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Abstract

The energy £(G) of a graph G is defined as the sum of the absolute values of the eigenvalues
of its adjacency matrix. If a graph G of order n has the same energy as the complete graph
K, does, i.e., if £(G) = 2(n — 1), then G is said to be borderenergetic. Similarly, for the
Laplacian energy L£E(G) of a graph G, F. Tura proposed the concept of L-borderenergetic
graphs recently. That is, a graph G of order n is L-borderenergetic if it has the same
Laplacian energy as the complete graph K, does. In this paper, we first show that a kind of
threshold graphs are L-borderenergetic. Then we use tensor product to construct regular L-
borderenergetic graphs. At last, all the connected non-complete and pairwise non-isomorphic
L-borderenergetic graphs of small order n are depicted for n with 4 < n < 9. All these results

are different from those in Tura’s paper.

1 Introduction

All graphs considered in this paper are simple and undirected. Let G be a graph with its
edge set E(G) and vertex set V(G), whose order is denoted by |V (G)|. Denote by d(G) the
average degree of G. The complete graph and the cycle of order n are denoted by K, and

Ch,, respectively. The union of two vertex-disjoint graphs G; and G» is denoted by G1 U Gbs.
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Let A(G) be an adjacency matrix of G. The spectrum of G is the non-increasing sequence
Sp(G) = {M\1, A2, -+, A\n}, which is composed of the eigenvalues of the adjacency matrix
A(G). If D(G) is the diagonal matrix of the vertex degrees of G, L(G) = D(G) — A(G)
is defined to be the Laplacian matrix of G. The spectrum of L(G) is the sequence of its
eigenvalues displayed in non-increasing order, denoted by LSp(G) = {u1, 2, ,pn}. It is
well known that L(G) is a positive semidefinite and singular matrix. So, fori =1,2,--- ,n—1,
i > 0 and p, = 0. Besides, when each Laplacian eigenvalue is an integer, GG is said to be a

Laplacian integral graph. For details on spectral graph theory, see [2].

The energy of a graph G, denoted by £(G), is defined as [6,7]
E(@) =Nl
i=1

For additional information on graph energy and its applications in chemistry, we refer to

[7-9,15].

Recently, Gong et al. [5] proposed the concept of borderenergetic graphs, namely graphs
of order n satisfying £(G) = 2(n — 1). Some related results on borderenergetic graphs can
be seen in [4,13,19-21]. In fact, analogous topics on energy of graphs have been researched

[1,10,11,14,16-18).

For the Laplacian energy of a graph G [12], similarly, F. Tura [22] proposed the concept
of L-borderenergetic graphs. That is, a graph G of order n is L-borderenergetic if £LE(G) =
LE(K,), where LE(G) = Y." ,|wi — d| and p; and d are the Laplacian eigenvalue and
the average degree of G, respectively. Note that £LE(K,,) = 2(n — 1). Several classes of L-
borderenergetic graphs [22] are obtained including result that for each integer r > 1, there are
2r + 1 graphs, of order n = 4r 4+ 4, which are pairwise L-noncospectral and L-borderenergetic

graphs.

It is of interest to find more L-borderenergetic graphs, especially, connected and to estab-
lish their structural differences. Of course, we can use some graph operations to construct
them, such as tensor product of graphs. However, the problem of finding all L-borderenergetic
graphs on n vertices becomes rather difficult when n > 7. Indeed, using a computer, it took
several seconds for the case n < 7. But in other cases, it took dramatically long time, about

1 day for n = 8, and about 3 days for n = 9. Our final results are shown in Table 1.



n (4 5 6 7 8 9
2 1

number 11 5 33 23

Table 1. The numbers of connected non-complete
and pairwise non-isomorphic L-borderenergetic graphs

on n vertices for 4 < n <9.

In this paper, we first show that a kind of threshold graphs are L-borderenergetic. Then we
use tensor product to construct regular L-borderenergetic graphs. At last, all the connected
non-complete and pairwise non-isomorphic L-borderenergetic graphs of small order n are

depicted for n with 4 < n < 9.

