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Abstract LetG = G(V, E) be a graph. A proper coloring ofG is a function f : V →
N such that f (x) �= f (y) for every edge xy ∈ E . A proper coloring of a graphG such
that for every k ≥ 1, the union of any k color classes induces a (k − 1)-degenerate
subgraph is called a degenerate coloring; a proper coloring of a graph with no two-
colored P4 is called a star coloring. If a coloring is both degenerate and star, then we
call it a degenerate star coloring of graph. The corresponding chromatic number is
denoted as χsd(G). In this paper, we employ entropy compression method to obtain a

new upper bound χsd(G) ≤ � 19
6 �

3
2 + 5�� for general graph G.

Keywords Degenerate coloring · Star coloring · Chromatic number · Entropy
compression method · Upper bound

1 Introduction

Let G = (V, E) be a graph with vertex set V and edge set E . A k-coloring of graph
G is an function f : V → N such that | f (V )| = k. The coloring f of G is called
proper if f (x) �= f (y) for every edge xy ∈ E . A degenerate coloring of graph G is a
proper coloring such that for every k ≥ 1, the union of any k color classes induces a
(k − 1)-degenerate subgraph. A star coloring of a graph G is a proper coloring such
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that for the union of any two color classes induces a star forest. If a coloring of G
is both degenerate and star, then it is called a degenerate and star coloring of G, the
corresponding chromatic number is denoted by χsd(G).

Obviously, the notion of a degenerate coloring is a strengthening of the notion of
an acyclic coloring. A graph G is k-degenerate if every subgraph of G has a vertex of
degree less than or equal to k. A coloring of a graph such that for every k ≥ 1, the
union of any k color classes induces a (k − 1)-degenerate subgraph is a degenerate
coloring.

As for the degenerate coloring of planar graphs, there is a Conjecture proposed by
Borodin.

Conjecture (Borodin 1979) Every planar graph can be colored with five colors,
so that the union of any k-color classes induces a (k − 1)-degenerate graph for
k = 1, . . . , 4.

Rautenbach (2008) proved that the existence of degenerate colorings of planar
graphs using eighteen colors. Their result is as follows.

Theorem 1 (Rautenbach 2008) For any planar graph, the degenerate colorings of
planar graphs using eighteen colors such that the union of any k color classes induces
a (k − 1)-degenerate graph for k = 1, . . . , 5.

This result was improved in Mohar and S̆pacapan (2009).

Theorem 2 (Kierstead et al. 2009) For any planar graph, the degenerate colorings
of planar graphs using nine colors such that the union of any k color classes induce
a (k − 1)-degenerate graph.

For nonplanar graphs, Mohar and S̆pacapan (2012) used Lovász Local Lemma to give
an upper bound for list version result of degenerate and star chromatic number.

Theorem 3 (Mohar and Špacapan 2012) For any graph with maximum degree �,
there is a degenerate star list coloring of G whenever the list of each vertex contains

at least �1000� 3
2 � admissible colors.

As for the star chromatic number of a graph G, (denoted by χs(G)), Fertin et al.

(2004) proved that for every graph G with maximum degree �, χs(G) ≤ 20�
3
2 ,

and that this bound is best possible up to a polylogarithmic factor: for some absolute

constant C , there are graphs with maximum degree � requiring
C� 3

2

(log�)
1
2
colors in

any star coloring. Ndreca et al. (2012) showed that for every graph G with maximum

degree �, χs(G) ≤ 4.34�
3
2 + 1.5�. So according to the above results, the upper

bound of degenerate star chromatic number of Theorem 3 is best possible up to a
polylogarithmic factor.

RecentlyMoser and Tardos (2010) designed an algorithmic version of Lovász Local
Lemma by means of the so-called Entropy Compression Method. Using this method,
Esperet and Parreau gave an improved upper bound for acyclic edge-coloring and star
coloring of graphs in Esperet and Parreau (2013). Goncalves et al. (2014) provide a
more general method and give new tool to improve the analysis.
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In this paper, we employ Entropy Compression Method to improve the degenerate

and star chromatic number to χsd(G) ≤ � 19
6 �

3
2 + 5��. Actually, we obtain the

following result.

