are pairwise internally disjoint S-Steiner trees.629

We continue this procedure until we obtain n− k pairwise internally disjoint630

trees T1, T2, · · · , Tn−k. Note that if there exists some xj such that xj = 0 then631

xj+1 = xj+2 = · · · = xn−k = 0 since x1 ≥ x2 ≥ · · · ≥ xn−k. Then the trees Ti632

induced by the edges in {wiu1, wiu2, · · · , wiuk} (j ≤ i ≤ n−k) is our desired tree.633

From the above procedure, the resulting graph must be Gn−k = G −
⋃n−k

i=1 Mi.634

Let us show the following claim.635

Claim 2. δ(Gn−k[S]) ≥
k−2
2 .636

Proof of Claim 2. Assume, to the contrary, that δ(Gn−k[S]) ≤ k−4
2 , namely,637

there exists a vertex up ∈ S such that dGn−k [S](up) ≤
k−4
2 . Since δ(G[S]) ≥ k−2

2 ,638

by our procedure there exists an edge eij in Gi(j−1) incident to the vertex up such639

that when we pick up this edge, dGij [S](up) =
k−4
2 but dGi(j−1)[S](up) =

k−2
2 .640

First, we consider the case up ∈ Si
2. Then there exists a vertex uq ∈ Si

1641

such that when we select the edge eij = upuq from Gi(j−1)[S] the degree of642

up in Gij [S] is equal to k−4
2 . Thus, dGij [S](up) = k−4

2 and dGi(j−1)[S](up) =643

k−2
2 . From our procedure, |EGi−1 [uq, S

i
2]| = |EGi(j−1)

[uq, S
i
2]|. Without loss of644

generality, let |EGi−1 [uq, S
i
2]| = t and uquj ∈ E(Gi−1) for xi + 1 ≤ j ≤ xi + t; see645

Figure 3 (b). Thus up ∈ {uxi+1, uxi+2, · · · , uxi+t}, and uquj ∈ M ∪ (
⋃i−1

r=1Mr) for646

xi + t + 1 ≤ j ≤ k. Since xi ≤
k−2
2 (2 ≤ i ≤ n − k), it follows that |Si

1| ≤
k−2
2 .647

From this together with δ(Gi−1[S]) ≥
k−2
2 , we have |EGi−1 [uq, S

i
1]| ≥ 1, that is,648

t ≥ 1. Since dGi(j−1) [S](up) =
k−2
2 , by our procedure dGi(j−1)[S](uj) ≤

k−2
2 for each649

uj ∈ Si
2 (xi +1 ≤ j ≤ xi + t). Assume, to the contrary, that there exists a vertex650

us (xi + 1 ≤ s ≤ xi + t) such that dGi(j−1) [S](us) ≥ k−2
2 . Then we should have651

selected the edge uqus instead of eij = uqup by our procedure, a contradiction.652

We conclude that dGi(j−1)[S](ur) ≤ k−2
2 for each ur ∈ Si

2 (xi + 1 ≤ r ≤ xi + t).653

Clearly, there are at least k − 1 − k−2
2 = k

2 edges incident to each ur (xi + 1 ≤654

r ≤ xi + t) belonging to M ∪ (
⋃i−1

j=1Mj)
⋃

{ei1, ei2, · · · , ei(j−1)}. Since j ≤ xi and655
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uquj ∈ M ∪ (
⋃i−1

r=1 Mr) for xi + t+ 1 ≤ j ≤ k, we have656

|EKn[M ][uq, S
i
2]|+

t
∑

j=1

dKn[M ](uj)

≥ k − xi − t+
k

2
t−

i−1
∑

j=1

xj − (j − 1)−

(

t

2

)

≥ k +
(k − 2)

2
t−

i
∑

j=1

xj − xi + 1−

(

t

2

)

(since j ≤ xi)

= −
t2

2
+

(k − 1)

