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Abstract

A graph is said to be total-colored if all the edges and the ver-
tices of the graph are colored. A total-coloring of a graph is a total

monochromatically-connecting coloring (TMC-coloring, for short) if
any two vertices of the graph are connected by a path whose edges
and internal vertices on the path have the same color. For a connect-
ed graph G, the total monochromatic connection number, denoted
by tmc(G), is defined as the maximum number of colors used in a
TMC-coloring of G. Note that a TMC-coloring does not exist if
G is not connected, in which case we simply let tmc(G) = 0. In
this paper, we first characterize all graphs of order n and size m

with tmc(G) = 3, 4, 5, 6, m + n − 2,m + n − 3 and m + n − 4, re-
spectively. Then we determine the threshold function for a random
graph to have tmc(G) ≥ f(n), where f(n) is a function satisfying
1 ≤ f(n) < 1

2
n(n − 1) + n. Finally, we show that for a given con-

nected graph G, and a positive integer L with L ≤ m + n, it is
NP-complete to decide whether tmc(G) ≥ L.

Keywords: total-colored graph, total monochromatic connection,
random graphs, NP-complete

AMS subject classification 2010: 05C15, 05C40, 05C75, 05C80,
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1 Introduction

In this paper, all graphs are simple, finite and undirected. We refer to the
book [2] for undefined notation and terminology in graph theory. Through-
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out this paper, let n and m denote the order (number of vertices) and size
(number of edges) of a graph, respectively. Moreover, a vertex of a con-
nected graph is called a leaf if its degree is one; otherwise, it is an internal
vertex. Let l(T ) and q(T ) denote the number of leaves and the number
of internal vertices of a tree T , respectively, and let l(G) = max{l(T )| T
is a spanning tree of G } and q(G) = min{q(T )| T is a spanning tree of
G } for a connected graph G. Note that the sum of l(G) and q(G) is n

for any connected graph G of order n. A path in an edge-colored graph
is a monochromatic path if all the edges on the path have the same color.
An edge-coloring of a connected graph is a monochromatically-connecting
coloring (MC-coloring, for short) if any two vertices of the graph are con-
nected by a monochromatic path of the graph. For a connected graph G,
the monochromatic connection number of G, denoted by mc(G), is defined
as the maximum number of colors used in an MC-coloring of G. An ex-
tremal MC-coloring is an MC-coloring that uses mc(G) colors. Note that
mc(G) = m if and only if G is a complete graph. The concept of mc(G)
was first introduced by Caro and Yuster [6] and has been well-studied
recently. We refer the reader to [4, 10] for more details.
In [11], the authors introduced the concept of total monochromatic con-

nection of graphs. A graph is said to be total-colored if all the edges and the
vertices of the graph are colored. A path in a total-colored graph is a total
monochromatic path if all the edges and internal vertices on the path have
the same color. A total-coloring of a graph is a total monochromatically-
connecting coloring (TMC-coloring, for short) if any two vertices of the
graph are connected by a total monochromatic path of the graph. For
a connected graph G, the total monochromatic connection number, de-
noted by tmc(G), is defined as the maximum number of colors used in a
TMC-coloring of G. Note that a TMC-coloring does not exist if G is not
connected, in which case we simply let tmc(G) = 0. An extremal TMC-
coloring is a TMC-coloring that uses tmc(G) colors. It is easy to check
that tmc(G) = m+n if and only if G is a complete graph. Actually, these
concepts are not only inspired by the concept of monochromatic connec-
tion number but also by the concepts of monochromatic vertex connection
number and total rainbow connection number of a connected graph. For
details about them we refer to [5, 12, 13, 14]. From the definition of the
total monochromatic connection number, the following results follow im-
mediately.

Proposition 1. [11] If G is a connected graph and H is a connected
spanning subgraph of G, then tmc(G) ≥ e(G)− e(H) + tmc(H).

Theorem 1. [11] For a connected graph G, tmc(G) ≥ m− n+ 2 + l(G).

In particular, tmc(G) = m−n+2+ l(G) if G is a tree. The authors [11]
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also showed that there are dense graphs that still meet this lower bound.