2 Threshold graphs

Including several classes of L-borderenergetic graphs have been constructed by Tura in [22],

here we will find a class of threshold graphs which are also L-borderenergetic.

At first, let’s recall the definitions of threshold graphs and Ferrers-Sylvester diagrams. A
threshold graph is obtained through an iterative process which starts with an isolated vertex,
and at each step, either a new isolated vertex is added, or a vertex adjacent to all previous
vertices (dominating vertex) is added. A Ferrers-Sylvester diagram (see Figure 2) is a grid
representing a degree sequence (d) = (dy,ds, - ,d,) in which the ith row of the grid contains
d; boxes. The conjugate of a degree sequence (d) is the sequence (d*) = (di,d5, - - ,d},) where
dy = |{d; > i}|. Visually speaking, the value for d is the number of boxes in the ith column

of the Ferrers-Sylvester diagram.

Let S} be the graph with m edges obtained from an n-order star S,, by adding an edge.

Obviously, S} is a unicyclic and threshold graph (see Figure 1).

Figure 1. The graph S}.



Figure 2. The Ferrers-Sylvester diagram of S}.

Lemma 1. /3] Let G be a connected graph of order n with m edges. In addition, let d} be

the ith conjugate degree of G. Then
LE(G) <> |df —2m/n|
i=1
with equality holding if and only if G is a threshold graph.

Theorem 2. The graph S} is L-borderenergetic.

Proof. Since S} is a threshold graph, by the condition of the equality holding in Lemma 1,

we have
LE(SY) =" |d; — 2m/n] (1)
i=1

As S! is a unicyclic graph, we get m = n. From the Ferrers-Sylvester diagram of S} (see

Figure 2), it can be seen that
di=n,dy=3,dy=d;j=---=d,_,=1,d =0
So by (1), we obtain
LESH=Mn—-2)+1+(n—-3)+2=2(n—1).

g

Note that from [22] one can only get that for some even integers, there are L-borderenergetic
graphs. Since the order n of the graph S! can be any integer (even or odd), we immediately

get the following result, which is stronger than Tura’s result.

Theorem 3. For any integer n > 4, there is an L-borderenergetic graph.



3 Regular graphs

In this section, we use tensor product to construct some regular L-borderenergetic graphs.

The tensor product of two graphs G; and Go, denoted by G ® Ga, has vertex set V(G1) X
V(G2), in which two vertices (u1,u2) and (v1,v2) are adjacent if and only if both the edges
uivy € E(Gp) and ugvy € E(Gz). Then, it is easy to see that the order of Gi ® Gy is

[V (G1)]|V(G2)]. A result in [5] on the energy of tensor product of two graphs is given below.

Lemma 4. [5] If G and G2 are any two graphs, then E(G1 @ Ga) = E(G1)E(G2).

For regular graphs, we have

Theorem 5. If G is a d-reqular graph, then LE(G) = E(QG).

Proof. Obviously, the average degree of GG is d and the Laplacian eigenvalue of G possessing

the form of d — \;, where ¢ = 1,2,--- ,n. Then, we have

LEG) = lm—d =3 Jd=x—d =3 |\] = £@)
=1 =1 =1
O

Theorem 6. Let G be an L-borderenergetic graph. Suppose that G is obtained from the
tensor product of two L-integral graphs G1 and Gz, where Gy and Go are ri-reqular and

ro-reqular, respectively. Then both |V (G1)| and |V (G2)| are odd.