2
t+ k −

i
∑

j=1

xj − xi + 1

= −
1

2

(

t−
k − 1

2

)2

+
(k − 1)2

8
+ k −

i
∑

j=1

xj − xi + 1

and hence657

|M | ≥

i
∑

j=1

|M ∩ (EKn [wj, S])| +

t
∑

j=1

dKn[M ](uj) + |EKn[M ][uq, S
i
2]|

≥
i

∑

j=1

xj −
1

2

(

t−
k − 1

2

)2

+
(k − 1)2

8
+ k −

i
∑

j=1

xj − xi + 1

= −
1

2

(

t−
k − 1

2

)2

+
(k − 1)2

8
+ k − xi + 1

≥
k

2
− 1 + k − xi + 1 (since 1 ≤ t ≤ k − 2)

≥
k

2
+ k − xi

≥ k + 1,

(

since xi ≤
k − 2

2

)

which contradicts |M | = k − 1.658

Next, assume up ∈ Si
1. Recall that dGij [S](up) = k−4

2 . Since up ∈ Si
1, it659

follows that dGi−1[S](up) =
k−2
2 . If up ∈

⋂i
j=1 S

j
1, namely, upwj ∈ M (1 ≤ j ≤ i),660

then by our procedure dG[S](up) =
k−2
2 + i− 1 and hence dKn[S]∩M(up) = k− 1−661

(k−2
2 + i− 1) = k

2 − i+ 1. Since upwj ∈ M for each wj ∈ S̄ (1 ≤ j ≤ i), we have662

dKn[M ](up) = dKn[S]∩M(up)+dKn[S,S̄]∩M (up) ≥ (k2−i+1)+i = k+2
2 , contradicting663

∆(Kn[M ]) ≤ k
2 . Combining this with up ∈ Si

1, we have up /∈
⋂i−1

j=1 S
i
1 and we664
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can assume that there exists an integer i′ (i′ ≤ i − 1) satisfying the following665

conditions:666

• up ∈ Si′

2 and dGi′ [S]
(up) < dGi′−1[S]

(up);667

• if up belongs to some Sj
2 (i′ + 1 ≤ j ≤ i) then dGj [S](up) = dGj−1[S](up).668

The above two conditions can be restated as follows:669

• upwi′ ∈ E(G) and dGi′ [S]
(up) < dGi′−1[S]

(up);670

• if upwj ∈ E(G) (i′ + 1 ≤ j ≤ i) then dGj [S](up) = dGj−1[S](up).671

In fact, we can find the integer i′ such that upwi′ ∈ E(G) and dGi′ [S]
(up) <672

dGi′−1[S]
(up). Assume, to the contrary, that for each wj (1 ≤ j ≤ i), upwj ∈ M ,673

or upwj ∈ E(G) but dGj [S](up) = dGj−1[S](up). Let i1 (i1 ≤ i) be the number674

of vertices nonadjacent to up ∈ S in {w1, w2, · · · , wi−1} ⊆ S̄. Without loss of675

generality, let wjup ∈ M (1 ≤ j ≤ i1). Recall that dGij [S](up) = k−4
2 . Thus676

dG[S](up) = k−4
2 + i1 and hence dKn[S]∩M(up) ≥ k − 1 − (k−4

2 + i1) = k+2
2 −677

i1. Since wjup ∈ M (1 ≤ j ≤ i1), it follows that dKn[S,S̄]∩M(up) ≥ i1, which678

results in dKn[M ](up) = dKn[S]∩M(up) + dKn[S,S̄]∩M(up) ≥ (k+2
2 − i1) + i1 = k+2

2 ,679

contradicting ∆(Kn[M ]) ≤ k
2 .680

Now we turn our attention to up ∈ Si′

2 . Without loss of generality, let681

upwj ∈ M (j ∈ {j1, j2, · · · , ji1}), namely, up ∈ Sj1
1 ∩ Sj2

1 ∩ · · · ∩ S
ji1
1 , where682

j1, j2, · · · , ji1 ∈ {i′+1, i′+2, · · · , i}. Then upwj ∈ E(G) (j ∈ {i′+1, i′+2, · · · , i}−683