Theorem 2. [11] Let G be a connected graph of order n > 3. If G satisfies
any of the following properties, then tmc(G) = m− n+ 2 + l(G).
(a) The complement G of G is 4-connected.
(b) G is K3-free.

(c) ∆(G) < n− 2m−3(n−1)
n−3 .

(d) diam(G) ≥ 3.
(e) G has a cut vertex.

Moreover, the authors [11] gave an example to show that the lower bound
m− n+ 2 + l(G) is not always attained.

Example 1. [11] Let G = Kn1,...,nr
be a complete multipartite graph with

n1 ≥ . . . ≥ nt ≥ 2 and nt+1 = . . . = nr = 1. Then tmc(G) = m+ r − t.

Let G be a connected graph and f be an extremal TMC-coloring of G
that uses a given color c. Note that the subgraph H formed by the edges
and vertices with color c is a tree where the color of each internal vertex
is c [11]. Now we define the color tree as the tree formed by the edges and
vertices with color c, denoted by Tc. If Tc has at least two edges, the color
c is called nontrivial; otherwise, c is trivial. We call an extremal TMC-
coloring simple if for any two nontrivial colors c and d, the corresponding
trees Tc and Td intersect in at most one vertex. If f is simple, then the
leaves of Tc must have distinct colors different from color c. Moreover, a
nontrivial color tree of f with m′ edges and q′ internal vertices is said to
waste m′−1+ q′ colors since the edges and internal vertices of a nontrivial
color tree must have the same color. In fact, we can use at most m + n

colors to assign its edges and vertices with different colors. Thus, if f

wastes x colors, then tmc(G) = m + n − x. For the rest of this paper we
will use these facts without further mentioning them. In addition, we list
a helpful lemma below.

Lemma 1. [11] Every connected graph G has a simple extremal TMC-
coloring.

This paper is organized as follows. In Section 2, we characterize all
graphsG with tmc(G) = 3, 4, 5, 6,m+n−2,m+n−3,m+n−4, respectively.
In Section 3, we show that for any function f(n) satisfying 1 ≤ f(n) <
1
2n(n− 1)+ n, if ln logn ≤ f(n) < 1

2n(n− 1)+ n, where l ∈ R
+, then p =

f(n)+n log log n

n2 is a sharp threshold function for the property tmc(G(n, p)) ≥

f(n); if f(n) = o(n log n), then p = log n
n

is a sharp threshold function for
the property tmc(G(n, p)) ≥ f(n). In Section 4, we prove that for a given
connected graph G, and a positive integer L with L ≤ m + n, it is NP-
complete to decide whether tmc(G) ≥ L.
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2 Characterization of graphs with small or

large tmc

In this section, we characterize all graphs G with tmc(G) = 3, 4, 5, 6,m+
n − 2,m + n − 3,m + n − 4, respectively. We call a connected graph G

unicyclic, bicyclic, or tricyclic if m = n, n + 1 or n + 2, respectively. Let
Ti denote the set of the trees with l(G) = i, where 2 ≤ i ≤ n − 1. Note
that if G is a connected graph with l(G) = 2, then G is either a path or a
cycle.

Theorem 3. Let G be a connected graph. Then tmc(G) = 3 if and only
if G is a path.

Proof. If G is a path, then tmc(G) = m−n+2+l(G) = 3. Hence it remains
to verify the converse. Let G be a connected graph with tmc(G) = 3. By
Theorem 1, we get that m ≤ n+1− l(G) and then m ≤ n− 1 as l(G) ≥ 2.
Since G is a connected graph, it follows that m = n − 1 and l(G) = 2.
Thus G is a path.

Theorem 4. Let G be a connected graph. Then tmc(G) = 4 if and only
if G ∈ T3 or G is a cycle except for K3.

Proof. If G ∈ T3 or G is a cycle except for K3, then tmc(G) = 4 by
Theorem 2(b). Conversely, let G be a connected graph with tmc(G) = 4.
First, we have m ≤ n + 2 − l(G) by Theorem 1. Since l(G) ≥ 2 and
m ≥ n − 1, it follows that l(G) = 2 or 3. If l(G) = 3, then m = n − 1
and so G ∈ T3. Otherwise, from Theorem 3 we have that G is a cycle and
G 6= K3 since tmc(K3) = 6.