Proof. Since G; and G5 are all regular, by the definition of tensor product, G is also regular.
Then from Theorem 6 we get LE(G) = E(G), LE(G1) = E(Gy) and LE(G2) = E(Ge). By

Lemma 4, we see that
LE(G)=E(G)=E(G1 ® Ge) =E(G1)E(G2) = LE(G1)LE(G2) (2)

Since the energy of a graph is never an odd integer, there exist two integers t; and ¢y satisfying
E(G;) =2(]V(Gy)| — t;), and then we have LE(G;) = 2(|V(G;)| — t;) for i = 1,2. Thus, by

(2) we can see that

2(V(GDIIV(Ga)| = 1) = 4([V(G1)| = t)([V (Ga)| — t2) (3)



By (3), we obtain
V(GDIIV(G2)| = 2t1|V(Ga)| + 2t2|V (G1)| — 2t1t2 — 1 (4)

From above equation, we note that its right hand is odd and its left hand is the product of
|[V(G1)| and |V (G2)|. So, we know that both |V(G1)| and |V (G2)| are odd. O

Using Theorem 6, we can construct some regular L-borderenergetic graphs with small
orders. Assume that G1 = Ky (g,) and [V (G1)| = [V(Gz2)| > 1. Then, t; = 1 and t3 =
(IV(G1)] = 1)/2 by (4). From (2) and (3), we obtain £&(G2) = |V (G1)| + 1.

For |V(G1)| = 3 and |V (Gy)| = 7, we can verify that graphs K3 ® K3 and K7 ® {K3UCy}

are both L-borderenergetic.

4 [L-borderenergetic graphs of small orders

In this section, we will depict all the connected non-complete and pairwise non-isomorphic
L-borderenergetic graphs of small order n with 4 < n < 9, and give their L-spectra and
average degrees.

4.1. L-borderenergetic graphs of orders n =4 and 5

There are exactly two such L-borderenergetic graphs for n = 4 and only one for n = 5.

These graphs are shown in Figure 3. The corresponding L-spectra is given as follows.

LSp(Gy) = {4,3,1,0};
LSp(G3) = {4,4,2,0};

LSp(G}) = {5,3,1,1,0};

Gy G G;

Figure 3. The L-borderenergetic graphs of n =4 and 5.

4.2. L-borderenergetic graphs of order n =6



There are exactly 11 such L-borderenergetic graphs of order n = 6. These graphs are

presented in Figure 4. The L-spectra of them is shown below.

LSp(GY) = {6,4,4,2,2,0};
LSp(G%) = {6,5,4,3,2,0};
LSp(G) = {6,6,6,4,4,0};
LSp(Gg) = {6,5,5,3,3,0};
LSp(GY) = {6,6,5,4,3,0};
LSp(GS) = {6,6,4,3,3,0};
LSp(GE) = {6,3,1,1,1,0};
LSp(GE) = {6,4,3,2,1,0};
LSp(GY) = {6,4,4,3,1,0};
LSp(G) = {6,3,3,1,1,0};

LSp(G§') = {6,5,3,3,1,0};

4.3. L-borderenergetic graphs of order n =7

There are exactly 5 such L-borderenergetic graphs of order n = 7. These graphs are
depicted in Figure 5. The following is their L-spectra.
LSp(GY) = {7,3,1,1,1,1,0};
LSp(G3) = {7,5,5,5,4,2,0};
LSp(G2) = {7,6,5,4,4,2,0};
LSp(G3) = {7,6,5,4,4,2,0};

LSp(G3) = {7,6,5,4,3,3,0};

4.4. L-borderenergetic graphs of order n =8

There are exactly 33 such L-borderenergetic graphs of order n = 8. These graphs are

shown in Figure 6. The corresponding L-spectra is given as follows.

LSp(GY) = {8,3,1,1,1,1,1,0}; LSp(G3) = {8,7,4,4,4,4,1,0};
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Figure 4. The L-borderenergetic graphs of order n = 6.
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Figure 5. The L-borderenergetic graphs of order n = 7.