{j1, j2, · · · , ji1}). Clearly, i1 ≤ i− i′. Recall that up ∈ Si
1 and dGij [S](up) =

k−4
2 .684

Thus dGi′ [S]
(up) = k−4

2 + i1. By our procedure, there exists a vertex uq ∈ Si′

1685

such that when we select the edge ei′j = upuq from Gi′(j−1)[S] the degree of up in686

Gi′j [S] is equal to
k−4
2 + i1, that is, dGi′j [S]

(up) =
k−4
2 + i1 and dGi′(j−1)[S]

(up) =687

k−2
2 + i1. From our procedure, |EGi′−1

[uq, S
i′

2 ]| = |EGi′(j−1)
[uq, S

i′

2 ]|. Without688

loss of generality, let |EGi′−1
[uq, S

i′

2 ]| = t and uquj ∈ E(Gi′−1) for xi′ + 1 ≤689

j ≤ xi′ + t; see Figure 3 (c). Thus up ∈ {uxi′+1, uxi′+2, · · · , uxi′+t}, and uquj ∈690

M ∪ (
⋃i′−1

r=1 Mr) for xi′ + t + 1 ≤ j ≤ k. Since xj ≤ k−2
2 (2 ≤ j ≤ n − k), it691

follows that |Si′

1 | ≤
k−2
2 . From this together with δ(Gi′−1[S]) ≥ k−2

2 , we have692

|EGi′−1
[uq, S

i′

1 ]| ≥ 1, that is, t ≥ 1. Since dGi′(j−1)[S]
(up) = k−2

2 + i1, by our693

procedure dGi′(j−1)[S]
(uj) ≤ k−2

2 + i1 for each uj ∈ Si′

2 (xi′ + 1 ≤ j ≤ xi′ + t).694

Assume, to the contrary, that there is a vertex us (xi′ + 1 ≤ s ≤ xi′ + t) such695

that dGi′(j−1)[S]
(us) ≥ k−2

2 + i1 + 1. Then we should have selected the edge696

uqus instead of ei′j = uqup by our procedure, a contradiction. We conclude697

that dGi′(j−1)[S]
(ur) ≤ k−2

2 + i1 for each ur ∈ Si′

2 (xi′ + 1 ≤ r ≤ xi′ + t).698

Clearly, there are at least k − 1 − (k−2
2 + i1) = k

2 − i1 edges incident to each699

ur (xi′ + 1 ≤ r ≤ xi′ + t) belonging to M ∪ (
⋃i′−1

j=1 Mj)
⋃

{ei′1, ei′2, · · · , ei′(j−1)}.700



22 Li and Mao

Since j ≤ xi′ and uquj ∈ M ∪ (
⋃i′−1

r=1 Mr) for xi′ + t+ 1 ≤ j ≤ k, we have701

|EKn[M ][uq, S
i′

2 ]|+

t
∑

j=1

dKn[M ](uj)

≥ k − xi′ − t+

(

k

2
− i1

)

t−
i′−1
∑

j=1

xj − (j − 1)−

(

t

2

)

≥ k −
i′
∑

j=1

xj +

(

k − 2

2
− i1

)

t− xi′ + 1−
t(t− 1)

2
(since j ≤ xi′)

= −
t2

2
+

t

2
+ k −

i′
∑

j=1

xj +

(

k − 2

2
− i+ i′

)

t− xi′ + 1 (since i1 ≤ i− i′)

= −
t2

2
+

(

k − 1

2
− i+ i′

)

t+ k −

i′
∑

j=1

xj − xi′ + 1

= −
1

2

(

t2 − (k − 1− 2i+ 2i′)t
)