Theorem 4 For any graph G with maximum degree �, there is a degenerate star

coloring of G with � 19
6 �

3
2 + 5�� colors such that for every vertex v of degree at most

�
1
2 , all neighbors of v are colored differently.

2 Preliminary

In this section, we will make some preparations for the proof of Theorem 4. Let
G = (V, E) be a graph with vertex set V and edge set E . Under the coloring f of G,
first we define a family F of subgraph of G under coloring f . In Fig. 1 we show a set
of subgraphs F of G, for every subgraph R ∈ F of G, there is a coloring fR (which
is shown in Fig. 1) is given under coloring f .

For X,Y ⊆ V , we use E(X,Y ) to denote the set of edges whose one endvertex in X
and the other in Y . We present the following Observation and Lemma given by Mohar
and S̆pacapan in (2012). We include the proof of the Observation 2.1 and Lemma 2.2
for completeness.

Observation 2.1 (Mohar and Špacapan 2012) Let G be a graph with minimum degree
k ≥ 2 and let f be a proper k-coloring of G. If S is a non-empty subset of a color class
C j of f , then there exists a color class Ci of f , such that |E(S,C j )| ≥ k

k−1 |S| > |S|.
Proof Each vertex in S has degree at least k. Therefore,

∑

j �=i

|E(S,C j )| ≥ k|S|,

which implies the claimed inequalities. 
�

Lemma 2.2 (Mohar and Špacapan 2012) If no event of subgraphs of F in Fig. 1 of
G under coloring f occurs, then the coloring f of G is a degenerate star coloring

such that for every vertex of degree ≤ �
1
2 all its neighbors are colored by pairwise

different colors.

Proof In this proof, if i th of the subgraph under coloring of f in Fig. 1 occurs, we will
call it event type i occurs. Since no event of type (2), (8) or (10) occurs, the coloring f

is a star coloring such that any vertex of degree at most �
1
2 has its neighbors colored

by different colors. It remains to prove that the coloring is degenerate. Suppose on the
contrary, that there is a subgraph Q of G with minimum degree k colored by k colors.
Since f is a proper coloring, we have k ≥ 2. Then there exists a vertex x ∈ V (Q) of
(say) color 1 adjacent to two vertices y, z of color 2 (seeObservation 2.1). Furthermore,
there is a color class P of f such that |E({y, z}, P)| ≥ 3. Since events of type 2 do
not occur, the color of P is not 1 or 2. Similarly we see that N (y) ∩ N (z) ∩ P = ∅.
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Fig. 1 The set of subgraphs F= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} of G under coloring f

As events of type (3) are excluded, there are three vertices u, v, w ∈ P , such that
u, v are adjacent to y and w is adjacent to z. Let Y = {u, v, w}. Then there is a color
class P

′
such that |E(Y, P

′
)| ≥ 4. Since events of type (2), (4), (5), and (6) do not

occur, P
′
is distinct from the color classes 1 and 2. If |N (Y ) ∩ P

′ | ≥ 4 then (since
(2) and (3) do not occur) an event of type (7), (1), (11), (12) happens, a contradiction.
If |N (Y ) ∩ P

′ | ≤ 3, then a similar argument shows that either type (9) or (5) event
occurs. This contradiction proves Lemma 2.2. 
�

3 The proof of Theorem 4

We prove Theorem 4 by contradiction. Suppose that there exists a graph G satisfying

the conditions of Theorem 4 such that χsd(G) ≥ � 19
6 �

3
2 +5��+1. Let κ = � 19

6 �
3
2 +

5��. We employ an algorithm to “manage” to color G which guarantee the coloring
is a degenerate star coloring with κ colors. We define a total order ≺ on the vertices
of G. In the following, we first define an algorithm, then we give an analysis of the
algorithm, finally we obtain a contradiction.

We first give an algorithm to partially color G that guarantee the coloring is degen-
erate and star.