Theorem 5. Let G be a connected graph. Then tmc(G) = 5 if and only
if G ∈ T4 or G ∈ Gi, where 1 ≤ i ≤ 4; see Figure 1.

G1 G2 G3 G4

an edge a path

Figure 1: Unicyclic graphs with l(G) = 3.

Proof. If G ∈ T4 orG ∈ Gi, where 1 ≤ i ≤ 4, then G has a cut vertex and so
tmc(G) = 5 by Theorem 2(e). Hence it remains to verify the converse. Let
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G be a connected graph with tmc(G) = 5. First, we have m ≤ n+3− l(G)
by Theorem 1. Since l(G) ≥ 2 and m ≥ n− 1, it follows that l(G) = 2, 3
or 4. If l(G) = 4, then m = n − 1 and so G ∈ T4. If l(G) = 3, then we
have m = n from Theorem 4 and so G is a unicyclic graph with l(G) = 3;
see Figure 1. If l(G) = 2, then we have G = K3 from Theorems 3 and 4.
However, tmc(K3) = 6, a contradiction.

Theorem 6. Let G be a connected graph. Then tmc(G) = 6 if and only
if G = K3, G ∈ T5 or G ∈ Hi, where 1 ≤ i ≤ 18; see Figure 2.

H1 H2 H3

an edge a path

H4 H5 H6

H7 H8 H9 H10 H11 H12

H13

H7

H14 H15 H16 H17 H18

Figure 2: The graphs in Theorem 6.

Proof. If G ∈ Hi (1 ≤ i ≤ 13), then G is a unicyclic graph with l(G) = 4
and it has a cut vertex. Thus, tmc(G) = m−n+2+ l(G) = 6 by Theorem
2(e). If G ∈ Hi (14 ≤ i ≤ 18), then G is a bicyclic graph with l(G) = 3

and ∆(G) = 3 < n − 2m−3(n−1)
n−3 . Thus, tmc(G) = m − n + 2 + l(G) = 6

by Theorem 2(c). Next we just need to prove the necessity. Let G be a
connected graph with tmc(G) = 6. First, we have m ≤ n + 4 − l(G) by
Theorem 1. Since l(G) ≥ 2 and m ≥ n− 1, it follows that l(G) = 2, 3, 4 or
5. If l(G) = 5, then m = n− 1 and so G ∈ T5. If l(G) = 4, we have that
m = n from Theorem 5 and so G is a unicyclic graph with l(G) = 4; see
Hi (1 ≤ i ≤ 13) in Figure 2. Similarly, from Theorems 4 and 5, we have
that m = n + 1 if l(G) = 3 and then G is a bicyclic graph with l(G) = 3
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except for K2,1,1 since tmc(K2,1,1) = 7; see Hi (14 ≤ i ≤ 18) in Figure 2.
If l(G) = 2, we have that G = K3 from Theorems 3 and 4.
Recall that tmc(G) = m+ n if and only if G = Kn. In fact, there does

not exist a graph such that tmc(G) = m+n−1. We are given a connected
graph G with diam(G) ≥ 2 and a simple extremal TMC-coloring of G.
Since diam(G) ≥ 2, there exist two nonadjacent vertices of G and a total
monochromatic path connecting them. Then such two vertices must be
in a nontrivial color tree. Since every nontrivial color tree wastes at least
2 colors, we get that tmc(G) ≤ m + n − 2. Hence in the following, we
characterize all graphs G having tmc(G) = m+n−2,m+n−3,m+n−4.
Let tK2 be t nonadjacent edges of Kn, where t ≤ ⌊n

2 ⌋. Given a graph H ,
let Kn −H denote the graph obtained from Kn by deleting the edges of
H .

Theorem 7. Let G be a connected graph. Then tmc(G) = m + n − 2 if
and only if G = Kn −K2.