+ k −

i′
∑

j=1

xj − xi′ + 1

= −
1

2

(

t−
k − 1− 2i+ 2i′

2

)2

+
(k − 1− 2i+ 2i′)2

8
+ k −

i′
∑

j=1

xj − xi′ + 1

and hence702

|M |

≥
i

∑

j=1

|M ∩ (EKn [wj , S])|+

p
∑

j=1

dKn[M ](uj) + |EKn[M ][uq, S
i
2]|

≥
i

∑

j=1

xj −
1

2

(

t−
k − 1− 2i+ 2i′

2

)2

+
(k − 1− 2i+ 2i′)2

8
+ k −

i′
∑

j=1

xj − xi′

+1

= −
1

2

(

t−
k − 1− 2i+ 2i′

2

)2

+
(k − 1− 2i+ 2i′)2

8
+ k +

i
∑

j=i′+1

xj − xi′ + 1

≥
k

2
− 1− i+ i′ + k +

i
∑

j=i′+1

xj − xi′ + 1 (since 1 ≤ t ≤ k − 2 and

k − 1− 2i+ 2i′ ≤ k − 2)

≥ k,

(

since xi′ ≤
k − 2

2
and xj ≥ 1 for i′ + 1 ≤ j ≤ i

)
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contradicting |M | = k − 1. This completes the proof of Claim 2.703

From our procedure, we get n− k internally disjoint Steiner trees connecting704

S in G, say T1, T2, · · · , Tn−k. Recall that Gn−k = G − (
⋃n−k

i=1 Mi). We can705

regard Gn−k[S] = G[S] − (
⋃n−k

i=1 Mi) as a graph obtained from the complete706

graph Kk by deleting |M ′|+
∑n−k

i=1 |Mi| edges. Since |M
′|+

∑n−k
i=1 |Mi|+ |M ′′| =707

m1 +
∑n−k

i=1 xi +m2 = k− 1, we have 1 ≤
∑n−k

i=1 |Mi|+m1 ≤ k − 1. By Claim 2,708

δ(Gn−k [S]) ≥
k−2
2 and hence 2 ≤ ∆(Gn−k[S]) ≤

k
2 . From Lemma 2.6, there exist709

k−2
2 edge-disjoint spanning trees connecting S in Gn−k[S]. These trees together710

with T1, T2, · · · , Tn−k are n− k
2−1 internally disjoint Steiner trees connecting S in711

G. Thus, κ(S) ≥ n− k
2−1. From the arbitrariness of S, we have κk(G) ≥ n− k

2−1,712

as desired.713

We are now in a position to prove our main results.714

Proof of Theorem 1.8. Assume that κk(G) = n − k
2 − 1. Since G of order715

n is connected, we can regard G as a graph obtained from the complete graph716

Kn by deleting some edges. From Lemma 1.7, it follows that |M | ≥ 1 and hence717

∆(Kn[M ]) ≥ 1. If G = Kn − M where M ⊆ E(Kn) such that ∆(Kn[M ]) ≥718

k
2 + 1, then κk(G) ≤ λk(G) < n− k

2 − 1 by Observation 1.2 and Corollary 2.2, a719

contradiction. So 1 ≤ ∆(Kn[M ]) ≤ k
2 . If 2 ≤ ∆(Kn[M ]) ≤ k

2 and |M | ≥ k, then720

κk(G) ≤ λk(G) < n− k
2 − 1 by Observation 1.2 and Lemma 2.4, a contradiction.721

Therefore, 1 ≤ |M | ≤ k − 1. If ∆(Kn[M ]) = 1, then 1 ≤ |M | ≤ k − 1 by Lemma722

2.5. We conclude that 1 ≤ ∆(Kn[M ]) ≤ k
2 and 1 ≤ |M | ≤ k − 1, as desired.723

Conversely, let G = Kn−M whereM ⊆ E(Kn) such that 1 ≤ ∆(Kn[M ]) ≤ k
2724

and 1 ≤ |M | ≤ k − 1. In fact, we only need to show that κk(G) ≥ n− k
2 − 1 for725

∆(Kn[M ]) = 1 and |M | = k − 1, or 2 ≤ ∆(Kn[M ]) ≤ k
2 and |M | = k − 1. The726

results follow by (1) of Lemma 2.7 and Lemma 2.8.727

Proof of Theorem 1.9. If G is a connected graph satisfying condition (2), then728