123



J Comb Optim

3.1 The algorithm

Let M = {1, 2, . . . , κ}t be the vector of length t , for some arbitrarily large t � n =
|V (G)|. Algorithm DegeneratestarColoring takes the vector M as input and returns
a partial degenerate star coloring ϕ : V (G) → {•, 1, 2, . . . , κ} of G, (• means that
the vertex is uncolored) and a file, called record R. The degenerate and star coloring
ϕ is necessarily partial since we actually try to color G with a number of colors less
than its degenerate star chromatic number. Through discussion in Sect. 2, we know
that if no event of Fig. 1 occurs in the coloring process, the coloring remains a partial
degenerate and star coloring. For this reason, we call the event 1–12 bad events.

Algorithm DegeneratestarColoring runs as follows. Let ϕi be the partial coloring
of G after i steps. At step i , we examine ϕi−1 and color the smallest uncolored vertex
v by M[i], after that we verify whether one of the 12 bad events happens.

If one of such events happens, then we uncolor some vertices in order that none
of the above mentioned 12 events happens. Through this process, we can modify the
coloring such that none of the 12 events remains. According to Lemma 2.2, we can
see that ϕi is a partial degenerate star coloring of G.

In the following, we first prove that the function defined in algorithm Degenerat-
estarColoring is injective. Then we will obtain a contradiction since we can show that
the number of possible outputs is strictly smaller than the number of possible inputs
when t is much larger than n. Actually, in the following we can see that the number of
possible inputs is exactly κ t while the number of possible outputs is o(κ t ). Therefore,
we can obtain the desired contradiction and complete the proof of Theorem 4.

3.2 Analysis of algorithm DegeneratestarColoring

Recall that ϕi denotes the partial degenerate star coloring obtained after i steps. Let
us denote by ϕi ⊂ V (G) the set of vertices that are colored in ϕi . Let also vi , Ri

and Mi respectively denote the current vertex v of the i th step, the record R after i
steps, and the input vector M restricted to its i first elements. Observe that as ϕi is a
partial degenerate star κ-coloring of G, and as G is not degenerate star κ-colorable,
we have that ϕi � V (G), and thus vi+1 is well defined. This also implies that R has
t “Color” lines. Finally observe that Ri corresponds to the lines of R before the
(i + 1)th “Color” line.
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Algorithm DegeneratestarColoring_G: Part 1
Input : M (vector of length t).
Output : (ϕ, R).

1: for all v ∈ V (G) do
2: ϕ(v) ← •
3: end for
4: R ← new f ile()
5: for all i ← 1 to t do
6: Let v be the smallest (w.r.t. ≺) uncolored vertex of G

ϕ(v) ← M[i]
Write “Color \n” in R

7: if Event 1 happens then Event 1 issue
ϕ(v4) ← •
ϕ(v5) ← •
ϕ(v6) ← •
ϕ(v7) ← •
ϕ(v8) ← •
ϕ(v = v9) ← •
Write “Uncolor, event 1 (v4, v5, v6, v7, v8, v9) \n” in R

8: else if Event 2 happens then Event 2 issue
ϕ(v2) ← •
ϕ(v = v3) ← •
Write “Uncolor, event 2 (v2, v3) \n” in R

9: else if Event 3 happens then Event 3 issue
ϕ(v2) ← •
ϕ(v = v3) ← •
Write “Uncolor,event 3 (v2, v3) \n” in R

10: else if Event 4 happens then Event 4 path issue
ϕ(v3) ← •
ϕ(v4) ← •
ϕ(v5) ← •
ϕ(v = v6) ← •
Write “Uncolor,event 4 (v3, v4, v5, v6) \n” in R

11: else if Event 5 happens then Event 5 issue
ϕ(v3) ← •
ϕ(v4) ← •
ϕ(v5) ← •
ϕ(v = v6) ← •
Write “Uncolor,event 5 (v3, v4, v5, v6) \n” in R

12: else if Event 6 happens then Event 6 issue
ϕ(v3) ← •
ϕ(v4) ← •
ϕ(v5) ← •
ϕ(v = v6) ← •
Write “Uncolor,event 6 (v3, v4, v5, v6) \n” in R
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Algorithm DegeneratestarColoring_G: Part 2
13: else if Event 7 happens then Event 7 issue

ϕ(v4) ← •
ϕ(v5) ← •
ϕ(v6) ← •
ϕ(v7) ← •
ϕ(v8) ← •
ϕ(v = v9) ← •
Write “Uncolor,event 7 (v4, v5, v6, v7, v8, v9) \n” in R