Proof. Clearly, Kn −K2 = K2,1,...,1. Then tmc(Kn −K2) = m + n − 2.
Conversely, let G be a connected graph with tmc(G) = m+n− 2. We are
given a simple extremal TMC-coloring f of G. Suppose that f consists of
k nontrivial color trees, denoted by T1, . . . , Tk. Since each nontrivial color
tree wastes at least two colors, it follows that k = 1 and T1 = P3. Then
any two vertices of G except for the pair of leaves of T1 must have an edge
between them since G is total monochromatic connected and k = 1. Thus,
Kn−K2 is a spanning subgraph of G. However, tmc(Kn) = m+n. Thus,
G = Kn −K2.

Theorem 8. Let G be a connected graph. Then tmc(G) = m + n − 3 if
and only if G is either Kn −K3 or Kn − P3.

Proof. Note that Kn −K3 = K3,1,...,1 and then tmc(Kn −K3) = |E(Kn −
K3)| + n − 3. Note that Kn − K3 is a spanning subgraph of Kn − P3.
Then tmc(Kn − P3) ≥ |E(Kn − P3)| + n − 3 by Proposition 1. Now we
just need to prove that tmc(Kn − P3) ≤ |E(Kn −P3)|+ n− 3. Let f be a
simple extremal TMC-coloring of Kn − P3. Suppose that f consists of k
nontrivial color trees. Since there are two pairs of nonadjacent vertices in
two nontrivial color trees or in a common nontrivial color tree, it wastes at
least three colors and then tmc(Kn − P3) ≤ |E(Kn − P3)|+ n− 3. Hence
tmc(Kn − P3) = |E(Kn − P3)|+ n− 3.
Now it remains to verify the converse. Let G be a connected graph with

tmc(G) = m+n−3. We are given a simple extremal TMC-coloring f of G.
Suppose that f consists of k nontrivial color trees, denoted by T1, . . . , Tk.
Since each nontrivial color tree wastes at least two colors, we get that k = 1
and T1 = K1,3. Then any two vertices of G except for any pair of leaves
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of T1 must have an edge connecting them since G is total monochromatic
connected and k = 1. Thus Kn −K3 is a spanning subgraph of G. From
Theorem 7, it can be checked that G is either Kn −K3 or Kn − P3.

Theorem 9. Let G be a connected graph. Then tmc(G) = m + n − 4 if
and only if G ∈ {Kn − P4,Kn − 2K2,Kn − K4,Kn − (K4 − K2),Kn −
(K4 − P3),Kn − C4,Kn −K1,3}.

Proof. Clearly, Kn − 2K2 = K2,2,1,...,1 and Kn −K4 = K4,1,...,1. Thus we
have that tmc(Kn − 2K2) = tmc(Kn −K4) = m+ n− 4. If G = Kn −P4,
there are three pairs of nonadjacent vertices and let f be a simple extremal
TMC-coloring of G. Suppose that f consists of k nontrivial color trees. If
the three pairs of the nonadjacent vertices are in at least two nontrivial
color trees, then it wastes at least 4 colors since each nontrivial color tree
wastes at least two colors. Suppose that the three pairs of nonadjacent
vertices are in one nontrivial color tree. If the nontrivial color tree has
at least 5 vertices, it has at least 4 edges and at least one internal vertex
which means it wastes at least 4 colors. Otherwise the nontrivial color tree
must be a path of length 3 since the three pairs of nonadjacent vertices
have exactly 4 vertices and P4 = P4 which means it wastes at least 4
colors. Hence f wastes at least 4 colors and so tmc(G) ≤ m+n− 4. Since
Kn−K4 is a spanning subgraph of G, tmc(G) ≥ m+n− 4 by Proposition
1. Thus we get that tmc(Kn−P4) = m+n−4. Similarly, it can be verified
that tmc(Kn − (K4 − K2)) = tmc(Kn − (K4 − P3)) = tmc(Kn − C4) =
tmc(Kn −K1,3) = m+ n− 4.
Conversely, let G be a connected graph with tmc(G) = m+n−4. We are