κk(G) = n − k
2 − 1 by Theorem 1.8. From Observation 1.2, λk(G) ≥ κk(G) =729

n − k
2 − 1. From this together with Lemma 1.7, we have λk(G) = n − k

2 − 1.730

Assume that G is a connected graph satisfying condition (1). We only need to731

show that λk(G) = n− k
2 − 1 for |M | = ⌊n2 ⌋. The result follows by (2) of Lemma732

2.7 and Lemma 1.7.733

Conversely, assume that λk(G) = n− k
2 − 1. Since G of order n is connected,734

we can consider G as a graph obtained from a complete graphKn by deleting some735

edges. From Corollary 2.2, G = Kn −M such that ∆(Kn[M ]) ≤ k
2 , where M ⊆736

E(Kn). Combining this with Lemma 1.7, we have |M | ≥ 1 and ∆(Kn[M ]) ≥ 1.737

So 1 ≤ ∆(Kn[M ]) ≤ k
2 . It is clear that if ∆(Kn[M ]) = 1 then 1 ≤ |M | ≤ ⌊n2 ⌋. If738

2 ≤ ∆(Kn[M ]) ≤ k
2 , then 1 ≤ |M | ≤ k−1 by Lemma 2.4. So (1) or (2) holds.739
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Remark 3. As we know, λ(G) = n − 2 if and only if G = Kn − M such that740

∆(Kn[M ]) = 1 and 1 ≤ |M | ≤ ⌊n2 ⌋, where M ⊆ E(Kn). So we can restate the741

above conclusion as follows: λ2(G) = n − 2 if and only if G = Kn − M such742

that ∆(Kn[M ]) = 1 and 1 ≤ |M | ≤ ⌊n2 ⌋, where M ⊆ E(Kn). This means that743

4 ≤ k ≤ n in Theorem 1.9 can be replaced by 2 ≤ k ≤ n.744
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[20] W. Mader, Über die maximalzahl kreuzungsfreier H-wege, Arch. Math.789

31(1978), 387–402.790

[21] H. Li, X. Li, Y. Mao, On extremal graphs with at most two internally disjoint791

Steiner trees connecting any three vertices, Bull. Malays. Math. Sci. Soc.792

(2)37(3)(2014), 747–756.793

[22] H. Li, X. Li, Y. Mao, Y. Sun, Note on the generalized connectivity, Ars794

Combin. 114(2014), 193–202.795

[23] H. Li, X. Li, Y. Mao, J. Yue, Note on the spanning-tree packing number of796

lexicographic product graphs, Discrete Math. 338(5-6)(2015), 669–673.797

[24] H. Li, X. Li, Y. Sun, The generalized 3-connectivity of Cartesian product798

graphs, Discrete Math. Theor. Comput. Sci. 14(1)(2012), 43–54.799

[25] S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition800

3-partite graphs, Bull. Malays. Math. Sci. Soc.(2) 37(1)(2014), 103–121.801

[26] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Combin.802

Optimization 24(2012), 389–396.803

[27] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity κ3(G),804

Discrete Math. 310(2010), 2147–2163.805



26 Li and Mao

[28] X. Li, Y. Mao, Nordhaus-Gaddum-type results for the generalized edge-806

connectivity of graphs, Discrete Appl. Math. 185(2015), 102–112.807

[29] X. Li, Y. Mao, On extremal graphs with at most ℓ internally disjoint Steiner808

trees connecting any n−1 vertices, Graphs Combin. 31(6)(2015), 2231–2259.809

[30] X. Li, Y. Mao, The generalized 3-connectivity of lexicographical product810

graphs, Discrete Math. Theor. Comput. Sci. 16(1)(2014), 339–354.811

[31] X. Li, Y. Mao, The minimal size of a graph with given generalized 3-edge-812

connectivity, Ars Combin. 118(2015), 63–72.813

[32] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs,814

Australasian J. Combin. 58(2)(2014), 304–319.815

[33] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J.816

London Math. Soc. 36(1961), 445–450.817

[34] O.R. Oellermann, Connectivity and edge-connectivity in graphs: A survey,818

Congessus Numerantium 116 (1996), 231-252.819

[35] O.R. Oellermann, On the ℓ-connectivity of a graph. Graphs and Combin.820

3(1987), 285–299.821

[36] O.R. Oellermann, A note on the ℓ-connectivity function of a graph, Conges-822