14: else if Event 8 happens then Event 8 issue
ϕ(v = v2) ← •
Write “Uncolor,event 8 (v2) \n” in R

15: else if Event 9 happens then Event 9 issue
ϕ(v4) ← •
ϕ(v5) ← •
ϕ(v6) ← •
ϕ(v7) ← •
ϕ(v = v8) ← •
Write “Uncolor,event 9 (v4, v5, v6, v7, v8) \n” in R

16: else if Event 10 happens then Event 10 issue
ϕ(v = v1) ← •
Write “Uncolor,event 10 (v1) \n” in R

17: else if Event 11 happens then Event 11 issue
ϕ(v4) ← •
ϕ(v5) ← •
ϕ(v6) ← •
ϕ(v7) ← •
ϕ(v8) ← •
ϕ(v = v9) ← •
Write “Uncolor,event 11 (v4, v5, v6, v7, v8, v9) \n” in R

18: else if Event 12 happens then Event 12 issue
ϕ(v3) ← •
ϕ(v4) ← •
ϕ(v5) ← •
ϕ(v = v6) ← •
Write “Uncolor,event 12 (v3, v4, v5, v6) \n” in R

19: end if
20: end for

return (ϕ, R)

Let us first show that the function defined in algorithm DegeneratestarColoring is
injective.

Lemma 3.1 One can recover Mi from (ϕi , Ri ).

Proof First note that at every step of algorithmDegeneratestarColoring, a line “Color”
may possibly followed by a line “Uncolor” which is appended to R. Then we call the
step which only appends a line “Color” a colorstep, while the step appends a line
“Color” followed by a line “Uncolor” step anUncolorstep. Hence, by looking at the
last line of R, we can know whether the last step is a colorstep or an uncolorstep.

We first show that Ri uniquely determines the set of colored vertices at step i by
induction on i . It is easy to see that R1 contains only one “Color” line, then v1 is
the unique colored vertex at step 1. Assume that i ≥ 2. By induction hypothesis,
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Ri−1 uniquely determines the set of colored vertices at step i − 1. At step i , color
the smallest uncolored vertex of G. If the last line of Ri is a Color line, then we can
know ϕi easily; if one of Event 1–12 occurs, then the last line of Ri is an Uncolor
line which indicates the vertices that uncolored. Hence, Ri uniquely determines the
set of colored vertices at step i .

Now we prove that Mi can be recovered from the pair (ϕi , Ri ) by induction on i .
First we know that at step 1, M1 can be recovered from the pair (ϕ1, R1) since v1 is
the unique colored vertex. In this case M[1] = ϕ1(v1). Assume that i ≥ 2. According
to the discussion above, the record Ri−1 indicates the set of colored vertices at step
i − 1, so we know that the smallest uncolored vertex v at the beginning of step i .

If step i was a color step, then one can obtain ϕi−1 from ϕi in such a way that
ϕi−1(u) = ϕi (u) for u �= v and ϕi−1(v) = •. By induction hypothesis, one can
recover Mi−1 from (ϕi−1, Ri−1) and M[i] = ϕi (v). Therefore, we can recover Mi

from the pair (ϕi , Ri ).
If step i was an uncolor step, then by the last line of Ri and the above discussion, we

can determine the set of colored vertices at step i and deduce ϕi−1. Then by induction
hypothesis, Mi−1 can be recovered from (ϕi−1, Ri−1). Hence, we can obtain Mi by
considering the following cases:

• If the last line is “Uncolor, event 1”, then M[i] = ϕi (v3).
• If the last line is “Uncolor, event 2”, then M[i] = ϕi (v1).
• If the last line is “Uncolor, event 3”, then M[i] = ϕi (v1).
• If the last line is “Uncolor, event 4”, then M[i] = ϕi (u).
• If the last line is “Uncolor, event 5”, then M[i] = ϕi (v2).
• If the last line is “Uncolor, event 6”, then M[i] = ϕi (v2).
• If the last line is “Uncolor, event 7”, then M[i] = ϕi (v3).
• If the last line is “Uncolor, event 8”, then M[i] = ϕi (u).
• If the last line is “Uncolor, event 9”, then M[i] = ϕi (v3).
• If the last line is “Uncolor, event 10”, then M[i] = ϕi (u).
• If the last line is “Uncolor, event 11”, then M[i] = ϕi (v2).
• If the last line is “Uncolor, event 12”, then M[i] = ϕi (v2).