given a simple extremal TMC-coloring f of G. Suppose that f consists
of k nontrivial color trees, denoted by T1, . . . , Tk. Since each nontrivial
color tree wastes at least two colors and tmc(G) = m+ n− 4, we get the
following two cases.
Case 1. k = 1.
Then T1 = P4 or K1,4. If T1 = P4, then any two vertices of G except

for any two nonadjacent vertices of T1 must have an edge between them
since G is total monochromatic connected and k = 1. Thus, Kn − P4

is a spanning subgraph of G. From Theorems 7 and 8, we obtain that
G is either Kn − P4 or Kn − 2K2. If T1 = K1,4, then Kn − K4 is a
spanning subgraph of G analogously. From Theorems 7 and 8, we get that
G ∈ {Kn−P4,Kn− 2K2,Kn−K4,Kn− (K4−K2),Kn− (K4−P3),Kn−
C4,Kn −K1,3}.
Case 2. k = 2.
Then T1 = T2 = P3. Since any two vertices of G except for the pair

of leaves of T1 and the pair of leaves of T2 must have an edge connecting
them, there exist at most two edges not contained in G. Observe that
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tmc(Kn − K2) = m + n − 2 and tmc(Kn) = m + n. Then there exist
exactly two edges not contained in G. If the two edges have a common
vertex, G = Kn − P3 and then tmc(G) = m + n − 3 by Theorem 8, a
contradiction. Otherwise, it follows that G = Kn − 2K2.

3 Random graphs

Let G = G(n, p) denote the random graph with n vertices and edge proba-
bility p [1]. For a graph property P and for a function p = p(n), we say that
G(n, p) satisfies P almost surely if the probability that G(n, p(n)) satisfies
P tends to 1 as n tends to infinity. We say that a function f(n) is a sharp
threshold function for the property P if there are two positive constants C
and c so that G(n,Cf(n)) satisfies P almost surely and G(n, cf(n)) almost
surely does not satisfy P .
Let G and H be two graphs on n vertices. A property P is said to be

monotone if whenever G ⊆ H and G satisfies P , then H also satisfies P .
It is well-known that all monotone graph properties have sharp threshold
functions; see [3] and [8]. For any graph G with n vertices and any function
f(n), having tmc(G) ≥ f(n) is a monotone graph property (adding edges
does not destroy this property), so it has a sharp threshold function. In the
following, we establish a sharp threshold function for the graph property
tmc(G) ≥ f(n).

Theorem 10. Let f(n) be a function satisfying 1 ≤ f(n) < 1
2n(n−1)+n.

Then

p =











f(n)+n log logn

n2 if ln logn ≤ f(n) < 1
2n(n− 1) + n,

where l ∈ R
+,

logn
n

if f(n) = o(n logn).

(1)

is a sharp threshold function for the property tmc(G(n, p)) ≥ f(n).

Remark 1. Note that if f(n) = 1
2n(n− 1)+n, then G(n, p) is a complete

graph Kn and p = 1. Hence we only concentrate on the case f(n) <
1
2n(n− 1) + n.

Before proving Theorem 10, we need some lemmas.

Lemma 2. [7] Let p = logn+a(n)
n

. Then

Pr[G(n, p) is connected] →











ee
−a(n)

if |a(n)| = O(1),

0 a(n) → −∞,

1 a(n) → +∞.

(2)
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Lemma 3. [1] (Chernoff Bound) If X is binomial variable with expec-
tation µ, and 0 < δ < 1, then

Pr[X < (1− δ)µ] ≤ exp(− δ2µ
2 )

and

Pr[X > (1 + δ)µ] ≤ exp(− δ2µ
2+δ

).

Lemma 4. Let G be a noncomplete connected graph of order n with min-
imum degree δ. Then tmc(G) ≤ m− n+ δ + 1 + l(G).

Proof. For a noncomplete graph G, we have that tmc(G) ≤ mc(G) + l(G)
whose proof is contained in the proof of Theorem 6 in [11]. Moreover,
mc(G) ≤ m− n+ δ+1 by Proposition 12 in [6]. Thus tmc(G) ≤ m− n+
δ + 1+ l(G).
Proof of Theorem 10: We divide our proof into two cases according to
the range of f(n).
Case 1. ln logn ≤ f(n) < 1

2n(n− 1) + n, where l ∈ R
+.