sus Numerantium 60(1987), 181–188.823

[37] F. Okamoto, P. Zhang, The tree connectivity of regular complete bipartite824

graphs, J. Combin. Math. Combin. Comput. 74(2010), 279–293.825

[38] N.A. Sherwani, Algorithms for V LSI Physical Design Automation, 3rd Edi-826

tion, Kluwer Acad. Pub., London, 1999.827

[39] W. Tutte, On the problem of decomposing a graph into n connected factors,828

J. London Math. Soc. 36(1961), 221–230.829

[40] D. West, H. Wu, Packing Steiner trees and S-connectors in graphs, J. Com-830

bin. Theory, Ser.B 102(2012), 186–205.831

Appendix: An example for Case 2 of Lemma 2.8832

Let k = 8 and let G = Kn − M where M ⊆ E(Kn) be a connected833

graph of order n such that |M | = k − 1 = 7 and ∆(Kn[M ]) ≤ k
2 = 4.834

Let S = {u1, u2, · · · , u8}, S̄ = V (G) − S = {w1, w2, · · · , wn−8} and835
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M = {w1u1, w1u2, w1u3, w2u2, w2u4, u5u6, u6u8}; see Figure 4 (a). Clear-836

ly, x1 = |EKn[M ][w1, S]| = 3 ≥ x2 = |EKn[M ][w2, S]| = 2 > xi =837

|EKn[M ][wi, S]| = 0 (3 ≤ i ≤ n− 8).838

For w1, we let S1
1 = {u1, u2, u3} since w1u1, w1u2, w1u3 ∈ M . Set S1

2 = S −839

S1
1 = {u4, u5, u6, u7, u8}. Clearly, dG[S](u1) = dG[S](u2) = dG[S](u3) = 7 =840

k−1 and hence u1, u2, u3 are all the vertices of S
1
1 having maximum degree in841

G[S]. But u1 is the one with the smallest subscript, so we choose u′1 = u1 in842

S1
1 and select the vertex adjacent to u′1 in S1

2 and obtain u4, u5, u6, u7, u8 ∈ S1
2843

since u′1uj ∈ E(G) (j = 4, · · · , 8). Obviously, dG[S](u4) = dG[S](u7) = 7 >844

dG[S](u5) = dG[S](u8) = 6 > dG[S](u6) = 5 and hence u4, u7 are two vertices845

of S1
2 having maximum degree in G[S]. Since u4 is the one with the smallest846

subscript, we choose u′′1 = u4 ∈ S1
2 and put e11 = u′1u

′′

1(= u1u4). Consider the847

graph G11 = G−e11. Since dG11[S](u2) = dG11[S](u3) = 7 and the subscript of848

u2 is smaller than u3, we let u
′

2 = u2 in S1
1−u′1 and select the vertices adjacent849

to u′2 in S1
2 and obtain u4, u5, u6, u7, u8 ∈ S1

2 since u′2uj ∈ E(G11) (j =850

4, · · · , 8). Since dG11[S](u7) = 7 > dG11[S](uj) = 6 > dG11[S](u6) = 5 (j =851

4, 5, 8), we select u′′2 = u7 ∈ S1
2 and get e12 = u′2u

′′

2 (= u2u7). Consider852

the graph G12 = G11 − e12 = G − {e11, e12}. There is only one vertex u3853

in S1 − {u′1, u
′

2} = S1 − {u1, u2}. Therefore, let u′3 = u3 and select the854

vertices adjacent to u′3 in S1
2 and obtain uj ∈ S1

2 since u′3uj ∈ E(G12) (j =855

4, · · · , 8). Since dG12[S](uj) = 6 > dG12[S](u6) = 5 (i = 4, 5, 7, 8), it follows856

that u4, u5, u7, u8 are all the vertices of S
1
2 having maximum degree in G12[S].857