Therefore, one can recover Mi from (ϕi , Ri ). This concludes the proof of the
Lemma 3.1. 
�

Let us now bound the number of possible records.

Lemma 3.2 Algorithm DegeneratestarColoring_G produces at most o
(
κ t

)
distinct

records R.

Proof Since algorithm DegeneratestarColoring fails to color G, the record R has
exactly t “Color” lines (i.e. the algorithm consumes the whole input vector). It
contains also “Uncolor” lines of different events: “Event 1–12”, Let T =
{1, 2, . . . , 12} be the set of events. Let us denote by s j the number of uncolored
vertices when a event j occurs. Observe that:

• For every “Uncolor, event 1” step, the algorithm DegeneratestarColoring
uncolors 6 previously colored vertex. Hence set s1 = 6.
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• For every “Uncolor, event 2” step, the algorithm DegeneratestarColoring
uncolors 2 previously colored vertices. Hence set s2 = 2.

• For every “Uncolor, event 3” step, the algorithm DegeneratestarColoring
uncolors 2 previously colored vertices. Hence set s3 = 2.

• For every “Uncolor, event 4” step, the algorithm DegeneratestarColoring
uncolors 4 previously colored vertices. Hence set s4 = 4.

• For every “Uncolor, event 5” step, the algorithm DegeneratestarColoring
uncolors 4 previously colored vertices. Hence set s5 = 4.

• For every “Uncolor, event 6” step, the algorithm DegeneratestarColoring
uncolors 4 previously colored vertices. Hence set s6 = 4.

• For every “Uncolor, event 7” step, the algorithm DegeneratestarColoring
uncolors 6 previously colored vertices. Hence set s7 = 6.

• For every “Uncolor, event 8” step, the algorithm DegeneratestarColoring
uncolors 1 previously colored vertices. Hence set s8 = 1.

• For every “Uncolor, event 9” step, the algorithm DegeneratestarColoring
uncolors 5 previously colored vertices. Hence set s9 = 5.

• For every “Uncolor, event 10” step, the algorithm DegeneratestarColoring
uncolors 1 previously colored vertices. Hence set s10 = 1.

• For every “Uncolor, event 11” step, the algorithm DegeneratestarColoring
uncolors 6 previously colored vertices. Hence set s11 = 6.

• For every “Uncolor, event 12” step, the algorithm DegeneratestarColoring
uncolors 4 previously colored vertices. Hence set s12 = 4.

To compute the total number of possible records, let us compute howmany different
entries, denoted by C j , an “Uncolor” step of event j can produce in the record.
Observe that:

• An “Uncolor, event 1” line can produce at most 3
4�

5 different entries in
the record, according to Fig. 1(1), set C1 = 3

4�
5.

• An “Uncolor, event 2”line can produce at most �3 different entries in the
record, according to Fig. 1(2), set C2 = �3.

• An “Uncolor, event 3”line can produce at most �3

6 different entries in the

record, according to Fig. 1(3), set C3 = �3

6 .

• An “Uncolor, event 4”line can produce at most �5+�4+2�3

4 different

entries in the record, according to Fig. 1(4), set C4 = �5+�4+2�3

4 .
• An “Uncolor, event 5”line can produce at most 34�

4 different entries in the
record, according to Fig. 1(5), set C5 = 3

4�
4.

• An “Uncolor, event 6”line can produce at most 34�
4 different entries in the

record, according to Fig. 1(6), set C6 = 3
4�

4.

• An “Uncolor, event 7”line can produce at most �6+2�5+4�4

8 different

entries in the record, according to Fig. 1(7), set C7 = �6+2�5+4�4

8 .