We first prove that there exists a constant C such that the random graph

G(n,Cp) with p = f(n)+n log logn

n2 almost surely has tmc(G(n,Cp)) ≥ f(n).
Let

C =

{

5 if n logn ≤ f(n) < 1
2n(n− 1) + n,

5
l

if f(n) = ln logn, where 0 < l < 1.
(3)

It is easy to check that G(n,Cp) is almost surely connected by Lemma 2.
Let µ1 denote the expectation of the number of edges in G(n,Cp). Then

µ1 = n(n−1)
2 · Cp = C

2 (
n−1
n

f(n) + (n− 1) log logn).

Moreover from Lemma 3, it follows that Pr[|E(G(n,Cp))| < µ1

2 ] ≤
exp(− 1

8µ1) = o(1). Suppose that |E(G(n,Cp))| ≥ µ1

2 . By Theorem 1 we
have that for n sufficiently large,

tmc(G(n,Cp)) ≥ |E(G(n,Cp))| − n+ 2 + l(G) ≥ µ1

2 − n+ 2 + l(G)

= C
4 (

n−1
n

f(n) + (n− 1) log logn)− n+ 2 + l(G)

≥ 5
4 (

n−1
n

f(n) + (n− 1) log logn)− n+ 2+ 2

≥ f(n).

Thus, we conclude that tmc(G(n,Cp)) ≥ f(n) holds with the probability
at least (1− o(1))(1 − exp(− 1

8µ1)) = 1− o(1).
Next we show that there exists a constant c such that the random graph

G(n, cp) with p = f(n)+n log logn

n2 almost surely has tmc(G(n, cp)) < f(n).
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Let c = 1 and µ2 denote the expectation of the number of edges in G(n, cp).
Then we have

µ2 = n(n−1)
2 · cp = 1

2 (
n−1
n

f(n) + (n− 1) log logn).

Furthermore by Lemma 3, it follows that Pr[|E(G(n, cp))| > 3
2µ2] ≤

exp(− 1
10µ2) = o(1). If G(n, cp) is not connected, then tmc(G(n, cp)) =

0 < f(n). Otherwise, let δ be the minimum degree of G(n, cp). Suppose
that |E(G(n, p))| ≤ 3

2µ2. From Lemma 4, it follows that

tmc(G(n, cp)) ≤ |E(G(n, cp))| − n+ δ + 1 + l(G)

≤ 3
2µ2 − n+ δ + 1 + l(G)

= 3
4 (

n−1
n

f(n) + (n− 1) log logn)− n+ δ + 1 + l(G)

< 3
4 (

n−1
n

f(n) + (n− 1) log logn)− n+ n+ 1 + n− 1

= 3
4 (

n−1
n

f(n) + (n− 1) log logn) + n.

In fact, we have that for n sufficiently large,

3
4 (

n−1
n

f(n)+(n−1) log logn)+n

f(n) ≤ 3
4 (

n−1
n

+ (n−1) log logn

f(n) ) + n
f(n)

≤ 3
4 (

n−1
n

+ (n−1) log logn

ln logn
) + n

ln logn

= 3
4
n−1
n

(1 + log logn
l logn

) + 1
l logn

< 1.

Hence, we conclude that tmc(G(n, cp)) < f(n) holds with the probability
at least 1− exp(− 1

10µ2) = 1− o(1).
Case 2. f(n) = o(n log n).
Let C = 2 and c = 1

2 . By Lemma 2, we have that G(n,Cp) is almost
surely connected and G(n, cp) is almost surely not connected. Let µ1

denote the expectation of the number of edges in G(n,Cp). Then

µ1 = n(n−1)
2 · Cp = (n− 1) logn.

Moreover from Lemma 3, it follows that Pr[|E(G(n,Cp))| < µ1

2 ] ≤
exp(− 1

8µ1) = o(1). Suppose that |E(G(n,Cp))| ≥ µ1

2 . By Theorem 1 we
have that for n sufficiently large,

tmc(G(n,Cp)) ≥ |E(G(n,Cp))| − n+ 2 + l(G) ≥ µ1

2 − n+ 2 + l(G)

= n−1
2 logn− n+ 2 + 2 ≥ f(n).