But u4 is the one with the smallest subscript, so we choose u′′3 = u4 ∈ S1
2858

and get e13 = u′3u
′′

3 (= u3u4). Since x1 = |EKn[M ][w1, S]| = 3, we terminate859

this procedure. Set M1 = {e11, e12, e13} and G1 = G−M1. Thus the tree T1860

induced by the edges in {w1u4, w1u5, w1u6, w1u7, w1u8, u1u4, u2u7, u3u4} is861

our desired tree; see Figure 4 (b).862

For w2, we let S2
1 = {u2, u4} since w2u2, w2u4 ∈ M . Let S2

2 = S − S2
1 =863

{u1, u3, u5, u6, u7, u8}. Since dG1[S](u2) = 6 > dG1[S](u4) = 5, it follows864

that u2 is the vertex of S2
1 having maximum degree in G1[S]. So we choose865

u′1 = u2 in S2
1 and find the vertices adjacent to u′1 (= u2) in S2

2 and ob-866

tain u1, u3, u5, u6, u8 ∈ S2
2 since u′1uj ∈ E(G21) (j = 1, 3, 5, 6, 8). Since867

dG1[S](uj) = 6 > dG1[S](u6) = 5 (j = 1, 3, 5, 8) and u1 is the vertex hav-868

ing maximum degree with the smallest subscript, we choose u′′1 = u1 ∈ S2
2 .869

Put e21 = u′1u
′′

1 (= u2u1). Consider the graph G21 = G1 − e21. Clearly,870

S1 − {u′1} = S1 − {u2} = {u4}, so we let u′2 = u4 and select the ver-871

tices adjacent to u′2 (= u4) in S2
2 and obtain u5, u6, u7, u8 since u2uj ∈872

E(G) (j = 5, 6, 7, 8). Since dG21[S](uj) = 6 > dG21[S](u6) = 5 (j = 5, 7, 8)873

and u5 is the vertex with the smallest subscript, we let u′′2 = u5 ∈ S2
2 and874

get e22 = u′2u
′′

2 (= u4u5). Since x2 = |EKn[M ][w2, S]| = 2, we terminate875

this procedure. Let M2 = {e21, e22} and G2 = G1 − M2. Then the tree T2876
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Figure 4 Graphs for the appendix.

induced by the edges in {w2u1, w2u3, w2u5, w2u6, w2u7, w2u8, u2u1, u4u5} is877

our desired tree; see Figure 4 (c). Obviously, T2 and T1 are two internally878

disjoint Steiner trees connecting S.879

Since xi = |EKn[M ][wi, S]| = 0 for 3 ≤ i ≤ n − 8, we terminate880

this procedure. For w3, · · · , wn−8, the trees Ti induced by the edges881

{wiu1, wiu2, · · · , wiu8} (3 ≤ i ≤ n − 8) (see Figure 4 (d)) are our desired882

trees.883

We can consider G2[S] = G[S]−{M1,M2} as a graph obtained from complete884

graph Kk by deleting |M ∩Kn[S]|+ |M1|+ |M2| edges. Since |M ∩Kn[S]|+885

|M1|+|M2| = 2+3+2 = 7 = k−1, it follows from Lemma ?? that there exist886

three edge-disjoint spanning trees connecting S inG[S] (Actually, we can give887

three edge-disjoint spanning trees; see Figure 4 (e). For example, the trees888

T ′

1 = u1u8∪u8u4∪u4u6∪u6u3∪u3u2∪u2u5∪u5u7, T
′

2 = u4u7∪u7u8∪u8u3∪889

u3u1∪u1u5∪u1u6∪u6u2 and T ′

3 = u2u4∪u2u8∪u8u5∪u5u3∪u3u7∪u1u7∪u7u6890

can be our desired trees). These three trees together with T1, T2, · · · , Tn−8891

are n − 5 = n − k
2 − 1 internally disjoint Steiner trees connecting S. Thus,892

λ(S) ≥ n− 5.893