• An “Uncolor, event 8”line can produce at most �
3
2 different entries in the

record, according to Fig. 1(8), set C8 = �
3
2 .
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• An “Uncolor, event 9”line can produce at most �5

2 different entries in the

record, according to Fig. 1(9), set C9 = �5

2 .
• An “Uncolor, event 10”line can produce at most � different entries in the
record, according to Fig. 1(10), set C10 = �.

• An “Uncolor, event 11”line can produce at most �6+2�5+2�4

8 different

entries in the record, according to Fig. 1(11), set C11 = �6+2�5+2�4

8 .

• An “Uncolor, event 12”line can produce at most �4

2 different entries in the

record, according to Fig. 1(12), set C12 = �4

2 .

Now we proceed to compute the total number of different records. Recall that the
record R has exactly t “Color” steps and some “Uncolor” steps of different events. Let
ti (i = 1, 2, . . . , 12) be the number of “Uncolor” steps of events “event 1”, “event 2”,
. . . , “event 12”, respectively. From the above discussion we know that the number of
each “Uncolor” step “event i” uncolor si previously colored vertex, thus

∑
1≤i≤12 si ti

equals to the number of uncolored vertices during the execution of algorithm Degen-
eratestarColoring, so

∑
1≤i≤12 si ti ≤ t . From the hypothesis we know that at the end

of the execution of algorithm DegeneratestarColoring there are less than n colored
vertices. Therefore,

t − n <
∑

1≤i≤12

si ti ≤ t. (1)

Based on (1) and the discussions above, we begin to count the number
#Seq(t1, t2 . . . , t12) of possible sequences of “Color”, “Uncolor, event 1”,“Uncolor,
event 2”, . . . ,“Uncolor, event 12” steps in the record, for the fixed t1, t2, . . . , t12. In
the following, let t0 = t − ∑

1≤i≤12 ti . From algorithm DegeneratestarColoring we
can obtain

#Seq(t1, t2 . . . , t12) ≤
(
t

t0

)
×

(
t − t0
t1

)
× · · · ×

(
t − ∑

0≤i≤10 ti
t11

)

≤
(

t

t0, t1, . . . , t12

)
.

The computation of Ci and #Seq(t1, t2 . . . , t12) implies that for fixed t, t0, . . . , t12,
the number of different records is bounded by the following function Bt :

Bt (t0, . . . , t12) =
(

t

t0, t1, . . . , t12

)
×

∏

1≤i≤12

Cti
i .

Sum over all possible 13−tuples t0, . . . , t12 satisfying Eq. (1), we can bound the
number of different records #REC by following inequality:

#REC ≤
∑

t0,...,t12

Bt (t0, . . . , t12).
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From Eq. (1), we can obtain the following equations

∑

t0,...,t12

ti = t

and

t ≥
∑

1≤i≤12

si ti . (2)

In order to complete the proof of Lemma 3.2, we present the following Lemma given
by Goncalves et al. (2014).

Lemma 3.3 (Goncalves et al. 2014) Summing over all possible (p + 1)-tuples
t0, . . . , tp satisfying Eq. (2), we have for sufficiently large t that

∑

t0,...,tp

Bt (t0, . . . , tp) < t (t + 1)p( inf
0<x≤1

Q(x))t .

By Lemma 3.3, we know that for the sufficiently large t ,

#REC < t (t + 1)12( inf
0<x≤1

Q(x))t ,

for Q(x) = 1
x (1 + ∑

1≤i≤12(Ci xsi )) with Ci and si given as above (the si ’s satisfy
Eq. (2) by Eq. (1)) and any real 0 < x ≤ 1. Hence we have

Q(x) = 1

x
(1 + C1x

6 + C2x
2 + C3x

2 + C4x
4 + C5x

4 + C6x
4 + C7x

6 + C8x

+C9x
5 + C10x + C11x

6 + C12x
4).

Then we substitute the value for respective Ci , i = 1, 2, . . . , 12.
Setting X = 1

�
3
2
, we have

Q(X) <
19

6
�

3
2 + 5� ≤ κ.

Finally, we have #REC = o(κ t ). By Lemma 3.1, we can obtain contradiction, thus
completes the proof of Theorem 4. 
�
Remark 1 Obviously, using Entropy Compression Method, we can easily extend the
result of Theorem 4 to its list version.
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