Thus, we conclude that tmc(G(n,Cp)) ≥ f(n) holds with the probability
at least (1 − o(1))(1 − exp(− 1

8µ1)) = 1 − o(1). On the other hand, since
G(n, cp) is almost surely not connected, tmc(G(n, cp)) = 0 < f(n) almost
surely holds.
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4 Hardness result for computing tmc

Given a graph G, a set D ⊆ V (G) is called a dominating set of G if every
vertex of G not in D has a neighbor in D. If the subgraph induced by D

is connected, then D is called a connected dominating set. The connected
dominating number, denoted by γc(G), is the minimum cardinalities of the
connected dominating sets of G. Note that the sum of γc(G) and l(G) is
n because a vertex subset is a connected dominating set if and only if its
complement is contained in the set of leaves of a spanning tree. In this
section, we mainly prove the following result.

Theorem 11. The following problem is NP-complete: Given a connected
graph G and a positive integer L ≤ m+ n, decide whether tmc(G) ≥ L.

In order to prove Theorem 11, we need the lemma as follows.

Lemma 5. [15] The first problem defined below is polynomially reducible
to the second one:
Problem 1. Given a graph G and a positive integer k ≤ n, decide whether
there is a dominating set of size k or less.
Problem 2. Given a connected graph G with a cut vertex and a positive
integer k with k ≤ n, decide whether there is a connected dominating set
of size k or less.

Proof of Theorem 11: Given a connected graph G with a cut vertex,
and a positive integer k ≤ n. Note that γc(G) ≤ k if and only if tmc(G) =
m − n + 2 + l(G) = m − γc(G) + 2 ≥ m− k + 2 by Theorem 2(e). Then
Problem 2 can be polynomially reducible to Problem 3: given a connected
graph G with a cut vertex and a positive integer L with L ≤ m+n, decide
whether tmc(G) ≥ L. Thus, Problem 1 can be reducible to Problem 3 by
Lemma 5. Moreover, Problem 1 is known as a NP-complete problem in
[9]. Hence the problem in Theorem 11 is NP-hard.
Next we prove that given a connected graphG and a nonnegative integer

K < m + n, to decide whether tmc(G) ≥ m + n − K is NP. Recall that
a problem belongs to NP-class if given any instance of the problem whose
answer is “yes”, there is a certificate validating this fact which can be
checked in polynomial time. For any fixed integer K, to prove the problem
of deciding whether tmc(G) ≥ m+n−K is NP, we choose a TMC-coloring
of G with m+ n−K colors as a certificate. For checking a TMC-coloring
with m+n−K colors, we only need to check that m+n−K colors are used
and for any two vertices u and v of G, there exists a total monochromatic
path between them. Notice that for any two vertices u and v of G, there
are at most nl−1 paths of length l, since if we let P = uv1v2 · · · vl−1v, then
there are less than n choices for each vi (i ∈ {1, 2, . . . , l− 1}). Clearly, the

11



path P wastes at least 2l− 2 colors. Then tmc(G) ≤ m+ n− (2l− 2) and
so m+n−K ≤ m+n− (2l−2) which implies that l ≤ K+2

2 . Therefore, G

contains at most
∑

K+2
2

l=1 nl−1 = n
K+2

2 −1
n−1 = O(n

K

2 ) u-v paths of length at

most K+2
2 . Then, check these paths in turn until one finds a path whose

edges and internal vertices have the same color. It follows that the time
used for checking is at most O(n

K

2 ·n2 ·n2) = O(n
K

2 +4). Since K is a fixed
integer, we conclude that the certificate can be checked in polynomial time.
Then the problem of deciding whether tmc(G) ≥ m + n − K belongs to
NP-class and so is the problem in Theorem 11.
Therefore, the proof is complete.

Corollary 1. Let G be a connected graph. Then computing tmc(G) is
NP-hard.
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