LSp(G3) = {8,5,5,5,3,3,3,0}; LSp(Ga) ={8,6,5,5,4,3,3,0};

LSp(G3) = {8,8,7,6,5,5,5,0}; LSp(GS) = {8,7,7,5,5,4,4,0};

LSp(GY) = {8,7,6,6,5,5,3,0}; LSp(GS) ={7,6,5,5,4,3,2,0};

LSp(GY) = {8,7,7,5,5,5,3,0}; LSp(GL®) ={8,7,7,5,5,5,3,0};

LSp(GLY) = {8,7,6,6,5,5,3,0}; LSp(GE?) = {8,8,8,7,6,6,5,0};

LSp(GE?) = {8,6,5,5,5,5,2,0}; LSp(GLY) = {8,7,5,5,4,4,3,0};

LSp(GL) = {8,7,6,5,4,4,4,0}; LSp(GL®) = {8,8,6,5,5,4,4,0};

LSp(GLT) = {8,6,6,6,4,4,4,0}; LSp(GL®) = {8,6,6,6,6,4,4,0};

LSp(GLY) = {8,8,8,8,6,6,6,0}; LSp(GZ°) = {8,8,6,6,6,6,4,0};

LSp(G¥) = {8,8,5,5,4,4,4,0}; LSp(G2*) = {6+ V2,6 —/2,7,6,4,4,3,0};
LSp(G%) = {8,7,6,6,5,4,4,0}; LSp(G3*) = {8,8,6,6,5,5,4,0};

LSp(G¥) ={8,4,3,3,2,1,1,0}; LSp(G2%) = {5+ V3,5 —/3,5,4,2,2,1,0};
LSp(G2T) = {8,4,4,3,3,1,1,0}; LSp(G2®) ={8,5,3,3,3,1,1,0};

LSp(G) = {8,7,7,6,5,5,4,0}; LSp(G2®) = {6+ V2,6 — /2,7,5,4,4,2,0};
LSp(G3') = {8,5,4,4,3,3,1,0}; LSp(G3?) = {8,5,5,5,4,4,1,0};

LSp(GE) = {8,3,3,3,1,1,1,0};

4.5. L-borderenergetic graphs of order n =9

There are exactly 23 such L-borderenergetic graphs of order n = 9. These graphs are

presented in Figure 7. The L-spectra of them is shown below.

LSp(GY) = {9,3,1,1,1,1,1,1,0}; LSp(G3) = {6,6,6,5,5,3,3,2,0};
LSp(G3) = {7,6,6,5,4,4,3,1,0}; LSp(G4) = {9,6,6,5,5,5,3,3,0};
LSp(G3) = {7,6,6,5,4,3,3,2,0}; LSp(GS) = {7,6,6,5,4,3,3,2,0};
LSp(GY) ={9,7,6,6,6,6,4,4,0}; LSp(G3) = {9,8,7,5,5,5,5,4,0};
LSp(GY) ={9,9,8,6,6,6,6,4,0}; LSp(G®) =1{9,8,7,5,5,5,5,4,0};
LSp(GY) =1{9,9,7,7,6,6,5,5,0}; LSp(Gy?) = {9,9,7,7,6,6,6,4,0};
LSp(G§?) = {9,8,8,7,6,6,6,4,0}; LSp(Ga*) =1{9,9,9,7,7,7,6,6,0};

LSp(G%) = {7,6,6,5,4,3,3,2,0}; LSp(G) = {6+ /2,6 —2,6,6,4,3,3,2,0};



LSp(GYT) = {8,6,5,5,4,3,3,2,0}; LSp(G®) = {6,6,6,6,3,3,3,3,0};
LSp(GyY) = {8,6,6,6,5,5,3,3,0}; LSp(G3°) = {7,6,5,5,5,3,3,2,0};
LSp(G3Y) = {7,6,5,5,5,4,3,1,0}; LSp(G3?) ={9,6,5,4,4,4,3,1,0};

LSp(G3®) = {9,7,4,4,4,4,3,1,0};

Gy Gy G

Gy Gy G Gy

G Gg' Gy! Gy’
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Figure 6. The L-borderenergetic graphs of order n = 8.
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Figure 7. The L-borderenergetic graphs of order n = 9.
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